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The Knowledge Discovery Process

Identified domain(s)
↓ Data acquisition (crawling, scraping, interviews)

Rough data
↓ Selection and preparation
↓ Transformation : cleaning and formatting

Prepared data
↓ Data mining (Numerical & symbolic methods)

Extracted units
↓ Interpretation and evaluation
↓ Knowledge representation formalism

Knowledge units
↓

Knowledge based systems

An interactive and iterative process guided by an analyst and
knowledge of the domain
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The Knowledge Discovery Process

Large volumes of data from which useful, significant and
reusable units should be extracted
Involves several tasks of data and knowledge processing

Mining: ((closed) frequent ...) pattern mining (itemset,
sequences, graphs,...)
Modeling: hierarchy of concepts and relations
Representing: Concepts and relations as knowledge units
Reasoning and solving problems: classification and case
based reasonning

Many domains of applications
Scientific data (agronomy, astronomy, chemistry, cooking,
medicine)
Sensors data ((interactions) traces of human/system
behaviors)
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A basic example: What can say a binary table?

Assume a binary table Mij

obtained by an interview
A set of clients ci

A set of products pj

The relation states that
some clients bought some
products
The table may of course be
“big” (millions of lines,
thousands of columns)
The table may contain
errors

c/p p1 p2 p3 p4 p5
c1 x x
c2 x x x x x
c3 x x
c4 x x
c5 x x x x
c6 x x x x
c7 x x x x
c8 x x x
c9 x x
c10 x x x
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Let’s make the table speak!

{p2, p3, p5} is an itemset
of frequency 4/10 = 0.4.
{p3, p5} has 6/10 = 0.6 as
frequency
p3 ∧ p5 −→ p2 is an
association rule with a
confidence of 4/6 = 0.66: if
a client buys p3 and p5,
0.66 is the probability he
buys also p2.

conf (X → Y ) = sup(X∪Y )/sup(X )

c/p p1 p2 p3 p4 p5
c1 x x
c2 x x x x x
c3 x x
c4 x x
c5 x x x x
c6 x x x x
c7 x x x x
c8 x x x
c9 x x
c10 x x x
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FCA and the Concept lattice, a synthetic view

What can we say about
{p2}? and {p2, p3}?

What about p2→ p3?

What about p3→ p5?

How to classify object
described by {p2, p3}?

What if lines are products
and columns their
attributes?
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FCA and the Concept lattice, a synthetic view

Formal concepts can be
represented in a KR
formalism (eg.. DLs)

Concept1 ≡ ∃hasAwR.p3

Concept2 ≡ ∃hasAwR.p2

Concept2 v Concept1
...
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FCA and the Concept lattice, a synthetic view

Useful for many tasks of DM, DB, KR; Gives a formalism

(frequent (closed)) itemsets

(partial) implications or association rules

Possible knowledge units to be reused for problem solving

What happens when

When there are too much patterns ?
Closure, iceberg, stability, ... – See the previous classes!

When the table is not binary?
Scaling, pattern structures

When the table is n-dimensional?
Triadic and polyadic concept analysis

When relations arise between objects themselves?
Relational concept analysis
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Today

Objectives of this class

Basics of formal concept analysis: from a binary table to a
concept lattice

Handling numerical data with scaling and pattern structures

Handling multi-dimensional data with triadic concepts
analysis

Understanding the problem of biclustering

Solving some of the biclustering problems with FCA
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Binary relations

Definition (Binary relation)

A binary relation R between two arbitrary sets M and N is
defined on the Cartesian product M × N and consists of
pairs (m, n) with m ∈ M and n ∈ N. When (m, n) ∈ R, we
usually write mRn.

Definition (Order relation)

A binary relation R on a set M is called an order relation (or
shortly order) if it satisfies the following conditions for all
elements x , y , z ∈ M:

1 (reflexivity) xRx

2 (antisymmetry) xRy and x 6= y ⇒ not yRx

3 (transitivity) xRy and yRz ⇒ xRz
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Total and partial orders

Definition (Ordered set)

Given an order relation ≤ on a set M, an ordered set is a pair
(M,≤). When ≤ is a partial order, (M,≤) is called partially
ordered set, or poset for short.

Example: Given a set E , (2E ,⊆)

Definition (Total order)

For any a, b ∈ M, either a ≤ b or b ≤ a.

Example: real numbers
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Infimum, Supremum

Definition (Infimum, supremum)

Let (M,≤) be an ordered set and A a subset of M. A lower
bound of A is an element s of M with s ≤ a for all a ∈ A. An
upper bound of A is defined dually. If it exists a largest
element in the set of all lower bounds of A, it is called the
infimum of A and is denoted by “inf A” or

∧
A; dually, a least

upper bound is called supremum and denoted by “sup A” or∨
A. Infimum and supremum are frequently called

respectively meet and join, also denoted respectively by the
symbols u and t.
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Lattice

Definition (Lattice, complete lattice)

A poset V = (V ,≤) is a lattice, if for any two elements
x , y ∈ V the supremum x ∨ y and the infimum x ∧ y always
exist. V is called a complete lattice if for any subset X ⊆ V ,
the supremum

