An Introduction to Formal Concept Analysis for Biclustering Applications Mehdi Kaytoue

mehdi.kaytoue@insa-lyon.fr
http://liris.cnrs.fr/mehdi.kaytoue

15 April 2016

The Knowledge Discovery Process

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

Identified domain(s)

Data acquisition (crawling, scraping, interviews)

Rough data

Selection and preparation

Transformation : cleaning and formatting

Prepared data

Data mining (Numerical & symbolic methods)

Extracted units

- Interpretation and evaluation
- Knowledge representation formalism

Knowledge units

Knowledge based systems

An interactive and iterative process guided by an analyst and knowledge of the domain

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 2/103

The Knowledge Discovery Process

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

- Large volumes of data from which useful, significant and reusable units should be extracted
- Involves several tasks of data and knowledge processing
 - Mining: ((closed) frequent ...) pattern mining (itemset, sequences, graphs,...)
 - Modeling: hierarchy of concepts and relations
 - Representing: Concepts and relations as knowledge units
 - Reasoning and solving problems: classification and case based reasonning
- Many domains of applications
 - Scientific data (agronomy, astronomy, chemistry, cooking, medicine)
 - Sensors data ((interactions) traces of human/system behaviors)

A basic example: What can say a binary table?

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Assume a binary table <i>M_{ij}</i>				
obtained by an interview				
A set of clients c _i				
A set of products p _i				
The relation states that				
some clients bought some				
products				
The table may of course be				
" big " (millions of lines,				

thousands of columns)

The table may contain errors

c/p	p1	p2	рЗ	p4	р5
c1	Х				х
c2	х	х	х	х	х
c3	х		х		
c4			х		х
c5		х	х	х	х
c6	х	х	х		х
c7	х		х	х	х
c8	х	х	х		
c9	х			х	
c10		х	х		х

Let's make the table speak!

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

$\{p2, p3, p5\}$ is an itemset of frequency $4/10 = 0.4$. $\{p3, p5\}$ has $6/10 = 0.6$ as	
frequency	
$p3 \land p5 \longrightarrow p2$ is an	
association rule with a	
confidence of $4/6 = 0.66$: if	
confidence of $4/6 = 0.66$: if a client buys <i>p</i> 3 and <i>p</i> 5,	
,	
a client buys p3 and p5,	

c/p	p1	p2	рЗ	p4	р5
c1	Х				Х
c2	Х	х	х	Х	х
c3	х		х		
c4			х		х
c5		Х	Х	Х	Х
c6	Х	Х	Х		Х
c7	Х		Х	Х	Х
c8	х	Х	х		
c9	х			х	
c10		х	Х		Х

$conf(X \rightarrow Y) = sup(X \cup Y)/sup(X)$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 5/103

FCA and the Concept lattice, a synthetic view

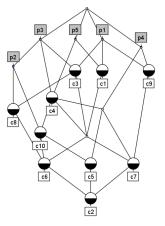
- Elements of order theory
- Formal Concep Analysis
- Algorithms
- Conceptu Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approact
- Mining biclusters c constant values
- Mining biclusters of simila values
- Mining *n*-dimensional clusters

Conclusion

References



- What can we say about {p2}? and {p2, p3}?
- What about $p2 \rightarrow p3?$
- What about $p3 \rightarrow p5?$
- How to classify object described by {p2, p3}?
- What if lines are products and columns their attributes?

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 6/103

FCA and the Concept lattice, a synthetic view

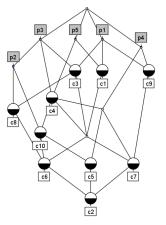
- Elements of order theory
- Formal Concep Analysis
- Algorithms
- Conceptu Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approact
- Mining biclusters c constant values
- Mining biclusters of simila values
- Mining *n*-dimensional clusters

Conclusion

References



- Formal concepts can be represented in a KR formalism (eg., DLs)
- **Concept**₁ $\equiv \exists$ hasAwR.p3
- **Concept**₂ $\equiv \exists$ hasAwR.p2
- Concept₂
 Concept₁

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 7/103

FCA and the Concept lattice, a synthetic view

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References

Useful for many tasks of DM, DB, KR; Gives a formalism

- (frequent (closed)) itemsets
- (partial) implications or association rules
- Possible knowledge units to be reused for problem solving

What happens when

- When there are too much patterns ? Closure, iceberg, stability, ... – See the previous classes!
- When the table is not binary? Scaling, pattern structures
- When the table is *n*-dimensional? Triadic and polyadic concept analysis
- When relations arise between objects themselves? Relational concept analysis

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 8/103

Elements of order theory

- Formal Concept Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References

Objectives of this class

- Basics of formal concept analysis: from a binary table to a concept lattice
- Handling numerical data with scaling and pattern structures
- Handling multi-dimensional data with triadic concepts analysis
- Understanding the problem of biclustering
- Solving some of the biclustering problems with FCA

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 9/103

Outline

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- Conceptu Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of simila values
- Mining *n*-dimensiona clusters

Conclusior

References

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- 4 Conceptual Scaling
- 5 Pattern structures
- 5 Triadic Concepts
- Biclustering
 - Motivations
 - A naive approach
 - Mining biclusters of constant values
 - Mining biclusters of similar values
 - Mining n-dimensional clusters
- B Conclusion
- 9 References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 10/103

Binary relations

Elements of order theory

- Formal Concept Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

- Motivations
- A naive approach
- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensiona clusters

Conclusion

References

Definition (Binary relation)

A binary relation *R* between two arbitrary sets *M* and *N* is defined on the Cartesian product $M \times N$ and consists of pairs (m, n) with $m \in M$ and $n \in N$. When $(m, n) \in R$, we usually write *mRn*.

Definition (Order relation)

A binary relation R on a set M is called an order relation (or shortly order) if it satisfies the following conditions for all elements $x, y, z \in M$:

- (reflexivity) xRx
- 2 (antisymmetry) *xRy* and $x \neq y \Rightarrow$ not *yRx*
- **3** (transitivity) xRy and $yRz \Rightarrow xRz$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 11/103

Total and partial orders

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Definition (Ordered set)

Given an order relation \leq on a set M, an ordered set is a pair (M, \leq) . When \leq is a partial order, (M, \leq) is called partially ordered set, or poset for short.

Example: Given a set
$$E$$
, (2^E , \subseteq)

Definition (Total order)

For any $a, b \in M$, either $a \leq b$ or $b \leq a$.

Example: real numbers

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 12/103

Infimum, Supremum

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Definition (Infimum, supremum)

Let (M, \leq) be an ordered set and A a subset of M. A lower bound of A is an element s of M with $s \leq a$ for all $a \in A$. An upper bound of A is defined dually. If it exists a largest element in the set of all lower bounds of A, it is called the infimum of A and is denoted by "inf A" or $\bigwedge A$; dually, a least upper bound is called supremum and denoted by "sup A" or $\bigvee A$. Infimum and supremum are frequently called respectively meet and join, also denoted respectively by the symbols \sqcap and \sqcup .

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 13/103

Lattice

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Definition (Lattice, complete lattice)

A poset $\mathcal{V} = (V, \leq)$ is a lattice, if for any two elements $x, y \in V$ the supremum $x \lor y$ and the infimum $x \land y$ always exist. \mathcal{V} is called a complete lattice if for any subset $X \subseteq V$, the supremum $\bigvee X$ and the infimum $\bigwedge X$ exist. Every complete lattice \mathcal{V} has a largest element \bigvee called the unit element denoted by 1_V . Dually, the smallest element 0_V is called the zero element. We will rather use the symbol bottom \perp for 0_V and top \top for the unit element in the following.

