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Introduction

Evolution of Sciences

Before 1600: Empirical Science

Babylonian mathematics: 4 basis operations done with tablets and the
resolution of practical problems based on words describing all the
steps. ⇒ that worked and they manage to solve 3 degree equations.

Ancient Egypt: No theorization of algorithms. We give only examples
made empirically, certainly repeated by students and scribes.
Empirical knowledge, transmitted as such, and not a rational
mathematical science.

Aristotle also produced many biological writings that were empirical in
nature, focusing on biological causation and the diversity of life. He
made countless observations of nature, especially the habits and
attributes of plants and animals in the world around him, classified
more than 540 animal species, and dissected at least 50.

. . .

Wikipedia
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1600-1950s: Theoretical Science

Each discipline has grown a theoretical component. Theoretical models
often motivate experiments and generalize our understanding.

Physics: Newton, Max Planck, Albert Einstein, Niels Bohr,
Schrödinger

Mathematics: Blaise Pascal, Newton, Leibniz, Laplace, Cauchy,
Galois, Gauss, Riemann

Chemistry: R. Boyle, Lavoisier, Dalton, Mendeleev,

Biology, Medecine, Genetics: Darwin, Mendel, Pasteur
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1950s–1990s, Computational Science

Over the last 50 years, most disciplines have grown a third,
computational branch (e.g. empirical, theoretical, and computational
ecology, or physics, or linguistics.)

Computational Science traditionally meant simulation. It grew out of
our inability to find closed form solutions for complex mathematical
models.
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Introduction

The Data Science Era

1990’s-now, Data Science

The flood of data from new scientific instruments and simulations

The ability to economically store and manage petabytes of data online

The Internet and computing Grid that makes all these archives
universally accessible

Scientific info. management, acquisition, organization, query, and
visualization tasks scale almost linearly with data volumes.

The Fourth Paradigm: Data-Intensive Scientific Discovery

Data mining is a major new challenge!

The Fourth Paradigm. Tony Hey, Stewart Tansley, and Kristin Tolle.

Microsoft Research, 2009.
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Introduction

Evolution of Database Technology

1960s: Data collection, database creation, IMS and network DBMS

1970s : Relational data model, relational DBMS implementation

1980s: RDBMS, advanced data models (extended-relational, OO,
deductive, etc.), application-oriented DBMS (spatial, scientific,
engineering, etc.)

1990s: Data mining, data warehousing, multimedia databases, and Web
databases

2000s: Stream data management and mining, Data mining and its
applications, Web technology (XML, data integration) and global
information systems, NoSQL, NewSQL.
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Introduction

Why Data Mining?

The Explosive Growth of Data: from terabytes to petabytes

Data collection and data availability
Automated data collection tools, database systems, Web, computerized
society

Major sources of abundant data

Business: Web, e-commerce, transactions, stocks, . . .
Science: Remote sensing, bioinformatics, scientific simulation,. . .
Society and everyone: news, digital cameras, social network, . . .
“We are drowning in data, but starving for knowledge!” – John Naisbitt,
1982 –
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Introduction

Applications

Human mobility (ANR VEL’INNOV 2012–2016)

Social media (GRAISearch - FP7-PEOPLE-2013-IAPP, Labex IMU project
RESALI 2015–2018)

Soil erosion (ANR Foster 2011–2015)

Neuroscience (olfaction)

Chemoinformatics

Fact checking (ANR ContentCheck 2016 – 2019)

Industry (new generation of product, failure detection)
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Introduction

What is Data Mining

Data mining (knowledge discovery from data)

Extraction of interesting (non-trivial, implicit, previously unknown and
potentially useful) patterns or knowledge from huge amount of data

Alternative names:

KDD, knowledge extraction, data/pattern analysis, data archeology, data
dredging, information harvesting, business intelligence, etc.

Watch out: Is everything “data mining”?

simple search or query processing
(Deductive) expert systems
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Introduction

KDD Process

Fayad et al., 1996

Data Mining

Core of KDD

Search for knowledge in data

Functionalities

Descriptive data mining vs
Predictive data mining

Pattern mining,
classification, clustering,
regression

Characterization,
discrimination, association,
classification, clustering,
outlier and trend analysis,
etc.
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Introduction

Major Issues In Data Mining

Mining methodology

Mining different kinds of knowledge from diverse data types, e.g., bio,
stream, Web.
Performance: efficiency, effectiveness, and scalability
Pattern evaluation: the interestingness problem
Incorporation of background knowledge.
Handling noise and incomplete data
Parallel, distributed and incremental mining methods.
Integration of the discovered knowledge with existing one: knowledge
fusion.
Completeness or not.

User interaction

Data mining query languages and ad-hoc mining.
Expression and visualization of data mining results.
Interactive mining of knowledge at multiple levels of abstraction

Applications and social impacts

Domain-specific data mining & invisible data mining
Protection of data security, integrity, and privacy.
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Introduction

Where to Find References? DBLP,
Google Scholar

Data Mining and KDD

Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD,
etc.
Journals: Data Mining and Knowledge Discovery, ACM TKDD

Database Systems

Conferences: : ACM-SIGMOD, ACM-PODS, (P)VLDB, IEEE-ICDE,
EDBT, ICDT, DASFAA
Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info.
Sys., etc.

AI & Machine Learning

Conferences: Int. Conf. on Machine learning (ICML), AAAI, IJCAI, COLT
(Learning Theory), CVPR, NIPS, etc
Journals: Machine Learning, Artificial Intelligence, Knowledge and
Information Systems, IEEE-PAMI, etc.

Web and IR

Conferences: SIGIR, WWW, CIKM, etc
Journals: WWW: Internet and Web Information Systems,
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Introduction

Recommended Books

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy.
Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press,
1996

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2nd ed., 2006

D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT
Press, 2001

P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining,
Wiley, 2005

Charu C. Aggarwal, Data Mining, Springer, 2015.

Mohammed J. Zaki, Wagner Meira, Jr. Data Mining and Analysis
Fundamental Concepts and Algorithms. Cambridge University Press, 2014.

15 / 118
M. Plantevit Constraint-Based Pattern Mining

N



Introduction

Roadmap

We will focus on descriptive data mining especially on Constraint-based
Pattern Mining with an inductive database vision.

Th(L,D, C) = {ψ ∈ L | C(ψ,D) is true}

Pattern domain: (itemset, sequences, graphs, dynamic graphs, etc.)

Constraints: How to efficiently push them?

Imielinski and Mannila: Communications of the ACM (1996).
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Frequent Itemset Mining
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Frequent Itemset Mining

Itemset: definition

Definition

Given a set of attributes A, an itemset X is a subset of attributes, i. e.,
X ⊆ A.

Input:

a1 a2 . . . an
o1 d1,1 d1,2 . . . d1,n

o2 d2,1 d2,2 . . . d2,n

...
...

...
. . .

...
om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

Question

How many itemsets are there?

2|A|.
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Frequent Itemset Mining

Transactional representation of the data
Relational representation:
D ⊆ O ×A

Transactional representation: D is
an array of subsets of A

a1 a2 . . . an
o1 d1,1 d1,2 . . . d1,n

o2 d2,1 d2,2 . . . d2,n

...
...

...
. . .

...
om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

t1

t2

...
tm

where ti ⊆ A

Example

a1 a2 a3

o1 × × ×
o2 × ×
o3 ×
o4 ×

t1 a1, a2, a3

t2 a1, a2

t3 a2

t4 a3
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Frequent Itemset Mining

Frequency: definition

Definition (absolute frequency)

Given the objects in O described with the Boolean attributes in A, the
absolute frequency of an itemset X ⊆ A in the dataset D ⊆ O ×A is
|{o ∈ O | {o} × X ⊆ D}|.

Definition (relative frequency)

Given the objects in O described with the Boolean attributes in A, the
relative frequency of an itemset X ⊆ A in the dataset D ⊆ O ×A is
|{o∈O | {o}×X⊆D}|

|O| .

