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Joint mining of multiple datasets can often discover interesting, novel, and reliable patterns which

cannot be obtained solely from any single source. For example, in bioinformatics, jointly mining

multiple gene expression datasets obtained by different labs or during various biological processes

may overcome the heavy noise in the data. Moreover, by joint mining of gene expression data and

protein-protein interaction data, we may discover clusters of genes which show coherent expression

patterns and also produce interacting proteins. Such clusters may be potential pathways.

In this article, we investigate a novel data mining problem, mining frequent cross-graph quasi-
cliques, which is generalized from several interesting applications in bioinformatics, cross-market

customer segmentation, social network analysis, and Web mining. In a graph, a set of vertices S
is a γ -quasi-clique (0 < γ ≤ 1) if each vertex v in S directly connects to at least γ · (|S| − 1) other

vertices in S. Given a set of graphs G1, . . . , Gn and parameter min sup (0 < min sup ≤ 1), a set

of vertices S is a frequent cross-graph quasi-clique if S is a γ -quasi-clique in at least min sup · n
graphs, and there does not exist a proper superset of S having the property.

We build a general model, show why the complete set of frequent cross-graph quasi-cliques can-

not be found by previous data mining methods, and study the complexity of the problem. While the

problem is difficult, we develop practical algorithms which exploit several interesting and effective

techniques and heuristics to efficaciously mine frequent cross-graph quasi-cliques. A systematic

performance study is reported on both synthetic and real data sets. We demonstrate some interest-

ing and meaningful frequent cross-graph quasi-cliques in bioinformatics. The experimental results

also show that our algorithms are efficient and scalable.
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Data mining

General Terms: Algorithms, Experimentation

A preliminary version of this paper appears as Pei et al. [2005].

This research is partly supported by NSF grant IIS-0308001, NSERC Discovery Grant, NSERCE

CRD Grant, and IBM Eclipse Innovation Award. All opinions, findings, conclusions, and recom-

mendations in this paper are those of the authors and do not necessarily reflect the views of the

funding agencies.

Authors’ addresses: D. Jiang, 4F Sigma Building, 49 Zhichun Road, Haidian District, Beijing,

China, 100080; email: djiang@microsoft.com; J. Pei, School of Computing Science, Simon Fraser

University, 8888 University Drive, Burnaby, BC Canada V5A IS6; email: jpei@cs.sfu.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1556-4681/2009/01-ART16 $5.00 DOI 10.1145/1460797.1460799 http://doi.acm.org/

10.1145/1460797.1460799

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 16, Publication date: January 2009.



16:2 • D. Jiang and J. Pei

Additional Key Words and Phrases: Graph mining, bioinformatics, clique, joint mining

ACM Reference Format:
Jiang, D. and Pei, J. 2009. Mining frequent cross-graph quasi-cliques. ACM Trans. Knowl.

Discov. Data. 2, 4, Article 16 (January 2009), 42 pages. DOI = 10.1145/1460797.1460799 http://

doi.acm.org/10.1145/1460797.1460799

1. INTRODUCTION

In many applications, data is often collected, organized and stored in multiple
sources. Many hidden patterns crossing multiple pieces of data cannot be found
by mining only one single data source. Therefore, advanced data analysis in
practice calls for joint mining of multiple datasets, which can often discover
interesting, novel, and reliable patterns that cannot be obtained solely from
any single source.

Example 1 (Joint Mining of Gene Expression Data). The recent DNA mi-
croarray technology has made it possible to measure the expression levels of
thousands of genes on a set of samples [Chu et al. 1998; DeRisi et al. 1997;
Gasch et al. 2000; Spellman et al. 1998]. Technically, a microarray dataset (also
called a gene expression dataset) is a matrix W = {wi, j } for a set of genes G and
a set of samples S, where wi, j (1 ≤ i ≤ |G|, 1 ≤ j ≤ |S|) is the expression level
of gene gi on sample sj [Brazma and Vilo 2000]. From gene expression data,
biologists are often interested in finding groups of genes which exhibit simi-
lar expression profiles on the samples [Alon et al. 1999; Cho et al. 1998; Eisen
et al. 1998; Spellman et al. 1998; Tamayo et al. 1999; Tavazoie et al. 1999]. A
group of such genes are called co-expressed genes and are likely to have similar
functions [Eisen et al. 1998; Lee et al. 2004].