Remark

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

We can reconstruct the order relation from the lattice operations infimum and supremum by

$$x \leq y \iff x = x \land y \iff x \lor y = y$$

$$\{a\} \le \{a,b\} \iff \{a\} = \{a\} \cap \{a,b\}$$
$$\{a\} \le \{a,b\} \iff \{a\} \cup \{a,b\} = \{a,b\}$$

This remark is important for understanding pattern structures

Hasse diagram of the powerset lattice

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

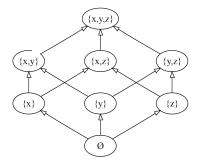
Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References



$$x \le y \iff x = x \land y \iff x \lor y = y$$
$$\{a\} \le \{a, b\} \iff \{a\} = \{a\} \cap \{a, b\}$$
$$\{a\} \le \{a, b\} \iff \{a\} \cup \{a, b\} = \{a, b\}$$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 16/103

Hasse diagram of the partition lattice

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

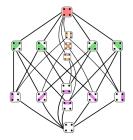
Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References



 $\{\{a,b\},\{c\},\{d\}\} \le \{\{a,b,c\},\{d\}\}$ $\{\{a,b\},\{c\},\{d\}\} \lor \{\{a,c\},\{b\},\{d\}\} = \{\{a,b,c\},\{d\}\}$ $\{\{a,b,c\},\{d\}\} \land \{\{a,b,d\},\{c\}\} = \{\{a,b\},\{c\},\{d\}\}$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 17/103

Semi-lattices

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Definition (Join-semi-lattice and meet-semi-lattice)

A poset $\mathcal{V} = (V, \leq)$ is a join-semi-lattice if for any two elements $x, y \in V$ the supremum $x \lor y$ always exists. Dually, it is a meet-semi-lattice if the infimum $x \land y$ always exists. A lattice is a poset that is both a meet- and join-semi-lattice with respect to the same partial order.

Hasse diagram of a semi-lattice

Elements of order theory

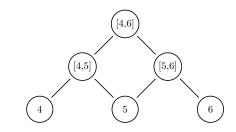
- Formal Concep Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

- Motivations
- A naive approach
- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References



How can we formulate here \leq and \wedge ?

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 19/103

Closure operator

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Let *S* be a set and ψ a mapping from the power set¹ of *S* into the power set of *S*, i.e. $\psi : \mathcal{P}(S) \longrightarrow \mathcal{P}(S)$.

Definition (Closure operator)

 ψ is called a closure operator on *S* if, for any *A*, *B* \subseteq *S*, it is: extensive: *A* $\subseteq \psi$ (*A*),

2 monotone: $A \subseteq B$ implies that $\psi(A) \subseteq \psi(B)$, and 3 idempotent: $\psi(\psi(A)) = \psi(A)$.

A subset $A \subseteq S$ is ψ -closed if $A = \psi(A)$. The set of all ψ -closed $\{A \subseteq S \mid A = \psi(A)\}$ is called a closure system.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 20/103

¹The power set of any set *S*, written $\mathcal{P}(S)$, or 2^S , is the set of all subsets of *S*, including the empty set and *S* itself, hence composed of $2^{|S|}$ elements.

Outline

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

Elements of order theory

- Formal Concept Analysis
- Algorithms
- 4 Conceptual Scaling
- 5 Pattern structures
- Triadic Concepts
- Biclustering
 - Motivations
 - A naive approach
 - Mining biclusters of constant values
 - Mining biclusters of similar values
 - Mining n-dimensional clusters
- B Conclusion
- 9 References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 21/103

Formal Concept Analysis

Elements of order theory

- Formal Concept Analysis
- Algorithms
- Conceptu Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References

- Emerged in the 1980's from attempts to restructure lattice theory in order to promote better communication between lattice theorists and potential users of lattice theory
- A research field leading to a seminal book and FCA dedicated conferences (ICFCA, CLA, ICCS)
 - A simple, powerful and well formalized framework useful for several applications: information and knowledge processing including visualization, data analysis (mining) and knowledge management
- See also http://www.upriss.org.uk/fca/fca.html

B. Ganter and R. Wille Formal Concept Analysis. In Springer, Mathematical foundations., 1999.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 22/103

Formal Context

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of simila values

Mining *n*-dimensional clusters

Conclusion

References

A formal context $\mathbb{K} = (G, M, I)$ consists of two sets *G* and *M* and a binary relation *I* between *G* and *M*. Elements of *G* are called objects while elements of *M* are called attributes of the context. The fact $(g, m) \in I$ is interpreted as "the object *g* has attribute *m*".

	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3	<i>m</i> ₄	<i>m</i> 5	<i>m</i> ₆
<i>g</i> ₁	×	×				×
<i>g</i> ₂	×	×		×		×
g_3	×	×		Х	×	×
g 4 g 5	×		×		×	
<i>g</i> ₅	×				×	
g_6	×				X	×
g 7	×		×		×	×

 $G = \{g_1, \ldots, g_7\}$ "ostrich", "canary", "duck", "shark", "salmon", "frog", and "crocodile"

 $M = \{m_1, \dots, m_6\}$ "borned from an egg", "has feather", "has tooth", "fly", "swim", "lives in air"

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 23/103

Derivation operators

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

For a set of objects $A \subseteq G$ we define the set of attributes that all objects in *A* have in common as follows:

$$\mathsf{A}' = \{ m \in \mathsf{M} \mid g lm \ \forall g \in \mathsf{A} \}$$

Dually, for a set of attributes $B \subseteq M$, we define the set of objects that have all attributes from *B* as follows:

$${f B}'=\{{m g}\in{m G}~|~{m g}{m lm}~orall{m}\in{m B}\}$$

Some derivation on our example

```
We have \{g_1, g_2\}' = \{m_1, m_2, m_6\} and \{m_1, m_2, m_6\}' = \{g_1, g_2, g_3\}
```

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 24/103

Formal Concepts

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

A formal concept of a context (G, M, I) is a pair

(A, B) with $A \subseteq G, B \subseteq M, A' = B$ and B' = A

A is called the extent ; B is called its intent

 $\mathfrak{B}(G, M, I)$ is the poset of all formal concepts

$$(A_1, B_1) \leq (A_2, B_2) \Leftrightarrow A_1 \subseteq A_2 \ (\Leftrightarrow B_2 \subseteq B_1)$$

Concepts in our example

 $(\{g_1, g_2, g_3\}, \{m_1, m_2, m_6\})$ as a maximal rectangle of crosses with possible row and column permutations

$$\{g_1, g_2, g_3\}, \{m_1, m_2, m_6\}) \le (\{g_1, g_2, g_3, g_6, g_7\}, \{m_1, m_6\})$$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 25/103

Galois connection

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

It can be shown that operator (.)'', applied either to a set of objects or a set of attributes, is a closure operator. Hence we have two closure systems on *G* and on *M*. It follows that the pair $\{(.)', (.)'\}$ is a Galois connection between the power set of objects and the power set of attributes.

These mappings put in 1-1-correspondence closed sets of objects and closed sets of attributes, i.e. concept extents and concept intents. In our example, $\{g_1, g_2\}$ is not a closed set of objects, since $\{g_1, g_2\}'' = \{g_1, g_2, g_3\}$. Accordingly, $\{g_1, g_2, g_3\}$ is a closed set of objects hence a concept extent.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 26/103

Galois connection

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Let P and Q be ordered sets. A pair of maps $\phi : P \to Q$ and $\psi : Q \to P$ is called a Galois connection if:

$$p_1 \leq p_2 \Rightarrow \phi(p_1) \geq \phi(p_2)$$

$$q_1 \leq q_2 \Rightarrow \psi(q_1) \geq \psi(q_2)$$

$$lacksymbol{
ho} lacksymbol{
ho} \leq \psi \circ \phi(oldsymbol{
ho})$$
 and $oldsymbol{q} \leq \phi \circ \psi(oldsymbol{q})$

We here have a Galois connection between $(\mathcal{P}(G), \subseteq)$ and $(\mathcal{P}(M), \subseteq)$ with $\leq \equiv \subseteq$.

Galois connection illustration

Formal Concept Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

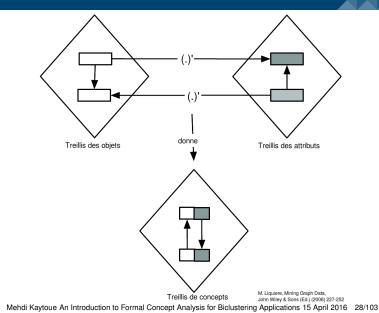
Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References



Elements of order theory

Formal Concept Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Theorem (The Basic Theorem on Concept Lattices)

The concept lattice $\underline{\mathfrak{B}}(G, M, I)$ is a complete lattice in which infimum and supremum are given by:

$$\bigwedge_{t\in T} (A_t, B_t) = \left(\bigcap_{t\in T} A_t, \left(\bigcup_{t\in T} B_t\right)''\right)$$
$$\bigvee_{t\in T} (A_t, B_t) = \left(\left(\bigcup_{t\in T} A_t\right)'', \bigcap_{t\in T} B_t\right)$$

Example of formal context and its concept lattice

Elements of order theory

g₁ g₂ g₃

*g*₄ *g*₅ *g*₆ *g*₇

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approad

Mining biclusters o constant values

Mining biclusters of simila values

Mining *n*-dimensiona clusters

Conclusion

References

-	-				
<i>m</i> ₁	m ₂	m ₃	<i>m</i> ₄	m ₅	m
×	×				×
×	× ×		×		×
×	×		×	×	×
× × × × ×		×		× ×	
×				×	
×				×	×
×		×		×	×
m2 91 m4 g2	m6 -* g3	g6	m5 95 97	m3 g4	

Each node is a concept, each a line an order relation between two concepts.