∨
X and the infimum

∧
X exist. Every

complete lattice V has a largest element
∨

called the unit
element denoted by 1V . Dually, the smallest element 0V is
called the zero element. We will rather use the symbol
bottom ⊥ for 0V and top > for the unit element in the
following.
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Remark

We can reconstruct the order relation from the lattice
operations infimum and supremum by

x ≤ y ⇐⇒ x = x ∧ y ⇐⇒ x ∨ y = y

{a} ≤ {a, b} ⇐⇒ {a} = {a} ∩ {a, b}

{a} ≤ {a, b} ⇐⇒ {a} ∪ {a, b} = {a, b}

This remark is important for understanding pattern
structures
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Hasse diagram of the powerset lattice

x ≤ y ⇐⇒ x = x ∧ y ⇐⇒ x ∨ y = y

{a} ≤ {a, b} ⇐⇒ {a} = {a} ∩ {a, b}

{a} ≤ {a, b} ⇐⇒ {a} ∪ {a, b} = {a, b}
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Hasse diagram of the partition lattice

{{a, b}, {c}, {d}} ≤ {{a, b, c}, {d}}

{{a, b}, {c}, {d}} ∨ {{a, c}, {b}, {d}} = {{a, b, c}, {d}}

{{a, b, c}, {d}} ∧ {{a, b, d}, {c}} = {{a, b}, {c}, {d}}
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Semi-lattices

Definition (Join-semi-lattice and meet-semi-lattice)

A poset V = (V ,≤) is a join-semi-lattice if for any two
elements x , y ∈ V the supremum x ∨ y always exists. Dually,
it is a meet-semi-lattice if the infimum x ∧ y always exists. A
lattice is a poset that is both a meet- and join-semi-lattice
with respect to the same partial order.
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Hasse diagram of a semi-lattice

4 5 6

[4,5] [5,6]

[4,6]

How can we formulate here ≤ and ∧?
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Closure operator

Let S be a set and ψ a mapping from the power set1 of S into
the power set of S, i.e. ψ : P(S) −→ P(S).

Definition (Closure operator)

ψ is called a closure operator on S if, for any A,B ⊆ S, it is:

1 extensive: A ⊆ ψ(A),

2 monotone: A ⊆ B implies that ψ(A) ⊆ ψ(B), and

3 idempotent: ψ(ψ(A)) = ψ(A).

A subset A ⊆ S is ψ-closed if A = ψ(A). The set of all
ψ-closed {A ⊆ S | A = ψ(A)} is called a closure system.

1The power set of any set S, writtenP(S), or 2S , is the set of all subsets of S, including the empty set and S
itself, hence composed of 2|S| elements.
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Formal Concept Analysis

Emerged in the 1980’s from attempts to restructure lattice
theory in order to promote better communication between
lattice theorists and potential users of lattice theory

A research field leading to a seminal book and FCA
dedicated conferences (ICFCA, CLA, ICCS)

A simple, powerful and well formalized framework useful for
several applications: information and knowledge processing
including visualization, data analysis (mining) and
knowledge management

See also http://www.upriss.org.uk/fca/fca.html

B. Ganter and R. Wille
Formal Concept Analysis.
In Springer, Mathematical foundations., 1999.
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Formal Context

A formal context K = (G,M, I) consists of two sets G and M
and a binary relation I between G and M. Elements of G are
called objects while elements of M are called attributes of the
context. The fact (g,m) ∈ I is interpreted as “the object g
has attribute m”.

m1 m2 m3 m4 m5 m6
g1 × × ×
g2 × × × ×
g3 × × × × ×
g4 × × ×
g5 × ×
g6 × × ×
g7 × × × ×

G = {g1, ..., g7} “ostrich”, “canary”, “duck”, “shark”, “salmon”, “frog”, and “crocodile”

M = {m1, .., m6} “borned from an egg”, “has feather”, “has tooth”, “fly”, “swim”, “lives in air”

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 23/103



Elements of order
theory

Formal Concept
Analysis

Algorithms

Conceptual
Scaling

Pattern
structures

Triadic Concepts

Biclustering
Motivations

A naive approach

Mining biclusters of
constant values

Mining biclusters of similar
values

Mining n-dimensional
clusters

Conclusion

References

Derivation operators

For a set of objects A ⊆ G we define the set of attributes that
all objects in A have in common as follows:

A′ = {m ∈ M | gIm ∀g ∈ A}

Dually, for a set of attributes B ⊆ M, we define the set of
objects that have all attributes from B as follows:

B′ = {g ∈ G | gIm ∀m ∈ B}

Some derivation on our example

We have {g1, g2}′ = {m1,m2,m6} and
{m1,m2,m6}′ = {g1, g2, g3}
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Formal Concepts

A formal concept of a context (G,M, I) is a pair

(A,B) with A ⊆ G,B ⊆ M,A′ = B and B′ = A

A is called the extent ; B is called its intent

B(G,M, I) is the poset of all formal concepts

(A1,B1) ≤ (A2,B2)⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1)

Concepts in our example

({g1, g2, g3}, {m1,m2,m6}) as a maximal rectangle of
crosses with possible row and column permutations

({g1, g2, g3}, {m1,m2,m6}) ≤ ({g1, g2, g3, g6, g7}, {m1,m6})
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Galois connection

