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Pattern mining
as an optimization problem

Pattern sets Optimal pattern mining

Top-k pattern mining ~ Dominance programming
1935 2000 2005 2010 Now

Constraint-based pattern mining  Pattern mining as an optimization problem Interactive pattern mining

» performance issue » quality issue
» the more, the better » the less, the better
» data-driven » user-driven

In this part:
» preferences to express user’s interests

» focusing on the best patterns:
dominance relation, optimal pattern sets, subjective
interest



Addressing pattern mining tasks

with user preferences

Idea: a preference expresses a user’s interest
(no required threshold)

Examples based on measures/dominance relation:

» “the higher the frequency, growth rate and aromaticity
are,
the better the patterns”

» "I prefer pattern Xy to pattern Xy if Xy is not dominated
by X, according to a set of measures”

w measures/preferences: a natural criterion for ranking
patterns
and presenting the “best” patterns



Preference-based approaches
in this tutorial
» in this part: preferences are explicit (typically given by
the user depending on his/her interest/subjectivity)

in the last part: preferences are implicit

» quantitative/qualitative preferences:
» quantitative:

constraint-based data mining: frequency, size, . ..
measures | background knowledge: price, weight, aromaticity,
statistics: entropy, pvalue, . ..

» qualitative: “| prefer pattern X to pattern X"
(pairwise comparison between patterns).

With qualitative preferences: two patterns can be
incomparable.



Measures

Many works on:

> interestingness measures (Geng et al. ACM Computing
Surveys06)

» utility functions (Yao and Hamilton DKE06)
» statistically significant rules (Hamaliinen and Nykinen

ICDMO8)

Examples:
» area(X) = frequency(X) x size(X) (tiling: surface)

. o Dx frequency (X1.X2)
> /Ift(Xl — X2) ~ frequency (X)X frequency (X1)

» utility functions: utility of the mined patterns (e.g.
weighted items, weighted transactions).
An example: No of Product x Product profit



Putting the pattern mining task to
an optimization problem
The most interesting patterns according to
measures/preferences:

>

free/closed patterns (Boulicaut et al. DAMI03, Bastide et al.
SIGKDD Explorations00)

w ojven an equivalent class, | prefer the shortest/longest patterns

one measure: top-k patterns (Fu et al. Ismis00, Jabbour et
al. ECML/PKDD13)

several measures: how to find a trade-off between several
criteria?

w skyline patterns (Cho et al. IJDWMO05, Soulet et al.
ICDM'11, van Leeuwen and Ukkonen ECML/PKDD13)

dominance programming (Negrevergne et al. ICDM13),
optimal patterns (Ugarte et al. ICTAI15)

subjective interest/interest according to a
backeround knowledege (De Bie DAMI2011)



top-k pattern mining: an example

Goal: finding the k patterns maximizing an interestingness

measure.
Tid Items
t1 B E
tr B C D
t3 E
ty B C D E
ts B C D E
te B C D E
t7 B C D E

> the 3 most frequent patterns:
B, E, BE®

= casy due to the anti-monotone
property of frequency

a0ther patterns have a frequency of 5:
C, D, BC, BD, CD, BCD



top-k pattern mining: an example

Goal: finding the k patterns maximizing an interestingness

measure.
Tid ltems
1 B E F > the 3 most frequent patterns:
t B C D B, E, BE®
t A E F .
ti A B C D E = casy due to the anti-monotone
ts B C D E property of frequency
te B C D E F
t7 A B C D E F
> the 3 patterns maximizing area:
BCDE, BCD, CDE
@ w branch & bound
@ (Zimmermann and De Raedt MLJO09)
@ a0ther patterns have a frequency of 5:

C, D, BC, BD, CD, BCD



top-k pattern mining

an example of pruning condition

top-k patterns according to area, k = 3

Tid Items
t1
[%]
t3 A
ty A
ts
te
t7 A

o @
m
-n

C

O
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[aNeKeNe!
|SAvAvRw)
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Principle:
» Cand: the current set of the k
best candidate patterns

» when a candidate pattern is
inserted in Cand, a more efficient
pruning condition is deduced

A: lowest value of area for the patterns in Cand

L: size of the longest transaction in D (here: L = 6)

a pattern X must satisfy frequency(X) >

A
L

to be inserted in Cand
w pruning condition according to the
frequency (thus anti-monotone)

Example with a depth first search approach:

>

initialization: Cand = {B, BE, BEC}

(area(BEC) = 12, area(BE) = 10, area(B) = 0)

= frequency(X) > g

new candidate BEcD: Cand = {BE, BEC, BECD}
(area(BECD) = 16, area(BEC) = 12, area(BE) = 10)

w frequency(X) > 2 which is more efficient

6
than

new candidate BECDF. ..



top-k pattern mining in a nutshell

Advantages: Drawbacks:

» complete resolution is costly,
» compact sometimes heuristic search
(beam search)

