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Who are we?

Bruno Crémilleux, Professor, Univ. Caen, France.
Marc Plantevit, Associate Professor, Univ. Lyon, France.
Arnaud Soulet, Associate Professor, Univ. Tours, France.

Material available on http://liris.cnrs.fr/~mplantev/doku/doku.php?
id=preferencebasedpatternminingtutorial
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Before 1600: Empirical Science
Babylonian mathematics: 4 basis operations done with tablets and the resolution of practical
problems based on words describing all the steps. ⇒ able to solve 3-degree equations.

Ancient Egypt: No theorization of algorithms. Only examples made empirically, certainly
repeated by students and scribes. Empirical knowledge transmitted as such and not a rational
mathematical science.
Aristotle also produced many biological writings that were empirical in nature, focusing on
biological causation and the diversity of life. He made countless observations of nature,
especially the habits and attributes of plants and animals in the world around him, classified
more than 540 animal species, and dissected at least 50.

. . .

Wikipedia
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1600-1950s: Theoretical Science
Each discipline has grown a theoretical component. Theoretical models often motivate
experiments and generalize our understanding.

Physics: Newton, Max Planck, Albert Einstein, Niels Bohr, Schrödinger
Mathematics: Blaise Pascal, Newton, Leibniz, Laplace, Cauchy, Galois, Gauss, Riemann
Chemistry: R. Boyle, Lavoisier, Dalton, Mendeleev,
Biology, Medecine, Genetics: Darwin, Mendel, Pasteur
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1950s–1990s, Computational Science
Over the last 50 years, most disciplines have grown a third, computational branch (e.g.
empirical, theoretical, and computational ecology, or physics, or linguistics.)
Computational Science traditionally meant simulation. It grew out of our inability to find
closed form solutions for complex mathematical models.
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1990’s-now, the Data Science Era
The flood of data from new scientific instruments and simulations
The ability to economically store and manage petabytes of data online
The Internet and computing Grid that makes all these archives universally accessible
Scientific info. management, acquisition, organization, query, and visualization tasks
scale almost linearly with data volumes.

The Fourth Paradigm: Data-Intensive Scientific Discovery
Data mining is a major new challenge!

The Fourth Paradigm. Tony Hey, Stewart Tansley, and Kristin Tolle. Microsoft Research, 2009.

[HTT+09]
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KDD Process

Fayad et al., 1996

Data Mining
Core of KDD
Search for knowledge in
data

Functionalities
Descriptive data mining vs Predictive data mining
Pattern mining, classification, clustering, regression
Characterization, discrimination, association, classification,
clustering, outlier and trend analysis, etc.
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Roadmap

We will focus on descriptive data mining especially on
Constraint-based Pattern Mining with an inductive database
vision.

Th(L,D, C) = {ψ ∈ L | C(ψ,D) is true}

Pattern domain: itemset, sequences, graphs, dynamic graphs,
etc.
Constraints (frequency, area, statistical relevancy, cliqueness,
etc.): How to efficiently push them?

Imielinski and Mannila: Communications of the ACM (1996).
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Roadmap

How have we moved from (only) frequent pattern discovery to
interactive pattern mining?
How have we moved from the retrieval era to the exploratory analysis
era?
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Roadmap

A very short view on the constraint-based pattern mining
toolbox and its limitation

Claim #1: this is not a tutorial on constraint-based pattern
mining!

Pattern mining as an optimization problem based on user’s
preferences:

From all solutions to the optimal ones (top k, skyline, pattern
set, etc.).
Claim #2: this is not a tutorial on preference learning!

Interactive pattern mining:
Dealing with implicit user’s preferences.
How to ensure interactivity (instant mining, pattern space
sampling)
Forgetting the completeness of the extraction.
Claim #3: this is not a tutorial on preference learning either!
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We have done some enlightenment choices.
Linearisation of the pattern mining research history.

We are not exhaustive !
Feel free to mention us some important papers that are missing.

Most of the examples will consider the itemsets as pattern
language.

It is the simplest to convey the main ideas and intuitions.

Feel free to interrupt us at any time if you have some questions.
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Constraint-based pattern mining:
the toolbox and its limits

å the need of preferences in pattern mining
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Itemset: definition

Definition
Given a set of attributes A, an itemset X is a subset of attributes,
i. e., X ⊆ A.

Input:

a1 a2 . . . an
o1 d1,1 d1,2 . . . d1,n
o2 d2,1 d2,2 . . . d2,n
... ... ... . . . ...

om dm,1 dm,2 . . . dm,n

where di ,j ∈ {true,false}

Question
How many itemsets are there?
2|A|.
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Transactional representation
of the data

Relational representation: D ⊆ O × A Transactional representation: D is an array of
subsets of A

a1 a2 . . . an
o1 d1,1 d1,2 . . . d1,n
o2 d2,1 d2,2 . . . d2,n
...

...
...

. . .
...

om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

t1
t2
...

tm

where ti ⊆ A

Example
a1 a2 a3

o1 × × ×
o2 × ×
o3 ×
o4 ×

t1 a1, a2, a3
t2 a1, a2
t3 a2
t4 a3
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Frequency: definition

Definition (absolute frequency)
Given the objects in O described with the Boolean attributes in A,
the absolute frequency of an itemset X ⊆ A in the dataset
D ⊆ O × A is |{o ∈ O | {o} × X ⊆ D}|.

Definition (relative frequency)
Given the objects in O described with the Boolean attributes in A,
the relative frequency of an itemset X ⊆ A in the dataset
D ⊆ O × A is |{o∈O | {o}×X⊆D}|

|O| .

The relative frequency is a joint probability.
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Frequent itemset mining

Problem Definition
Given the objects in O described with the Boolean attributes in A,
listing every itemset having a frequency above a given threshold
µ ∈ N.

Input:
a1 a2 . . . an

o1 d1,1 d1,2 . . . d1,n
o2 d2,1 d2,2 . . . d2,n
...

...
...

. . .
...

om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

and a minimal frequency µ ∈ N.

R. Agrawal; T. Imielinski; A. Swami: Mining Association Rules Between Sets of Items in
Large Databases, SIGMOD, 1993.
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Frequent itemset mining

Problem Definition
Given the objects in O described with the Boolean attributes in A,
listing every itemset having a frequency above a given threshold
µ ∈ N.

Output: every X ⊆ A such that there are at least µ objects having all attributes in X .