It can be shown that operator (.)′′, applied either to a set of
objects or a set of attributes, is a closure operator. Hence we
have two closure systems on G and on M. It follows that the
pair {(.)′, (.)′} is a Galois connection between the power set
of objects and the power set of attributes.
These mappings put in 1-1-correspondence closed sets of
objects and closed sets of attributes, i.e. concept extents and
concept intents. In our example, {g1, g2} is not a closed set
of objects, since {g1, g2}′′ ={g1, g2, g3}. Accordingly,
{g1, g2, g3} is a closed set of objects hence a concept extent.
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Galois connection

Let P and Q be ordered sets. A pair of maps φ : P → Q and
ψ : Q → P is called a Galois connection if:

p1 ≤ p2 ⇒ φ(p1) ≥ φ(p2)

q1 ≤ q2 ⇒ ψ(q1) ≥ ψ(q2)

p ≤ ψ ◦ φ(p) and q ≤ φ ◦ ψ(q)

We here have a Galois connection between (P(G),⊆) and
(P(M),⊆) with ≤≡⊆.
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Galois connection illustration
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Theorem (The Basic Theorem on Concept Lattices)

The concept lattice B(G,M, I) is a complete lattice in which
infimum and supremum are given by:

∧
t∈T

(At ,Bt ) =

(⋂
t∈T

At ,

(⋃
t∈T

Bt

)′′)

∨
t∈T

(At ,Bt ) =

((⋃
t∈T

At

)′′
,
⋂
t∈T

Bt

)
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Example of formal context and its concept lattice

m1 m2 m3 m4 m5 m6
g1 × × ×
g2 × × × ×
g3 × × × × ×
g4 × × ×
g5 × ×
g6 × × ×
g7 × × × ×

Each node is a concept,
each a line an order relation
between two concepts.

Reduced labeling: the extent
of a concept is composed of
all objects lying in the extents
of its sub-concepts; the intent
of a concept is composed of
all attributes in the intents of
its super-concepts.
The top (resp. bottom)
concept is the highest (resp.
lowest) w.r.t. ≤.
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Implications

An implication of a formal context (G,M, I) is denoted by

X → Y X ,Y ⊆ M

All objects from G having the attributes in X also have also
the attributes in Y , i.e. X ′ ⊆ Y ′.
Implications obey the Amstrong rules (reflexivity,
augmentation, transitivity). A minimal subset of implications
(in sense of its cardinality) from which all implications can be
deduced with Amstrong rules is called the
Duquenne-Guigues basis.

Y ⊆ X
X → Y

X → Y
X ∪ Z → Y ∪ Z

X → Y ,Y → Z
X → Z

reflexivity augmentation transitivity
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A basic algorithm for computing formal concepts

Remember that

Each concept of a formal context (G,M, I) has the form
(A′′,A′) for some subset A ⊆ G and the form (B′,B′′) for
some subset B ⊆ M.

One does naively apply the closure operator (.)′′ on all
possible subsets of G (dually all subsets of M), and remove
all redundant concepts (How to generate these subsets?)

Inefficient

Several algorithms exist. Their performance is usually linked

with the density d =
|I|

|G| × |M|
of a context (G,M, I). Time

complexity is generally O(|G|2|M||L|) (L being the set of
concepts).
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Close By One algorithm

Bottom-up concepts generation (from min. to max. extents)
Considers objects one by one starting from the minimal one
w.r.t. a linear order < on G (e.g. lexical)
Given a concept (A,B), the algorithm adds the next object
g w.r.t < in A such as g 6∈ A.
Then it applies the closure operator (·)′′ for generating the
next concept (C,D): intent B is intersected with the
description of g, i.e. D = B ∩ g′, and C = D′.
Induces a tree structure on concepts
To avoid redundancy, it uses a canonicity test : Consider a
concept (C,D) obtained from a concept (A,B) by adding
object g in A and applying closure. C is said to be
canonically generated iff {h|h ∈ C\A and h < g} = ∅, i.e.
no object before g has been added in A to obtain C.
Backtrack can be ensured.
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Closed By One Algorithm
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Example
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Many valued contexts

Definition (Many-valued context)

A many-valued context (G,M,W , I) consists of sets G, M
and W and a ternary relation I between those three sets, i.e.
I ⊆ G ×M ×W , for which it holds that

(g,m,w) ∈ I and (g,m, v) ∈ I always imply w = v

The fact (g,m,w) ∈ I means “the attribute m takes value w
for object g”, simply written as m(g) = w .

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5
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Conceptual scale

Definition

A (conceptual) scale for the attribute m of a many-valued
context is a (one-valued) context Sm = (Gm,Mm, Im) with
m(G) = {m(g),∀g ∈ G} ⊆ Gm. The objects of a scale are
called scale values, the attributes are called scale attributes.
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Basic scales

Nominal scale is defined by the context (Wm,Wm,=). We
obtain the following scales, respectively for attribute m1, m2

and m3:

= 4 5 6
4 ×
5 ×
6 ×

= 7 8 9
7 ×
8 ×
9 ×

= 4 5 6 8
4 ×
5 ×
6 ×
8 ×

Wm ⊆ W , ∀m ∈ M
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Resulting context

m
1

=
4

m
1

=
5

m
1

=
6

m
2

=
7

m
2

=
8

m
2

=
9

m
3

=
4

m
3

=
5

m
3

=
6

m
3

=
8

g1 × × ×
g2 × × ×
g3 × × ×
g4 × × ×
g5 × × ×
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Basic scales