To find groups of coexpressed genes, we can represent a gene expression
dataset {wi, j } using a gene coexpression graph GE , where each vertex corre-
sponds to one gene and two vertices are connected by an edge if the corre-
sponding genes have similar expression profiles. After we construct the gene
coexpression graph GE , the problem of finding groups of coexpressed genes in
{wij } can then be converted into finding cliques in GE .

Finding cliques in a graph is a problem that has been investigated for a long
time. However, gene expression data derived from the microarray experiments
is typically noisy [Beissbarth et al. 2000; Tseng et al. 2001]. Consequently, the
mining results from a single dataset may not be reliable. To overcome this prob-
lem, we can collect gene expression data from various sources. For example, the
expression levels of the yeast genes have been monitored by different labs and
during various biological processes [Chu et al. 1998; DeRisi et al. 1997; Gasch
et al. 2000; Spellman et al. 1998]. The measurements from each microarray
experiment can be regarded as an independent data source and modeled by an
individual gene coexpression graph. Although the noise ratio of each individual
data source may be high, we can expect that the mining results consistently
supported by various data sources are more reliable, because the errors in dif-
ferent data sources are usually independent of each other [Lee et al. 2004;
Moreau et al. 2003; Stuart et al. 2003].
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Fig. 1. {A, C, D, F } is a clique conserved in graphs G1, G2, and G3.

Figure 1 shows four example gene coexpression graphs G1, G2, G3, and G4. If
we mine graph G1 alone, we can find the whole set of genes {A, B, C, D, E, F } as
a cluster of coexpressed genes since it is a clique in G1. Similarly, mining graphs
G2, G3, and G4 individually finds clusters {A, B, C, D, F }, {A, C, D, E, F }, and
∅, respectively. On the other hand, if we consider the four graphs altogether,
we may recognize cluster {A, C, D, F } as a reliable pattern since it is a clique
in three out of the four graphs.

Example 1 shows that joint mining of multiple graphs can improve the relia-
bility of the mining results. Moreover, joint mining of multiple graphs may also
find novel patterns which cannot be obtained from any single data source. Let
us consider another interesting application in bioinformatics—joint mining of
gene expression data and protein-protein interaction data.

Example 2 (Joint Mining of Gene Expression Data and Protein-Protein In-
teraction Data). Several recent high-throughput biotechniques, such as yeast
two-hybrid analysis [Ito et al. ; Uetz et al. 2000], mass spectrometry [Gavin et al.
2002; Ho et al. 2002] and synthetic lethality screen [Tong et al. 2001; Tong et al.
2004], have generated large-scale protein-protein interaction data. In general,
a protein-protein interaction data set can be modeled as a protein-protein inter-
action graph where each vertex corresponds to one protein and two vertices are
connected by an edge if the corresponding two proteins interact with each other.
In biology, a cluster of proteins which often interact with each other are likely to
be functionally related. In other words, a cluster of functional-related proteins
are almost a clique (thus called quasi-clique) in the protein-protein interaction
graph. To be specific, each protein in a quasi-clique is not necessarily connected
to all the other proteins in the same quasi-clique; instead, it is connected to at
least a portion γ (0 < γ ≤ 1) of the other vertices, where γ is a user-specified
parameter. Clearly, cliques are special cases of quasi-cliques where γ = 1.

Naturally, protein-protein interaction data is complementary to gene expres-
sion data since proteins are products of genes. Joint mining of these two types
of data can find novel patterns which cannot be obtained from any single data
source. For example, many biological pathways exhibit two properties: their
genes exhibit similar gene expression profiles, and the protein products of the
genes often interact [Segal et al. 2003]. Such pathways cannot be found solely
in either gene expression data or protein-protein interaction data since the
membership of a pathway must be verified in both types of data.