The relative frequency is a joint probability.
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Frequent Itemset Mining

Frequent itemset mining
Problem Definition

Given the objects in O described with the Boolean attributes in A,
listing every itemset having a frequency above a given threshold µ ∈ N.

Input:

a1 a2 . . . an
o1 d1,1 d1,2 . . . d1,n

o2 d2,1 d2,2 . . . d2,n

...
...

...
. . .

...
om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

and a minimal frequency µ ∈ N.

R. Agrawal; T. Imielinski; A. Swami: Mining Association Rules
Between Sets of Items in Large Databases, SIGMOD, 1993.
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Frequent Itemset Mining

Frequent itemset mining

Problem Definition

Given the objects in O described with the Boolean attributes in A,
listing every itemset having a frequency above a given threshold µ ∈ N.

Output: every X ⊆ A such that there are at least µ objects having all
attributes in X .

R. Agrawal; T. Imielinski; A. Swami: Mining Association Rules
Between Sets of Items in Large Databases, SIGMOD, 1993.
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Frequent Itemset Mining

Frequent itemset mining: illustration

Specifying a minimal absolute frequency µ = 2 objects (or, equivalently,
a minimal relative frequency of 50%).

a1 a2 a3

o1 × × ×
o2 × ×
o3 ×
o4 ×
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Frequent Itemset Mining

Frequent itemset mining: illustration

Specifying a minimal absolute frequency µ = 2 objects (or, equivalently,
a minimal relative frequency of 50%).

a1 a2 a3

o1 × × ×
o2 × ×
o3 ×
o4 ×

The frequent itemsets are: ∅ (4), {a1} (2),
{a2} (3), {a3} (2) and {a1, a2} (2).
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Frequent Itemset Mining

Completeness

Both the clustering and the classification schemes globally model the
data: every object influences the output. That is the fundamental reason
for these tasks to be solved in an approximate way.

In contrast, local patterns, such as itemsets, describe “anomalies” in the
data and all such anomalies usually can be completely listed.
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Frequent Itemset Mining

Inductive database vision

Querying data:
{d ∈ D | q(d ,D)}

where:

D is a dataset (tuples),

q is a query.
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Frequent Itemset Mining

Inductive database vision

Querying patterns:

{X ∈ P | Q(X ,D)}
where:

D is the dataset,

P is the pattern space,

Q is an inductive query.

Listing the frequent itemsets is NP-hard.
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Frequent Itemset Mining

Inductive database vision

Querying the frequent itemsets:
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Frequent Itemset Mining

Inductive database vision

Querying the frequent itemsets:

{X ∈ P | Q(X ,D)}
where:

D is a subset of O ×A, i. e., objects described with Boolean attributes,

P is 2A,

Q is (X ,D) 7→ |{o ∈ O | {o} × X ⊆ D}| ≥ µ.

Listing the frequent itemsets is NP-hard.
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Frequent Itemset Mining

Inductive database vision

Querying the frequent itemsets:

{X ∈ P | Q(X ,D)}
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Frequent Itemset Mining

Inductive database vision

Querying the frequent itemsets:

{X ∈ P | Q(X ,D)}
where:

D is a subset of O ×A, i. e., objects described with Boolean attributes,

P is 2A,

Q is (X ,D) 7→ f (X ,D) ≥ µ.

Listing the frequent itemsets is NP-hard.
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Frequent Itemset Mining

Naive algorithm

Input: O,A,D ⊆ O ×A, µ ∈ N
Output: {X ⊆ A | f (X ,D) ≥ µ}
for all X ⊆ A do

if f (X ,D) ≥ µ then
output(X )

end if
end for

Question

How many itemsets are enumerated? 2|A|.
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Frequent Itemset Mining

Transactional representation of the data

Relational representation:
D ⊆ O ×A

Transactional representation: D is
an array of subsets of A

a1 a2 . . . an
o1 d1,1 d1,2 . . . d1,n

o2 d2,1 d2,2 . . . d2,n

...
...

...
. . .

...
om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

t1

t2

...
tm

where ti ⊆ A

For a linear time verification of “X being a subset of ti”, the transactions
are sorted (arbitrary order on A) in a pre-processing step and any
enumerated itemset X respects this order.
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Frequent Itemset Mining

Prefix-based enumeration
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Frequent Itemset Mining

Complexity of the naive approach

Question

How many itemsets are enumerated? 2|A|.

Question

What is the worst-case complexity of computing f (X ,D)?

Question

What is the worst-case complexity of computing f (X ,D)? O(|O×A|).

Question

What is the worst-case complexity of the naive approach? O(2|A||O×
A|).
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Frequent Itemset Mining

How to efficiently mine frequent item-
sets?

Taking advantage of an impor-
tant property

Anti-monotonicity of the
frequency

in a levelwise enumeration (e.g.
Apriori)

R. Agrawal; T. Imielinski; A.
Swami: Mining Association
Rules Between Sets of Items
in Large Databases,
SIGMOD, 1993.

in a depthfirst enumeration (e.g.
Eclat)

Mohammed J. Zaki, Scalable
Algorithms for Association
Mining. IEEE TKDE, 2000.
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Frequent Itemset Mining

Anti-monotonicity of the frequency

Theorem

Given a dataset D of objects described with Boolean attributes in A:

∀(X ,Y ) ∈ 2A × 2A,X ⊆ Y ⇒ f (X ,D) ≥ f (Y ,D) .

a1 a2 a3

o1 × × ×
o2 × ×
o3 ×
o4 ×

f (∅,D) = 4
f ({a1},D) = 2

f ({a1, a2},D) = 2
f ({a1, a2, a3},D) = 1

30 / 118
M. Plantevit Constraint-Based Pattern Mining

N



Frequent Itemset Mining

Anti-monotonicity of the frequency
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Frequent Itemset Mining

Anti-monotonicity of the frequency

Corollary

Given a dataset D of objects described with Boolean attributes in A
and a minimal frequency µ ∈ N:

∀(X ,Y ) ∈ 2A × 2A,X ⊆ Y ⇒
(
f (Y ,D) ≥ µ⇒ f (X ,D) ≥ µ

)
.

a1 a2 a3

o1 × × ×
o2 × ×
o3 ×
o4 ×

f (∅,D) = 4
f ({a3},D) = 2

f ({a1, a3},D) = 1
f ({a1, a2, a3},D) = 1
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Frequent Itemset Mining

Anti-monotonicity of the frequency

Corollary

Given a dataset D of objects described with Boolean attributes in A
and a minimal frequency µ ∈ N:

∀(X ,Y ) ∈ 2A × 2A,X ⊆ Y ⇒
(
f (X ,D) < µ⇒ f (Y ,D) < µ

)
.

a1 a2 a3

o1 × × ×
o2 × ×
o3 ×
o4 ×

f (∅,D) = 4
f ({a3},D) = 2

f ({a1, a3},D) = 1
f ({a1, a2, a3},D) = 1
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Frequent Itemset Mining

Pruning the enumeration tree (µ = 3)

31 / 118
M. Plantevit Constraint-Based Pattern Mining

N



Frequent Itemset Mining

Pruning the enumeration tree (µ = 3)
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Frequent Itemset Mining

APriori enumeration

To check the frequency of every parent, the enumeration tree must be
traversed breadth-first.