Ordinal scale is given by the context (Wm,Wm,≤) where
≤ denotes classical real number order. We obtain for each
attribute the following scales:

≤ 4 5 6
4 × × ×
5 × ×
6 ×

≤ 7 8 9
7 × × ×
8 × ×
9 ×

≤ 4 5 6 8
4 × × × ×
5 × × ×
6 × ×
8 ×
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Basic scales

Interordinal scale is given by (Wm,Wm ≤) | (Wm,Wm ≥)
where | denotes the apposition of two contexts2. We obtain
for attribute m1 the following scale3:

≤ 4 ≤ 5 ≤ 6 ≥ 4 ≥ 5 ≥ 6
4 × × × ×
5 × × × ×
6 × × × ×

2The apposition of two contexts with identical sets of objects, denoted by |, returns the context with the same
set of objects and the set of attributes being the disjoint union of attribute sets of the original contexts.

3The double-line column separator intuitively corresponds to context apposition.
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Is scaling a valid way to consider non binary
data?

Consider interordinal scaling.

What is the concept lattice of its context?

What does it represent?

What are the problem?

Can we do better?

Pattern structures formalize a nice alternative.
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Concept lattice with interordinal scaling
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How to handle non binary descriptions

An intersection as a similarity operator

∩ behaves as similarity operator

{m1,m2} ∩ {m1,m3} = {m1}

∩ induces an ordering relation ⊆
N ∩ O = N ⇐⇒ N ⊆ O

{m1} ∩ {m1,m2} = {m1} ⇐⇒ {m1} ⊆ {m1,m2}

∩ has the properties of a meet u in a semi lattice,
a commutative, associative and idempotent operation

c u d = c ⇐⇒ c v d
A. Tversky
Features of similarity.
In Psychological Review, 84 (4), 1977.
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Going a little bit back
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Going a little bit back

4 5 6

[4,5] [5,6]

[4,6]

We can reconstruct the order relation from the lattice
operations infimum and supremum by

x ≤ y ⇐⇒ x = x ∧ y ⇐⇒ x ∨ y = y
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Pattern structure

Given by (G, (D,u), δ)

G a set of objects

(D,u) a semi-lattice of descriptions or patterns

δ a mapping such as δ(g) ∈ D describes object g

A Galois connection

A� =
l

g∈A

δ(g) for A ⊆ G

d� = {g ∈ G|d v δ(g)} for d ∈ (D,u)

B. Ganter and S. O. Kuznetsov
Pattern Structures and their Projections. In International Conference on Conceptual Structures, 2001.
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Ordering descriptions in numerical data

(D,u) as a meet-semi-lattice with u as a
“convexification”

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

4 5 6

[4,5] [5,6]

[4,6]

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)]
[4, 4] u [5, 5] = [4, 5]
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Numerical data are pattern structures

Interval pattern structures

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

{g1, g2}� =
l

g∈{g1,g2}
δ(g)

= 〈5, 7, 6〉 u 〈6, 8, 4〉
= 〈[5, 6], [7, 8], [4, 6]〉

〈[5, 6], [7, 8], [4, 6]〉� = {g ∈ G|〈[5, 6], [7, 8], [4, 6]〉 v δ(g)}
= {g1, g2, g5}

({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉) is a (pattern) concept
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n-dimensional intervals

Interval patterns as (hyper) rectangles

m1 m3

g1 5 6
g2 6 4
g3 4 5
g4 4 8
g5 5 5

〈[4, 5], [5, 6]〉� = {g1, g3, g5}
〈[4, 5], [4, 6]〉� = {g1, g3, g5}
〈[4, 6], [5, 6]〉� = {g1, g3, g5}

3

4

5

6

7

8

3 4 5 6
m1

m3

b

b

b

b

b

δ(g1)

δ(g2)

δ(g3)

δ(g4)

δ(g5)
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n-dimensional intervals

Interval patterns as (hyper) rectangles
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Interval patterns

Counting all possible interval patterns

〈[am1 , bm1 ], [am2 , bm2 ], ...〉
where ami , bmi ∈ Wmi

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

∏
i∈{1,...,|M|}

|Wmi | × (|Wmi |+ 1)

2

360 possible interval patterns in our small example

M. Kaytoue, S. O. Kuznetsov, and A. Napoli
Revisiting Numerical Pattern Mining with Formal Concept Analysis.
In International Joint Conference on Artificial Intelligence (IJCAI), 2011.
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Interval pattern concept lattice

Existing algorithms

Lowest concepts: few objects, small intervals

Highest concepts: many objects, large intervals
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Links with conceptual scaling

Interordinal scaling [Ganter & Wille]

A scale to encode intervals of attribute values, gives rise to
equivalent concept lattice

m1 ≤ 4 m1 ≤ 5 m1 ≤ 6 m1 ≥ 4 m1 ≥ 5 m1 ≥ 6

4 × × × ×
5 × × × ×
6 × × × ×

({g1, g2, g5}, {m1 ≤ 6,m1 ≥ 4,m1 ≥ 5, ... , ... })
({g1, g2, g5}, 〈[5, 6] , ... , ... 〉)