Reduced labeling: the extent of a concept is composed of all objects lying in the extents of its sub-concepts; the intent of a concept is composed of all attributes in the intents of its super-concepts. The top (resp. bottom) concept is the highest (resp. lowest) w.r.t. <.

Implications

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters c constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

An implication of a formal context (G, M, I) is denoted by

$$X \to Y \quad X, Y \subseteq M$$

All objects from *G* having the attributes in *X* also have also the attributes in *Y*, i.e. $X' \subseteq Y'$. Implications obey the Amstrong rules (reflexivity, augmentation, transitivity). A minimal subset of implications (in sense of its cardinality) from which all implications can be deduced with Amstrong rules is called the Duquenne-Guigues basis.

$$\begin{array}{ccc} Y \subseteq X & X \to Y \\ \hline X \to Y & \overline{X \cup Z \to Y \cup Z} & \overline{X \to Y, Y \to Z} \\ \hline reflexivity & augmentation & transitivity \end{array}$$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 31/103

Outline

- Elements of order theory
- Formal Concept Analysis

Algorithms

- Conceptus Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of simila values
- Mining *n*-dimensiona clusters

Conclusior

References

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- 4 Conceptual Scaling
- 5 Pattern structures
- 5 Triadic Concepts
- Biclustering
 - Motivations
 - A naive approach
 - Mining biclusters of constant values
 - Mining biclusters of similar values
 - Mining n-dimensional clusters
- B Conclusion
- 9 References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 32/103

A basic algorithm for computing formal concepts

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Remember that

Each concept of a formal context (G, M, I) has the form (A'', A') for some subset $A \subseteq G$ and the form (B', B'') for some subset $B \subseteq M$.

One does naively apply the closure operator (.)'' on all possible subsets of *G* (dually all subsets of *M*), and remove all redundant concepts (How to generate these subsets?)

Inefficient

Several algorithms exist. Their performance is usually linked with the density $d = \frac{|I|}{|G| \times |M|}$ of a context (*G*, *M*, *I*). Time complexity is generally O($|G|^2|M||L|$) (*L* being the set of concepts).

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 33/103

Close By One algorithm

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

- Bottom-up concepts generation (from min. to max. extents)
- Considers objects one by one starting from the minimal one w.r.t. a linear order < on G (e.g. lexical)
- Given a concept (A, B), the algorithm adds the next object g w.r.t < in A such as $g \notin A$.
- Then it applies the closure operator (·)["] for generating the next concept (C, D): intent B is intersected with the description of g, i.e. D = B ∩ g', and C = D'.

Induces a tree structure on concepts

To avoid redundancy, it uses a *canonicity test*: Consider a concept (C, D) obtained from a concept (A, B) by adding object g in A and applying closure. C is said to be canonically generated iff $\{h|h \in C \setminus A \text{ and } h < g\} = \emptyset$, i.e. no object before g has been added in A to obtain C. Backtrack can be ensured.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 34/103

Closed By One Algorithm

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

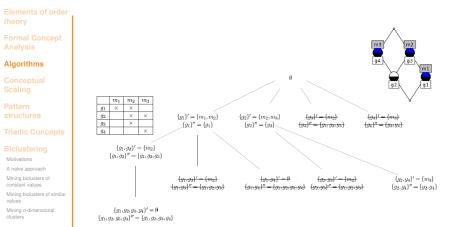
References

Alg. 1 Close By One.	
1: $L = \emptyset$	
2: for each $g \in G$	
3: $\operatorname{process}(\{g\}, g, (g'', g'))$	
 L is the concept set. 	

 $\begin{array}{l} \hline \textbf{Alg. 2 } \operatorname{process}(A,g,(C,D)) \text{ with } C = A'' \text{ and } D = A' \text{ and } < \text{the lexical order on object names.} \\ \hline \textbf{if } \{h|h \in C \setminus A \text{ and } h < g\} = \emptyset \text{ then} \\ 2: \quad L = L \cup \{(C,D)\} \\ \quad \textbf{for each } f \in \{h|h \in G \setminus C \text{ and } g < h\} \\ 4: \quad Z = C \cup \{f\} \\ \quad Y = D \cap \{f'\} \\ 6: \quad X = Y' \\ \quad \text{process}(Z,f,(X,Y)) \\ 8: \text{ end if} \end{array}$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 35/103

Example



Conclusion

References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 36/103

Outline

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- Conceptual Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of simila values
- Mining *n*-dimensiona clusters

Conclusior

References

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- 4 Conceptual Scaling
- 5 Pattern structures
- Triadic Concepts
- Biclustering
 - Motivations
 - A naive approach
 - Mining biclusters of constant values
 - Mining biclusters of similar values
 - Mining n-dimensional clusters
- B Conclusion
- 9 References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 37/103

Many valued contexts

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptual Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Definition (Many-valued context)

A many-valued context (G, M, W, I) consists of sets G, Mand W and a ternary relation I between those three sets, i.e. $I \subseteq G \times M \times W$, for which it holds that

 $(g, m, w) \in I$ and $(g, m, v) \in I$ always imply w = v

The fact $(g, m, w) \in I$ means "the attribute *m* takes value *w* for object *g*", simply written as m(g) = w.

	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3
<i>g</i> ₁	5	7	6
91 92 93 94 95	6	8	4
g_3	4	8	5
g_4	4	9	8
g 5	5	8	5

Conceptual scale

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptual Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Definition

A (conceptual) scale for the attribute *m* of a many-valued context is a (one-valued) context $S_m = (G_m, M_m, I_m)$ with $m(G) = \{m(g), \forall g \in G\} \subseteq G_m$. The objects of a scale are called scale values, the attributes are called scale attributes.

Basic scales

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptual Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

- A naive approach
- Mining biclusters of constant values
- Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Nominal scale is defined by the context ($W_m, W_m, =$). We obtain the following scales, respectively for attribute m_1, m_2 and m_3 :

=	4	5	6
4	×		
5		×	
6			×

=	7	8	9
7	×		
8		×	
9			×

=	4	5	6	8
4	×			
5		×		
6			×	
8				×

 $W_m \subseteq W, \forall m \in M$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 40/103

Resulting context

Π

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptual Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

	4	12	9	= 7	8	6	4	= 2	9	8
	<u>n</u>	ā,	ā,	m_2	m_2	m_2	т3	m ₃	m ₃	m ₃
g_1		×		×					×	
g 2			×		\times		×			
<i>g</i> ₃	×				\times			\times		
g_4	×					×				×
g_5		×			\times			\times		

Π

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 41/103

Basic scales

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptual Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Ordinal scale is given by the context (W_m, W_m, \leq) where \leq denotes classical real number order. We obtain for each attribute the following scales:

\leq	4	5	6
4	×	×	×
5		×	×
6			×

\leq	7	8	9
7	×	×	×
8		×	×
9			Х

\leq	4	5	6	8
4	×	×	×	×
5		×	×	×
6			Х	×
8				×

Basic scales

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptual Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Interordinal scale is given by $(W_m, W_m \le) | (W_m, W_m \ge)$ where | denotes the apposition of two contexts². We obtain for attribute m_1 the following scale³:

	≤ 4	≤ 5	\leq 6	≥ 4	≥ 5	\geq 6
4	×	×	×	×		
5		×	×	×	×	
6			×	×	×	×

²The apposition of two contexts with identical sets of objects, denoted by |, returns the context with the same set of objects and the set of attributes being the disjoint union of attribute sets of the original contexts.

³The double-line column separator intuitively corresponds to context apposition.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 43/103

Is scaling a valid way to consider non binary data?

