Data Mining: Frequent Pattern Mining and Constraint-based Pattern Mining

M1 ENS

Let us consider the transaction database depicted in Tab. 1.

Id	Motif
1	$\{a, c, d\}$
2	$\{b,c,e\}$
3	$\{a,b,c,e\}$
4	$\{b,e\}$
5	$\{a,b,c,e\}$
6	$\{a,b,c,e\}$

Table 1: Transaction database

1. Frequent Itemset Mining

- (a) General questions independant of the minimum frequency threshold minsup:
 - i. What is the maximal number of frequent itemsets that can be extracted from this dataset?
 - ii. Draw the lattice of itemsets.
 - iii. What is the maximal number of scans over the database with APriori algorithm ? (breatdh-first enumeration)
- (b) Extract the frequent itemsets with minsup = 2 with Apriori Algorithm.
- (c) Compute the frequent itemsets (minsup = 2) by using a depth first strategy.

2. Closed Frequent Itemset Mining and Formal Concept Analysis

A formal context is a triple K=(G,M,I), where G is a set of objects, M is a set of attributes, and $I\subseteq G\times M$ is a binary relation called incidence that expresses which objects have which attributes. The incidence relation can be regarded as a bipartite graph (or a partial order of height 2). Predicate gIm designates object g's having attribute m. For a subset $A\subseteq G$ of objects and a subset $B\subseteq M$ of attributes, one defines two derivation operators as follows:

- $A' = \{m \in M | \forall g \in A, gIm\}$, and dually
- $B' = \{g \in G | \forall m \in B, gIm \}.$

Applying either derivation operator and then the other constitutes another operator, ", with three properties (illustrated here for attributes):

- idempotent: A'''' = A'',
- \bullet monotonic: $A_1''\subseteq A_2''$ whenever $A1\subseteq A2$, and
- extensive: $A \subseteq A''$.

Any operator satisfying those three properties is called a **closure operator**, and any set A such that A'' = A for a closure operator '' is called closed under ''.

With these derivation operators, it is possible to restate the definition of the term "formal concept" more rigorously: a pair (A,B) is a formal concept of a context (G, M, I) provided that:

• $A \subseteq G$,

	m_1	m_2	m_3	m_4	m_5	m_6
g_1	×	×				×
g_2	×	×		×		×
g_3	×	×		×	×	×
g_4	×		×		×	
g_5	×				×	
g_6	×				×	×
g_7	×		×		×	×

Table 2: An example of formal context $\mathbb{K} = (G, M, I)$

- $B \subseteq M$,
- A' = B, and
- \bullet B' = A.

Equivalently and more intuitively, (A,B) is a formal concept precisely when: every object in A has every attribute in B, for every object in G that is not in A, there is some attribute in B that the object does not have, for every attribute in M that is not in B, there is some object in A that does not have that attribute. For a set of objects A, the set A' of their common attributes comprises the similarity characterizing the objects in A, while the closed set A' is the cluster of objects – within A or beyond – that have every attribute that is common to all the objects in A.

A formal context may be represented as a matrix K in which the rows correspond to the objects, the columns correspond to the attributes, and each entry $k_{i,j}$ is the boolean value of the expression "Object i has attribute j." In this matrix representation, each formal concept corresponds to a maximal submatrix (not necessarily contiguous) all of whose elements equal TRUE.

The Close by One algorithm¹ generates itemsets (concepts) in the lexicographical order of their extents assuming that there is a linear order on the set of objects. At each step of the algorithm there is a current object. The generation of a concept is considered canonical if its extent contains no object preceding the current object. Close by One uses the described canonicity test, a method for selecting subsets of a set of objects G and an intermediate structure that helps to compute closures more efficiently using the generated concepts. Its time complexity is $O(|G|^2|M||L|)$, and its polynomial delay is $O(|G|^3|M|)$ where |G| stands for the cardinality of the set of objects G, |M|, similarly, is the number of all attributes from M and |L| is the size of the concept lattice.