The two first parents (in the lexicographic order �) are close to each
other in the prefix-based tree. Indeed, they only differ by the last
attribute. Instead of considering all possible children of a parent, APriori
searches this second parent and, if found, enumerate, by union, their
child.
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Frequent Itemset Mining

Level-wise enumeration of the itemsets
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Frequent Itemset Mining

APriori algorithm

Input: A,D as an array of subsets of A, µ ∈ N
Output: {X ⊆ A | f (X ,D) ≥ µ}
P ← {{a} | a ∈ A}
while P 6= ∅ do
P ← output frequent(P,D, µ)
P ← children(P)

end while
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Frequent Itemset Mining

children

Input: A lexicographically ordered collection P ⊆ 2A

Output: {X ⊆ 2A | ∀a ∈ X ,X \ {a} ∈ P} lexico. ordered
P ′ ← ∅
for all P1 ∈ P do

for all P2 ∈ {P2 ∈ P | P1 ≺ P2 ∧ P2 \ {last(P2)} = P1 \ {last(P1)}
do

X ← P1 ∪ P2

if ∀P ∈ {X \ {member(X )} | P2 ≺ P},P ∈ P then
P ′ ← P ′ ∪ {X}

end if
end for

end for
return P ′
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Frequent Itemset Mining
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Frequent Itemset Mining

Example
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Frequent Itemset Mining

Depth-first enumeration of the itemsets
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Frequent Itemset Mining

Fail-first principle

Observation

An itemset has a greater probability to be infrequent if the frequencies
of its attributes, taken individually, are low.

Fail-first principle

Taking advantage of the anti-monotonicity of the frequency, it is better
to enumerate the infrequent itemsets first.
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Frequent Itemset Mining

The unbalanced enumeration tree
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Frequent Itemset Mining

Heuristic choice of a lexicographic order

Input: A,D as an array of subsets of A, µ ∈ N
Output: {X ⊆ A | f (X ,D) ≥ µ}
P ← {{a} | a ∈ A}

ordered by increasing f ({a},D)

while P 6= ∅ do
P ← output frequent(P,D, µ)
P ← children(P)

end while

Whatever the order on A, the frequent itemsets are correctly and
completely listed...

but this heuristic choice usually leads to the
enumeration of much less infrequent itemsets.

40 / 118
M. Plantevit Constraint-Based Pattern Mining

N



Frequent Itemset Mining

Heuristic choice of a lexicographic order

Input: A,D as an array of subsets of A, µ ∈ N
Output: {X ⊆ A | f (X ,D) ≥ µ}
P ← {{a} | a ∈ A} ordered by increasing f ({a},D)
while P 6= ∅ do
P ← output frequent(P,D, µ)
P ← children(P)

end while

Whatever the order on A, the frequent itemsets are correctly and
completely listed... but this heuristic choice usually leads to the
enumeration of much less infrequent itemsets.

40 / 118
M. Plantevit Constraint-Based Pattern Mining

N



Frequent Itemset Mining

Iterative computation of the supports

Theorem

Given the objects in O described with the Boolean attributes in A,
i. e., the dataset D ⊆ O ×A and k ∈ N itemsets (Pi )i=1..k ∈ (2A)k :

{o ∈ O | {o} × ∪ki=1Pi ⊆ D} = ∩ki=1{o ∈ O | {o} × Pi ⊆ D} .

a1 a2 a3

o1 × × ×
o2 × ×
o3 ×
o4 ×

{o ∈ O | {o} × {a1} ⊆ D} = {o1, o2}
{o ∈ O | {o} × {a2} ⊆ D} = {o1, o2, o3}
{o ∈ O | {o} × {a3} ⊆ D} = {o1, o4}

{o ∈ O | {o} × {a1, a2, a3} ⊆ D} = {o1}
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Frequent Itemset Mining

Vertical representation of the data

Relational representation:
D ⊆ O ×A

Vertical representation: D is an
array of subsets of O

a1 a2 . . . an
o1 d1,1 d1,2 . . . d1,n

o2 d2,1 d2,2 . . . d2,n

...
...

...
. . .

...
om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

i1 i2 . . . in

where ij ⊆ O
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...

...
. . .

...
om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

i1 i2 . . . in

where ij ⊆ O

For a linear time intersection of the ij , they are sorted (arbitrary order on
O) in a pre-processing step and the support of any enumerated itemset X
will respect this order.
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Frequent Itemset Mining

Vertical representation of the data

Relational representation:
D ⊆ O ×A

Vertical representation: D is an
array of subsets of O

a1 a2 . . . an
o1 d1,1 d1,2 . . . d1,n

o2 d2,1 d2,2 . . . d2,n

...
...

...
. . .

...
om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

i1 i2 . . . in

where ij ⊆ O

Unless the minimal relative frequency is very low, storing the support on
bitsets provide the best space and time performances.
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Frequent Itemset Mining

Eclat enumeration

Like APriori:

The anti-monotonicity of the frequency prunes the enumeration tree;

the two first parents (in the lexicographic order �) are searched to
generate by union their child;

Ordering the attributes by increasing frequency heuristically leads to the
enumeration of much less infrequent itemsets.

However:

the frequency of the other parents is not checked;

thanks to that, the enumeration tree is traversed in a less memory-hungry
way (but, contrary to APriori, the supports of the frequent itemsets are
stored too).
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Frequent Itemset Mining

Pruning the enumeration tree (µ = 3)
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Frequent Itemset Mining

Eclat algorithm

Input: A,D as an array of subsets of O, µ ∈ N
Output: {X ⊆ A | f (X ,D) ≥ µ}
Eclat(P, µ) {Initial call: P = {({aj}, ij) | j = 1..m ∧ |ij | ≥ µ}}
for all (P1, iP1 ) ∈ P do

output(P1)
P ′ ← ∅
for all (P2, iP2 ) ∈ {(P2, iP2 ) ∈ P |P1 ≺ P2} do

i ← iP1 ∩ iP2

if |i | ≥ µ then
P ′ ← P ′ ∪ {(P1 ∪ P2, i)}

end if
end for
Eclat(P ′, µ)

end for
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Frequent Itemset Mining

Pattern flooding
µ = 2

O a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

o1 × × × × ×
o2 × × × × ×
o3 × × × × ×
o4 × × × × ×
o5 × × × × ×
o6 × × × × ×
o7 × × × × ×
o8 × × × × ×

How many frequent patterns?

1 + (25 − 1)× 3 = 94 patterns but
actually 4 interesting ones:
{}, {a1, a2, a3, a4, a5}, {a6, a7, a8, a9, a10}, {a11, a12, a13, a14, a15}.

+ the need to focus on a condensed representation of frequent
patterns.

Toon Calders, Christophe Rigotti, Jean-François Boulicaut: A Survey on

Condensed Representations for Frequent Sets. Constraint-Based Mining and Inductive

Databases 2004: 64-80.
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Frequent Itemset Mining

Closed and Free Patterns
Equivalence classes based on support.

O A B C
o1 × × ×
o2 × × ×
o3 × ×
o4 × ×
o5 ×

ABC

A B C

AB AC

ø O1,O2,O3,O4,O5

O1,O2,O3,O4,

O1,O2,

BC

O1,O2,O3,O4,O5

O1,O2,

O1,O2,

O1,O2,

O1,O2,O3,O4,

Closed patterns are maximal element of each equivalence class:
ABC ,BC , and C .

Generators or Free patterns are minimal elements (not necessary unique)
of each equivalent class: {},A and B

Y. Bastide, et al. Mining frequent patterns with counting inference. SIGKDD
Expl., 2000.
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Constraint-based Pattern Mining

Outline

1 Introduction

2 Frequent Itemset Mining
Frequent Itemset Mining
Condensed Representations

3 Constraint-based Pattern Mining

4 Toward More Sophisticated Pattern Domains
Sequence, graphs, dense subgraphs
Attributed Graph Mining

5 Conclusion
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Constraint-based Pattern Mining

Pattern constraints

Constraints are needed for:

only retrieving patterns that describe an interesting subgroup of the
data

making the extraction feasible

Constraint properties are used to infer constraint values on (many)
patterns without having to evaluate them individually.