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptual Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

- Consider interordinal scaling.
- What is the concept lattice of its context?
- What does it represent?
- What are the problem?
- Can we do better?

Pattern structures formalize a nice alternative.

Concept lattice with interordinal scaling

g1 g2 g3 g4 g5

> g1 g2 g3 g4 g5

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptual Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

<i>s</i> ₁ ≤ 4	s 1	≤5	$s_1 \leq 6$	<i>s</i> ₁ ≥ 4	$s_1 \ge 5$	<i>s</i> ₁ ≥ 6
	×		×	×	×	
			×	×	×	×
×	×		×	×		
×	×		×	×		
	×		×	×	×	
6 8 4 8 4 9	<i>s</i> ₂ 7 8 8 9 8	\$3 6 4 5 8 5 5 \$2>=			3 - 4 2 - 7 1 - 4 1 - 6 1 - 6	

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 45/103

Outline

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- Conceptu Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of simila values
- Mining *n*-dimensiona clusters

Conclusior

References

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- 4 Conceptual Scaling
- 5 Pattern structures
- Triadic Concepts
- Biclustering
 - Motivations
 - A naive approach
 - Mining biclusters of constant values
 - Mining biclusters of similar values
 - Mining n-dimensional clusters
- B Conclusion
- 9 References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 46/103

How to handle non binary descriptions

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

An intersection as a similarity operator

■ ∩ behaves as *similarity operator*

$$\{m_1, m_2\} \cap \{m_1, m_3\} = \{m_1\}$$

 $\begin{array}{l} \cap \text{ induces an ordering relation } \subseteq \\ N \cap O = N \iff N \subseteq O \\ \{m_1\} \cap \{m_1, m_2\} = \{m_1\} \iff \{m_1\} \subseteq \{m_1, m_2\} \end{array}$

□ ∩ has the properties of a meet □ in a semi lattice, a commutative, associative and idempotent operation

A. Tversky $C \sqcap d = c \iff c \sqsubseteq d$ Features of similarity. In Psychological Review, 84 (4), 1977.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 47/103

Going a little bit back

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

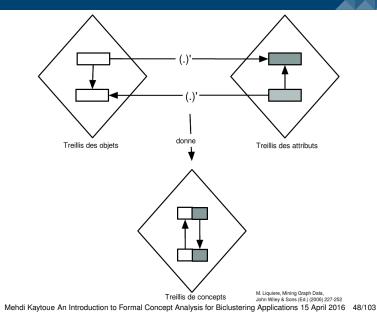
Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References



Going a little bit back

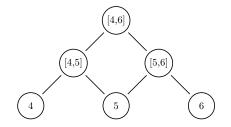
- Elements of order theory
- Formal Concep Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References



We can reconstruct the order relation from the lattice operations infimum and supremum by

$$x \leq y \iff x = x \land y \iff x \lor y = y$$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 49/103

Pattern structure

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

Given by $(G, (D, \Box), \delta)$

G a set of objects

 (D, \Box) a semi-lattice of descriptions or *patterns*

 δ a mapping such as $\delta(g)\in {\mathcal D}$ describes object g

A Galois connection

B. Ganter and S. O. Kuznetsov

Pattern Structures and their Projections. In International Conference on Conceptual Structures, 2001.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 50/103

Ordering descriptions in numerical data

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approx

Vining biclusters c constant values

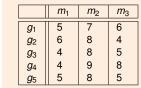
Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

(D, \Box) as a meet-semi-lattice with \Box as a "convexification"





$$\begin{array}{rcl} [a_1,b_1] \sqcap [a_2,b_2] &=& [\textit{min}(a_1,a_2),\textit{max}(b_1,b_2)] \\ [4,4] \sqcap [5,5] &=& [4,5] \end{array}$$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 51/103

Numerical data are pattern structures

Interval pattern structures

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3
g_1	5	7	6
<i>g</i> ₂	6	8	4
g_3	4	8	5
g4 g5	4	9	8
g_5	5	8	5

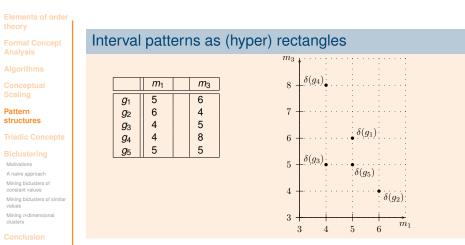
$$\{g_1, g_2\}^{\Box} = \prod_{g \in \{g_1, g_2\}} \delta(g)$$

= $\langle 5, 7, 6 \rangle \sqcap \langle 6, 8, 4 \rangle$
= $\langle [5, 6], [7, 8], [4, 6]$

$$egin{array}{rll} \langle [5,6], [7,8], [4,6]
angle^{\Box} &= \{g \in G | \langle [5,6], [7,8], [4,6]
angle \sqsubseteq \delta(g) \} \ &= \{g_1, g_2, g_5 \} \end{array}$$

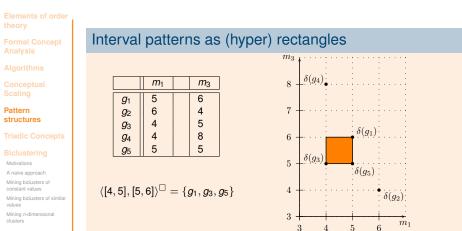
 $(\{g_1, g_2, g_5\}, \langle [5, 6], [7, 8], [4, 6] \rangle)$ is a (pattern) concept

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 52/103



References

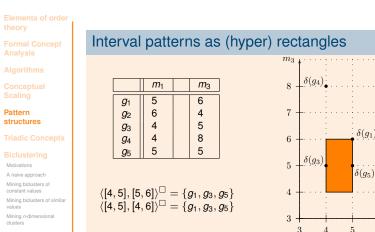
Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 53/103



Conclusion

References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 53/103

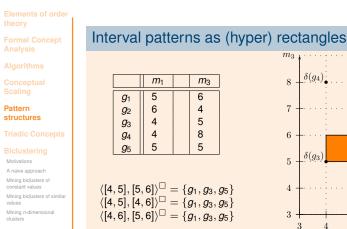


Mehdi Kavtoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 53/103

3 4 $\delta(g_2)$:

6

 m_1



Conclusion

References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 53/103

 $\delta(q_1)$

 $\delta(q_5)$

5 6

 $\delta(g_2)$

 m_1

Interval patterns

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Counting all possible interval patterns

$$\langle [a_{m_1}, b_{m_1}], [a_{m_2}, b_{m_2}], ...
angle \$$
where $a_{m_i}, b_{m_i} \in W_{m_i}$

	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3
<i>g</i> ₁	5	7	6
g_2	6	8	4
g_2 g_3	4	8	5
<i>g</i> 4	4 5	9	8
g4 g5	5	8	5

$$\prod_{i \in \{1,...,|M|\}} \frac{|W_{m_i}| \times (|W_{m_i}| + 1)}{2}$$

360 possible interval patterns in our small example

M. Kaytoue, S. O. Kuznetsov, and A. Napoli

Revisiting Numerical Pattern Mining with Formal Concept Analysis.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 54/103

Interval pattern concept lattice

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

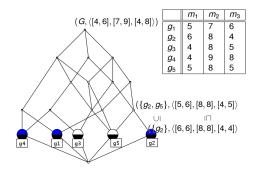
Mining biclusters of constant values

Mining biclusters of simila values

Mining *n*-dimensiona clusters

Conclusion

References



- Existing algorithms
 - Lowest concepts: few objects, small intervals
- Highest concepts: many objects, large intervals

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 55/103

Links with conceptual scaling

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

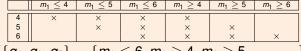
Mining *n*-dimensional clusters

Conclusion

References

Interordinal scaling [Ganter & Wille]

A scale to encode intervals of attribute values, gives rise to equivalent concept lattice



 $\begin{array}{ll} (\{g_1,g_2,g_5\}, & \{m_1 \leq 6, m_1 \geq 4, m_1 \geq 5, \ \dots, \ \dots \}) \\ (\{g_1,g_2,g_5\}, & \langle [5,6] \ , \ \dots, \ \dots \rangle) \end{array}$

Why pattern structures as we have scaling? Processing a pattern structure is more efficient

M. Kaytoue, S. O. Kuznetsov, A. Napoli and S. Duplessis

Mining Gene Expression Data with Pattern Structures in Formal Concept Analysis. In Information Sciences. Spec. Iss.: Lattices (Elsevier), 181(10): 1989-2001 (2011).