To find biological pathways, we can combine gene coexpression graphs and
protein-protein interaction graphs using a surjective (that is, onto) mapping
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Fig. 2. {A, C, D, F } is a cross-graph quasi-clique in graphs GE and G P .

f : P → G, where P is the set of proteins, G is the set of genes, and f (p) = g
if gene g ∈ G produces protein p ∈ P . A group of genes are likely to participate
in the same biological pathway if they form a cross-graph quasi-clique, that is,
they form a quasi-clique (with γ = 1) in the gene coexpression graph, and at the
same time, their corresponding proteins also form a quasi-clique (with γ ≤ 1)
in the protein-protein interaction graph.

Figure 2 shows an example gene coexpression graph GE and an example
protein-protein interaction graph G P . Both proteins A1 and A2 map to gene A,
and the other proteins map to the genes with the same label. The group of genes
{A, C, D, F } is a cross-graph quasi-clique since it forms a quasi-clique (with
γE = 1) in graph GE and the corresponding group of proteins {A1, A2, C, D, F }
forms a quasi-clique (with γP = 0.75) in graph G P .

Examples 1 and 2 motivate a novel problem of mining multiple graphs as
follows. Consider a set of n graphs where the vertices of all graphs can be
mapped to a common set of objects. We are interested in finding groups of objects
such that the corresponding vertices form a quasi-clique in at least (n·min sup)
graphs, where min sup is a user-specified parameter. Such groups of objects are
called frequent cross-graph quasi-cliques.

Mining frequent cross-graph quasi-cliques has important applications in var-
ious domains. For example, in social network analysis, joint mining of collab-
oration graphs and citation graphs can simultaneously explore the coauthor
relationship and reference relationship and identify reliable research commu-
nities as well as papers on similar topics. As another example, in marketing
and customer relation management, customer groups with consistent behav-
iors in multiple aspects, such as similar purchase patterns, saving patterns,
and responses to marketing campaigns, are likely to be more coherent and re-
liable. Moreover, in the World-Wide Web, the relationship between Web sites
can be described by both their content and their link structure. Joint mining of
web content and Web structure may effectively distinguish real Web communi-
ties from malicious link farms. For more examples on joint mining of multiple
sources, Page and Craven [Page and Craven 2003] surveyed the biological ap-
plications of mining multiple tables, such as pharmacophore discovery, gene
regulation, information extraction from text and sequence analysis.

As shown, mining multiple graphs may discover reliable and novel patterns
that cannot be found by conventional data mining approaches. Finding cliques
in a graph is a problem that has been investigated for a long time. Comput-
ing quasi-cliques in one graph was also the topic of some previous studies, such
as [Abello et al. 2002; Matsuda et al. 1999]. One may wonder, “Can the complete
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Fig. 3. The integrated graphs based on various integration schemas.

set of frequent cross-graph quasi-cliques be mined easily by extending the exist-
ing algorithms for finding cliques or quasi-cliques?”

Example 3 (Mining Integrated Graph). We can integrate multiple graphs
into one by designing an integration function between data objects. The integra-
tion function combines the similarities between data objects in different data
sets in some weighted manner. Then, we can find quasi-cliques in the integrated
graph.

Consider the four graphs in Example 1 again. Figure 3 shows the integrated
graphs based on various integration functions. In graphs G∪, G∩ and Gfreq,
respectively, two vertices u and v are connected by an edge in the integrated
graph if edge (u, v) appears in (a) any one of the four graphs; (b) all of the four
graphs; and (c) at least three out of the four graphs.

If we consider the integrated graphs G∪ and G∩, we will report clus-
ters {A, B, C, D, E, F } and ∅, respectively. In both cases, the real cluster
{A, C, D, F }, which is conserved in three graphs, cannot be correctly identi-
fied. Finally, if we consider the integrated graph Gfreq, although the cluster
{A, C, D, F } can be identified, another cluster {D, E, F } will also be reported.
However, {D, E, F } is conserved in only two out of the four graphs.