Example. Consider the set of objects $G=\{g_1,...,g_7\}$ where each letter denotes an animal, respectively, "ostrich", "canary", "duck", "shark", "salmon", "frog", and "crocodile". Consider the set of attributes $M=\{m_1,...,m_6\}$ that are properties that animals may have or not, i.e. "borned from an egg", "has feather", "has tooth", "fly", "swim", "lives in air". Table 2 gives an example of formal context (G,M,I) where I is defined by observing the given animals.

```
1: \mathsf{L} = \emptyset
2: for each g \in G
3: process(\{g\}, g, (g'', g'))
4: L is the concept set.
```

Algorithm 1: Close By One.

- (a) Which are the differences between formal concepts and closed itemsets?
- (b) Apply Close by one algorithm to enumerate all frequent closed patterns (minsup=2). Push the minimum frequency constraint.

3. Back to functional dependencies: Building Armstrong relations

Let R be a relation schema and F be a set of functional dependencies over R. An Armstrong relation for F is a relation r on R that fulfill only the functional dependencies from F^+ . Let R = ABCDE and $F = \{A \to BC, D \to E, C \to D\}$.

¹Sergei O. Kuznetsov: A Fast Algorithm for Computing All Intersections of Objects in a Finite Semi-lattice. Automatic Documentation and Mathematical Linguistics, 1993.

```
 \begin{array}{ll} \text{if } \{h|h\in C\backslash A \text{ and } h< g\}=\emptyset \text{ then} \\ 2: & L=L\cup\{(C,D)\} \\ & \text{ for each } f\in\{h|h\in G\backslash C \text{ and } g< h\} \\ 4: & Z=C\cup\{f\} \\ & Y=D\cap\{f'\} \\ 6: & X=Y' \\ & \text{process}(Z,f,(X,Y)) \\ 8: \text{ end if } \\ \textbf{Algorithm 2: process}(A,g,(C,D)) \text{ with } C=A'' \text{ and } D=A' \text{ and } < \text{the lexical order on object names.} \\ \end{array}
```

- (a) Compute the set of closed of F defined as $Cl(F) = \{X^+ \mid X \subseteq R\}$.
- (b) Compute the Armstrong relation r with algorithm 3.
- (c) From the Armstrong relation, find some counter-examples for some functional dependencies not implied by F.
- (d) From the Armstrong relation, exhibit some problems of redundancy.

```
Data: R a relation schema, F a set of functional dependencies over R.
Result: An Armstrong relation r w.r.t. F.
\text{ for } A \in R \text{ do }
 | t[A] := 0
end
r := \{t\}
i := 1
for X \in Cl(F) \setminus R do
    \text{ for } A \in R \text{ do }
        if A \in X then
         |t|A| := 0
        end
        else
        t[A] := i
        end
    end
    r := r \cup \{t\}
    i := i + 1
end
return r
```

Algorithm 3: Armstrong relation computation

4. Constraint-based Pattern Mining

Let us consider the following transaction database:

		item	price
TID	Transactions	а	10
T_1	a,b,c,d,f	b	21
T_2	b,c,d,e,g	С	15
T_3	a,c,d,f	d	12
		е	30
T_4 T_5	a,b,c,e,g c,d,f,h	f	15
15	C,u,1,11	g	22
		h	101

- (a) We want to extract every pattern X which appears in at least two transactions ($support(X) \ge 2$) and whose items' price sum is lower than 40 (sum(X) < 40).
 - i. What is the type of the constraint?
 - ii. Enumerate all solutions.
- (b) We now want to discover every pattern X which appears in at least two transactions ($support(X) \ge 2$) and whose average price is greater than 24 (average(X) > 24).
 - i. What is the type of the constraint?
 - ii. Convert the constraint into an anti-monotone constraint, then make the extraction.