R. Agrawal; T. Imielinski; A. Swami: Mining Association Rules Between Sets of Items in
Large Databases, SIGMOD, 1993.
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Frequent itemset mining: illustration

Specifying a minimal absolute frequency µ = 2 objects (or,
equivalently, a minimal relative frequency of 50%).

a1 a2 a3
o1 × × ×
o2 × ×
o3 ×
o4 ×
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Frequent itemset mining: illustration

Specifying a minimal absolute frequency µ = 2 objects (or,
equivalently, a minimal relative frequency of 50%).

a1 a2 a3
o1 × × ×
o2 × ×
o3 ×
o4 ×

The frequent itemsets are: ∅ (4), {a1} (2),
{a2} (3), {a3} (2) and {a1, a2} (2).
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Inductive database vision

Querying data:
{d ∈ D | q(d ,D)}

where:
D is a dataset (tuples),
q is a query.
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Inductive database vision

Querying patterns:

{X ∈ P | Q(X ,D)}

where:
D is the dataset,
P is the pattern space,
Q is an inductive query.

Listing the frequent itemsets is NP-hard.
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Inductive database vision

Querying the frequent itemsets:

{X ∈ P | Q(X ,D)}

where:
D is a subset of O × A, i. e., objects described with Boolean
attributes,
P is 2A,
Q is (X ,D) 7→ |{o ∈ O | {o} × X ⊆ D}| ≥ µ.
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Pattern flooding

µ = 2
O a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15
o1 × × × × ×
o2 × × × × ×
o3 × × × × ×
o4 × × × × ×
o5 × × × × ×
o6 × × × × ×
o7 × × × × ×
o8 × × × × ×

How many frequent patterns?

1 + (25 − 1) × 3 = 94 patterns
but actually 4 (potentially) interesting ones:
{}, {a1, a2, a3, a4, a5}, {a6, a7, a8, a9, a10}, {a11, a12, a13, a14, a15}.

+ the need to focus on a condensed representation of frequent
patterns.

Toon Calders, Christophe Rigotti, Jean-François Boulicaut: A Survey on
Condensed Representations for Frequent Sets. Constraint-Based Mining and
Inductive Databases 2004: 64-80.
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Closed and Free Patterns

Equivalence classes based on support.

O A B C
o1 × × ×
o2 × × ×
o3 × ×
o4 × ×
o5 ×

ABC

A B C

AB AC

ø O1,O2,O3,O4,O5

O1,O2,O3,O4,

O1,O2,

BC

O1,O2,O3,O4,O5

O1,O2,

O1,O2,

O1,O2,

O1,O2,O3,O4,

Closed patterns are maximal element of each equivalence class
(Bastide et al., SIGKDD Exp. 2000): ABC ,BC , and C .
Generators or Free patterns are minimal elements (not
necessary unique) of each equivalent class (Boulicaut et al, DAMI
2003): {},A and B

A strong intersection with Formal Concept Analysis (Ganter and Wille,
1999).
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(FIMI Workshop@ICDM, 2003 and 2004)

The FIM Era: during more than a decade, only ms were worth it!
Even if the complete collection of frequent itemsets is known useless,
the main objective of many algorithms is to earn ms according to
their competitors!!
What about the end-user (and the pattern interestingness)?
Ü partially answered with constraints.
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Pattern constraints

Constraints are needed for:
only retrieving patterns that describe an interesting subgroup of
the data
making the extraction feasible

Constraint properties are used to infer constraint values on (many)
patterns without having to evaluate them individually.

Ü They are defined up to the partial order ⪯ used for listing the
patterns
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Search space traversal

A B C

AB AC

ABC

BC

ø

Levelwise enumeration vs
depth-first enumeration.

Whatever the enumeration principles, we have to derive some pruning
properties from the constraints.
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Enumeration strategy

Binary partition: the element ’a’ is enumerated
abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

22/96



Enumeration strategy

Binary partition: the element ’a’ is enumerated

R∨

R∧

R∨

R∧ ∪ {a}
R∨ \ {a}

R∧

a ∈ R∨ \ R∧
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(Anti-)Monotone Constraints

Monotone constraint
∀φ1 ⪯ φ2, C(φ1,D) ⇒ C(φ2,D)

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

C(φ,D) ≡ b ∈ φ ∨ c ∈ φ

Anti-monotone constraint
∀φ1 ⪯ φ2, C(φ2,D) ⇒ C(φ1,D)

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

C(φ,D) ≡ a ̸∈ φ ∧ c ̸∈ φ
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Constraint evaluation

Monotone constraint
R∨

R∧

C(R∨,D) is false

empty

Anti-monotone constraint
R∨

R∧
C(R∧,D) is false

empty
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Convertible Constraints

Convertible constraints (Pei et al., DAMI 2004)
⪯ is extended to the prefix order ≤ so that ∀φ1 ≤ φ2, C(φ2, D) ⇒ C(φ1, D)

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

C(φ, w) ≡ avg(w(φ)) > σ

w(a) ≥ w(b) ≥ w(c) ≥ w(d) ≥ w(e)
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Loose AM Constraints

Loose AM constraints
C(φ,D) ⇒ ∃e ∈ φ : C(φ \ {e},D)

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

C(φ,w) ≡ var(w(φ)) ≤ σ

Bonchi and Lucchese – DKE 2007 Uno, ISAAC07
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Examples

v ∈ P M
P ⊇ S M
P ⊆ S AM

min(P) ≤ σ AM
min(P) ≥ σ M
max(P) ≤ σ M
max(P) ≤ σ AM
range(P) ≤ σ AM
range(P) ≥ σ M

avg(P)θσ, θ ∈ {≤,=,≥} Convertible
var(w(φ)) ≤ σ LAM
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A larger class of constraints

Some constraints can be decomposed into several pieces that are
either monotone or anti-monotone.

Piecewise monotone and anti-monotone constraints
L. Cerf, J. Besson, C. Robardet, J-F. Boulicaut: Closed

patterns meet n-ary relations. TKDD 3(1) (2009)
Primitive-based constraints

A.Soulet, B. Crémilleux: Mining constraint-based patterns
using automatic relaxation. Intell. Data Anal. 13(1): 109-133
(2009)
Projection-antimonotonicity

A. Buzmakov, S. O. Kuznetsov, A.Napoli: Fast Generation of
Best Interval Patterns for Nonmonotonic Constraints.
ECML/PKDD (2) 2015: 157-172
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An example

∀e, w(e) ≥ 0

C(φ,w) ≡ avg(w(φ)) > σ ≡
∑

e∈φ
w(e)

|φ| > σ.

C(φ,D) is piecewise monotone and anti-monotone with

f (φ1, φ2,D) =
∑

e∈φ1 w(e)
|φ2|

∀x ⪯ y ,

f1,φ is monotone: f (x , φ2,D) =
∑

e∈x w(e)
|φ2| > σ ⇒

∑
e∈y w(e)
|φ2| > σ

f2,φ is anti-monotone:
f (φ1, y ,D) =

∑
e∈φ1

w(e)
|y | > σ ⇒

∑
e∈φ1

w(e)
|x | > σ
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Piecewise constraint exploitation

Evaluation
If f (R∨,R∧,D) =

∑
e∈R∨ w(e)

|R∧|

≤ σ then R is empty.