In general, there could be two approaches to graph integration. In the
first approach, an edge (u, v) in the integrated graph is only assigned with
a weight derived from the integration function; it does not carry the informa-
tion from which original graphs the edge was derived. For example, graphs
G∪, G∩, and Gfreq in Figure 3 can be considered as derived from functions
maxn

i=1 wi(u, v), minn
i=1 wi(u, v), and

∑n
i=1 wi(u, v) ≥ δfreq, respectively, where

δfreq is the threshold for frequent patterns, wi(u, v) = 1 if (u, v) is an edge in
graph Gi (1 ≤ i ≤ n) and wi(u, v) = 0 otherwise. Clearly, the integrated graphs
derived from these functions are unreconstructable in the sense that we cannot
reconstruct the original graphs from the integrated graph. For example, con-
sider edge (A, B) in the integrated graph G∪. We cannot infer in which original
graphs the edge appears. Similarly, although there is no edge between D and
E in the integrated graph G∩, edge (D, E) still may appear in some original
graphs.

We will show that, in general, frequent cross-graph quasi-cliques cannot
be mined from an unreconstructable integrated graph. To elaborate the idea,
consider two graphs G1 and G2 on the same set of vertices V . Let γ1 and γ2

be the user specified parameters for G1 and G2, respectively. Let finter be an
unreconstructable integration function, that is, from finter(w1(u, v), w2(u, v)),
we cannot tell the value of w1(u, v) or w2(u, v). Let Ginter be the integrated
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graph derived from finter, that is, the vertex set V (Ginter) = V and the edge set
E(Ginter) = {(u, v)| finter(w1(u, v), w2(u, v)) = 1}. Without loss of generality, let
0 ≤ γ1 < γ2 ≤ 1. Since finter is unreconstrutable, in general, a γinter-quasi-clique
in Ginter cannot be guaranteed to be both a γ1-quasi-clique in G1 and a γ2-quasi-
clique in G2. On the other hand, in some special cases as will be discussed in
Section 4.2.2, the unreconstructable integration approach may be applied.

The second approach to graph integration is to record for each pair of ver-
tices the edge information in the original graphs. This approach allows the
reconstruction of the original graphs from the integrated one, and thus guar-
antees the correctness of the mined patterns. However, if we rely on such edge
information when searching the integrated graph, the searching process will
be equivalent to searching individual graphs in parallel. In this paper, we pro-
pose methods searching multiple graphs individually. These methods can also
be viewed as searching a virtual integrated graph with minimal edge infor-
mation in original graphs recorded. For example, we develop several pruning
techniques (see Section 4.2) to remove futile edges from original graphs. This
is equivalent to reducing redundant edge information in the virtual integrated
graph. The pruned virtual integrated graph may be unreconstructable while it
still retains all frequent cross-graph quasi-cliques.

Although there are extensive studies on cliques and quasi-cliques, to the
best of our knowledge, our study is the first one to address the following two
issues at the same time. First, we investigate mining from multiple graphs
the quasi-cliques. We propose a general model on frequent cross-graph quasi-
cliques and mining. Second, we compute the complete set of frequent cross-graph
quasi-cliques. Many of the previous studies focused on finding one quasi-clique
(from one graph) with an optimization goal, such as maximizing the number
of vertices in the clique. However, many data mining applications require the
completeness of the answers.

Mining the complete set of quasi-cliques from multiple graphs is challenging.
A naïve method may have to examine a huge number of possible combinations
of vertices and edges over the graphs, which is computationally expensive or
even prohibitive on large graphs (e.g., graphs with thousands of vertices and
tens of thousands of edges).

Bearing the above challenges, in this paper, we tackle the problem of mining
frequent cross-graph quasi-cliques and make the following contributions.

(1) We propose a novel and general model for the problem of mining frequent
cross-graph quasi-cliques. We show that frequent cross-graph quasi-cliques
are interesting and meaningful in some applications.

(2) We investigate the complexity of the problem and develop practical algo-
rithms to tackle the problem. We show that the problem is NP-hard. We
develop two practical algorithms, Crochet and Crochet+, to mine frequent
cross-graph quasi-cliques. These two algorithms exploit several interesting
and effective techniques and heuristics to prune the search space sharply.

(3) We present a systematic performance study on Crochet and Crochet+ to ver-
ify our design using both synthetic and real data sets. The experimental
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results show that frequent cross-graph quasi-cliques are interesting in real
applications and the algorithms work well in practice.