Ü They are defined up to the partial order � used for listing the pat-
terns
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Constraint-based Pattern Mining

Constraint properties - 1

Monotone constraint

∀ϕ1 � ϕ2, C(ϕ1,D)⇒ C(ϕ2,D)

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

C(ϕ,D) ≡ b ∈ ϕ ∨ c ∈ ϕ

Anti-monotone constraint

∀ϕ1 � ϕ2, C(ϕ2,D)⇒ C(ϕ1,D)

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

C(ϕ,D) ≡ a 6∈ ϕ ∧ c 6∈ ϕ
50 / 118

M. Plantevit Constraint-Based Pattern Mining

N



Constraint-based Pattern Mining

Constraint properties - 2
Convertible constraints

� is extended to the prefix order ≤ so
that ∀ϕ1 ≤ ϕ2, C(ϕ2,D)⇒ C(ϕ1,D)

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

C(ϕ,w) ≡ avg(w(ϕ)) > σ

w(a) ≥ w(b) ≥ w(c) ≥ w(d) ≥ w(e)

Loose AM constraints

C(ϕ,D)⇒ ∃e ∈ ϕ : C(ϕ \ {e},D)

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

C(ϕ,w) ≡ var(w(ϕ)) ≤ σ

Pei and Han – 2000 Bonchi and Lucchese – 2007 51 / 118
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Constraint-based Pattern Mining

Examples

v ∈ P M
P ⊇ S M
P ⊆ S AM

min(P) ≤ σ AM
min(P) ≥ σ M
max(P) ≤ σ M
max(P) ≤ σ AM
range(P) ≤ σ AM
range(P) ≥ σ M

avg(P)θσ, θ ∈ {≤,=,≥} Convertible
var(w(ϕ)) ≤ σ LAM
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Constraint-based Pattern Mining

Outline

1 Introduction

2 Frequent Itemset Mining

3 Constraint-based Pattern Mining
Constraint properties
Algorithmic principles
Constraint-based pattern mining with preferences

4 Toward More Sophisticated Pattern Domains

5 Conclusion

53 / 118
M. Plantevit Constraint-Based Pattern Mining

N



Constraint-based Pattern Mining

Enumeration strategy

Binary partition: the element ’a’ is enumerated

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e
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Constraint-based Pattern Mining

Enumeration strategy

Binary partition: the element ’a’ is enumerated

R∨

R∧

R∨

R∧ ∪ {a}

R∨ \ {a}

R∧

a ∈ R∨ \ R∧
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Constraint-based Pattern Mining

Constraint evaluation

Monotone constraint

R∨

R∧

C(R∨,D) is false

empty

Anti-monotone constraint

R∨

R∧
C(R∧,D) is false

empty
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Constraint-based Pattern Mining

A new class of constraints

Piecewise monotone and anti-monotone constraintsa

1 C involves p times the pattern ϕ: C(ϕ,D) = f (ϕ1, · · ·ϕp,D)

2 fi,ϕ(x) = (ϕ1, · · ·ϕi−1, x , ϕi+1, · · · , ϕp,D)

3 ∀i = 1 . . . p, fi,ϕ is either monotone or anti-monotone:

∀ x � y ,

{
fi,ϕ(x)⇒ fi,ϕ(y) iff fi,ϕ is monotone
fi,ϕ(y)⇒ fi,ϕ(x) iff fi,ϕ is anti-monotone

aA.k.a. primitive-based constraints

A.Soulet, B. Crémilleux: Mining constraint-based patterns using automatic
relaxation. Intell. Data Anal. 13(1): 109-133 (2009)

L. Cerf, J. Besson, C. Robardet, J-F. Boulicaut: Closed patterns meet n-ary
relations. TKDD 3(1) (2009)

A. Buzmakov, S. O. Kuznetsov, A.Napoli: Fast Generation of Best Interval
Patterns for Nonmonotonic Constraints. ECML/PKDD (2) 2015: 157-172
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Constraint-based Pattern Mining

An example

∀e, w(e) ≥ 0

C(ϕ,w) ≡ avg(w(ϕ)) > σ ≡
∑

e∈ϕ w(e)

|ϕ| > σ.

C(ϕ,D) is piecewise monotone and anti-monotone with

f (ϕ1, ϕ2,D) =

∑
e∈ϕ1

w(e)

|ϕ2|

∀x � y ,

f1,ϕ is monotone: f (x , ϕ2,D) =
∑

e∈x w(e)

|ϕ2|
> σ ⇒

∑
e∈y w(e)

|ϕ2|
> σ

f2,ϕ is anti-monotone: f (ϕ1, y ,D) =
∑

e∈ϕ1
w(e)

|y| > σ ⇒
∑

e∈ϕ1
w(e)

|x| > σ
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Constraint-based Pattern Mining

Piecewise constraint exploitation

Evaluation

If f (R∨,R∧,D) =
∑

e∈R∨ w(e)

|R∧|

≤ σ

then R is empty.

R∨

R∧

empty

Propagation

∃e ∈ R∨ \ R∧ such that f (R∨ \ {e},R∧,D) ≤ σ, then e is moved in
R∧

∃e ∈ R∨ \ R∧ such that f (R∨,R∧ ∪ {e},D) ≤ σ, then e is removed
from R∨
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Constraint-based Pattern Mining

Algorithmic principles

Function Generic CBPM enumeration(R∨,R∧)

1: if Check constraints(R∧,R∨) then
2: (R∧,R∨)← Constraint Propagation(R∧,R∨)
3: if R∧ = R∨ then
4: output R∧
5: else
6: for all e ∈ R∨ \ R∧ do
7: Generic CBPM Enumeration(R∧ ∪ {e},R∨)
8: Generic CBPM Enumeration(R∧,R∨ \ {e})
9: end for

10: end if
11: end if
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Constraint-based Pattern Mining

Open Question
Is convexity ≡ piece-wise constraints ?

Convex measures can be taken into
account by computing some upper bounds
with R∧ and R∨.

Branch and bound enumeration

Shinichi Morishita, Jun Sese: Traversing Itemset Lattice with
Statistical Metric Pruning. PODS 2000: 226-236
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Constraint-based Pattern Mining

Case Studies

Mining of

Multidimensional and multi-level sequences [ACM TKDD 2010]

Maximal homogeneous clique set [KAIS 2014]

Rules in Boolean tensors/dynamic graphs [SDM 11, IDA J. 2013]

Topological patterns in static attributed graphs [TKDE 2013]

Temporal dependencies in streams [KDD’13, IDA J. 2016]

Trend dynamic sub-graphs [DS 12, PKDD 13, IDA 14]

δ-free sequential patterns [ICDM’14]

Triggering patterns [ASONAM 14, Social Network Analysis J. 2015]

Events in geo-localized social medias [ECMLPKDD’15]
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Constraint-based Pattern Mining

Outline

1 Introduction

2 Frequent Itemset Mining

3 Constraint-based Pattern Mining
Constraint properties
Algorithmic principles
Constraint-based pattern mining with preferences
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5 Conclusion
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Constraint-based Pattern Mining

The Thresholding Issue

Avoid the threshold issue

What is the “best” value of my minimal frequency?
Which k in top-k?
Combining several measures?

Give the end-user a new and easy way to express his preferences

In a multidimensional space: each dimension is a measure

Discovering patterns satisfying a global property

Dominance relation
The skyline operator over the pattern domains

What if it also gives a way to discover less (and useful) patterns?
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Constraint-based Pattern Mining

Motivations: Why Skylines?
Introduced by [Börzsönyi et al. @ICDE 2001].

Hotel Example

Hotel on the beach

F ID Price Distance to the sea (min)

f1 2 11
f2 5 7
f3 3 13
f4 2 10
f5 3 10
f6 4 7

Data point X dominates Y if all attributes of X are better than or
equal to the corresponding attributes from Y

A skyline query returns all data points that are not dominated by
others
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Constraint-based Pattern Mining

Notion of Skyline Patterns

The basic idea: if a pattern is dominated by another according to all
measures in a set M then it is discarded in the output.
(X �M Y : X dominates Y )

Let P be a pattern set. A skypattern of P with respect to M is a
pattern not dominated in P with respect to M.