R∨

R∧

empty

Propagation
∃e ∈ R∨ \ R∧ such that f (R∨ \ {e},R∧,D) ≤ σ, then e is
moved in R∧

∃e ∈ R∨ \ R∧ such that f (R∨,R∧ ∪ {e},D) ≤ σ, then e is
removed from R∨
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Tight Upper-bound computation

Convex measures can be taken into
account by computing some upper
bounds with R∧ and R∨.
Branch and bound enumeration

Shinichi Morishita, Jun Sese: Traversing Itemset Lattice with
Statistical Metric Pruning. PODS 2000: 226-236

31/96



Toward declarativity

Why declarative approaches?
for each problem, do not write a solution from scratch

Declarative approaches:
CP approaches (Khiari et al., CP10, Guns et al., TKDE 2013)

SAT approaches (Boudane et al., IJCAI16, Jabbour et al., CIKM13)

ILP approaches (Mueller et al, DS10, Babaki et al., CPAIOR14, Ouali et
al. IJCAI16)

ASP approaches (Gebser et al., IJCAI16)
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Thresholding problem

threshold
nu

m
b
er

 o
f 

p
at

te
rn

s

A too stringent threshold: trivial patterns
A too weak threshold: too many patterns, unmanageable and
diversity not necessary assured.
Some attempts to tackle this issue:

Interestingness is not a dichotomy! [BB05]
Taking benefit from hierarchical relationships [HF99, DPRB14]

But setting thresholds remains an issue in pattern mining.
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Constraint-based pattern mining:
concluding remarks

how to fix thresholds?

how to handle numerous patterns including non-informative
patterns? how to get a global picture of the set of patterns?

how to design the proper constraints/preferences?
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Pattern mining as an optimization problem
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Pattern mining
as an optimization problem

performance issue
the more, the better
data-driven

quality issue
the less, the better
user-driven

In this part:
preferences to express user’s interests
focusing on the best patterns: dominance relation, pattern sets,
subjective interest
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Addressing pattern mining tasks
with user preferences

Idea: a preference expresses a user’s interest
(no required threshold)

Examples based on measures/dominance relation:
“the higher the frequency, growth rate and aromaticity are,
the better the patterns”
“I prefer pattern X1 to pattern X2 if X1 is not dominated by X2
according to a set of measures”

å measures/preferences: a natural criterion for ranking patterns
and presenting the “best” patterns
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Preference-based approaches
in this tutorial

in this part: preferences are explicit (typically given by the user
depending on his/her interest/subjectivity)
in the last part: preferences are implicit

quantitative/qualitative preferences:
quantitative:

measures


constraint-based data mining : frequency , size, . . .
background knowledge: price,weight, aromaticity , . . .
statistics: entropy , pvalue, . . .

qualitative: “I prefer pattern X1 to pattern X2” (pairwise
comparison between patterns).
With qualitative preferences: two patterns can be incomparable.
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Measures

Many works on:
interestingness measures (Geng et al. ACM Computing Surveys06)

utility functions (Yao and Hamilton DKE06)

statistically significant rules (Hämäläinen and Nykänen ICDM08)

Examples:

area(X ) = frequency(X ) × size(X ) (tiling: surface)
lift(X1 → X2) = D×frequency(X1X2)

frequency(X2)×frequency(X1)

utility functions: utility of the mined patterns (e.g. weighted
items, weighted transactions)
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Putting the pattern mining task to
an optimization problem
The most interesting patterns according to measures/preferences:

free/closed patterns (Boulicaut et al. DAMI03, Bastide et al.
SIGKDD Explorations00)
å given an equivalent class, I prefer the shortest/longest patterns
one measure: top-k patterns (Fu et al. Ismis00, Jabbour et al.
ECML/PKDD13)
several measures: how to find a trade-off between several criteria?
å skyline patterns (Cho et al. IJDWM05, Soulet et al. ICDM’11, van
Leeuwen and Ukkonen ECML/PKDD13)
dominance programming (Negrevergne et al. ICDM13), optimal
patterns (Ugarte et al. ICTAI15)
subjective interest/interest according to a background
knowledge (De Bie DAMI2011) 40/96



top-k pattern mining: an example

Goal: finding the k patterns maximizing an interestingness measure.

Tid Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

the 3 most frequent patterns:
B, E , BE a

å easy due to the anti-monotone
property of frequency

the 3 patterns maximizing area:
BCDE , BCD, CDE
å branch & bound
(Zimmermann and De Raedt MLJ09)

aOther patterns have a frequency of 5:
C , D, BC , BD, CD, BCD
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top-k pattern mining
an example of pruning condition

top-k patterns according to area, k = 3

Tid Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Principle:

Cand : the current set of the k
best candidate patterns
when a candidate pattern is
inserted in Cand , a more efficient
pruning condition is deduced

A: lowest value of area for the patterns in Cand

L: size of the longest transaction in D (here: L = 6)

a pattern X must satisfy frequency(X ) ≥ A
L

to be inserted in Cand
å pruning condition according to the
frequency (thus anti-monotone)

Example with a depth first search approach:
initialization: Cand = {B, BE , BEC}
(area(BEC) = 12, area(BE) = 10, area(B) = 6)

å frequency(X) ≥ 6
6

new candidate BECD: Cand = {BE , BEC , BECD}
(area(BECD) = 16, area(BEC) = 12, area(BE) = 10)

å frequency(X) ≥ 10
6 which is more efficient

than frequency(X) ≥ 6
6

new candidate BECDF . . .
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top-k pattern mining in a nutshell

Advantages:

compact

threshold free

best patterns

Drawbacks:

complete resolution is costly,
sometimes heuristic search
(beam search)
(van Leeuwen and Knobbe DAMI12)

diversity issue: top-k patterns
are often very similar

several criteria must be aggregated
å skylines patterns: a trade-off
between several criteria
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Skypatterns (Pareto dominance)

Notion of skylines (database) in pattern mining (Cho at al. IJDWM05, Papadopoulos et al.

DAMI08, Soulet et al. ICDM11, van Leeuwen and Ukkonen ECML/PKDD13)

Tid Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Patterns freq area
AB 2 4

AEF 2 6
B 6 6

BCDE 4 16
CDEF 2 8

E 6 6
...