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 56/103

A condensed representation

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining n-dimensiona clusters

Conclusion

References

Equivalence classes of interval patterns

Two interval patterns with same image are said to be equivalent

$$c\cong d\iff c^{\square}=d^{\square}$$

Equivalence class of a pattern d

$$[d] = \{c | c \cong d\}$$

with a unique closed pattern: the smallest rectangle and one or several generators: the largest rectangles Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent patterns with counting inference. SIGKDD Excl., 2(2):66–75, 2000.

In our example: 360 patterns ; 18 closed ; 44 generators

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 57/103

A condensed representation

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

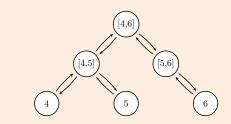
Mining biclusters of similar values

Mining n-dimensiona clusters

Conclusion

References

Remarks



Compression rate varies between 10⁷ and 10⁹

Interordinal scaling: encodes \simeq 30.000 binary patterns

not efficient even with best algorithms (e.g. LCMv2)

 redundancy problem discarding its use for generator extraction

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 58/103

Outline

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- Conceptu Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of simila values
- Mining *n*-dimensiona clusters

Conclusior

References

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- 4 Conceptual Scaling
- 5 Pattern structures
- Triadic Concepts
- Biclustering
 - Motivations
 - A naive approach
 - Mining biclusters of constant values
 - Mining biclusters of similar values
 - Mining n-dimensional clusters
- B Conclusion
- 9 References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 59/103

Triadic Concept Analysis

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

- A naive approach
- Mining biclusters o constant values
- Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusio

References

"Extension" of FCA to ternary relation

An object has an attribute for a given condition

*g*₁ *g*₂ *g*₃ *g*₄

 g_5

- Triadic context (G, M, B, Y)
- Several derivation operators allowing to characterize "triadic concepts" as maximal cubes of ×

υI				
	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> ₃	
<i>g</i> ₁			×	
g1 g2 g3 g4 g5	×	×		
g_3		×	×	
g_4		×	×	
g_5		×	×	

D ₂		
<i>m</i> ₁	<i>m</i> ₂	<i>m</i> ₃
×	×	×
×	×	
×	×	×
	×	×
	×	X

b_3			
	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> ₃
1	×		×
2	×		
3	×	×	×
4		×	×
5	×	×	×

g

 $(\{g_3, g_4, g_5\}, \{m_2, m_3\}, \{b_1, b_2, b_3\})$ is a triadic concept

F. Lehmann and R. Wille

A Triadic Approach to Formal Concept Analysis.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 60/103

Derivation operators

ements of order

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Tria and a set for wasing a long system

Triconcept forming operators - outer closure

$$egin{aligned} \mathcal{D} &: \mathcal{X} o \mathcal{X}^{(i)} : \{(a_j, a_k) \in \mathcal{K}_j imes \mathcal{K}_k \mid (a_i, a_j, a_k) \in \mathcal{Y} ext{ for all } a_i \in \mathcal{X} \} \ \mathcal{D}' &: \mathcal{Z} o \mathcal{Z}^{(i)} : \{a_i \in \mathcal{K}_i \mid (a_i, a_j, a_k) \in \mathcal{Y} ext{ for all } (a_j, a_k) \in \mathcal{Z} \} \end{aligned}$$

Definition

Definition

đ

Triconcept forming operators - inner (dyadic) closure

$$egin{aligned} \Psi: X_i &
ightarrow X_i^{(i,j,A_k)}: \{a_j \in \mathcal{K}_j \mid (a_i,a_j,a_k) \in Y ext{ for all } (a_i,a_k) \in X_i imes A_k \} \ \Psi': X_j &
ightarrow X_j^{(i,j,A_k)}: \{a_i \in \mathcal{K}_i \mid (a_i,a_j,a_k) \in Y ext{ for all } (a_j,a_k) \in X_j imes A_k \} \end{aligned}$$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 61/103

Without going into details...

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of similar values
- Mining n-dimensional clusters

Conclusion

References

A Naive approach

- Start with a set of conditions and a context (G, M, J) which involves all these conditions
- Compute all dyadic concepts (inner closure)
- For any dyadic concept, compute the set of conditions that contains it (outer closure).
- Do it for any subset of conditions
- Remove redundant tri-concepts.

What happens if we have *n* dimensions? *Data-peeler*: An algorithm based on a binary tree enumeration: For each node, choose a dimension and an element, generates two *n*-sets one with the element, the other without. Constraints are used to prune the search space and detect maximal *n*-sets.

See also Trias algorithm

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 62/103

Outline

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- Conceptu Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters o constant values
- Mining biclusters of simila values
- Mining *n*-dimensiona clusters

Conclusior

References

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- 4 Conceptual Scaling
- 5 Pattern structures
- Triadic Concepts
- Biclustering
 - Motivations
 - A naive approach
 - Mining biclusters of constant values
 - Mining biclusters of similar values
 - Mining n-dimensional clusters
- B Conclusion
- 9 References

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 63/103

Motivation

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

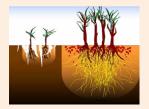
Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Somewhere... in a temperate forest...



Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 64/103

A biological problem

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

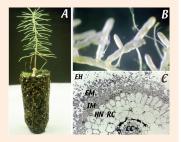
Mining *n*-dimensional clusters

Conclusion

References

INA: How does symbiosis work at the cellular level?

- Analyse biological processes
- Find genes involved in symbiosis
 - Choose a model for understanding symbiosis: *Laccaria bicolor*



Analysing Gene Expression Data (GED)

F. Martin et al.

The Genome of Laccaria Bicolor Provides Insights into Mycorrhizal Symbiosis. In *Nature.*, 2008.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 65/103

Microarray Data

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

Gene Expression Matrix (GEM): $E = (e_{ij})_{1 \le i \le n, 1 \le j \le m}$ Gene Expression Profile (GEP): e_i with $1 \le i \le n$ A Gene Expression Value: e_{ij}

Gene \setminus Situation	а	b	С
<i>g</i> 1	11050	11950	1503
g 2	13025	14100	1708
g 3	6257	5057	6500
g 4	5392	6020	7300
g 5	13070	12021	15548

Integer values in [0, 65535] (NimbleGen Systems Oligonucleotide Arrays Technology)

(Lee et al, 2002): genes having a similar expression profile
interact together within the same biological process,
or have a similar biological function.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 66/103

Numerical Clustering Methods

Many clustering methods

- K-means (Gasch et al, 1999)
- Self Organizing Maps (Tamayo et al, 1999)
- Hierarchical clustering (Eisen et al, 1998)

Gene \setminus Situation	а	b	С
g_1	11050	11950	1503
g_2	13025	14100	1708
g_3	6257	5057	6500
g_4	5392	6020	7300
g_5	13070	12021	15548

A cluster is a set of similar gene expression profiles (GEP)

See (Jiang et al., 2004) for a survey

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 67/103

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

An example of result

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

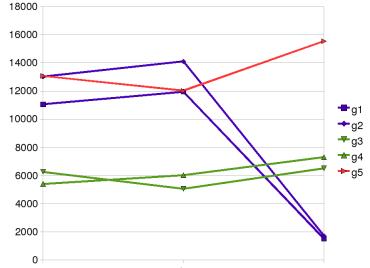
Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Same example where each line is a GEP representation



Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 ApriC2016 68/103

First problem

Formal Concep Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

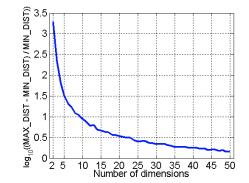
Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References



With 500 random points

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 69/103

Advanced Biological Background

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Vining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Clustering methods have to respect the following biological properties

- A gene can participate in several processes
- A situation can describe several processes
- A process involves a small subset of genes
- A process is active in none, some or all situations
- High variations of expression values are not frequent between two situations

In Clustering Words ...