The skypattern operator Sky(P,M): returns all the skypatterns of P
with respect to M:

Sky(P,M) = {X ∈ P| 6 ∃Y ∈ P : Y �M X}
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Constraint-based Pattern Mining

Example

Tid Items
t1 A B C D E F
t2 A B C D E F
t3 A B
t4 D
t5 A C
t6 E

Patterns freq length area

ABCDEF 2 6 12
AB 3 2 6
AC 3 2 6
A 4 1 4

0

0 1 2 3 4

2

6

12

4

8

10

Freq.
A
re
a

ABCDEF

AB
AC

A

Domination
area

Sky(L, {freq, area}) = {ABCDEF ,AB,AC ,A}

ABCD, C , E are in the domination area.

Many other measures can be addressed : min(x.price), sum(x.val), etc.
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Constraint-based Pattern Mining

Algorithmic Issues and Objective

Mining Task: Sky (L, M)

Given a set of measures M, we aim at returning all the skypatterns w.r.t M.

A naive enumeration of all candidate patterns (L) and then comparisons
between them is not possible.

Key idea: Take benefit from the pattern condensed representation
according to the condensable measures of M.
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Constraint-based Pattern Mining

Basic Definitions

Preserving function

Let E be a set. A function p : L → E is preserving iff for each i ∈ I
and for each X ⊆ Y if p(X ∪{i}) = p(X ) then p(Y ∪ i) equals to p(Y
).

�The addition of an item i does not modify p(X ), then the addition
of i does not modify the value of p for any specialization of X .
Ex.: freq, freq∨, count, min, max, sum, etc.

Condensable function

Let E be a set. A function f : L → E is condensable iff there
exist a function F and k preserving functions p1, ..., pk such that
f = F (p1, ..., pk).

�Condensable function is a compound of preserving functions ≡
Piece-wise (anti-)monotone constraint.

A. Soulet and B. Crémilleux, ECML/PKDD 2008.
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Constraint-based Pattern Mining

The Aetheris Approach

Data

User 
Preferences M

User

M'

Representation

Skypatterns

Representative 
skypatterns

Minimal and maximal 
skylineable converters

Distinct
operator

Indisctinct 
operator

Sky operator

0

1

2

34

A. Soulet, C. Räıssi, M. Plantevit, B. Crémilleux, ICDM 2011
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Constraint-based Pattern Mining

Skylineability

1 Looking for a smaller set of measures M’ from M enabling us to focus on
a condensed representation.
M is M′-skylineable with respect to ⊂ (resp. ⊃) iff for any patterns X =M′ X ′

such that X ⊂ X ′ (resp. X ⊃ X ′), one has X �M X ′.

M={M1,M2,M3}

M'={M1,M2}

M1

M2

M1

M2

Z,Z'

Y,Y'
Z

Y'

Y

Z' M3

M is M ′-skylineable w.r.t. ⊂:{
Z =M′ Z ′ and Z ⊂ Z ′ −→ Z �M Z ′

Y =M′ Y ′ and Y ⊂ Y ′ −→ Y �M Y ′
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Constraint-based Pattern Mining

Skylineability: Example

M = {freq, area} is strictly {freq}-skylineable w.r.t. ⊃.
Tid Items
t1 A B C D E F
t2 A B C D E F
t3 A B
t4 D
t5 A C
t6 E

Patterns freq length

ABCDEF 2 6
AB 3 2
AC 3 2
A 4 1

Ø

A B C D E F

AB AC AD .... EF

ABCDEF

.

.

.

.

� B =freq AB: we can directly deduce that AB �M B.

Minimal and maximal skylineable converters to compute M′.
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Constraint-based Pattern Mining

Computing Concise Representations Ac-
cording to M ′

Disθ(P,M ′) = {X ∈ P|∀Y θX : X 6=M′ Y } where θ ∈ {⊂,⊃}
Distinct operator: returns all the patterns X of P such that their generalizations (or

specializations) are distinct from X w.r.t. M.

Tid Items
t1 A B C D E F
t2 A B C D E F
t3 A B
t4 D
t5 A C
t6 E

Ø

A B C D E F

AB AC AD .... EF

ABCDEF

.

.

.

.

Example

Dis⊂(L, {freq}) = {A,B,C ,D,E ,F ,AD,AE ,BC ,BD,BE ,CD,CE ,DE}
and Dis⊃(L, {freq}) = {A,D,E ,AB,AC ,ABCDEF}
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Constraint-based Pattern Mining

Aetheris Approach

1 Compute the best M ′

2 Process distinct patterns given M ′

3 Compute the skyline patterns from the condensed representation

4 Finalize by generating all the skypatterns: retrieving of all the indistinct
patterns from their representatives

Ind(L,M ′,P) = {X ∈ L|∃Y ∈ P : X =M′ Y }

Example: Ind(L, {freq}, {AB,AC}) = {B,C ,AB,AC}

Finally:

Sky(L,M) = Ind(L,M,Sky(Disθ(L,M ′),M))
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Constraint-based Pattern Mining

Aetheris Approach: Example

Tid Items
t1 A B C D E F
t2 A B C D E F
t3 A B
t4 D
t5 A C
t6 E

Data

User 
Preferences M

User

M'

Representation

Skypatterns

Representative 
skypatterns

Minimal and maximal 
skylineable converters

Distinct
operator

Indisctinct 
operator

Sky operator

0

1

2

34

L c({freq;area})

Dis⊃

Sky

{freq;area}

Ind

L

={freq}

= {A, D, E, AB, AC, ABCDEF}

= {A, AB, AC, ABCDEF}

= {A, AB, AC, ABCDEF}

1

2

3

4

{freq;area}
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Constraint-based Pattern Mining

Experiments on Itemset Data (L = 2I)

Experiments on UCI data

16 benchmarks.

Synthesis of 128 experiments.

Runtimes only consider the application of skyline operator.

Comparisons of 3 approaches

1 Baseline approach: Sky ({X ⊆ I | freq(X ,D) ≥ 1},M).

2 Optimal Constraint-Based approach: Assume that user set the
optimal thresholds, i.e. for each measure Mi ∈ M,

σMi := min
s∈Sky (L, M)

(Mi (s))

.

3 Aetheris approach: Sky(L,M) = Ind(L,M,Sky(Disθ(L,M ′),M))
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Constraint-based Pattern Mining

Optimal Constraint-Based Approach
Settings in a Nutshell

Tid Items
t1 A B C D E F
t2 A B C D E F
t3 A B
t4 D
t5 A C
t6 E

Patterns freq length area

ABCDEF 2 6 12
AB 3 2 6
AC 3 2 6
A 4 1 4

0

0 1 2 3 4

2

6

12

4

8

10

Freq.

A
re
a

ABCDEF

AB
AC

A

Domination
area

Sky(L, {freq, area}) = {ABCDEF ,AB,AC ,A}

�σsup = 2 and σarea = 4
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Constraint-based Pattern Mining

Optimal Constraint-Based Approach
Settings in a Nutshell

Tid Items
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OCB approach
directly focuses on

this area!

Sky(L, {freq, area}) = {ABCDEF ,AB,AC ,A}

�σsup = 2 and σarea = 4

76 / 118
M. Plantevit Constraint-Based Pattern Mining

N



Constraint-based Pattern Mining

Results: Conciseness Gain
Average gain of skypatterns according to OCB patterns

1,00

10,00

100,00

1000,00

10000,00

Average gain of Skypatterns

{freq; area} / ⊃ {freq; min} / ⊂ {freq;max} / ⊃ {freq; max; area} / ⊃
{gr;area} / ⊃ {freq;gr;area} / ⊃ {freq; max; area; mean} / ⊃ {freq;gr} / ⊃

The gain of a skyline approach is always important (greater than 10
and much greater in almost all the cases).
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Constraint-based Pattern Mining

Results: Performance Gain
Runtime gain of Aetheris according to Baseline

0

15,00

30,00

45,00

60,00

Average gain of Aetheris

{freq; area} / ⊃ {freq; min} / ⊂ {freq;max} / ⊃ {freq; max; area} / ⊃
{gr;area} / ⊃ {freq;gr;area} / ⊃ {freq; max; area; mean} / ⊃ {freq;gr} / ⊃

Aetheris always outperforms the baseline approach with at least a factor
of 10.
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Constraint-based Pattern Mining

Case Study: Discovering Toxicophores

Collaboration with the CERM Laboratory.