...
...

|LI | = 26, but only 4 skypatterns

Sky(LI , {freq, area}) = {BCDE ,BCD,B,E}
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Skylines vs skypatterns

Problem Skylines Skypatterns

Mining task
a set of a set of

non dominated non dominated
transactions patterns

Size of the | D | | L |space search
domain a lot of works very few works

usually: | D |<<| L | D set of transactions
L set of patterns
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Skypatterns: how to process?

A naive enumeration of all candidate patterns (LI) and then
comparing them is not feasible. . .

Two approaches:
1 take benefit from the pattern condensed representation according

to the condensable measures of the given set of measures M

skylineability to obtain M ′ (M ′ ⊆ M)
giving a more concise pattern condensed representation
the pattern condensed representation w.r.t. M ′ is a superset of
the representative skypatterns w.r.t. M which is (much smaller)
than LI .

2 use of the dominance programming framework
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Dominance programming

Dominance: a pattern is optimal if it is not dominated by another.
Skypatterns: dominance relation = Pareto dominance

1 Principle:
starting from an initial pattern s1

searching for a pattern s2 such that s1 is not preferred to s2

searching for a pattern s3 such that s1 and s2 are not preferred
to s3...
until there is no pattern satisfying the whole set of constraints

2 Solving:
constraints are dynamically posted during the mining step

Principle: increasingly reduce the dominance area by processing
pairwise comparisons between patterns. Methods using Dynamic CSP
(Negrevergne et al. ICDM13, Ugarte et al. CPAIOR14). 47/96



Dominance programming
example of the skypatterns

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

| LI |= 26 = 64 patterns
4 skypatterns

ar
ea

freq
M = {freq, area}

q(X ) ≡ closedM′(X )

∧¬(s1 ≻M X )∧¬(s2 ≻M X )

Candidates =

{BCDEF︸ ︷︷ ︸
s1

, BEF︸︷︷︸
s2

, EF︸︷︷︸
s3

, }
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Dominance programming
example of the skypatterns

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

| LI |= 26 = 64 patterns
4 skypatterns

ar
ea

freq
M = {freq, area}

q(X ) ≡ closedM′(X ) ∧¬(s1 ≻M X )∧¬(s2 ≻M X )∧¬(s3 ≻M X ) ∧ ¬(s4 ≻M
X ) ∧ ¬(s5 ≻M X ) ∧ ¬(s6 ≻M X ) ∧ ¬(s7 ≻M X )

Candidates = {BCDEF︸ ︷︷ ︸
s1

, BEF︸︷︷︸
s2

, EF︸︷︷︸
s3

, BCDE︸ ︷︷ ︸
s4

, BCD︸︷︷︸
s5

, B︸︷︷︸
s6

, E︸︷︷︸
s7︸ ︷︷ ︸

Sky(LI ,M)

}
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Dominance programming: examples

dominance relation
maximal patterns inclusion
closed patterns inclusion at same frequency

order induced bytop-k patterns the interestingness measure
skypatterns Pareto dominance

maximal patterns ⊆ closed patterns

top-k patterns ⊆ skypatterns
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Preference-based optimal patterns

A preference ▷ is a strict partial order relation on a set of patterns S.
x ▷ y indicates that x is preferred to y

(Ugarte et al. ICTAI15): a pattern x is optimal (OP) according to ▷ iff
̸ ∃y1, . . . yp ∈ S,∀1 ≤ j ≤ p, yj ▷ x
(a single y is enough for many data mining tasks)

Characterisation of a set of OPs: a set of patterns:{
x ∈ S | fundamental(x) ∧ ̸ ∃y1, . . . yp ∈ S,∀1 ≤ j ≤ p, yj ▷ x

}
fundamental(x): x must satisfy a property defined by the user
for example: having a minimal frequency, being closed, . . .
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Local patterns: examples

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

S = LI

(Mannila et al. DAMI97)

Large tiles
c(x) ≡ freq(x) × size(x) ≥ ψarea

Example: freq(BCD) × size(BCD) = 5 × 3 = 15

Frequent closed patterns
c(x) ≡ freq(x) ≥ ψfreq

∧ ̸∃ y ∈ S : y ⊃ x
∧freq(y) = freq(x)

Skypatterns
c(x) ≡ closedM(x)

∧ ̸∃ y ∈ S : y ≻M x

Frequent top-k patterns according to m
c(x) ≡ freq(x) ≥ ψfreq

∧ ̸∃ y1, . . . , yk ∈ S :∧
1≤j≤k

m(yj) > m(x)
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Local (optimal) patterns: examples

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

S = LI

(Mannila et al. DAMI97)

Large tiles
c(x) ≡ freq(x) × size(x) ≥ ψarea

Frequent closed patterns
c(x) ≡ freq(x) ≥ ψfreq

∧ ̸∃ y ∈ S : y ⊃ x
∧freq(y) = freq(x)

Skypatterns
c(x) ≡ closedM(x)

∧ ̸∃ y ∈ S : y ≻M x

Frequent top-k patterns according to m
c(x) ≡ freq(x) ≥ ψfreq

∧ ̸∃ y1, . . . , yk ∈ S :∧
1≤j≤k

m(yj) > m(x)
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Pattern sets: sets of patterns

Patterns sets (De Raedt and Zimmermann SDM07): sets of patterns satisfying
a global viewpoint (instead of evaluating and selecting patterns based on their
individual merits)

Search space (S): local patterns versus pattern sets
example: I = {A,B}

all local patterns: S = LI = {∅,A,B,AB}
all pattern sets:
S = 2LI = {∅, {A}, {B}, {AB}, {A,B}, {A,AB}, {B,AB}, {A,B,AB}}

Many data mining tasks: classification (Liu et al. KDD98), clustering (Ester et
al. KDD96), database tiling (Geerts et al. DS04), pattern summarization (Xin et
al. KDD06), pattern teams (Knobbe and Ho PKDD06),. . .