Why pattern structures as we have scaling?
Processing a pattern structure is more efficient

M. Kaytoue, S. O. Kuznetsov, A. Napoli and S. Duplessis
Mining Gene Expression Data with Pattern Structures in Formal Concept Analysis.
In Information Sciences. Spec. Iss.: Lattices (Elsevier), 181(10): 1989-2001 (2011).
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A condensed representation

Equivalence classes of interval patterns

Two interval patterns with same image are said to be
equivalent

c ∼= d ⇐⇒ c� = d�

Equivalence class of a pattern d

[d ] = {c|c ∼= d}

with a unique closed pattern: the smallest rectangle

and one or several generators: the largest rectangles
Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal.
Mining frequent patterns with counting inference.
SIGKDD Expl., 2(2):66–75, 2000.

In our example: 360 patterns ; 18 closed ; 44 generators
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A condensed representation

Remarks

4 5 6

[4,5] [5,6]

[4,6]

Compression rate varies between 107 and 109

Interordinal scaling: encodes ' 30.000 binary patterns
not efficient even with best algorithms (e.g. LCMv2)
redundancy problem discarding its use for generator
extraction
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Triadic Concept Analysis

“Extension” of FCA to ternary relation

An object has an attribute for a given condition

Triadic context (G,M,B,Y )

Several derivation operators allowing to characterize “triadic
concepts” as maximal cubes of ×

b1 b2 b3

m1 m2 m3

g1 ×
g2 × ×
g3 × ×
g4 × ×
g5 × ×

m1 m2 m3

g1 × × ×
g2 × ×
g3 × × ×
g4 × ×
g5 × ×

m1 m2 m3

g1 × ×
g2 ×
g3 × × ×
g4 × ×
g5 × × ×

({g3, g4, g5}, {m2,m3}, {b1, b2, b3}) is a triadic concept
F. Lehmann and R. Wille.
A Triadic Approach to Formal Concept Analysis.
In International Conference on Conceptual Structures (ICCS), 1995.
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Derivation operators

Definition

Triconcept forming operators - outer closure

Φ : X → X (i) : {(aj , ak ) ∈ Kj × Kk | (ai , aj , ak ) ∈ Y forall ai ∈
X}

Φ
′

: Z → Z (i) : {ai ∈ Ki | (ai , aj , ak ) ∈ Y for all (aj , ak ) ∈ Z}

Definition

Triconcept forming operators - inner (dyadic) closure

Ψ : Xi → X (i,j,Ak )
i : {aj ∈ Kj | (ai , aj , ak ) ∈ Y for all (ai , ak ) ∈

Xi × Ak}
Ψ
′

: Xj → X (i,j,Ak )
j : {ai ∈ Ki | (ai , aj , ak ) ∈ Y for all (aj , ak ) ∈

Xj × Ak}
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Without going into details...

A Naive approach

Start with a set of conditions and a context (G,M, J) which
involves all these conditions

Compute all dyadic concepts (inner closure)

For any dyadic concept, compute the set of conditions that
contains it (outer closure).

Do it for any subset of conditions

Remove redundant tri-concepts.

What happens if we have n dimensions?
Data-peeler : An algorithm based on a binary tree
enumeration: For each node, choose a dimension and an
element, generates two n-sets one with the element, the
other without. Constraints are used to prune the search
space and detect maximal n-sets.
See also Trias algorithm
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Motivation

Somewhere... in a temperate forest...
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A biological problem

: How does symbiosis work at the cellular level?

Analyse biological processes

Find genes involved in
symbiosis

Choose a model for
understanding symbiosis:
Laccaria bicolor

Analysing Gene Expression Data (GED)

F. Martin et al.
The Genome of Laccaria Bicolor Provides Insights into Mycorrhizal Symbiosis.
In Nature., 2008.
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Microarray Data

Gene Expression Matrix (GEM): E = (eij)1≤i≤n,1≤j≤m

Gene Expression Profile (GEP): ei with 1 ≤ i ≤ n
A Gene Expression Value: eij

Gene \ Situation a b c

g1 11050 11950 1503
g2 13025 14100 1708
g3 6257 5057 6500
g4 5392 6020 7300
g5 13070 12021 15548

Integer values in [0, 65535] (NimbleGen Systems Oligonucleotide Arrays Technology)

(Lee et al, 2002): genes having a similar expression profile

interact together within the same biological process,

or have a similar biological function.
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Numerical Clustering Methods

Many clustering methods
K-means (Gasch et al, 1999)
Self Organizing Maps (Tamayo et al, 1999)
Hierarchical clustering (Eisen et al, 1998)

A cluster is a set of similar gene expression profiles
(GEP)

See (Jiang et al., 2004) for a survey
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An example of result

Same example where each line is a GEP representation
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First problem

With 500 random points
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Advanced Biological Background

Clustering methods have to respect the following biological
properties

1 A gene can participate in several processes

2 A situation can describe several processes

3 A process involves a small subset of genes

4 A process is active in none, some or all situations

5 High variations of expression values are not frequent
between two situations

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 70/103



Elements of order
theory

Formal Concept
Analysis

Algorithms

Conceptual
Scaling

Pattern
structures

Triadic Concepts

Biclustering
Motivations

A naive approach

Mining biclusters of
constant values

Mining biclusters of similar
values

Mining n-dimensional
clusters

Conclusion

References

In Clustering Words . . .