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of simila values

Mining *n*-dimensional clusters

Conclusion

References

A gene may belong to many clusters (overlapping)

- A situation may belong to many clusters (overlapping)
- Control gene dimension size of clusters
- Control situation dimension size of clusters
- Groups of genes are interesting if showing high similar changes of expression

Gene \setminus Situation	а	b	С
g_1	11050	11950	1503
g_2	13025	14100	1708
g_3	6257	5057	6500
g_4	5392	6020	7300
g 5	13070	12021	15548

A bi-cluster is a set of similar GEP in some situations

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 71/103

Mining local pattern in numerical data

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Vining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Extracting (maximal) rectangles in numerical data

A set of genes co-expressed in some biological situations

- Local patterns: biological processes may be activated in some situations only
- **Overlapping patterns**: a gene may be involved in several biological process

	<i>m</i> ₁	m_2	<i>m</i> 3	m_4	m_5
g_1	1	2	2	1	6
<i>g</i> ₂	2	1	1	0	6
g_3	2	2	1	7	6
g_4	8	9	2	6	7

Biclustering numerical data

Elements of order

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

- a local phenomena in the data: "rectangles of values"
- connectedness of values: e.g. similar values
- overlapping: objects/attributes may belong to several patterns
- a partial order, e.g. for algorithmic issues
- maximality of rectangles

Bicluster should reflect

Several types of biclusters

1.0	1.0	1.0	1.0		1.0	1.0	1.0	0.0	1.0	2.0	3.0	4.0	1.0	2.0	5.0	0.0	1.0	2.0	0.5	1.5
1.0	1.0	1.0	1.0		2.0	2.0	2.0	2.0	1.0	2.0	3.0	4.0	2.0	3.0	6.0	1.0	2.0	4.0	1.0	3.0
1.0					3.0	3.0	3.0	3.0	1.0	2.0	3.0	4.0	4.0	5.0	8.0	3.0	4.0	8.0	2.0	6.0
1.0	1.0	1.0	1.0	1	4.0	4.0	40	40	1.0	2.0	3.0	4.0	5.0	6.0	9.0	4.0	3.0	6.0	1.5	4.5

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 73/103

Biclustering numerical data

- Elements of order theory
- Formal Concep Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

Motivations

- A naive approach
- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References

Several applications...

- Collaborative filtering and recommender systems
- Finding web communities
- Gene expression analysis, …

Several algorithms

- Iterative Row and Column Clustering Combination
- Divide and Conquer / Distribution Parameter Identification
- Greedy Iterative Search / Exhaustive Bicluster Enumeration

A difficult problem generally relying on heuristics

S. C. Madeira and A. L. Oliveira

Biclustering Algorithms for Biological Data Analysis: a survey. In IEEE/ACM Transactions on Computational Biology and Bioinformatics, 200

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 74/103

Different Stages

In terms of data analysis:

- Elements of order theory
- Formal Concep Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

Motivations

A naive approach

- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References

In terms of formal concept analysis (FCA):

In the following: a concept (A, B) represents a set of genes A having similar expression values in situations of B. The notion of similarity will be given by an interval of values apriori computed.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 75/103

Stage 1: a GEM as a numerical data table

Elements of order theory

- Formal Concept Analysis
- Algorithms
- Conceptu Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

Motivations

A naive approach

- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining n-dimensional clusters

Conclusion

References

A GEM is represented by a many valued context (G, S, W, l_1)

Example

- $G = \{Gene 1, \dots, Gene 5\}$, a set of objects.
- $S = \{a, b, c\}$, a set of attributes.
- $W = \{11050, 11950, ...\}, a \text{ set of unique values.}$
- I *I*₁ is illustrated, for example, by *Gene* 1(a) = 11050.

<i>I</i> ₁	а	b	С
Gene 1	11050	11950	1503
Gene 2	13025	14100	1708
Gene 3	6257	5057	6500
Gene 4	5392	6020	7300
Gene 5	13070	12021	15548

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 76/103

Stage 2: Interval Scaling

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

We need a **formal context** (binary) which is a triple (G, S_T, I_2) : I_2 says an object $g \in G$ possesses an attribute $s \in S_T$ or not.

Interval scaling (discretization):

Each attribute is cut into *p* attributes considering *p* disjoint ordered intervals of the set $\{[0, u_1],]u_1, u_2], \ldots,]u_{p-1}, u_p]\}$.

Given an index set T on the set of intervals, $t \in T$,

g(s) = x becomes (g, (s, t)) if $x \in [u_{t-1}, u_t]$

 $(g,(s,t))\in I_2$

means

g has an expression value in the t^{th} interval for situation s

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 77/103

Stage 2: Interval Scaling

Example

0

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

T is an index set on {[0, 5000],]5000, 10000],]10000, 65535]} $g_3(a) = 6257$ becomes $(g_3, (a, 2))$ \downarrow $u_1 = 5000$ $u_2 = 10000$ $u_p = 6553$

The interval borders are choosen by the biologists and directly influence the number of concepts.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 78/103

Stage 3: Concept Lattice Construction

- Elements of order theory
- Formal Concep Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Vining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

l ₂	(a, 1)	(a, 2)	(a, 3)	(b, 1)	(b, 2)	(b, 3)	(c, 1)	(c, 2)	(c, 3)
g_1			×			×	×		
g_2			×			×	×		
g_3		×			×			×	
g_4		×	l		Х			×	
g_5			×			×			Х

Definition

A formal concept is a pair (A, B) where $A \subseteq G$, $B \subseteq S_T$ such as A' = B and B' = A given the following derivation operators:

$$\begin{array}{l} ': 2^G \rightarrow 2^S_T; A' = \{s \in S_T; \forall g \in A : (g, s) \in I_2\} \\ :: 2^S_T \rightarrow 2^G; B' = \{g \in G; \forall s \in B : (g, s) \in I_2\} \end{array}$$

A is extent of the concept and B the intent.

For a given concept, the genes of the extent A are Mehdi Kaytoue An Introduction to Formal Concept Analysis for Bickustering Application 5 April 2016 79/103

Stage 3: Concept Lattice Construction

Definition

- Elements of order theory
- Formal Concep Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

Motivations

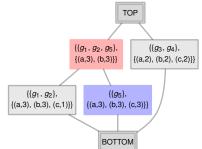
A naive approach

- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References

The **concept lattice** of the context (G, S, I_2) is the hierarchy of the whole set of concepts partially ordered by : $(A_1, B_1) \sqsubseteq (A_2, B_2) \Leftrightarrow A_1 \subseteq A_2 \text{ (or } B_2 \subseteq B_1)$



Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 80/103

Stage 4: Concept Filtering

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Too many patterns?

- A concept is a relevant bi-cluster if the extent is not composed of "too many" genes, and if the intent contains a least "a few" situations.
- A first filtering step keeps only concepts (A, B), where $|A| \le x$ and $|B| \ge y$.

x and y are chosen by the biologist

 Many concepts describe groups of co-expressed genes having a similar expression with no radical change of expression.

Example

 $(\{g_3, g_4\}, \{(a, 2), (b, 2), (c, 2)\})$ presents no change. Keep those with the maximal and strongest changes! Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 81/103

Experiments

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Vining biclusters o constant values

Mining biclusters of simila values

Mining n-dimensiona clusters

Conclusion

References

Starting from

• $\mathbb{K}_1 = (G, S, W, I)$ with |G| = 22,294 and |S| = 7 biological situations like roots, fruit and in symbiosis root cells,

an index set *T* on the set of disjoint intervals whose borders are: 0, 100, 250, 500, 1000, 2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 30000, 40000, 65535,

$$\mathbb{K}_2 = (G, S \times T, I)$$
 where $|S \times T| = 98$,

we obtain 146, 504 formal concepts. We filter out concepts (A, B) such as

■ |*A*| ≤ 50,

- $|B| \ge 4$ and
- **B** is a (4, 4) variant intent.

We finally obtain 156 concepts.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 82/103

Some results

Some genes involved in fructification ?

- Elements of order theory
- Formal Concep Analysis
- Algorithms
- Conceptu: Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

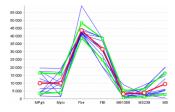
Mining biclusters of simila values

Mining n-dimensiona clusters

Conclusion

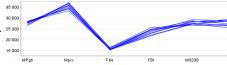
References

|A| = 9 and |B| = 7(A, B) represents a cluster (|B| is maximal)



Some genes sharing a similar function ?

|A| = 9 and |B| = 6(*A*, *B*) represents a bicluster (|B| is not maximal)



Experimental validation required

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 83/103

A first type of biclusters

Bicluster of equal values

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensiona clusters

Conclusion

References

A bicluster (A, B) is a bicluster of similar values if

 $m_i(g_j)=m_k(g_l), orall g_j, g_l\in A, orall m_i, m_k\in B$

	m ₁	<i>m</i> ₂	<i>m</i> 3	<i>m</i> 4	m_5
g_1	1	2	2	1	6
g_2	2	1	1	0	6
<i>g</i> ₃	2	2	1	7	6
g_4	8	9	2	6	7

Maximal bicluster of equal values

(A, B) is maximal if either

($A \cup g, B$), $g \in G \setminus A$ is not a bicluster of equal values ($A, B \cup m$), $m \in M \setminus B$ is not a bicluster of equal values

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 84/103

A natural solution!