Many input (“preferences”) can be given by the user:
coverage, overlapping between patterns, syntactical properties, measures, number
of local patterns,. . . 53/96



Coming back on OP (Ugarte et al. ICTAI15)

Pattern sets of length k : examples

S ⊂ 2LI

(sets of length k)

Conceptual clustering (without overlapping)

clus(x) ≡
∧

i∈[1..k]
closed(xi ) ∧

∪
i∈[1..k]

T(xi ) = T ∧∧
i,j∈[1..k]

T(xi ) ∩ T(xj ) = ∅

Conceptual clustering with optimisation

c(x) ≡ clus(x)
∧ ̸∃ y ∈ 2LI , min

j∈[1..k]
{freq(yj )} > min

i∈[1..k]
{freq(xi )}

Pattern teams

c(x) ≡ size(x) = k ∧ ̸∃ y ∈ 2LI , Φ(y) > Φ(x)
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Coming back on OP (Ugarte et al. ICTAI15)

(Optimal) pattern sets of length k : examples

S ⊂ 2LI

(sets of length k)

Conceptual clustering (without overlapping)

clus(x) ≡
∧

i∈[1..k]
closed(xi ) ∧

∪
i∈[1..k]

T(xi ) = T ∧∧
i,j∈[1..k]

T(xi ) ∩ T(xj ) = ∅

Conceptual clustering with optimisation

c(x) ≡ clus(x)
∧ ̸∃ y ∈ 2LI , min

j∈[1..k]
{freq(yj )} > min

i∈[1..k]
{freq(xi )}

Pattern teams

c(x) ≡ size(x) = k ∧ ̸∃ y ∈ 2LI , Φ(y) > Φ(x)
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Subjective interest

The idea: the user as part of the process, he/she states
expectations/beliefs, e.g.: number of items bought by customers, popularity
of items, overall graph density (in dense subgraph mining)
å whatever contrasts with this = subjectively interesting

producing a set of patterns: the background distribution is
updated according to the patterns previously extracted

iterative approach: at each step, the best pattern according the
interestingness criterion is extracted (trade off between
information content and descriptional complexity)

(Gallo et al. ECML/PKDD07, De Bie DAMI11, De Bie IDA13, van Leeuwen et al. MLJ16)

Recent work: interactive visual exploration (Puolamäki et al. ECML/PKDD16)
56/96



Relax the dogma “must be optimal”:
soft patterns
Stringent aspect of the classical constraint-based pattern mining
framework: what about a pattern which slightly violates a query?

example: introducing softness
in the skypattern mining:
å soft-skypatterns

put the user in the loop to determine the best patterns w.r.t. his/her
preferences
Introducing softness is easy with Constraint Programming:
å same process: it is enough to update the posted constraints 57/96



Many other works in this broad field

Examples: heuristic approaches

mining dense subgraphs (Charalampos et al. KDD13)

pattern sets based on the Minimum Description Length principle:
a small set of patterns that compress - Krimp
(Siebes et al. SDM06)

characterizing the differences and the norm between given
components in the data - DiffNorm
(Budhathoki and Vreeken ECML/PKDD15)

Nice results based on the frequency. How handling other
measures?
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Pattern mining as an optimization
problem: concluding remarks

In the approaches indicated in this part:
measures/preferences are explicit and must be given by the
user. . . (but there is no threshold :-)

diversity issue: top-k patterns are often very similar

complete approaches (optimal w.r.t the preferences):
å stop completeness “Please, please stop making new
algorithms for mining all patterns”
Toon Calders (ECML/PKDD 2012, most influential paper award)

A further step: interactive pattern mining (including the instant
data mining challenge), implicit preferences and learning preferences
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Interactive pattern mining
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Interactive pattern mining

Idea: “I don’t know what I am looking for, but I would definitely
know if I see it.”
à preference acquisition

In this part:
Easier: no user-specified parameters (constraint, threshold or
measure)!
Better: learn user preferences from user feedback
Faster: instant pattern discovery
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Addressing pattern mining
with user interactivity

Advanced Information Retrieval-inspired techniques
Query by Example in information retrieval (QEIR) (Chia et al.
SIGIR08)

Active feedback with Information Retrieval (Shen et al. SIGIR05)

SVM Rank (Joachims KDD02)

. . .

Challenge: pattern space L is often much larger than the
dataset D
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Interactive pattern mining: overview

Interactive data exploration using pattern mining. (van Leeuwen
2014)

Mine

InteractLearn
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Interactive pattern mining: overview

Interactive data exploration using pattern mining. (van Leeuwen
2014)

InteractLearn

Mine

Mine
Provide a sample of k patterns to the user (called the query Q)
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Interactive pattern mining: overview

Interactive data exploration using pattern mining. (van Leeuwen
2014)

Mine

Learn Interact
Interact

Like/dislike or rank or rate the patterns

63/96



Interactive pattern mining: overview

Interactive data exploration using pattern mining. (van Leeuwen
2014)

Mine

InteractLearn
Learn

Generalize user feedback for building a preference model
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Interactive pattern mining: overview

Interactive data exploration using pattern mining. (van Leeuwen
2014)

InteractLearn

Mine

Mine (again!)
Provide a sample of k patterns benefiting from the
preference model
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Interactive pattern mining

Multiple mining algorithms

One Click Mining - Interactive Local Pattern Discovery through
Implicit Preference and Performance Learning. (Boley et al. IDEA13)
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Interactive pattern mining

Platform that implements descriptive rule discovery algorithms suited
for neuroscientists

h(odor): Interactive Discovery of Hypotheses on the
Structure-Odor Relationship in Neuroscience. (Bosc et al.
ECML/PKDD16 (demo))
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Interactive pattern mining: challenges

Mine
Instant discovery for facilitating the iterative process
Preference model integration for improving the pattern quality
Pattern diversity for completing the preference model

Interact
Simplicity of user feedback (binary feedback > graded feedback)
Accuracy of user feedback (binary feedback < graded feedback)

Learn
Expressivity of the preference model
Ease of learning of the preference model
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Interactive pattern mining: challenges

Mine
Instant discovery for facilitating the iterative process
Preference model integration for improving the pattern quality
Pattern diversity for completing the preference model

Interact
Simplicity of user feedback (binary feedback > graded feedback)
Accuracy of user feedback (binary feedback < graded feedback)

Learn
Expressivity of the preference model
Ease of learning of the preference model

à Optimal mining problem (according to preference model)
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Interactive pattern mining: challenges

Mine
Instant discovery for facilitating the iterative process
Preference model integration for improving the pattern quality
Pattern diversity for completing the preference model

Interact
Simplicity of user feedback (binary feedback > graded feedback)
Accuracy of user feedback (binary feedback < graded feedback)

Learn
Expressivity of the preference model
Ease of learning of the preference model

à Active learning problem
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Learn: Preference model

How user preferences are represented?

Problem
Expressivity of the preference model
Ease of learning of the preference model
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Learn: Preference model

How user preferences are represented?

Problem
Expressivity of the preference model
Ease of learning of the preference model

Weighted product model
A weight on items I
Score for a pattern X = product of weights of items in X

(Bhuiyan et al., CIKM12)
ωA ωB ωC

AB 4 × 1 = 4
BC 1 × 0.5 = 0.5
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Learn: Preference model

How user preferences are represented?

Problem
Expressivity of the preference model
Ease of learning of the preference model

Feature space model
Partial order over the pattern
language L
Mapping between a pattern
X and a set of features:

F1 F2 F3 F4 . . .

. . .