The remainder of the article is organized as follows. In Section 2, we dis-
cuss related work. In Section 3, we present the general model of mining fre-
quent cross-graph quasi-cliques, and also show the hardness of the problem. In
Sections 4 and 5, we develop algorithms from mining cross-all-graphs quasi-
cliques and general frequent cross-graph quasi-cliques, respectively. A sys-
tematic performance study is reported in Section 6. Section 7 concludes the
article.

2. RELATED WORK

To the best of our knowledge, Abello et al. [2002] and Matsuda et al. [1999]
are the two previous studies most related to this paper Abello et al. [2002]
defined a γ -clique in a graph G as a subset of vertices S ⊆ V (G) such that the
induced graph on S is connected and |E(G(S))| ≥ γ · ( |S|

2
). They also proposed a

greedy randomized adaptive search algorithm, GRASP, to find a γ -clique with
the maximum size. Matsuda et al. [1999] introduced a definition of quasi-clique
similar to ours in this paper. However, instead of finding the complete set of
quasi-cliques in the graph, they proposed an approximation algorithm to cover
all the vertices in the graph G with a minimum number of p-quasi-complete
subgraphs.

The critical difference between this paper and the above two is that both
Abello et al. [2002] and Matsuda et al. [1999] neither find the complete set of
quasi-cliques, nor address mining multiple graphs.

To a more general extent, graph mining has become an important topic in
data mining. For example, mining frequent substructures and subgraph pat-
terns from many graphs (that is, a graph database) has been studied intensively
[Bayada et al. 1992; Takahashi et al. 1987; Holder et al. 1994; Inokuchi et al.
2000; Kuramochi and Karypis 2001; Yan and Han 2000, 2003; Wang et al. 2004].
Yan et al. [2004] used frequent graph patterns to index graphs. Frequent graph
pattern mining in those previous studies focuses on finding the common em-
bedded subgraphs that appear in many graphs, which is very different from
the problem of mining cross-graph quasi-cliques investigated in this study. For
a cross-graph quasi-clique, the induced graphs on the clique can be very dif-
ferent from graph to graph. Therefore, those frequent graph pattern mining
algorithms cannot be extended to mine cross-graph quasi-cliques.

In addition to frequent graph pattern mining, Palmer et al. [2002] developed
a fast and scalable tool ANF to answer various complex analytical queries from
massive graphs that may not be able to fit into main memory. Faloutsos et al.
[2004] investigated the problem of fast discovery of connection subgraphs which
nicely capture the relationship between pairs of nodes in large social networks
graphs. Jeh and Widom [2004] proposed the problem of mining the space of
graph properties.

Besides graph mining, graph-based algorithms are applied to cluster large
data sets. A data set can be modeled as a graph, and the problem of clustering
can be converted to some traditional graph problems, such as finding (quasi-)
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cliques or minimum cut in the graph. For example, the spectral clustering
approach [Ding et al. 2001] can be viewed as finding the relaxed optimal
normalized cuts in a weighted graph. A spectral clustering algorithm was pre-
sented in Ng et al. [2001] using k eigenvectors of the adjacency matrix simul-
taneously.

As another frontier of data mining research, mining from multiple sources
has received more and more attention. [Dzeroski and Raedt 2003] is a collection
of good examples of techniques and applications of mining multiple relational
tables.

On the application side, recent technical advances have enabled collections
of many different types of biological data at a genome-wide scale, such as DNA
and protein sequences, gene expression measurements, and protein-protein
interactions. Various clustering approaches, including the graph-based algo-
rithms, have been developed to explore interesting patterns in those data sets.
For example, Hartuv and Shamir [2000] proposed an algorithm HCS to find
groups of genes that have similar expression patterns. HCS recursively splits
the weighted gene graph G into a set of highly connected components along
the minimum cut. Each highly connected component is considered as a gene
cluster. Motivated by HCS, Shamir and Sharan [2000] developed an algorithm
CLICK. Ben-dor et al. [1999] presented a heuristic algorithm CAST to itera-
tively identify maximal cliques once at a time. Xu et al. [2002] generated a
Minimum Spanning Tree (MST) from the weighted gene graph G. By remov-
ing (K − 1) edges from the generated MST, the data set is partitioned into
K clusters. Moreover, Enright et al. [2002] developed TRIBE-MCL based on
MCL [Dongen 2000], a graph-based algorithm using flow simulation, to effi-
ciently detect protein families from large protein sequence databases. Bu et al.
[2003] used the spectral clustering method [Ng et al. 2001] to analyze the topo-
logical structure in the protein interaction graphs. Moreover, Bader and Hogue
[2003] proposed a heuristic approach, MCODE, based on the concept of scale-
free networks [Barabási and Albert 1999] to find molecular complexes in large
protein interaction graphs.