(van Leeuwen and Knobbe DAMI12)
» threshold free

» diversity issue: top-k patterns

are often very similar

» best patterns
» several criteria must be aggregated

w skylines patterns: a trade-off
between several criteria



Skypatterns (Pareto dominance)

Notion of skylines (database) in pattern mining (Cho at al. IJDWMO05, Papadopoulos
et al. DAMIO08, Soulet et al. ICDM11, van Leeuwen and Ukkonen ECML/PKDD13)

Tid Items

t1 B E

tr B C D

t3 A E

ta A B C D E

ts B C D E

te B C D E

t7 A B C D E

Patterns | freq | area

2 4
2 6
6 6
4 16
2 8
6 6

BCDE
16 BCD
12 <
8 e
< 8 & o
B
2 E
4 < <&
0
o] 1 2 3 4 5 6
Frequency

|L7| = 25, but only 4 skypatterns

Sky(Lz,{freq, area}) = {BCDE, BCD, B, E}



Skylines vs skypatterns

Problem Skylines Skypatterns
a set of a set of
Mining task | non dominated | non dominated
transactions patterns
Size of the
space search DI | £]
domain a lot of works

usually: | D |<<| L |

very few works

set of transactions
set of patterns




Skypatterns: how to process?

A naive enumeration of all candidate patterns (£z) and then
comparing them is not feasible. ..

Two approaches:

1. take benefit from the pattern condensed representation
according to the condensable measures of the given set of
measures M

» skylineability to obtain M’ (M’ C M)
giving a more concise pattern condensed representation

» the pattern condensed representation w.r.t. M’ is a
superset of the representative skypatterns w.r.t. M
which is (much smaller) than L7.

2. use of the dominance programming framework (together
with skylineability)



Dominance programming

Dominance: a pattern is optimal if it is not dominated by
another.

Skypatterns: dominance relation = Pareto dominance
1. Principle:
» starting from an initial pattern s;

» searching for a pattern s, such that s; is not preferred to
52

» searching for a pattern s3 such that s; and s, are not
preferred to s3

» until there is no pattern satisfying the whole set of
constraints

2. Solving:

» constraints are dynamically posted during the mining
step

LI I T T P - |



Dominance programming:

example of the skypatterns

Trans. Items 16 ]
t B E F
tr B C D 12 -
t3 A E F 8
ty A B C D E o 81
ts B C D E
te B C D E F 4
t7 A B C D E F
o T
1

M = {freq, area}

q(X) = closedu (X)

Candidates =

freq




Dominance programming:

example of the skypatterns

Trans.

Items

t
to
t3
ty
ts
te
t7

> >
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area

BCDEF

o T

[ 1 2 3

freq

M = {freq, area}
q(X) = closedu (X)

Candidates = {BCDEF,

S1




Dominance programming:

example of the skypatterns

Trans.

Items

t
to
t3
ty
ts
te
t7

> >

© @
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c D
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mimmmm

area

BCDEF

o T

[ 1 2 3

freq

M = {freq, area}
q(X) = closedm (X) A=(s1 =m X)

Candidates = {BCDEF,

S1




Dominance programming:

example of the skypatterns

Trans. Items
t B E F
t B C D
t3 A E F 8
ts A B C D E 5
ts B C D E
ts B C D E F
t A B C D E F

-

M = {freq, area}
q(X) = closedy (X) A=(s1 =m X)

Candidates = {

BCDEF
~—

S1

)

BEF
—~

S2

3

freq




Dominance programming:

example of the skypatterns

Trans. Items 16
t B E F
tr B C D 12
t3 A E F o] BCDEF
tt |A B CDE = BEF
ts B CDE
ts B C D E F 4
t7 A B C D E F
0() 1 2 3 )l
freq

M = {freq, area}
q(X) =closedp (X) A=(s1 =m X)A(s2 =m X)

Candidates = {BCDEF, BEF,

S1 S2



Dominance programming:

example of the skypatterns

Trans.

Items

ty
t
t3
ty
ts
te
t7

@

C

> >
T T W
eNeNeNe)

A

D

vAwRwlw)

E

mmimmm

| L7 |= 2% = 64 patterns

4 skypatterns

area

M = {freq, area}

-¢BCDEF

: OBEF

freq

q(X) = closedy (X) A=(s1 =m X)A-(s2 =m X)A=(s3 = m
X) A\ —|(S4 M X) A\ —|(S5 M X) N _‘(56 M X) A\ —|(S7 M X)

Candidates = {BCDEF, BEF, EF , BCDE, BCD, B , E }
—— =~~~

S1

S2

S3

S4

Sg Se

S7

Sky(Lz,M)




Dominance programming: to sum up

The dominance programming framework encompasses many
kinds of patterns:

dominance relation

maximal patterns inclusion

closed patterns | inclusion at same frequency
order induced by

the interestingness measure

skypatterns Pareto dominance

top-k patterns

maximal patterns C closed patterns

top-k patterns C skypatterns



A step further

a preference is defined by any property between two patterns
(i.e., pairwise comparison) and not only the Pareto dominance
relation: measures on a set of patterns, overlapping between
patterns, coverage,. ..

w preference-based optimal patterns

In the following:

(1) define preference-based optimal patterns,

(2) show how many tasks of local patterns fall into this
framework,

(3) deal with optimal pattern sets.