Establishing relationships between chemicals and (eco)toxicity

Our aim: investigating the use of
skypatterns to discover toxicophores

ECBa dataset: 567 chemicals
(372 very toxic/195 harmful)

aEuropean Chemicals Bureau – http://echa.europa.eu/ trichlorobenzene
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Constraint-based Pattern Mining

Case study: Results

Experiment 1: contrast measures (e.g., growth rate) are useful to
discover toxicophores

only 8 skypatterns!

the method is able to automatically discover already known environmental
toxicophores:
å it suggests good insights for the others

Experiment 2: background knowledge can easily be integrating
adding aromaticity and density measures

the whole set of skypatterns remains small (38 skypatterns)

discovering of skypatterns including an amine function not detected in
Experiment 1
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Useful results from a user-preference point of view.

No thresholds → Threshold-free constraint based pattern mining is
possible!

Enable to mine pattern sets (global constraint).

The skyline operator can be pushed within the extraction:

W. Ugarte, P. Boizumault, B. Crémilleux, A. Lepailleur, S. Loudni, M.
Plantevit, C. Räıssi, A. Soulet, Artificial Intelligence 2015.

B. Négrevergne, A. Dries, T. Guns, S. Nijssen, ICDM 2013.
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Toward More Sophisticated Pattern Domains

Outline

1 Introduction

2 Frequent Itemset Mining
Frequent Itemset Mining
Condensed Representations

3 Constraint-based Pattern Mining
Constraint properties
Algorithmic principles
Constraint-based pattern mining with preferences

4 Toward More Sophisticated Pattern Domains

5 Conclusion
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Toward More Sophisticated Pattern Domains

Outside the itemset domain

Th(L,D, C) = {ψ ∈ L | C(ψ,D) is true}

Pattern domain: (itemset, sequences, graphs, dynamic graphs, etc.)

Constraints: How to efficiently push them?

Considering more sophisticated pattern domain is more challenging!

Some anti-monotonic properties do not hold:

freeness for sequence.
support within a single graph.

Some pessimistic results (non derivability outside itemset domain)

But it makes it possible to capture more meaningful patterns.
+ it’s worth it!
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Toward More Sophisticated Pattern Domains

Sequence mining

Key notions
I = {i1, i2 . . . im} the items.

I = {a, b, c, d , e}.
itemset

(a, b).

A sequence is an ordered list of itemsets

〈(a, b)(b)(a, c)〉.

the set of all possible sequences I is denoted T(I).

Relation between sequences:

Inclusion �
〈(b)(c)〉 � 〈(a, b)(b)(a, c)〉,
〈(c)(a)〉 ⊀ 〈(a, b)(b)(a, c)〉.
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Toward More Sophisticated Pattern Domains

Mining Task

Sequence database D: a collection of pairs (SID,T ), SID is an id and T
is a sequence T(I).

SDB D
S1 〈(a)(b)(c)(d)(a)(b)(c)〉
S2 〈(a)(b)(c)(b)(c)(d)(a)(b)(c)(d)〉
S3 〈(a)(b)(b)(c)(d)(b)(c)(c)(d)(b)(c)(d)〉
S4 〈(b)(a)(c)(b)(c)(b)(b)(c)(d)〉
S5 〈(a)(c)(d)(c)(b)(c)(a)〉
S6 〈(a)(c)(d)(a)(b)(c)(a)(b)(c)〉
S7 〈(a)(c)(c)(a)(c)(b)(b)(a)(e)(d)〉
S8 〈(a)(c)(d)(b)(c)(b)(a)(b)(c)〉

Frequency

Support(S ,D) = |{(SID,T ) ∈ D|S �
T}|.

Relative Frequency

freqDS = Support(S,D)
|D| .

Sequence Pattern Mining Problem

FSeqs(D, σ) = {S | freqDS ≥ σ}

R. Agrawal and R. Srikant, 1996.
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Toward More Sophisticated Pattern Domains

Main Algorithms

Based on A Priori

Candidate generation.

Levelwise or depthfirst
enumeration.

GSP, SPAM, PSP, SPADE,
etc.

Pattern-Growth

No candidate generation.

Depthfirst enumeration.

Prefixspan.

Key concept of projected
database

SDB D
S1 〈(a)(b)(c)(d)(a)(b)(c)〉
S2 〈(a)(b)(c)(b)(c)(d)(a)(b)(c)(d)〉
S3 〈(a)(b)(b)(c)(d)(b)(c)(c)(d)(b)(c)(d)〉
S4 〈(b)(a)(c)(b)(c)(b)(b)(c)(d)()〉
S5 〈(a)(c)(d)(c)(b)(c)(a)()〉
S6 〈(a)(c)(d)(a)(b)(c)(a)(b)(c)()〉
S7 〈(a)(c)(c)(a)(c)(b)(b)(a)(e)(d)()〉
S8 〈(a)(c)(d)(b)(c)(b)(a)(b)(c)()〉

D|〈(a)(b)(d)〉: the suffixes of the first
occurrence of 〈(a)(b)(d)〉 in each data
sequence.
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Toward More Sophisticated Pattern Domains

Constraints on sequences

Time constraints

Window size,

min gap,

max gap

H Mannila, H Toivonen, AI Verkamo. Discovery of frequent episodes in event
sequences. Data mining and knowledge discovery 1997.

Ramakrishnan Srikant, Rakesh Agrawal. Mining Sequential Patterns: General-
izations and Performance Improvements. EDBT 1996.

M. Nanni and C. Rigotti. Extracting Trees of Quantitative Serial Episodes.
KDID 2006.

Regular expressions

〈[a ∗ a ∗ bc ∗ a]〉
M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential Pattern Mining

with Regular Expression Constraints. 1999.
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Toward More Sophisticated Pattern Domains

Condensed representation

Much less condensed representation

Closed patterns.

Free/Generators.

Non derivable pattern, impossible for data sequences.

Räıssi et al, 2008.

Noise tolerant patterns: δ-free patterns.

More robust w.r.t. noise.
the freeness is anti-monotone for itemset, not for sequences.

⇒ We have to define some introduce some other pruning properties.

P. Holat, M. Plantevit, C. Räıssi, N. Tomeh, T. Charnois, B. Crémilleux: Sequence

Classification Based on Delta-Free Sequential Patterns. ICDM 2014
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Toward More Sophisticated Pattern Domains

Graph Mining

In a graph collection

Subgraph isomorphism test:
NP Complete in the general
case

Canonical code base on DFS
lexicographic order

X. Yan and J. Han. gSpan:

graph-based substructure pattern

mining. ICDM 2003.

In a single graph

The usual definition of support is not anti-
monotone:

B

A B

B

B

B

BB

B

T. Calders, J. Ramon, D. Van Dyck: Anti-

monotonic Overlap-Graph Support Measures.

ICDM 2008.

B. Bringmann, S. Nijssen: What Is Frequent

in a Single Graph?. PAKDD 2008
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Toward More Sophisticated Pattern Domains

Dense subgraph mining
Mining clique: cliqueness is antimonotone ⇒ Just enumerate the nodes
taking advantage of AM property.

What about quasi-clique mining?