Recently, joint mining of multiple biological data sets has received intense
interest. As a pioneer work, Segal et al. [2003] proposed a unified probabilistic
model to learn the pathways from gene expression data and protein interaction
data. However, their method requires the users to input the number of pathways
that is usually unknown in advance.

3. MODEL AND PROBLEM DEFINITION

In this section, we propose a general model for mining frequent cross-graph
quasi-cliques and show the complexity of the problem.

3.1 Quasi-Complete Graph

In this paper, we consider simple graphs only, that is, the graphs without self-
loops or multiedges. Moreover, each vertex in a graph has a unique label. When
mining multiple graphs, we associate vertices across graphs through surjective
mappings.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 16, Publication date: January 2009.



Mining Frequent Cross-Graph Quasi-Cliques • 16:9

Fig. 4. A graph and an induced subgraph.

For graph G, let V (G) and E(G) denote the sets of vertices and edges of
G, respectively. For vertices u, v ∈ V (G), let d (u, v) be the number of edges
in the shortest path between u and v. For a vertex u ∈ V (G), N (u) is the
set of neighbors of u, that is, N (u) = {v|(u, v) ∈ E(G)}. Moreover, we define
Nk(u) = {v | d (u, v) ≤ k} for (k ≥ 1). Clearly, N (|V (G)|−1)(u) is the set of vertices
that are connected to u. We also denote this set by N ∗(u).

In graph G, let U ⊆ V (G) be a subset of vertices. The subgraph induced on
U , denoted by G(U ), is the subgraph of G whose vertex-set is U and whose
edge-set consists of all the edges in G that have both endpoints in U , that is,
G(U ) = (U, EU ), where EU = {(u, v)|(u, v) ∈ E(G) ∧ u, v ∈ U }.

A complete graph is a graph such that every pair of vertices is joined by an
edge. In a graph G, a subset of vertices S ⊆ V (G) is a clique if the subgraph
induced on S, that is, G(S), is a complete graph, and no proper superset of
S has this property. Please note that, there can be more than one clique in a
graph, and the cliques may not be exclusive. That is, two cliques may share
some common vertices.

Definition 1 (Quasi-Complete Qraph and Quasi-Clique). A graph G is a γ -
quasi-complete graph (0 < γ ≤ 1) if every vertex in the graph has a degree at
least γ · (|V (G)| − 1).

In a graph G, a subset of vertices S ⊆ V (G) is a γ -quasi-clique (0 < γ ≤ 1) if
G(S) is a γ -quasi-complete graph, and no proper superset of S has this property.

Clearly, a 1-quasi-complete graph is a complete graph, and a 1-quasi-clique
is a clique. Complete graphs have the following property.

PROPERTY 1 (ANTI-MONOTONICITY OF COMPLETE QRAPHS). In a graph G, let
S ⊆ V (G). If G(S) is a complete graph, then, for any subset S′ ⊂ S, G(S) is
also a complete graph.

In general, the anti-monotonicity does not hold for quasi-complete graphs.
That is, for a γ -quasi-complete graph G (0 < γ < 1), G(S) may not be a γ -quasi-
complete graph for an S ⊂ V (G).

Example 4 (Quasi-Complete Qraph). Consider graph G in Figure 4. It is a
0.8-quasi-complete graph, since every vertex has a degree of 4 = (6 − 1) × 0.8.

Interestingly, a subgraph induced on any subset of 5 vertices is not a 0.8-
quasi-complete graph. As an example, the subgraph induced on {a, b, c, d , e} is
also shown in Figure 4. Vertices a, c, d and e in the induced subgraph have a
degree of 3 < (5 − 1) × 0.8 = 3.2.
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Fig. 5. The cases where 1
2

> γ ≥ 2
N−1

.