Preference-based optimal patterns

A preference 1> is a strict partial order relation on a set of
patterns S.

x >y indicates that x is preferred to y

(Ugarte et al. ICTAIL5): a pattern x is optimal (OP) according to
> iff Ayr,...yp €S, V1< j<p, yi>x

(a single y is enough for many data mining tasks)

Characterisation of a set of OPs:  a set of patterns:
{X€S| /\/Hyh...ypES,Vlgjgp,ijx}

x must satisfy a property defined by the
user

for example: having a minimal frequency, being closed, ...



Local patterns: examples
Large tiles
Trans. 5 Items - c(x) = freq(x) x size(x) > Yarea
t
t; B C D Example: freq(BCD) x size(BCD) =5 x 3 =15
ts A E F
4t |A B C D E Frequent sub-groups
ts B CDE _ . .
o B ¢cDEF c(X) = freq(x) > tpeg NBY€ES:
4 |A B CDEF T1i(y) 2 Tu(x) A Ta(y) € Ta(x)
ANT)=Tx)=ycCx)
Skypatterns
c(x) = closedpy(x)
NAYES: y=pmx
Frequent top-k patterns according to m
c(x) = freq(x) > tsreq
S=Ls ANBYyi,.., Y €S

(Mannila et al. DAMI97)

A n(y;) > m(x)

1<j<k



Local (optimal) patterns: examples

Trans.

Items

ty
ty
t3
ty
ts
te
t7

> >

o @

lowlveveivy)

(@)
O
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lvRviwiw)

mmmmm

(Mannila et al. DAMI97)

Large tiles
c(x) = freq(x) x size(x) > Yarea

ANAyeS:
(x) A Ta(y) € Ta(x)
T(x) =y Cx)

ANAyeS:y=mx

top-k patterns according to m

NAyi,...

A

1<j<k

sub-groups
c(x) =
Ti(y)2Th
A(T(y) =
Skypatterns
c(x) =
c(x) =

Yk ES:
m(yj) > m(x)



Pattern sets: sets of patterns

Patterns sets (De Raedt and Zimmermann SDMOQT): sets of patterns
satisfying a global viewpoint (instead of evaluating and selecting patterns
based on their individual merits)

Search space (S): local patterns versus pattern sets
example: Z = {A, B}

> all local patterns: S = L7 = {0, A, B, AB}

> all pattern sets:

S =2fz =
{0,{A},{B},{AB},{A, B},{A AB}, {B,AB},{A, B,AB}}

Many data mining tasks: classification (Liu et al. KDD98),

clustering (Ester et al. KDD96), database tiling (Geerts et al. DS04),
pattern summarization (Xin et al. KDDO06), pattern teams (Knobbe and
Ho PKDDO06),. ..

Many input (“preferences”) can be given by the user:
coverage, overlapping between patterns, syntactical properties, measures,
number of local patterns.. ..



Coming back on OP (Ugarte et al. ICTAI15)

Pattern sets of length k: examples

Conceptual clustering (without overlapping)

clus(x) = A\ closed(x;) A |J T(x)=TA
ie[l..k] ic[l..k]
N T()NT(g) =0
' ijE[L. K]
‘ Conceptual clustering with optimisation

c(x) = clus(x)
A Bye 2£Z,j€rﬂi_rjk]{freq(yj)} > ierﬂi'rjk]{freq(xi)}

Pattern teams

S C 2Lz c(x) = size(x) = k AZAy€ 28T, d(y) > d(x)
(sets of length k)



Coming back on OP (Ugarte et al. ICTAI15)
(Optimal) pattern sets of length k: examples

Conceptual clustering (without overlapping)

clus(x) = A\ closed(x;) A |J T(x)=TA
ie[l..k] ieL. k]

A T NT0g) =0

q ijE[l. k]

A Conceptual clustering with optimisation

c(x) =

AZBy€2fT min {freq(yj)} > min {freq(x;)}
JElL..K] i€[L..k]

Pattern teams

S c 2%z c(x) = ANBy €257, 0(y) > d(x)
(sets of length k)



Relax the dogma “must be optimal™:

soft patterns

Stringent aspect of the classical constraint-based pattern
mining framework: what about a pattern which slightly
violates a query?

example: introducing softness
in the skypattern mining:
w soft-skypatterns

put the user in the loop to determine the best patterns w.r.t.
his/her preferences

Introducing softness is easy with Constraint Programming:
w same process: it is enough to update the posted constraints