1 A gene may belong to many clusters (overlapping)
2 A situation may belong to many clusters (overlapping)
3 Control gene dimension size of clusters
4 Control situation dimension size of clusters
5 Groups of genes are interesting if showing high similar

changes of expression

A bi-cluster is a set of similar GEP in some situations
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Mining local pattern in numerical data

Extracting (maximal) rectangles in numerical data

A set of genes co-expressed in some biological situations

Local patterns: biological processes may be activated in
some situations only

Overlapping patterns: a gene may be involved in several
biological process

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7
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Biclustering numerical data

Bicluster should reflect

a local phenomena in the data: “rectangles of values”

connectedness of values: e.g. similar values

overlapping: objects/attributes may belong to several
patterns

a partial order, e.g. for algorithmic issues

maximality of rectangles

Several types of biclusters
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Biclustering numerical data

Several applications...

Collaborative filtering and recommender systems

Finding web communities

Gene expression analysis, ...

Several algorithms

Iterative Row and Column Clustering Combination

Divide and Conquer / Distribution Parameter Identification

Greedy Iterative Search / Exhaustive Bicluster Enumeration

A difficult problem generally relying on heuristics
S. C. Madeira and A. L. Oliveira
Biclustering Algorithms for Biological Data Analysis: a survey.
In IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004.
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Different Stages

In terms of data analysis:

In terms of formal concept analysis (FCA):

In the following: a concept (A,B) represents a set of genes
A having similar expression values in situations of B.
The notion of similarity will be given by an interval of
values apriori computed.
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Stage 1: a GEM as a numerical data table

A GEM is represented by a many valued context (G,S,W , I1)

Example

G = {Gene 1, . . . , Gene 5}, a set of objects.

S = {a, b, c}, a set of attributes.

W = {11050, 11950, . . . }, a set of unique values.

I1 is illustrated, for example, by Gene 1(a) = 11050.

I1 a b c

Gene 1 11050 11950 1503
Gene 2 13025 14100 1708
Gene 3 6257 5057 6500
Gene 4 5392 6020 7300
Gene 5 13070 12021 15548
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Stage 2: Interval Scaling

We need a formal context (binary) which is a triple
(G,ST , I2):
I2 says an object g ∈ G possesses an attribute s ∈ ST or not.

Interval scaling (discretization):
Each attribute is cut into p attributes considering p disjoint
ordered intervals of the set {[0, u1], ]u1, u2], . . . , ]up−1, up]}.

Given an index set T on the set of intervals, t ∈ T ,

g(s) = x becomes (g, (s, t)) if x ∈ [ut−1, ut ]

(g, (s, t)) ∈ I2
means

g has an expression value in the t th interval for situation
s
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Stage 2: Interval Scaling

Example

T is an index set on
{[0, 5000], ]5000, 10000], ]10000, 65535]}

0 u1 = 5000 u2 = 10000 up = 65535

g3(a) = 6257 becomes (g3, (a, 2))

The interval borders are choosen by the biologists and
directly influence the number of concepts.
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Stage 3: Concept Lattice Construction

Definition

A formal concept is a pair (A,B) where A ⊆ G, B ⊆ ST

such as A′ = B and B′ = A given the following derivation
operators:

′ : 2G → 2S
T ; A′ = {s ∈ ST ;∀g ∈ A : (g, s) ∈ I2}

′ : 2S
T → 2G; B′ = {g ∈ G; ∀s ∈ B : (g, s) ∈ I2}

A is extent of the concept and B the intent.

For a given concept, the genes of the extent A are
co-expressed in sense of the intent B

We can the algorithm Charm, or LCMv2 (you saw it’s inventor!)
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Stage 3: Concept Lattice Construction

Definition

The concept lattice of the context (G,S, I2) is the hierarchy
of the whole set of concepts partially ordered by :

(A1,B1) v (A2,B2)⇔ A1 ⊆ A2 (or B2 ⊆ B1)

TOP

BOTTOM

{{g1 , g2 , g5},
{(a,3), (b,3)}}

{{g1 , g2},
{(a,3), (b,3), (c,1)}}

{{g5},
{(a,3), (b,3), (c,3)}}

{{g3 , g4},
{(a,2), (b,2), (c,2)}}
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Stage 4: Concept Filtering

Too many patterns?

A concept is a relevant bi-cluster if the extent is not
composed of “too many” genes, and if the intent contains a
least “a few” situations.

A first filtering step keeps only concepts (A,B), where
|A| ≤ x and |B| ≥ y .
x and y are chosen by the biologist

Many concepts describe groups of co-expressed genes
having a similar expression with no radical change of
expression.