Pb1

Let γ ∈]0, 1], C ⊆ V is a γ-quasi-
clique if ∀v ∈ C , deg(v ,G [C ]) ≥
γ(|C | − 1) where deg(v ,G [C ]) is
the degree of v in G [C ]

Guimei Liu, Limsoon Wong: Effective
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Toward More Sophisticated Pattern Domains

From Data to Augmented Graphs

Graphs are often dynamic with attributes related to vertices and/or
edges.
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Toward More Sophisticated Pattern Domains

Mining Augmented Graphs
Analyzing large augmented graphs leads to many challenges:

Working with network data is messy

Not just “wiring diagrams” but also dynamics and data (features,
attributes) on nodes and edges
Computational issues

Expressivity et genericity: to answer to questions from

Social sciences, Physics, Biology, Neurosciences, etc.

� How network structure and node attribute values relate and influence each
other?

Constraint-based pattern mining and the IDB framework

Th(L,D, C) = {ϕ ∈ L | C(ϕ,D) is true }

L : multiples pattern domains are possible

D : one or several graphs

C : (quasi)-clique, homogeneity, diameter, etc.
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Toward More Sophisticated Pattern Domains

Boolean Attributed-Node Graph

Attribute + Structure → Mining homogeneous dense subgraphs.

F. Moser, R. Colak, A. Rafiey, M. Ester: Mining Cohesive Patterns from

Graphs with Feature Vectors. SDM 2009

Attribute + Structure → Mining homogeneous collections of dense
subgraphs.

P-N Mougel, C. Rigotti, M. Plantevit, O. Gandrillon: Finding maximal

homogeneous clique sets. Knowl. Inf. Syst. 39(3), 2014

P-N Mougel, C. Rigotti, O. Gandrillon Finding Collections of k-Clique

Percolated Components in Attributed Graphs. PAKDD 2012

Structural Correlation Pattern Mining:

Structural correlation: Probability of a vertex that has an attribute set S to
be part of a correlated dense subgraph Q
Structural correlation pattern (S ,Q): Correlated dense subgraph Q wrt S .

A. Silva, W. Meira Jr., M. J. Zaki: Mining Attribute-structure Correlated
Patterns in Large Attributed Graphs. PVLDB (2012)
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Toward More Sophisticated Pattern Domains

Numeric Attributed-Node Graph: Topo-
logical Patterns

What are the node attributes that strongly co-vary with the graph
structure

P = {PVLDB+,Betw+} (Gr(P,E) ' 7)

Kendall’s Tau Generalization:

Suppτ (P) =
|{(u, v) ∈ V 2 | ∀As ∈ P : A(u) Bs A(v)}|(

|V |
2

)
if s = +, Bs is <, otherwise >.

Computing Suppτ : O(|V |2)
Computing a tight upper bound: O(|V |)
Index structure

A. Prado, M. Plantevit, C. Robardet, J-F. Boulicaut: Mining Graph Topological

Patterns: Finding Covariations among Vertex Descriptors. IEEE Trans. Knowl. Data

Eng. 25(9): 2090-2104 (2013)
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Toward More Sophisticated Pattern Domains

Topological Patterns (2/2)

For a centrality measure, what are the most impacting conferences?

Rank Deg+ Between+

Publication Factor Publication Factor

1 ECML/PKDD+ 2.5 PVLDB+ 5.67

2 IEEE TKDE+ 2.28 EDBT+ 5.11

3 PAKDD+ 2.21 VLDB J.+ 4.35

4 DASFAA+ 2.09 SIGMOD+ 4.25

5 ICDM+ 1.95 ICDE+ 3.42

What are the most representative authors?

Prk+ Deg+ECML/PKDD+ Prk+ Between+PVLDB+

Christos Faloutsos Gerhard Weikum

Jiawei Han Jiawei Han

Philip S. Yu David Maier

Bing Liu Philip S. Yu

C. Lee Giles Hector Garcia-Molina
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Toward More Sophisticated Pattern Domains

Dynamic Attributed Graphs

A dynamic attributed graph G = (V, T ,A) is a sequence over T
of attributed graphs Gt = (V,Et ,At), where:

V is a set of vertices that is fixed throughout the time,

Et ∈ V × V is a set of edges at time t,

At is a vector of numerical values for the attributes of A that depends
on t.

Example

v1

v2

v3

v4

v5

a1 a2 a3

↑ → ↑

a1 a2 a3

↓ ↓ ↑

a1 a2 a3

→ ↑ ↓

a1 a2 a3

↓ → ↑

a1 a2 a3

↑ ↓ →

t1

v1

v2

v3

v4

v5

a1 a2 a3

↓ ↓ ↓

a1 a2 a3

↑ ↓ ↓

a1 a2 a3

↑ ↓ ↓

a1 a2 a3

→ ↓ ↑

a1 a2 a3

↓ ↓ ↓

t2
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Toward More Sophisticated Pattern Domains

Co-evolution Pattern
Given G = (V, T ,A), a co-evolution pattern is a triplet P =
(V ,T ,Ω) s.t.:

V ⊆ V is a subset of the vertices of the graph.

T ⊂ T is a subset of not necessarily consecutive timestamps.

Ω is a set of signed attributes, i.e., Ω ⊆ A× S with A ⊆ A and
S = {+,−} meaning respectively a {increasing , decreasing} trend.
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Toward More Sophisticated Pattern Domains

Predicates

A co-evolution pattern must satisfy two types of constraints:

Constraint on the evolution:

Makes sure attribute values
co-evolve

* δ-strictEvol.

∀v ∈ V , ∀t ∈ T and ∀as ∈
Ω then δ-trend(v , t, a) = s

Constraint on the graph struc-
ture:

Makes sure vertices are related
through the graph structure.

* diameter.

∆-diameter
(
V ,T ,Ω

)
=

true ⇔ ∀t ∈ T diamGt (V ) ≤ ∆

respects diameter()

v1

v2

v3

v4

v5

d = 1

v1

v2

v3

v4

v5

d = 2 . . .

v1

v2

v3

v4

v5

d = 4

v1

v2

v3

v4

v5

d =∞

clique . . . . . . connected component non connected
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Toward More Sophisticated Pattern Domains

Example

P = {(v1, v2, v3)(t1, t2)(a−2 , a
+
3 )}

v1

v2

v3

v4

v5

a1 a2 a3

↑ ↓ ↑

a1 a2 a3

↓ ↓ ↑

a1 a2 a3

→ ↓ ↑

a1 a2 a3

↓ → ↑

a1 a2 a3

↑ ↓ →

t1

v1

v2

v3

v4

v5

a1 a2 a3

↓ ↓ ↑

a1 a2 a3

↑ ↓ ↑

a1 a2 a3

→ ↓ ↑

a1 a2 a3

→ ↓ ↑

a1 a2 a3

↓ ↓ ↓

t2

1-Diameter(P) is true,

0-strictEvol(P) is true.
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Toward More Sophisticated Pattern Domains

Density Measures

Intuition

Discard patterns that depict a behaviour supported by many other
elements of the graph.
* vertex specificity, temporal dynamic and trend relevancy.
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Toward More Sophisticated Pattern Domains

Algorithm

How to use the properties of the constraints to reduce the search space?

Binary enumeration of the search space.

Using the properties of the constraints to
reduce the search space

Monotone, anti-monotone, piecewise
(anti-)monotone, etc.

Constraints are fully or partially pushed:

to prune the search space (i.e., stop the
enumeration of a node),
to propagate among the candidates. Cerf et al, ACM TKDD 2009

�This algorithms aim to be complete but other heuristic search can be
used in a straightforward way (e.g., beam-search) to be more scalable
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Top temporal dynamic trend
dynamic sub-graph (in red)

71 airports whose arrival delays
increase over 3 weeks.

temporal dynamic = 0, which
means that arrival delays never
increased in these airports
during another week.

The hurricane strongly
influenced the domestic flight
organization.

Top trend relevancy (Yellow)

5 airports whose number of
departures and arrivals increased
over the three weeks following
Katrina hurricane.

trend relevancy value equal to
0.81

Substitutions flights were
provided from these airports
during this period.