Many other works in this broad field

Example: heuristic approaches

pattern sets based on the Minimum Description Length
principle: a small set of patterns that compress - KRIMP
(Siebes et al. SDM06)

L(D, CT): the total compressed size of the encoded database and the code table:

L(D,CT) = L(D|CT) + L(CT|D)

Many usages:

>

>
>
>

characterizing the differences and the norm between given
components in the data - DIFFNORM (Budhathoki and Vreeken
ECML/PKDD15)

causal discovery (Budhathoki and Vreeken ICDM16)
missing values (Vreeken and Siebes ICDMO08)
handling sequences (Bertens et al. KDD16)

> ..

and many other works on data compression/summarization (e.g. Kiernan
and Terzi KDDO08),.. .

|\ P I S [T T S A | I P A | [ T o}



Pattern mining as an optimization

problem: concluding remarks

In the approaches indicated in this part:

» measures/preferences are explicit and must be given by
the user. .. (but there is no threshold :-)

» diversity issue: top-k patterns are often very similar

» complete approaches (optimal w.r.t the preferences):
w stop completeness

Toon Calders (ECML/PKDD 2012, most influential paper award)

A further step: interactive pattern mining (including the
instant data mining challenge), implicit preferences and
learning preferences



Pattern sampling

Active learning
1995 2000 2005 2010 Now

Constraint-hased pattern mining  Pattern mining as an optimization problem Interactive pattern mining

Interactive pattern mining



Interactive pattern mining

Pattern sampling

Active learning
1995 2000 2005 2010 Now

Constraint-hased pattern mining  Pattern mining as an optimization problem Interactive pattern mining

Idea: “I don’t know what | am looking for, but | would
definitely know if | see it.”
w preference acquisition

In this part:

» Easier: no user-specified parameters (constraint,
threshold or measure)!

» Better: learn user preferences from user feedback

» Faster: instant pattern discovery



Addressing pattern mining

with user interactivity

Advanced Information Retrieval-inspired techniques

» Query by Example in information retrieval (QEIR) (Chia et
al. SIGIR08)

» Active feedback with Information Retrieval (Shen et al.
SIGIR05)

» SVM Rank (Joachims KDD02)

> ...

Challenge: pattern space L is often much larger than
the dataset D



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van
Leeuwen 2014)

Mine
R, “
Learn 4 Interact



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van
Leeuwen 2014)

Mine
bk, “
Learn 4 Interact

Mine
» Provide a sample of k patterns to the user (called the
query Q)



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van
Leeuwen 2014)

Mine
R, “
Learn 4qInteract

Interact

» Like/dislike or rank or rate the patterns



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van
Leeuwen 2014)

Mine
R, “
Learn 4 Interact

Learn

» Generalize user feedback for building a preference model



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van
Leeuwen 2014)

Mine
bk, “
Learn 4 Interact

Mine (again!)

» Provide a sample of k patterns benefiting from the
preference model



Interactive pattern mining

Multiple mining algorithms

Bonn Cllck Mlnlng

[fost =] Vou sre working on Test oreen 2oo:
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Do GRERN 2605: 5.145798;
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S
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wiee pattrnoenagin, 531 77 83 64 32 783 483 87 11 a1 se ime i mi as T e
e
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Frequency 0.604369;  Frequency : 0.640777.
Dev. Construction workfor Dev. Young Populatiors: 0.

[§ One Click Mining - Interactive Local Pattern Discovery through
Implicit Preference and Performance Learning. (Boley et al. IDEA13)



Interactive pattern mining

Platform that implements descriptive rule discovery algorithms
suited for neuroscientists

Q  Searchin results

Odors®
@ Descriptor distribution ®

DISTRIBUTION OF THE

m —

Subgroups @n e

sk CE e : sk o
non e amee s e wme s e mes W ame
oo e
e 5 % | [ 2 6] [ 5] e

o s e ome s

Qualty measure :0.3720

[ h(odor): Interactive Discovery of Hypotheses on the
Structure-Odor Relationship in Neuroscience. (Bosc et al.

ECML/PKDD16 (demo))



Interactive pattern mining: challenges

» MINE

» Instant discovery for facilitating the iterative process

» Preference model integration for improving the pattern
quality

» Pattern diversity for completing the preference model

» INTERACT

» Simplicity of user feedback (binary feedback > graded
feedback)
» Accuracy of user feedback (binary feedback < graded
feedback)
» LEARN

» Expressivity of the preference model
» Ease of learning of the preference model



Interactive pattern mining: challenges

» MINE
» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern
quality
» Pattern diversity for completing the preference model
» INTERACT
» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)

» LEARN

» Expressivity of the preference model
» Ease of learning of the preference model

m Optimal mining problem (according to preference model)



Interactive pattern mining: challenges

» MINE

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern
quality
» Pattern diversity for completing the preference model
» INTERACT

» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)

» LEARN

» Expressivity of the preference model
» Ease of learning of the preference model

w Active learning problem



LEARN: Preference model
How user preferences are represented?
Problem

» Expressivity of the preference model
» Ease of learning of the preference model



LEARN: Preference model

How user preferences are represented?
Problem

» Expressivity of the preference model
» Ease of learning of the preference model

Weighted product model
» A weight on items Z
» Score for a pattern X = product of weights of items in X

> (Bhuiyan et al. CIKM12, Dzyuba et al. PAKDD17)
WA wB wc
AB 4 x 1 = 4
BC 1 x 05 = 05



LEARN: Preference model
How user preferences are represented?