Example

({g3, g4}, {(a, 2), (b, 2), (c, 2)}) presents no change. Keep
those with the maximal and strongest changes!
Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 81/103



Elements of order
theory

Formal Concept
Analysis

Algorithms

Conceptual
Scaling

Pattern
structures

Triadic Concepts

Biclustering
Motivations

A naive approach

Mining biclusters of
constant values

Mining biclusters of similar
values

Mining n-dimensional
clusters

Conclusion

References

Experiments

Starting from

K1 = (G,S,W , I) with |G| = 22, 294 and |S| = 7 biological
situations like roots, fruit and in symbiosis root cells,

an index set T on the set of disjoint intervals whose borders
are: 0, 100, 250, 500, 1000, 2500, 5000, 7500, 10000,
12500, 15000, 17500, 20000, 30000, 40000, 65535,

K2 = (G,S × T , I) where |S × T | = 98,

we obtain 146, 504 formal concepts. We filter out
concepts (A,B) such as

|A| ≤ 50,

|B| ≥ 4 and

B is a (4, 4)− variant intent.

We finally obtain 156 concepts.
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Some results

Some genes involved in fructification ?

|A| = 9 and |B| = 7
(A,B) represents a cluster
(|B| is maximal)

Some genes sharing a similar function ?

|A| = 9 and |B| = 6
(A,B) represents a biclus-
ter (|B| is not maximal)

Experimental validation required
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A first type of biclusters

Bicluster of equal values

A bicluster (A,B) is a bicluster of similar values if

mi(gj) = mk (gl),∀gj , gl ∈ A,∀mi ,mk ∈ B

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Maximal bicluster of equal values

(A,B) is maximal if either

(A ∪ g,B), g ∈ G\A is not a bicluster of equal values

(A,B ∪m), m ∈ M\B is not a bicluster of equal values
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A natural solution!

w ∈ W Kw Bw Bicluster corresponding to
first concept on left list

1

m
1

m
2

m
3

m
4

m
5

g1 × ×
g2 × ×
g3 ×
g4

({g2, g3}, {m3})
({g2}, {m2,m3})
({g1}, {m1,m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

6

m
1

m
2

m
3

m
4

m
5

g1 ×
g2 ×
g3 ×
g4 ×

({g1, g2, g3}, {m5})
({g4}, {m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

... ... ... ...

Allows to directly find groups of users with same ratings
(1-5 stars data)! Will not work for data with many
attribute values: a notion of similarity is needed.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 85/103



Elements of order
theory

Formal Concept
Analysis

Algorithms

Conceptual
Scaling

Pattern
structures

Triadic Concepts

Biclustering
Motivations

A naive approach

Mining biclusters of
constant values

Mining biclusters of similar
values

Mining n-dimensional
clusters

Conclusion

References

Biclusters of similar values

A similarity relation

w1 'θ w2 ⇐⇒ |w1 − w2| ≤ θ with θ ∈ R,w1,w2 ∈ W

Bicluster of similar values

A bicluster (A,B) is a bicluster of similar values if
mi(gj) 'θ mk (gl),∀gj , gl ∈ A,∀mi ,mk ∈ B

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

θ = 1

and maximal if no object/attribute can be added
J. Besson, C. Robardet, L. De Raedt, J.-F. Boulicaut
Mining Bi-sets in Numerical Data.
In KDID 2006: 11-23.
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Can we use the interval pattern lattice?

Concept example
({g2, g3}, 〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉)

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

θ = 1

3 statements to verify

Some intervals have a “size” larger than θ

Some values in two different columns may not be similar

Rectangle may not be maximal

M. Kaytoue, S. O. Kuznetsov, and A. Napoli
Biclustering Numerical Data in Formal Concept Analysis.
In International Conference on Formal Concept Analysis (ICFCA), 2011.
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First statement

Avoiding intervals with size larger than θ

[a1, b1] u [a2, b2] ={
[min(a1, a2),max(b1, b2)] if|max(b1, b2)−min(a1, a2)| ≤ θ
∗ otherwise

Going back to our example, with θ = 1

({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉)
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7
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Second statement

Values from two columns should be similar

From
({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉)

we group attributes such as their values form a class of
tolerance:

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

({g2, g3}, {m1,m2,m3}) ({g2, g3}, {m5})
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Third statement

Maximal bicluster of similar values

⊥

({g1}, 〈1, 2, 2, 1,6〉) ({g2}, 〈2,1,1, 0,6〉) ({g3}, 〈 2,2,1,7,6〉) ({g4}, 〈8, 9,2,6,7 〉)

({g1, g2},

〈[1,2],[1,2],[1,2], [0, 1],6〉)

({g1, g3},

〈[1,2],2,[1,2], ∗,6〉)

({g2, g3},

〈 2,[1,2],1, ∗,6 〉

({g3, g4},

〈∗, ∗, [1,2], [6, 7], [6, 7]〉)

({g1, g2, g3},

〈[1, 2], [1, 2], [1, 2], ∗,6 〉)

({g1, g2, g3, g4},

〈∗, ∗, [1, 2], ∗, [6, 7]〉)

Constructing maximal biclusters: bottom-up/top-down
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n-clusters in numerical data

What about a bicluster at some period of time? In the
summer? for young people? ...:
Many dimensions can be added

Exercise

How to discovery maximal n-rectangles of constant
values?

What about biclusters of similar values on their columns
with a discretization?