Elements of order	$w \in W$			K	w			\mathfrak{B}_{w}					nding eft list	
theory Formal Concept Analysis			a1 ×	m_2	т3	× m₄	m5	$(\{g_2, g_3\}, \{m_3\})$		<u>m</u> 1	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> 4	<i>m</i> 5
Algorithms Conceptual Scaling	1	g ₂ g ₃ g ₄		×	× ×			$(\{g_2\}, \{m_2, m_3\})$ $(\{g_1\}, \{m_1, m_4\})$	g ₂ g ₃ g ₄	2 2 8	1 2 9	1 1 2	0 7 6	6 6 7
Pattern structures Triadic Concepts Biclustering Motivations A naive approach Mining biclusters of	6	g1 g2 g3 g4	<i>m</i> ¹	m2	m ₃	× m4	$\times \times \times m_5 $	$(\{g_1,g_2,g_3\},\{m_5\})\ (\{g_4\},\{m_4\})$	91 92 93 94	<i>m</i> ₁ 1 2 2 8	<i>m</i> ₂ 2 1 2 9	<i>m</i> ₃ 2 1 1 2	<i>m</i> ₄ 1 0 7 6	<i>m</i> ₅ 6 6 6 7
constant values Mining biclusters of similar values Mining <i>n</i> -dimensional clusters														

Conclusion

References

Allows to directly find groups of users with same ratings (1-5 stars data)! Will not work for data with many attribute values: a notion of similarity is needed.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 85/103

Biclusters of similar values

A similarity relation

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

$$w_1 \simeq_{\theta} w_2 \iff |w_1 - w_2| \le \theta \text{ with } \theta \in \mathbb{R}, w_1, w_2 \in W$$

Bicluster of similar values

A bicluster (A, B) is a bicluster of similar values if $m_i(g_j) \simeq_{\theta} m_k(g_l), \forall g_j, g_l \in A, \forall m_i, m_k \in B$

	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3	<i>m</i> ₄	m_5	
g_1	1	2	2	1	6	
g_2	2	1	1	0	6	$\theta = 1$
91 92 93 94	2	2	1	7	6	
g_4	8	9	2	6	7	

and maximal if no object/attribute can be added

J. Besson, C. Robardet, L. De Raedt, J.-F. Boulicaut

Mehdi Kiping Basets in Autori 64 Formal Concept Analysis for Biclustering Applications 15 April 2016 86/103

Can we use the interval pattern lattice?

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining n-dimensiona clusters

Conclusion

References

Concept example $(\{g_2, g_3\}, \langle [2, 2], [1, 2], [1, 1], [0, 7], [6, 6] \rangle)$

_		<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3	<i>m</i> ₄	m_5	
	g_1	1	2	2	1	6	
	g_2	2	1	1	0	6	$\theta = 1$
	91 92 93 94	2	2	1	7	6	
	g_4	8	9	2	6	7	

3 statements to verify

- Some intervals have a "size" larger than θ
- Some values in two different columns may not be similar
- Rectangle may not be maximal

M. Kaytoue, S. O. Kuznetsov, and A. Napoli

Mehdi Raytustering Applications 15 April 2016 87/103

First statement

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Avoiding intervals with size larger than $\boldsymbol{\theta}$

Going back to our example, with $\theta = 1$

({ g ₂ ;	, g _3}	, ([2 , 2	2],[1	, 2] , [1 , 1],	*,[6,	, 6]))
		<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3	m_4	m_5	
	g_1	1	2	2	1	6	
	g1 g2 g3	2	1	1	0	6	
	g_3	2	2	1	7	6	
	g_4	8	9	2	6	7	

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 88/103

Second statement

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approact

Mining biclusters c constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Values from two columns should be similar

From

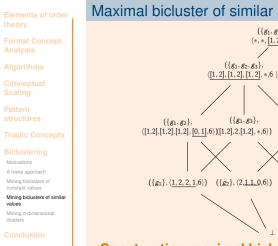
$$(\{g_2,g_3\}, \langle [2,2], [1,2], [1,1], *, [6,6]\rangle)$$

we group attributes such as their values form a class of tolerance:

	<i>m</i> 1	<i>m</i> ₂	<i>m</i> 3	m_4	m_5		<i>m</i> 1	m_2	<i>m</i> 3	m_4	<i>m</i> 5
g_1	1	2	2	1	6	<i>g</i> ₁	1	2	2	1	6
g 1 g 2	2	1	1	0	6	g_2	2	1	1	0	6
g_3	2	2	1	7	6	<i>g</i> ₃	2	2	1	7	6
g3 g4	8	9	2	6	7	g_4	8	9	1 2	6	7
({	g 2, g 3	₃ }, { <i>r</i>	m ₁ , m	n ₂ , m	3})		({g	2, g 3]	},{ <i>m</i>	5})	

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 89/103

Third statement



Maximal bicluster of similar values

Constructing maximal biclusters: bottom-up/top-down

 $(\{g_1, g_2, g_3, g_4\},$ (*, *, [1, 2], *, [6, 7])

 $(\{g_2, g_3\},$

⟨ 2,[1,2],1,*,6 ⟩

 $(\{g_3, g_4\},$

 $(\{g_3\}, \langle 2, 2, 1, 7, 6\rangle) \quad (\{g_4\}, \langle \mathbf{8}, 9, 2, 6, \mathbf{7}\rangle)$

(*,*, [1,2], [6,7], [6,7])

 $(\{g_1, g_2, g_3\},$ $\langle [1,2], [1,2], [1,2], *,6 \rangle \rangle$

 $(\{g_1, g_3\},$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 90/103

n-clusters in numerical data

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

What about a bicluster at some period of time? In the summer? for young people? ...: Many dimensions can be added

Exercise

How to discovery maximal *n*-rectangles of constant values?

What about biclusters of similar values on their columns with a discretization?

What about biclusters of similar values? i.e. *n*-dimensional rectangles of pairwise similar values

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 91/103

Basic idea

Principle

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Start from a numerical dataset (G, M, W, I)

Build a triadic context (G, M, B, Y) with same objects, same attributes, and discretized dimension

Extract triadic concepts

Interordinal scaling

B and all its intersections characterize any interval over W

We show interesting links between biclusters of similar values and triadic concepts

Mehdi Kaytoue, Sergei O. Kuznetsov, Juraj Macko, Amedeo Napoli: Biclustering meets triadic concept analysis. Ann. Math. Artif. Intell. 70(1-2): 55-79 (2014)

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 92/103

Discretization method

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Interodinal scaling (existing discretization scale)

- Let (*G*, *M*, *W*, *I*) be a numerical dataset (with *W* the set of data-values.
- Now consider the set
 - $T = \{[\min(W), w], \forall w \in W\} \cup \{[w, \max(W)], \forall w \in W\}.$
- Known fact: *T* and all its intersections characterize any interval of values on *W*.