Problem

» Expressivity of the preference model
» Ease of learning of the preference model

Feature space model

» Partial order over the

feature space

pattern language £ A _Tfﬁp\i”\g FTE TR

. ~ ap an as aa

» Mapping between a NS A B [ b [ B3| Ba
pattern X and a set of BT laTelsTa

features: pattern space




LEARN: Feature space model

Feature space

feature space

A rpapping .
-~ Bl RIRIRL.  » = assumption about the
™ a1 an as ag
A B B [y [Ba |-
N T user preferences
Nt : : » the more, the better

pattern space

Different feature spaces:
» Attributes of the mined dataset (Rueping ICML09)
» Expected and measured frequency (Xin et al. KDDO06)

» Attributes, coverage, chi-squared, length and so
on (Dzyuba et al. ICTAI13)



INTERACT: User feedback

How user feedback are represented?
Problem

» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)



INTERACT: User feedback

How user feedback are represented?
Problem

» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)

Weighted product model

» Binary feedback (like/dislike) (Bhuiyan et al. CIKM12,
Dzyuba et al. PAKDD17)
pattern feedback
A like
AB like
BC dislike




INTERACT: User feedback

How user feedback are represented?
Problem

» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)

Feature space model
» Ordered feedback (ranking) (Xin et al. KDD06, Dzyuba et al.
ICTAIL3)
A= AB > BC

» Graded feedback (rate) (Rueping ICML09)
pattern feedback
A 0.9
AB 0.6
BC 0.2




LEARN: Preference learning method

How user feedback are generalized to a model?

» Weighted product model

» Counting likes and dislikes for each item:
w = B#like - gdislike) (Bpivan et al. ICML12, Dzyuba et al.

PAKDD17)
pattern feedback A B C
A like 1
AB like 1 1
BC dislike -1 -1

» Feature space model

22704 2I-T—71 20-1_—¢5

» = learning to rank (Rueping ICML09, Xin et al. KDDQ6,

Dzyuba et al. ICTAI13)



LEARN: Learning to rank

How to learn a model from a ranking?

feature space

mappin
AP FTETEIAT..
(5 STa [ ax | a3 | aa
o _ b1 | bo| bs| by |-
C\\\B \\,///,, C1 C c3 C4
N - . .

pattern space




LEARN: Learning to rank

How to learn a model from a ranking?

i fe r -
A _Mmapping ya ea:_ue:_pacc;_ training dataset
~< 1 P r3 )l ..
“~a; [ax | a3 | aa Flb ng Fi
ap—by|ax—by|a3— b3
N S o o o o A ey e s
s Jalalala - -
N - -

pattern space

1. Calculate the distances between feature vectors for each
pair (training dataset)



LEARN: Learning to rank

How to learn a model from a ranking?

feature space

g S

training dataset

~
~J

F F> F3

o 1

ay— by |ax—by| a3 — b3

C \\B ~_--~
N ~ —1

N_—-—7

pattern space

a—c fa—Cc|a—c|---

1. Calculate the distances between feature vectors for each
pair (training dataset)

2. Minimize the loss function stemming from this training

dataset

Algorithms: SVM Rank (Joachims KDD02), AdaRank (Xu et al.

SIGIR07),. . .



LEARN: Active learning problem

How are selected the set of patterns (query Q)?
Problem

» Mining the most relevant patterns according to Quality

» Querying patterns that provide more information about
preferences
(NP-hard problem for pair-wise preferences (Ailon JMLR12))

» Heuristic criteria:
» Local diversity: diverse patterns among the current
query Q
» Global diversity: diverse patterns among the different
queries Q;
» Density: dense regions are more important



LEARN: Active learning heuristics
(Dzyuba et al. ICTAI13)
What is the interest of the pattern X for the current pattern
query Q7
» Maximal Marginal Relevance: querying diverse
patterns in Q

aQuality(X) + (1 — a)gﬁg dist(X,Y)
S
» Global MMR: taking into account previous queries

aQuality(X) + (1 — «) min dist(X,Y)
YEU,' i

» Relevance, Diversity, and Density: querying patterns
from dense regions provides more information about

preferences

aQuality(X) + BDensity(X) + (1 —a — ) ggg dist(X,Y)