...
...

A

BC

mapping

pattern space

feature space

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
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Learn: Feature space model

F1 F2 F3 F4 . . .

. . .

...
...

A

BC

mapping

pattern space

feature space

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

Feature space
= assumption about the user
preferences
the more, the better

Different feature spaces:
Attributes of the mined dataset (Rueping ICML09)

Expected and measured frequency (Xin et al. KDD06)

Attributes, coverage, chi-squared, length and so on (Dzyuba et al.
ICTAI13)
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Interact: User feedback

How user feedback are represented?

Problem
Simplicity of user feedback (binary feedback > graded feedback)
Accuracy of user feedback (binary feedback < graded feedback)
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Interact: User feedback

How user feedback are represented?

Problem
Simplicity of user feedback (binary feedback > graded feedback)
Accuracy of user feedback (binary feedback < graded feedback)

Weighted product model
Binary feedback (like/dislike) (Bhuiyan et al. CIKM12)
pattern feedback

A like
AB like
BC dislike
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Interact: User feedback

How user feedback are represented?

Problem
Simplicity of user feedback (binary feedback > graded feedback)
Accuracy of user feedback (binary feedback < graded feedback)

Feature space model
Ordered feedback (ranking) (Xin et al. KDD06, Dzyuba et al.
ICTAI13)

A ≻ AB ≻ BC
Graded feedback (rate) (Rueping ICML09)
pattern feedback

A 0.9
AB 0.6
BC 0.2 69/96



Learn: Preference learning method

How user feedback are generalized to a model?
Weighted product model

Counting likes and dislikes for each item: ω = β(#like - #dislike)

(Bhuiyan et al. ICML12)
pattern feedback A B C

A like 1
AB like 1 1
BC dislike -1 -1

22−0 = 4 21−1 = 1 20−1 = 0.5
Feature space model

= learning to rank (Rueping ICML09, Xin et al. KDD06, Dzyuba et
al. ICTAI13)
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Learn: Learning to rank

How to learn a model from a ranking?

F1 F2 F3 F4 . . .

. . .

...
...

A

BC

mapping

pattern space

feature space

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

1 Calculate the distances between feature vectors for each pair
(training dataset)

2 Minimize the loss function stemming from this training dataset
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Learn: Learning to rank

How to learn a model from a ranking?

F1 F2 F3 F4 . . .

. . .

...
...

A

BC

mapping

pattern space

feature space

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

F1 F2 F3 . . .

. . .
...

...

training dataset

a1 − b1 a2 − b2 a3 − b3
a1 − c1 a2 − c2 a3 − c3

1 Calculate the distances between feature vectors for each pair
(training dataset)

2 Minimize the loss function stemming from this training dataset
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Learn: Learning to rank

How to learn a model from a ranking?

F1 F2 F3 F4 . . .

. . .

...
...

A

BC

mapping

pattern space

feature space

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

F1 F2 F3 . . .

. . .
...

...

training dataset

a1 − b1 a2 − b2 a3 − b3
a1 − c1 a2 − c2 a3 − c3

1 Calculate the distances between feature vectors for each pair
(training dataset)

2 Minimize the loss function stemming from this training dataset

Algorithms: SVM Rank (Joachims KDD02), AdaRank (Xu et al.
SIGIR07),. . .
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Learn: Active learning problem

How are selected the set of patterns (query Q)?

Problem
Mining the most relevant patterns according to Quality
Querying patterns that provide more information about
preferences
(NP-hard problem for pair-wise preferences (Ailon JMLR12))

Heuristic criteria:
Local diversity: diverse patterns among the current query Q
Global diversity: diverse patterns among the different queries
Qi
Density: dense regions are more important
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Learn: Active learning heuristics
(Dzyuba et al. ICTAI13)

What is the interest of the pattern X for the current pattern query
Q?

Maximal Marginal Relevance: querying diverse patterns in Q

αQuality(X ) + (1 − α)min
Y ∈Q

dist(X ,Y )

Global MMR: taking into account previous queries

αQuality(X ) + (1 − α) min
Y ∈

∪
i Qi

dist(X ,Y )

Relevance, Diversity, and Density: querying patterns from
dense regions provides more information about preferences

αQuality(X ) + βDensity(X ) + (1 − α− β) min
Y ∈Q

dist(X ,Y )
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Mine: Mining strategies

What method is used to mine the pattern query Q?

Problem
Instant discovery for facilitating the iterative process
Preference model integration for improving the pattern quality
Pattern diversity for completing the preference model
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Mine: Mining strategies

What method is used to mine the pattern query Q?

Problem
Instant discovery for facilitating the iterative process
Preference model integration for improving the pattern quality
Pattern diversity for completing the preference model

Post-processing
Re-rank the patterns with the updated quality (Rueping ICML09,
Xin et al. KDD06)

Clustering as heuristic for improving the local diversity (Xin et al.
KDD06)
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Mine: Mining strategies

What method is used to mine the pattern query Q?

Problem
Instant discovery for facilitating the iterative process
Preference model integration for improving the pattern quality
Pattern diversity for completing the preference model

Optimal pattern mining (Dzyuba et al. ICTAI13)

Beam search based on reweighing subgroup quality measures for
finding the best patterns
Previous active learning heuristics (and more)
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Mine: Mining strategies

What method is used to mine the pattern query Q?

Problem
Instant discovery for facilitating the iterative process
Preference model integration for improving the pattern quality
Pattern diversity for completing the preference model

Pattern sampling (Bhuiyan et al. CIKM12)

Randomly draw pattern with a distribution proportional to their
updated quality
Sampling as heuristic for diversity and density
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Objective evaluation protocol

Methodology = simulate a user
1 Select a subset of data or pattern as user interest
2 Use a metric for simulating user feedback

User interest:
A set of items (Bhuiyan et al. CIKM12)

A sample for modeling the user’s prior knowledge (Xin et al.
KDD06)

A class (Rueping ICML09, Dzyuba et al. ICTAI13)
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Results

Objective evaluation results
Dozens of iterations for few dozens of examined patterns
Important pattern features depends on the user interest
Randomized selectors ensure high diversity
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Results

Objective evaluation results
Dozens of iterations for few dozens of examined patterns
Important pattern features depends on the user interest
Randomized selectors ensure high diversity

Questions?
How to select the right set of (hidden) features for modeling
user preferences?
How to subjectively evaluate interactive pattern mining?
à qualitative benchmarks for pattern mining
Creedo – Scalable and Repeatable Extrinsic Evaluation for Pattern
Discovery Systems by Online User Studies. (Boley et al. IDEA15)
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Instant pattern discovery

The need
“the user should be allowed to pose and refine queries at any moment
in time and the system should respond to these queries instantly”