What about biclusters of similar values?
i.e. n-dimensional rectangles of pairwise similar values
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Basic idea

Principle

Start from a numerical dataset (G,M,W , I)

Build a triadic context (G,M,B,Y ) with same objects, same
attributes, and discretized dimension

Extract triadic concepts

Interordinal scaling

B and all its intersections characterize any interval over W

We show interesting links between biclusters of similar
values and triadic concepts

Mehdi Kaytoue, Sergei O. Kuznetsov, Juraj Macko, Amedeo Napoli:
Biclustering meets triadic concept analysis.
Ann. Math. Artif. Intell. 70(1-2): 55-79 (2014)
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Discretization method

Interodinal scaling (existing discretization scale)

Let (G,M,W , I) be a numerical dataset (with W the set of
data-values.

Now consider the set
T = {[min(W ),w ], ∀w ∈ W} ∪ {[w ,max(W )], ∀w ∈ W}.
Known fact: T and all its intersections characterize any
interval of values on W .

Example

With W = {0, 1, 2, 6, 7, 8, 9}, one has

T = {[0, 0], [0, 1], [0, 2], ..., [0, 9], [1, 9], [2, 9], ..., [9, 9]}
and for example [0, 8] ∩ [2, 9] = [2, 8]

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 93/103



Elements of order
theory

Formal Concept
Analysis

Algorithms

Conceptual
Scaling

Pattern
structures

Triadic Concepts

Biclustering
Motivations

A naive approach

Mining biclusters of
constant values

Mining biclusters of similar
values

Mining n-dimensional
clusters

Conclusion

References

Building a triadic context

Transformation procedure

From a numerical dataset (G,M,W , I), build a triadic context
(G,M,T ,Y ) such as (g,m, t) ∈ Y ⇐⇒ m(g) ∈ t
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Theorem

There is a 1-1-correspondence between

(i) Triadic concepts of the resulting triadic context

(ii) Biclusters of similar values maximal for some θ ≥ 0

Interesting facts

Efficient algorithm for concept extraction (Data-Peeler,
handling several constraints)

L. Cerf, J. Besson, C. Robardet, J.-F. Boulicaut
Closed patterns meet n-ary relations.
In TKDD 3(1): (2009).

Top-k biclusters: Concept (A,B,C) with high |A|, |B|, and
|C| corresponds to bicluster (A,B) as a large rectangle of
close values (by properties of interordinal scale)

This formalization allows us to design a new algorithm to
extract maximal biclusters for a given parameter θ
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If we really need to specify θ?

Compute all max. biclusters for a given θ

Use another (but similar) discretization procedure to build
the triadic context based on tolerance blocks

Standard algorithms output biclusters of similar values but
not necessarily maximal

We design a new algorithm TriMax for that task

TriMax is flexible, uses standard FCA algorithms in its
core, seems better than its competitors, can be extended

to n-ary relations and distributed.
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New transformation procedure

Tolerance blocks based scaling

Compute the set C of all blocks of tolerance over W

From the numerical dataset (G,M,W , I), build the triadic
context (G,M,C,Z ) such that
(g,m, c) ∈ Z ⇐⇒ m(g) ∈ c

Actually, we remove “useless information”

θ = 1
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Second contribution

Algorithm TriMax

Any triadic concept corresponds to a bicluster of similar
values, but not necessarily maximal!
It lead us to the algorithm TriMax that:

Process each formal context (one for each block of tolerance)
with any existing FCA algorithm
Any resulting concept is a maximal bicluster candidate and
Each context can be processed separately

TriMax allows a complete, correct and non redundant
extraction of all maximal biclusters of similar values for
a user defined similarity parameter θ
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Formal Concept Analysis

Leveraging the problem of biclustering with FCA

Roots of closed pattern mining

A set of ”tools” and algorithms

Allows a generic and direct way of computing biclusters of
many kinds

Extends to multi-dimensional data

Allows parallel computing

Thanks for your attention.
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Exercise

Biclusters with similar values on columns

Given a numerical dataset (G,M,W , I), a pair (A,B) (where
A ⊆ G,B ⊆ M) is called a bicluster of similar values on
columns when the following statement holds:
∀g, h ∈ A,∀m ∈ B,m(g) 'θ m(h) A bicluster (A,B) is
maximal if @g ∈ G\A such that (A ∪ {g},B) is a bicluster,
and @m ∈ M\B such that (A,B ∪ {m}) is a bicluster.

Can you find all of them in a pattern concept lattice?
First solution: each object is described by a vector of
intervals (easier that what’s been done before)
Second solution: each attribute is described by a partition if
θ = 0, a tolerance otherwise (generalizes partitions)
Third solution: a partition can be described by a formal
context (one for each attribute, thus a triadic context).
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Elements of solution

m1 m2 m3 m4

g1 1 2 2 8
g2 2 1 2 9
g3 2 1 1 2
g4 1 0 7 6
g5 6 6 6 7
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Elements of solution

m1 g1 g2 g3 g4 g5

g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × ×
g5 ×

m2 g1 g2 g3 g4 g5

g1 × × ×
g2 × × × ×
g3 × × × ×
g4 × × ×
g5 ×

m3 g1 g2 g3 g4 g5

g1 × × ×
g2 × × ×
g3 × × ×
g4 × ×
g5 × ×

m4 g1 g2 g3 g4 g5

g1 × × ×
g2 × ×
g3 ×
g4 × ×
g5 × × ×
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