MINE: Mining strategies
What method is used to mine the pattern query Q7
Problem

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern
quality

» Pattern diversity for completing the preference model



MINE: Mining strategies
What method is used to mine the pattern query Q7
Problem

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern
quality

» Pattern diversity for completing the preference model

Post-processing

» Re-rank the patterns with the updated quality (Rueping
ICMLOQ9, Xin et al. KDD06)

» Clustering as heuristic for improving the local diversity
(Xin et al. KDDO06)



MINE: Mining strategies
What method is used to mine the pattern query Q7
Problem

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern
quality

» Pattern diversity for completing the preference model

Optimal pattern mining (Dzyuba et al. ICTAI13)

» Beam search based on reweighing subgroup quality
measures for finding the best patterns

» Previous active learning heuristics (and more)



MINE: Mining strategies
What method is used to mine the pattern query Q7
Problem

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern
quality

» Pattern diversity for completing the preference model

Pattern sampling (Bhuiyan et al. CIKM12, Dzyuba et al.
PAKDD17)

» Randomly draw pattern with a distribution proportional
to their updated quality

» Sampling as heuristic for diversity and density



Objective evaluation protocol

Methodology = simulate a user

1. Select a subset of data or pattern as user interest

2. Use a metric for simulating user feedback

User interest:

» A set of items (Bhuiyan et al. CIKM12, Dzyuba et al.
PAKDD17)

» A sample for modeling the user’s prior knowledge (Xin et
al. KDD06)

» A class (Rueping ICML09, Dzyuba et al. ICTAI13)



Results

Objective evaluation results

» Dozens of iterations for few dozens of examined patterns
» Important pattern features depends on the user interest

» Randomized selectors ensure high diversity



Results

Objective evaluation results

» Dozens of iterations for few dozens of examined patterns
» Important pattern features depends on the user interest

» Randomized selectors ensure high diversity

Questions?

» How to select the right set of (hidden) features for
modeling user preferences?
» How to subjectively evaluate interactive pattern mining?
m qualitative benchmarks for pattern mining
[4 Creedo — Scalable and Repeatable Extrinsic Evaluation for

Pattern Discovery Systems by Online User Studies. (Boley et
al. IDEA15)



Instant pattern discovery

The need

“the user should be allowed to pose and refine queries at any
moment in time and the system should respond to these
queries instantly”

[4 Providing Concise Database Covers Instantly by Recursive Tile
Sampling. (Moens et al. DS14)
m few seconds between the query and the answer

Methods
b S I .
» Beam search Subgroup Discovery methods

» Monte Carlo tree search (Bosc et al. 2016)
» Pattern sampling



Dataset sampling vs Pattern sampling

Dataset sampling

dataset mined patterns

dataset sample

Finding all patterns from a
transaction sample
% input space sampling

[ Sampling large databases for association rules. (Toivonen et al.
VLDBY6)



Dataset sampling vs Pattern sampling

Dataset sampling

dataset mined patterns

o Qo

o
______ _,O%o
o o

dataset sample

Finding all patterns from a
transaction sample
% input space sampling

Pattern sampling

dataset mined patterns

pattern sample

Finding a pattern sample from
all transactions
m output space sampling

[4 Random sampling from databases. (Olken, PhD93)



Pattern sampling: References

B

) & & B & &

Output Space Sampling for Graph Patterns. (Al Hasan et al.
VLDB09)

Direct local pattern sampling by efficient two-step random
procedures. (Boley et al. KDD11)

Interactive Pattern Mining on Hidden Data: A
Sampling-based Solution. (Bhuiyan et al. CIKM12)

Linear space direct pattern sampling using coupling from the
past. (Boley et al. KDD12)

Randomly sampling maximal itemsets. (Moens et Goethals
IDEA13)

Instant Exceptional Model Mining Using Weighted Controlled
Pattern Sampling. (Moens et al. IDA14)

Unsupervised Exceptional Attributed Sub-graph Mining in
Urban Data (Bendimerad et al. ICDM16)



Pattern sampling: Problem

Problem

» Inputs: a pattern language £ +
a measure m: L — R

» QOutput: a family of k

realizations of the random set
R ~ m(L)

ignored by constraint-based
pattern mining

dataset D pattern language £
-+ measure m

o (=]
k random patterns X ~ m(L)

ignored by optimal
pattern mining

Pattern sampling addresses the full pattern language £ m»

diversity!