Providing Concise Database Covers Instantly by Recursive Tile
Sampling. (Moens et al. DS14)
à few seconds between the query and the answer

Methods
Sound and complete pattern mining
Beam search Subgroup Discovery methods
Pattern sampling
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Dataset sampling vs Pattern sampling

Dataset sampling
dataset mined patterns

dataset sample

Finding all patterns from a
transaction sample
à input space sampling

Sampling large databases for association rules. (Toivonen et al. VLDB96)
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Dataset sampling vs Pattern sampling

Dataset sampling
dataset mined patterns

dataset sample

Finding all patterns from a
transaction sample
à input space sampling

Pattern sampling

dataset mined patterns

pattern sample

Finding a pattern sample from all
transactions
à output space sampling
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Pattern sampling: References

Output Space Sampling for Graph Patterns. (Al Hasan et al. VLDB09)

Direct local pattern sampling by efficient two-step random
procedures. (Boley et al. KDD11)

Interactive Pattern Mining on Hidden Data: A Sampling-based
Solution. (Bhuiyan et al. CIKM12)

Linear space direct pattern sampling using coupling from the past.
(Boley et al. KDD12)

Randomly sampling maximal itemsets. (Moens et Goethals IDEA13)

Instant Exceptional Model Mining Using Weighted Controlled
Pattern Sampling. (Moens et al. IDA14)

Unsupervised Exceptional Attributed Sub-graph Mining in Urban
Data (Bendimerad et al. ICDM16)
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Pattern sampling: Problem

Problem
Inputs: a pattern language L + a
measure m : L → ℜ
Output: a family of k realizations
of the random set R ∼ m(L)

dataset D pattern language L

k random patterns X ∼ m(L)

+ measure m

ignored by constraint-based
pattern mining

ignored by optimal
pattern mining

Pattern sampling addresses the full pattern language L à diversity!
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Pattern sampling: Problem

Problem
Inputs: a pattern language L + a
measure m : L → ℜ
Output: a family of k realizations
of the random set R ∼ m(L)

dataset D pattern language L

k random patterns X ∼ m(L)

+ measure m

graphs

sequential

itemsets

patterns

regularities contrasts anomalous

freq.:
(Al Hasan et al. VLDB09) (Al Hasan et al. VLDB09)

area: (Boley et al. KDD11)
(Moens et al. DS14)

freq.: (Boley et al. KDD11)
(Moens et Gothals IDEA13) (Boley et al. KDD11) (Moens et al. DS14)

L

m
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Pattern sampling: Challenges

Naive method
1 Mine all the patterns with their

interestingness m
2 Sample this set of patterns

according to m

à Time consuming / infeasible

exhaustive

direct sampling

mining

sampling
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Pattern sampling: Challenges

Naive method
1 Mine all the patterns with their

interestingness m
2 Sample this set of patterns

according to m

à Time consuming / infeasible

exhaustive

direct sampling

mining

sampling

Challenges
Trade-off between pre-processing computation and processing
time per pattern
Quality of sampling

81/96



Two main families

1. Stochastic techniques
Metropolis-Hastings algorithm
Coupling From The Past

2. Direct techniques
Item/transaction sampling with
rejection
Two-step random procedure

dataset D
draw a transaction

t from D
draw an itemset

X from t
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Two-step procedure: Toy example

Direct local pattern sampling by efficient two-step random procedures.
(Boley et al. KDD11)

Mine all frequent patterns

TId Items
t1 A B C
t2 A B
t3 B C
t4 C

Itemset freq.
A 2
B 3
C 3

AB 2
AC 1
BC 2

ABC 1

TId Itemsets
t1 A, B, C , AB,

AC , BC , ABC
t2 A, B, AB
t3 B, C , BC
t4 C

Pick 14 itemsets

Itemsets
A, A
B, B, B
C , C , C
AB, AB
AC
BC , BC
ABC
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Two-step procedure: Toy example

Direct local pattern sampling by efficient two-step random procedures.
(Boley et al. KDD11)

Mine all frequent patterns
infeasible

TId Items
t1 A B C
t2 A B
t3 B C
t4 C

Itemset freq.
A 2
B 3
C 3

AB 2
AC 1
BC 2

ABC 1

Direct sampling

TId Itemsets
t1 A, B, C , AB,

AC , BC , ABC
t2 A, B, AB
t3 B, C , BC
t4 C

Pick 14 itemsets

Itemsets
A, A
B, B, B
C , C , C
AB, AB
AC
BC , BC
ABC
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Two-step procedure: Toy example

Direct local pattern sampling by efficient two-step random procedures.
(Boley et al. KDD11)

Mine all frequent patterns
infeasible

TId Items
t1 A B C
t2 A B
t3 B C
t4 C

Itemset freq.
A 2
B 3
C 3

AB 2
AC 1
BC 2

ABC 1

TId Itemsets
t1 A, B, C , AB,

AC , BC , ABC
t2 A, B, AB
t3 B, C , BC
t4 C

Pick 14 itemsets

Itemsets
A, A
B, B, B
C , C , C
AB, AB
AC
BC , BC
ABC

Rearrange itemsets
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Two-step procedure: Toy example

Direct local pattern sampling by efficient two-step random procedures.
(Boley et al. KDD11)

Mine all frequent patterns
infeasible

TId Items weight ω

t1 A B C 23 − 1 = 7
t2 A B 22 − 1 = 3
t3 B C 22 − 1 = 3
t4 C 21 − 1 = 1

1. Pick a transaction
proportionally to ω

Itemset freq.
A 2
B 3
C 3

AB 2
AC 1
BC 2

ABC 1

TId Itemsets
t1 A, B, C , AB,

AC , BC , ABC
t2 A, B, AB
t3 B, C , BC
t4 C

Pick 14 itemsets

Itemsets
A, A
B, B, B
C , C , C
AB, AB
AC
BC , BC
ABC

2. Pick an itemset
uniformly
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Two-step procedure: Comparison

Two-step procedure

MH method

slow

slow

fast
fast

Offline processing

Online processing

Complexity depends on the measure m:
Measure m(X) Preprocessing k realizations

supp(X , D) O(|I| × |D|) O(k(|I| + ln |D|))
supp(X , D) × |X | O(|I| × |D|) O(k(|I| + ln |D|))

supp+(X , D) × (|D−| − supp−(X , D)) O(|I|2 × |D|2) O(k(|I| + ln2 |D|))
supp(X , D)2 O(|I|2 × |D|2) O(k(|I| + ln2 |D|))

Preprocessing time may be prohibitive à hybrid strategy with
stochastic process for the first step:
Linear space direct pattern sampling using coupling from the past. (Boley
et al. KDD12)