For γ -quasi-complete graphs, the parameter γ controls the compactness of
the graph. That is, with a larger γ , each vertex connects to more other vertices
and thus the graph is more compact. One measure of the compactness of a
graph is the diameter. The diameter of G, denoted by diam(G), is defined as
diam(G) = maxu,v∈V (G){d (u, v)}. It is interesting to examine the relationship
between diameter of a γ -quasi-complete graph and γ .

THEOREM 1 (DIAMETER OF QUASI-COMPLETE GRAPH). Let G be a γ -quasi-
complete graph such that N = |V (G)| > 1.

diam(G)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

= 1 if 1 ≥ γ > N−2
N−1

≤ 2 if N−2
N−1

≥ γ ≥ 1
2

≤ 3� N
�γ (N−1)�+1

� − 3 if 1
2

> γ > 1
N−1

and N mod (�γ (N − 1)� + 1) = 0

≤ 3� N
�γ (N−1)�+1

� − 2 if 1
2

> γ > 1
N−1

and N mod (�γ (N − 1)� + 1) = 1

≤ 3� N
�γ (N−1)�+1

� − 1 if 1
2

> γ > 1
N−1

and N mod (�γ (N − 1)� + 1) ≥ 2

≤ N − 1 if 1
N−1

≥ γ > 0.

PROOF. When 1 ≥ γ > N−2
N−1

, the degree of each vertex is greater than (N −2),
and hence must be (N − 1). Thus, G is a complete graph and diam(G) = 1.

When N−1
N−2

≥ γ ≥ 1
2
, for any vertices u, v ∈ V (G), |{u, v} ∪ N (u) ∪ N (v)| ≥ N .

Thus, diam(G) ≤ 2.
When 1

2
> γ > 1

N−1
, the situations are complicated. Consider vertices u, v ∈

V (G) such that the shortest path between u and v has length l = diam(G).
V (G) can be partitioned into (l + 1) exclusive groups S1, . . . , Sl+1: a vertex
w ∈ Si (1 ≤ i ≤ (l + 1)) if and only if d (u, w) = (i − 1). Trivially, d (u, u) = 0.

Clearly, ∪1≤i≤(l+1)Si = V (G), otherwise, diam(G) > l . A critical fact is that,
for any vertex w ∈ Si (1 ≤ i ≤ (l + 1)), N (w) ⊆ Si−1 ∪ Si ∪ Si+1. That means

|Si−1 ∪ Si ∪ Si+1| = |Si−1| + |Si| + |Si+1| ≥ deg(w) + 1 ≥ γ (N − 1) + 1.

Moreover, we have |S1| = 1, |S2| = γ (N − 1), and

|Sl | + |Sl+1| ≥ γ (N − 1) + 1.

Otherwise, there exists at least one vertex v such that deg(v) < γ (N − 1). The
inequations in the theorem follow with the above inequations.

When 1
N−1

≥ γ > 0, some vertices may have degree 1. Since G is a γ -quasi-
complete graph, G must be connected. Therefore, in the worst case, the graph
can be a path, and thus diam(G) ≤ (N − 1).

The bounds can be shown realizable. For example, Figure 5 shows three cases
that the bounds are realized for 1

2
> γ ≥ 2

n−1
.
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Fig. 6. The upper bound of the diameter of G decreases monotonically when the value of γ increases

(|V (G)| = 100).

Theorem 1 gives a tight upper bound on the diameter of a quasi-complete
graph G. From the formula, we can see that the upper bound is related to
two variables, γ and N . The following three corollaries further disclose the
relationship between the upper bound, γ , and N .

The first corollary follows with Theorem 1 immediately.

COROLLARY 1. The realizable upper bound of diameter given in Theorem 1
is monotonically decreasing with respect to γ . That is, for 0 < γ1 < γ2 ≤ 1 and
any γ2-quasi-complete graph G2 of N vertices, there exists a γ1-quasi-complete
graph G1 of N vertices such that diam(G1) ≥ diam(G2).