Pattern sampling: Problem

Problem
dataset D pattern language £
» Inputs: a pattern language £ + + measure m
o Qe
ameasurem: L =¥ | | oo ~ o3’
» QOutput: a family of k
realizations of the random set o3

R ~ m(L) s

k random patterns X ~ m(L)

L
graphs

freq.:
(Al Hasan et 4 VLDBog) (Al Hasan et al. VLDBO09)

sequential

patterns

area: (Boley et al. KDD11)
(Moens et al. DS14)

itemsets fr(fw%éns(ft%gtﬁ‘a@'iD’éﬂ?é)l) (Boley et al. KDD11) (Moens et al. DS14)

regularities contrasts anomalous



Pattern sampling: Challenges

Naive method

1. Mine all the patterns with exhaustive
their interestingness m | | --F== - %% e

2. Sample this set of patterns | sampling
. 1
accordlng to m direct sampling o*
(]

w Time consuming / infeasible



Pattern sampling: Challenges

Naive method

1. Mine all the patterns with exhaustive
their interestingness m | | --F== - %% e

2. Sample this set of patterns | sampling
) 1
according to m direct sampling o*
(-]

w Time consuming / infeasible

Challenges

» Trade-off between pre-processing computation and
processing time per pattern

» Quality of sampling



Two main families

1. Stochastic techniques

» Metropolis-Hastings o ©
algorithm o @

» Coupling From The Past © \O

2. Direct techniques

» ltem/transaction sampling
with rejection

draw a_transaction draw afn itemse
dataset D t from D X from't

» Two-step random
procedure

()
’



Two-step procedure: Toy example

[4 Direct local pattern sampling by efficient two-step random

procedures. (Boley et al.

Mine all frequent patterns

DDI11)

Itemset

A
B

y»  C

AB

AC

BC
ABC

freq.
2

HNFENWW

Tid Items
t1 A B C
to A B
t3 B C
ty C

Pick 14 itemsets

T~

Itemsets
A A

B, B, B
C,C C
AB, AB
AC

BC, BC
ABC




Two-step procedure: Toy example

[4 Direct local pattern sampling by efficient two-step random

procedures. (Boley et al. KDD11)

infeasible

Mine-al-frequentpatterns ¢

AC
BC

Tid Items
t1 A B C
tr A B
t3 B C
ty C

Itemset | freq.
A 2
B 3
3
AB 2
1
2
ABC 1

Direct sampling

Pick 14 itemsets

T~

Itemsets
A A

B, B, B
C, C C
AB, AB

- AC
BC, BC
ABC




Two-step procedure: Toy example

[4 Direct local pattern sampling by efficient two-step random

procedures. (Boley et al. KDD11)
Itemset | freq.
. . A 2 . .
infeasible B 3 Pick 14 itemsets
Mine-al-frequentpatterns ¢ 3
/7 AB 2
AC 1
BC 2 Itemsets
Tid ltems ABC 1 A A
w |A B C B B B
n | A B c.C C
& B C AB, AB
t e AC
BC, BC
ABC
//
TIid Itemsets - -
tn | A B, C, AB, -
AC, BC, ABC |4 )
t» | A B, AB Rearrange itemsets
ts | B, C, BC
ta C




Two-step procedure: Toy example

[4 Direct local pattern sampling by efficient two-step random
procedures. (Boley et al. KDD11)

Itemset | freq.

. . A 2 . :
infeasible B 3 Pick 14 itemsets
Mine-all-frequent patterns ¢ 3
AB 2
AC 1
BC 2 Itemsets
Tid Items weight w ABC 1 A A
W |A B C| 2 _1=7 B, B, B
b | A B 22_1=3 ¢ c C
t3 B C| 22-1=3 A?'AB
t4 cll2-1=1 gc BC
\ ABC
W Tld | Itemsets /
. . tt | A B C, AB,
1. Pick a transaction AC, BC, ABC
proportionally tow | t | A B, AB 2. Pick an itemset
ts | B C, BC uniformly
ta C




Two-step procedure: Comparison

Offline processing

slow | Two-step procedure

fast

MH method

fast

slow

Complexity depends on the measure m:

Online processing

Measure m(X)

Preprocessing

k realizations

supp(X, D)
supp(X, D) x |X|
supp+(X, D) x (|D—| — supp—(X, D))
supp(X, D)?

O(|Z] x [D])
O(|Z] x [D|)
O(|Z|?> x |DJ?)
O(|Z]”> x |DP?)

O(k(]Z] + In[D]))
O(k(|Z] +In|DJ))
O(k(|Z| + 1n*|DJ))
O(k(IZ] +1n*|D)))

Preprocessing time may be prohibitive




Two-step procedure: Comparison
Offline processing

slow | Two-step procedure

Two-step procedure
fast with CFTP MH method

fast slow

Online processing

Complexity depends on the measure m:

Measure m(X) Preprocessing k realizations
supp(X, D) O(IZ[ x D) | O(K(Z| + n[D]))
supp(X, D) x |X] o(1z| x D) | O(K([Z| +In|D]))
supp+(X, D) x (ID_| — supp—(X, D)) | O(Z]? x [D) | O(k(|Z| +In? |D]))
supp(X, D)? O(IZ2 x [DP?) | O(k(|Z| + In?|D]))

Preprocessing time may be prohibitive " hybrid strategy with
stochastic process for the first step:

[4 Linear space direct pattern sampling using coupling from the
past. (Boley et al. KDD12)



Pattern sampling

Summary
Pros

» Compact collection of
patterns

» Threshold free
» Diversity
» Very fast

Cons
» Patterns far from
optimality
» Not suitable for all
interestingness measures



Pattern sampling

Summary
Pros Cons
» Compact collection of » Patterns far from
patterns optimality
» Threshold free » Not suitable for all
» Diversity interestingness measures
» Very fast

Interactive pattern sampling

[4 Interactive Pattern Mining on Hidden Data: A
Sampling-based Solution. (Bhuiyan et al. CIKM12)

m how to integrate more sophisticated user preference models?