Example

With $W = \{0, 1, 2, 6, 7, 8, 9\}$, one has

■ $T = \{[0,0], [0,1], [0,2], ..., [0,9], [1,9], [2,9], ..., [9,9]\}$ ■ and for example $[0,8] \cap [2,9] = [2,8]$

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 93/103

Building a triadic context

Transformation procedure

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptu Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approact

Mining biclusters c constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

From a numerical dataset (G, M, W, I), build a triadic context (G, M, T, Y) such as $(g, m, t) \in Y \iff m(g) \in t$

		t_1 :	= [0	, 0]			t_2	= [0	, 1]			t_3	= [0	, 2]			t_4	= [0	, 6]			t_5	= [0	,7]	
	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5
g_1						×			×		×	×	×	×		×	×	×	×	×	×	×	×	×	×
g_2				×			×	×	×		×	×	×	×		×	×	×	×	×	×	×	×	×	×
g_3								×			×	×	×			×	×	×		×	×	×	×	×	×
g_4													×					×	×				×	×	×

	$t_6 = [0, 8]$					$t_7 = [0, 9]$					$t_8 = [1, 9]$						t_9	= [2]	, 9]		$t_{10} = [6, 9]$				
	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5
g_1	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×		×					×
g_2	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×				×					×
g_3	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×				×	×
g_4	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×

		t_{11}	= ['	7, 9]			t_{12}	= [8	8,9]		$t_{13} = [9, 9]$					
	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	
g_1																
g_2																
g_3				×												
g_4	×	×			×	×	×					×				

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 94/103

Theorem

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

There is a 1-1-correspondence between

- (i) Triadic concepts of the resulting triadic context
- (ii) Biclusters of similar values maximal for some $heta\geq$ 0

Interesting facts

Efficient algorithm for concept extraction (Data-Peeler, handling several constraints)

L. Cerf, J. Besson, C. Robardet, J.-F. Boulicaut

Closed patterns meet n-ary relations. In TKDD 3(1): (2009).

- Top-k biclusters: Concept (A, B, C) with high |A|, |B|, and |C| corresponds to bicluster (A, B) as a large rectangle of close values (by properties of interordinal scale)
- This formalization allows us to design a new algorithm to extract maximal biclusters for a given parameter θ Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclusteling Applications 15 April 2016 95/103

If we really need to specify θ ?

- Elements of order theory
- Formal Concept Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- Triadic Concepts

Biclustering

- Motivations
- A naive approach
- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References

Compute all max. biclusters for a given θ

- Use another (but similar) discretization procedure to build the triadic context based on tolerance blocks
- Standard algorithms output biclusters of similar values but not necessarily maximal
 - We design a new algorithm TriMax for that task

TriMax is flexible, uses standard FCA algorithms in its core, seems better than its competitors, can be extended to *n*-ary relations and distributed.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 96/103

New transformation procedure

Tolerance blocks based scaling

Mining n-dimensional clusters

Compute the set C of all blocks of tolerance over W

From the numerical dataset (G, M, W, I), build the triadic context (G, M, C, Z) such that $(g, m, c) \in Z \iff m(g) \in c$

Actually, we remove "useless information"

	label 1					label 2					label 3					label	label 5					
	[0, 1]					[1, 2]					[6, 7]					[7, 8]	[8, 9]					
	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	$m_2 \ m_3$	m_4	m_5	m_1	$m_2 m_3$	m_4	m_5	m_1	m_2	$m_3 r$	$n_4 m_3$
g_1	×			×		×	×	×	×					×								
g_2		×	\times	\times		×	\times	×						×								
g_3			×			×	×	×					×	×			×					
g_4								×					\times	×	×			\times	\times	\times		

 $\theta = 1$

Mehdi Kavtoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 97/103

Second contribution

Algorithm TriMax

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Any triadic concept corresponds to a bicluster of similar values, but not necessarily maximal!

It lead us to the algorithm TriMax that:

- Process each formal context (one for each block of tolerance) with any existing FCA algorithm
- Any resulting concept is a maximal bicluster candidate and
- Each context can be processed separately

TriMax allows a complete, correct and non redundant extraction of all maximal biclusters of similar values for a user defined similarity parameter θ

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 98/103

Formal Concept Analysis

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters of constant values

Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References

Leveraging the problem of biclustering with FCA

- Roots of closed pattern mining
- A set of "tools" and algorithms
- Allows a generic and direct way of computing biclusters of many kinds
- Extends to multi-dimensional data
- Allows parallel computing

Thanks for your attention.

Mehdi Kaytoue An Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 99/103

Exercise

Elements of order theory

Formal Concept Analysis

Algorithms

Conceptua Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approach

Mining biclusters o constant values

Mining biclusters of similar values

Mining n-dimensiona clusters

Conclusion

References

Biclusters with similar values on columns

Given a numerical dataset (G, M, W, I), a pair (A, B) (where $A \subseteq G, B \subseteq M$) is called a bicluster of similar values on columns when the following statement holds: $\forall g, h \in A, \forall m \in B, m(g) \simeq_{\theta} m(h)$ A bicluster (A, B) is maximal if $\nexists g \in G \setminus A$ such that $(A \cup \{g\}, B)$ is a bicluster, and $\nexists m \in M \setminus B$ such that $(A, B \cup \{m\})$ is a bicluster.

- Can you find all of them in a pattern concept lattice?
- First solution: each object is described by a vector of intervals (easier that what's been done before)
- Second solution: each attribute is described by a partition if $\theta = 0$, a *tolerance* otherwise (generalizes partitions)
- Third solution: a partition can be described by a formal context (one for each attribute, thus a triadic context).

Elements of solution

Elements of order theory

Formal Concep Analysis

Algorithms

Conceptus Scaling

Pattern structures

Triadic Concepts

Biclustering

Motivations

A naive approact

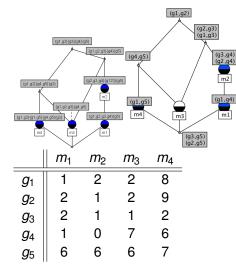
Mining biclusters o constant values

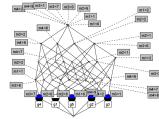
Mining biclusters of similar values

Mining *n*-dimensional clusters

Conclusion

References





Mehdi KaytoueAn Introduction to Formal Concept Analysis for Biclustering Applications15 April 2016 101/103

Elements of solution

Elements of order theory

mal Concept	m_1	g_1	g_2	g_3	g_4	g_5	m_2	g_1	g_2	g_3	g_4	g_5
lysis	g_1	×	×	×	×		g_1	×	×	×		
orithms	g_2	×	\times	\times	\times		g_2	×	×	\times	\times	
	g_3	×	×	×	×		g_3	×	×	×	×	
tern	g_4	×	\times	\times	\times		g_4		×	×	\times	
ictures	g_5					×	g_5					×
dic Concepts	m_3	g_1	g_2	g_3	g_4	g_5	m_4	g_1	g_2	g_3	g_4	g_5
lustering	g_1	×	×	×			g_1	×	×			×
vations ive approach	g_2	×	×	×			g_2	×	×			
ng biclusters of itant values	g_3	×	\times	\times			g_3			×		
ng biclusters of similar es	g_4				\times	×	g_4				×	×
ng <i>n</i> -dimensional ers	g_5				\times	×	g_5	×			\times	×

Conclusion

Motiva

values Mining

References

Mehdi KaytoueAn Introduction to Formal Concept Analysis for Biclustering Applications 15 April 2016 102/103

References

Elements of order theory

- Formal Concept Analysis
- Algorithms
- Conceptua Scaling
- Pattern structures
- **Triadic Concepts**

Biclustering

- Motivations
- A naive approach
- Mining biclusters of constant values
- Mining biclusters of similar values
- Mining *n*-dimensional clusters

Conclusion

References

- Marc Barbut and Bernard Monjardet, Ordre et classification, Hachette, 1970.
- Nathalie Caspard, Bruno Leclerc, Bernard Monjardet, Ensembles ordonnés finis concepts, résultats et usages (Mathématiques et Applications), 2007
- Bernhard Ganter and Rudolph Wille, Formal Concept Analysis, Springer, 1999
- Oded Maimon, Lior Rokach (Eds.), The Data Mining and Knowledge Discovery Handbook, Springer, 2005.
- Claudio Carpineto and Giovanni Romano, Concept Data Analysis: Theory and Applications, John Wiley & Sons, 2004.
- Sergei O. Kuznetsov, Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern Russian Research, Formal Concept Analysis 2005: 196-225
- Bernhard Ganter, Sergei O. Kuznetsov: Pattern Structures and Their Projections. ICCS 2001: 129-142
- Amedeo Napoli, An Introduction to Symbol Methods for Knowledge Discovery. Handbook of Categorization in Cognitive Science, 1st Edition, Cohen & Lefebvre (Eds.), 2005.
- Sergei O. Kuznetsov, Sergei A. Obiedkov: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3): 189-216 (2002)
- Franz Baader, Bernhard Ganter, Baris Sertkaya, Ulrike Sattler, Completing Description Logic Knowledge Bases Using Formal Concept Analysis. IJCAI 2007: 230-235

Mehdi KaytoueAn Introduction to Formal Concept Analysis for Biclustering Applications15 April 2016 103/103