This behavior is rather rare in
the rest of the graph|V | |T | |A| density

Katrina 280 8 8 5× 10−2
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Toward More Sophisticated Pattern Domains

Brazil landslides

Discovering lanslides

Taking into account expert
knowledge, focus on the pat-
terns that involve NDVI+.

Regions involved in the
patterns: true landslides (red)
and other phenomena (white).

Compare to previous work, much
less patterns to characterize the
same phenomena (4821 patterns
vs millions).

|V | |T | |A| density
Brazil landslide 10521 2 9 0.00057
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Toward More Sophisticated Pattern Domains

Overview

v1

v2

v3

v4

v5

a1 a2 a3

2 5 3

a1 a2 a3

6 7 1

a1 a2 a3

2 3 9

a1 a2 a3

8 8 2

a1 a2 a3

2 7 6

t1

v1

v2

v3

v4

v5

a1 a2 a3

6 5 4

a1 a2 a3

3 8 9

a1 a2 a3

2 6 6

a1 a2 a3

3 5 1

a1 a2 a3

3 6 9

t2

v1

v2

v3

v4

v5

a1 a2 a3

2 2 2

a1 a2 a3

5 4 6

a1 a2 a3

9 2 5

a1 a2 a3

3 4 7

a1 a2 a3

2 5 5

t3

Co-evolution patterns

Interestingness Measures

(Desmier et al., ECML/PKDD 2013)

Experimental results
DBLP US flights Brazil landslides

Some obvious patterns are
discarded ...

... but some patterns need to
be generalized

Desmier et al, IDA 2014

Hier. co-evolution patterns

Take benefits from a hierarchy over

the vertex attributes to :

return a more concise collection

of patterns;

discover new hidden patterns;

All

A

a1 a2

a3
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Toward More Sophisticated Pattern Domains

Issue

�We need to mine contextualized trajectories.

What about the data?
Contexts X

Trajectories only 2 points

How to have a good view of the demographic flows with only
2-point-trajectories?

Our idea:

�Taking benefit from the crowd with an attributed graph based ap-
proach.

Individual trajectories are aggregated into weighted graphs;

We look for exceptional sub-graph
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Toward More Sophisticated Pattern Domains

Example: The Velo’v network1

348 stations across the city of Lyon.

The dataset contains movement data collected in a 2 year period (Jan.
2011– Dec. 2012)

Each movement (edge) includes both bicycle stations (vertices) and
timestamps for departure and arrival, as well as some basic demographics
about the user of the bike (context).

Customers described by nominal attributes (gender, type of membership
card, ZIP code and country of residence) and a numerical one (year of
birth).

50, 601 customers.

2, 000, 000 contextualized edges in total.
1http://www.velov.grandlyon.com/
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Toward More Sophisticated Pattern Domains

Examples of Demographic and contex-
tualized Specific Routes

YoB ≥ 1968,ZIP = 42400

identifies people born after 1968, living in
a city (Saint Chamond) located
approximately 50km from Lyon.

the edges involve the two main train
stations of Lyon: Perrache (south-west)
and Part-Dieu (center), from which users
take bicycles to areas that are not easily
reached by metro or tram, such as the 1st

and 4th districts.

YoB ≥ 1962,CAT = OURA

108 / 118
M. Plantevit Constraint-Based Pattern Mining

N



Toward More Sophisticated Pattern Domains

Pb Formalization: Key concepts

A context aims to characterize a subset of movements/trajectories.

Aggregate graph GC

Given a context C , GC is a weighted graph involving all edges that
satisfy C .

The weight of an edge is the number of movements involving the two
vertices that hold for C .

Operations on GC

Differential comparison with G∗:

Adequacy of an edge to a context assessed by a χ2 test.

Some quality measures to “quantify” the attraction of the edges for a
context: q(e,C).
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Toward More Sophisticated Pattern Domains

Example

Contexts Trajectories
User Gender Age Time Travels
u1 F 20 Day (A,C), (B,A), (C,B)

u1 F 20 Night
(D,C),(D,E),(E,A),
(E,D)

u2 M 23 Day
(A,B),(B,C),(C,A),
(C,B)

u2 M 23 Night
(A,B),(B,C),(C,B)
(C,D),(D,C),(D,E),
(E,D)

u3 F 45 Day
(A,B),(B,C),(C,D),
(D,A),(D,E),(E,D)

u3 F 45 Night (B,D),(D,B)

u4 M 50 Day
(A,B),(B,C),(C,B),
(C,D),(D,A),(D,E),
(E,D)

u4 M 50 Night (A,C),(C,A)

A

B C

D

E

4
1

1
2 3

2

4
4

4
4

1

22

1

G?
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Example

Contexts Trajectories
User Gender Age Time Travels
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u1 F 20 Night
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(E,D)

u2 M 23 Day
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u2 M 23 Night
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(A,B),(B,C),(C,D),
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u3 F 45 Night (B,D),(D,B)
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(A,B),(B,C),(C,B),
(C,D),(D,A),(D,E),
(E,D)

u4 M 50 Night (A,C),(C,A)

A

B C

D

E

2 2

2

2

2
2

1

C= (Gender = ?,Age ∈ [45, 50],Time = Day)
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Demographic and Contextualized Specific Route pattern

A pair (C, G’) where

C is a context

G ′ is a subgraph of GC such that:

∀e ∈ G ′, e fulfils the χ2 test and q(e,C) > 0,
G ′ is connected.
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Toward More Sophisticated Pattern Domains

The Mining Task

No threshold to avoid related issues.

�Some measures to be maximized by the patterns:

density of G ′, #edges, #vertices, several aggregations of the quality
measure.

Mining Task:

Given a set of measures (user-preferences) M, our goal is to compute
the Pareto-front of the Demographic and Contextualized Specific Route
patterns according to M.
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Toward More Sophisticated Pattern Domains

Algorithm in a nutshell

Enumeration of the possible contexts in a depth-first fashion.

Several upper-bounds to early prune unpromising candidates:

on the χ2 for each edge (see Sese and Morishita, PKDD’04)
on the other measures;
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Toward More Sophisticated Pattern Domains

XP

(i)YoB ≥ 1962,CAT = OURA (ii) YoB ≥ 1980,TYP = standard (iii) YoB ≥ 1992,ZIP = 69003

i The edges of pattern (i) radiate from all of Lyon’s train stations, not only
the major ones. Its description refers to holders of a regional train
subscription (monthly or yearly).

ii It involves users born in or after 1980:

3 main areas: the scientific campus in the north, the Presqu’̂ıle and its
pubs, and the shopping area in the center of Lyon.

iii Young people that live in the 3rd district use bicycles to move around in
their area.

ground truth in real-world data: the ZIP code of users aligns with the area
where the bicycles are used!
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Toward More Sophisticated Pattern Domains

Some other inductive queries for aug-
mented graphs

What are the node attributes that strongly co-vary with the
graph structure?

Co-authors that published at ICDE with a high degree and a
low clustering coefficient.

Prado et al., IEEE TKDE 2013

Which are the node attribute temporal combination that
impact the graph structure ?

dynamic attributed graph

M. Kaytoue et al. Social Netw. Analys. Mining (2015)

For a given population, what is the most related subgraphs
(i.e., behavior)? For a given subgraph, which is the most
related subpopulation?

edge-attributed graph
People born after 1979 are over represented on the campus.
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Conclusion

Conclusion

Th(L,D, C) = {ψ ∈ L | C(ψ,D) is true}

Pattern domains: (itemset, sequences, graphs, dynamic graphs, etc.)

Constraints: How to efficiently push them?

Research Avenues

Still new pattern domains and and their related primitives have to be
defined.

Accept to lose the completeness in some cases.

Integration of domain knowledge.

Interactivity: replace the user in the center of the KDD process.

User preference learning
Inductive query recommendation
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Conclusion

Thanks
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