Pattern set and sampling

Pattern-based models with iterative pattern
sampling
[§ ORIGAMI: Mining Representative Orthogonal Graph
Patterns. (Al Hasan et al. ICDMO7)

[4 Randomly sampling maximal itemsets. (Moens et Goethals
IDEA13)

[4 Providing Concise Database Covers Instantly by Recursive
Tile Sampling. (Moens et al. DS14)
m how to sample a set of patterns instead of indivual patterns?

[4 Flexible constrained sampling with guarantees for pattern
mining. (Dzyuba et al. 2016)



Interactive pattern mining:

concluding remarks

» Preferences are not explicitly given by the user. ..
... but, representation of user preferences should be
anticipated in upstream.

» Instant discovery enables a tight coupling between user
and system. ..
... but, most advanced models are not suitable.



Concluding remarks



Preference-based pattern mining

Frequent pattern Condensed Pattern sets Optimal pattern mining ~ Pattern sampling
mining representations  Top-k pattern mining  Dominance programming  Active learning
1995 2000 2005 2010 Now

Constraint-hased pattern mining  Pattern mining as an optimization problem Interactive pattern mining

User preferences are more and more prominent. . .

from simple preference models to complex ones

» from frequency to anti-monotone constraints and more
complex ones

» from 1 criterion (top-k) to multi-criteria (skyline)

» from weighted product model to feature space model



Preference-based pattern mining

Frequent pattern Condensed Pattern sets Optimal pattern mining ~ Pattern sampling
mining representations  Top-k pattern mining  Dominance programming  Active learning
1995 2000 2005 2010 Now

Constraint-hased pattern mining  Pattern mining as an optimization problem Interactive pattern mining

User preferences are more and more prominent. . .
from preference elicitation to preference acquisition
» user-defined constraint

» no threshold with optimal pattern mining

» no user-specified interestingness



Preference-based pattern mining

Frequent pattern  Condensed Pattern sets Optimal pattern mining ~ Pattern sampling
mining representations  Top-k patternmining  Dominance programming  Active learning
1995 2000 2005 2010 Now

Constraint-hased pattern mining  Pattern mining as an optimization problem Interactive pattern mining

User preferences are more and more prominent in the

community. . .
from data-centric methods: to user-centric methods:
» 2003-2004: Frequent » 2010-2014: Useful Patterns

[temset Mining

Implementations » 2015-2017: Interactive

Data Exploration and
» 2002-2007: Knowledge Analytics
Discovery in Inductive
Databases



Multi-pattern domain exploration

» The user has to choose its pattern domain of interest.

» What about (interactive) multi-pattern domain
exploration?

» Some knowledge nuggets can be depicted with simple
pattern domain (e.g., itemset) while others require more
sophisticated pattern domain (e.g., sequence, graph,
dynamic graphs, etc.).

» Examples in Olfaction:

» Odorant molecules.

» unpleasant odors in presence of Sulfur atom in chemicals
= itemset is enough.

» Some chemicals have the same 2-d graph representation
and totally different odor qualities (e.g., isomers) =
need to consider 3-d graph pattern domain.

» How to fix the good level of description?

» Toward pattern sets involving several pattern domains.



Role/acquisition of preferences
through the skypattern cube

\\m1,m2,m3,m4

» equivalence classes
on measures

- highlight the role

of measures




Role/acquisition of preferences
through the skypattern cube

» equivalence classes
on measures mq,Mp,M3,My

w highlight the role

of measures

m4q,Mo,m3 mM4,My,Myg M4,M3,Myg Mp,M3,My

> skypattern cube
compression:

user navigation and
recommendation m4,My M4,M3 M4,M4 M2,M3 My, M4 M3,My

my mo ma my

acquisition



Pattern mining in the Al field

> cross-fertilization between data mining and constraint
programming/SAT /ILP (De Raedt et al. KDD08):
designing generic and declarative approaches

= make easier the exploratory data mining process

» avoiding writing solutions from scratch
» easier to model new problems

> open issues:

v

how go further to integrate preferences?
how to define/learn constraints/preference?
» how to visualize results and interact with the end user?

> ..

v

Many other directions associated to the Al field:
integrating background knowledge, knowledge representation,. . .
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