84/96



Two-step procedure: Comparison

Two-step procedure

MH methodTwo-step procedure
with CFTP

slow

slow

fast
fast

Offline processing

Online processing

Complexity depends on the measure m:
Measure m(X) Preprocessing k realizations

supp(X , D) O(|I| × |D|) O(k(|I| + ln |D|))
supp(X , D) × |X | O(|I| × |D|) O(k(|I| + ln |D|))

supp+(X , D) × (|D−| − supp−(X , D)) O(|I|2 × |D|2) O(k(|I| + ln2 |D|))
supp(X , D)2 O(|I|2 × |D|2) O(k(|I| + ln2 |D|))

Preprocessing time may be prohibitive à hybrid strategy with
stochastic process for the first step:

Linear space direct pattern sampling using coupling from the past.
(Boley et al. KDD12)
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Pattern sampling

Summary
Pros

Compact collection of
patterns
Threshold free
Diversity
Very fast

Cons
Patterns far from optimality
Not suitable for all
interestingness measures
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Pattern sampling

Summary
Pros

Compact collection of
patterns
Threshold free
Diversity
Very fast

Cons
Patterns far from optimality
Not suitable for all
interestingness measures

Interactive pattern sampling
Interactive Pattern Mining on Hidden Data: A Sampling-based
Solution. (Bhuiyan et al. CIKM12)

à how to integrate more sophisticated user preference models?
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Pattern set and sampling

Pattern-based models with iterative pattern sampling
ORIGAMI: Mining Representative Orthogonal Graph Patterns. (Al
Hasan et al. ICDM07)

Randomly sampling maximal itemsets. (Moens et Goethals IDEA13)

Providing Concise Database Covers Instantly by Recursive Tile
Sampling. (Moens et al. DS14)

à how to sample a set of patterns instead of indivual patterns?
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Interactive pattern mining:
concluding remarks

Preferences are not explicitly given by the user. . .
. . . but, representation of user preferences should be anticipated
in upstream.

Instant discovery enables a tight coupling between user and
system. . .
. . . but, most advanced models are not suitable.
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Concluding remarks
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Preference-based pattern mining

User preferences are more and more prominent. . .

from simple preference models to complex ones
from frequency to anti-monotone constraints and more complex
ones
from 1 criterion (top-k) to multi-criteria (skyline)
from weighted product model to feature space model
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Preference-based pattern mining

User preferences are more and more prominent. . .

from preference elicitation to preference acquisition
user-defined constraint
no threshold with optimal pattern mining
no user-specified interestingness
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Preference-based pattern mining

User preferences are more and more prominent in the community. . .

from data-centric methods:

2003-2004: Frequent Itemset
Mining Implementations

2002-2007: Knowledge
Discovery in Inductive
Databases

to user-centric methods:

2010-2014: Useful Patterns

2015-2016: Interactive Data
Exploration and Analytics
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Multi-user centric pattern mining

How to improve pattern mining for a user benefiting from
other users?

on the same dataset
on a different dataset

Information Retrieval inspired techniques?
collaborative filtering

Combining collaborative filtering and sequential pattern mining for
recommendation in e-learning environment. (Li et al. ICWL11)

crowdsourcing
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Multi-pattern domain exploration

The user has to choose its pattern domain of interest.
What about (interactive) multi-pattern domain exploration?

Some knowledge nuggets can be depicted with simple pattern
domain (e.g., itemset) while others require more sophisticated
pattern domain (e.g., sequence, graph, dynamic graphs, etc.).
Examples in Olfaction:

Odorant molecules.
unpleasant odors in presence of Sulfur atom in chemicals ⇒
itemset is enough.
Some chemicals have the same 2-d graph representation and
totally different odor qualities (e.g., isomers) ⇒ need to consider
3-d graph pattern domain.

How to fix the good level of description?

Toward pattern sets involving several pattern domains.
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Multi optimization
. . . and user navigation

multi optimization:
interest in sets of
pattern sets
(e.g., skypattern cube)

(22LI )

user navigation
through the set of
patterns

recommendation

Concise representation of the skypattern cube:
å equivalence classes on measures highlight the role of measures

Iris data set: d0 = freq, d1 = max(val), d2 = mean(val),
d3 = area, d4 = gr 1

https://sdmc.greyc.fr/skypattern/ (P. Holat) 93/96
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Pattern mining in the AI field (1/2)

cross-fertilization between data mining and
constraint programming (De Raedt et al. KDD08):
designing generic and declarative approaches
å make easier the exploratory data mining process

avoiding writing solutions from scratch
easier to model new problems

pattern sets are integrated in a natural way
(Khiari et al. CP10, Guns et al. TKDE13)

from itemsets to other pattern languages:
sequences (Aoga et al. ECML/PKDD16, Kemmar et al.
CPAIOR16)

CP but also ILP (Babaki et al., CPAIOR14), SAT
(Jabbour et al., CIKM13), ASP (Gebser et al. IJCAI16)
several workshops: DPM 11 (Declarative Pattern Mining),
CoCoMile 12 13 (COmbining COnstraint solving with MIning
and LEarning), Languages for DM/ML 13.
Dagstuhl seminar 11 14.

French science academy

“The renewed success of AI”

Le public
scientifique

Conférence-débat
Intelligence Artificielle :
le renouveau

Découvrir, apprendre, reconnaître,
juger, décider : ces tâches perceptives
et cognitives que l'on associe à l'intel-
ligence humaine deviennent chaque
jour plus accessibles à l'automatisa-
tion. Grâce aux progrès considérables
de la microélectronique, à la puis-
sance de calcul qu'elle permet et à
l'accès à des quantités gigantesques de
données, l'Intelligence Artificielle (IA)
vit aujourd'hui un renouveau qui s'ap-
puie sur presque toutes les sciences et
touche de plus en plus à notre vie
quotidienne. L'objet de cette confé-
rence-débat est d'en présenter
quelques facettes actuelles remarqua-
bles, entre sciences de l'information et
informatique neuro-inspirée.

4
octobre

2016
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Pattern mining in the AI field (2/2)

open issues:
how go further to integrate preferences, define constraints,
model a problem?
Directions: defining languages?, learning constraints
how to visualize results and interact with the end user?
scaling
. . .

but also:
the opposite direction is also a topic of interest: how can
constraint programming benefit from data mining techniques?
results in ILP/SAT used in certain probabilistic models
(Chang et al. AAAI08, Cussens UAI08)
many other directions associated to the AI field: integrating
background knowledge, knowledge representation,. . .

Likely a promising avenue:
many papers at ECAI16, IJCAI16 and ECML/PKDD16! 95/96
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