Intuitively, Corollary 1 says that the higher the γ value, the more compact
the graph. Figure 6 shows the trend of diameter on γ , where the number of
vertices is set to 100. We can observe the following.

—When γ is greater than or equal to 0.5, the γ -quasi-complete graph is compact,
that is, the diameter is very small, no more than 2.

—When γ is small, the upper bound of the diameter of the quasi-complete graph
is approximately in portion to 1

γ
, which is intuitive.

—When γ is small, the quasi-complete graph can be a series of small clusters.
When γ = 1

N−1
, in the worst case, the quasi-complete graph can be a path of

N vertices.

Based on the above analysis, a user may often be interested in quasi-complete
graphs with a reasonably large γ value, such as γ ≈ 0.5 or larger. In such cases,
the diameter is bounded by a small integer.

COROLLARY 2. The realizable upper bound of diameter given by Theorem 1
is monotonically increasing with respect to the number of vertices when γ ≥
0.5. That is, for any γ -quasi-complete graph G where γ ≥ 0.5, there exists
a γ -quasi-complete graph G ′ such that |V (G ′)| > |V (G)| and diam(G ′) ≥
diam(G).
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PROOF. Consider 1 < N1 ≤ N2. Let d1 and d2 be the tight upper bound of γ -
quasi-complete graphs of N1 and N2 vertices, respectively. Clearly, N1−2

N1−1
≤ N2−2

N2−1
.

Then, γ must be in one of the following three cases.

—When N2−2
N2−1

< γ ≤ 1, d1 = d2 = 1;

—When N1−2
N1−1

< γ ≤ N2−2
N2−1

, d1 = 1 and d2 = 2;

—When 1
2

≤ γ ≤ N1−2
N1−1

, d1 = d2 = 2.

In each of the three cases, d1 ≤ d2 holds as long as N1 ≤ N2.

Corollary 2 indicates that when 1
2

≤ γ ≤ 1, the upper bound of the diameter
of a γ -quasi-complete graph does not decrease if we add more vertices to the
graph. However, when 0 < γ < 1

2
, this property may not hold. For example,

according to Theorem 1, the realizable upper-bound of the diameter of 0.1-
quasi-complete graphs of 31 vertices is 20, and the realizable upper-bound of
the diameter of 0.1-quasi-complete graphs of 32 vertices is 17, which is smaller.

Intuitively, given a fixed γ , the diameter of a quasi-complete graph should
increase when we add more vertices into the graph. However, when the number
of vertices N increases, γ (N − 1) also increases. This means each vertex is
required to be connected to more vertices. Consequently, the graph may become
more compact, that is, the diameter of the graph may decrease.

Theorem 1 can be applied to induced subgraphs of γ -quasi-cliques.

COROLLARY 3. In a graph G, let S ⊆ V (G). If C ⊆ S is a γ -quasi-clique of
G, then

diam(G(C)) ≤
{

uγ ,|S| if 1
2

≤ γ ≤ 1

max1<m≤|S|{uγ ,m} if 0 < γ < 1
2

where uγ ,m is the realizable upper bound of diameter of γ -quasi-complete graphs
of m vertices determined by Theorem 1.

PROOF. When 1
2

≤ γ ≤ 1, from Corollary 2, the upper bound of the diameter
is monotonic with respect to the number of vertices. Since |C| ≤ |S|, we have

diam(G(C)) ≤ uγ ,|C| ≤ uγ ,|S|.

When 0 < γ < 1
2
, the upper bound of diameter is not monotonic. Thus, we have

diam(G(C)) ≤ max
1<m≤|S|

{uγ ,m}.

3.2 Frequent Cross-Graph Quasi-Cliques

Intuitively, a frequent cross-graph quasi-clique is a maximal set of vertices
whose induced subgraphs are frequent quasi-complete subgraphs in the given
graphs.

Definition 2 (Frequent Cross-Graph Quasi-Clique). Let U be a set of ver-
tices and G1, . . . , Gn be n graphs such that V (Gi) = U (1 ≤ i ≤ n). For param-
eters γ1, . . . , γn (0 < γi ≤ 1), a subset of vertices S ⊆ U is supported by graph
Gi if Gi(S) is a γi-quasi-complete graph. Given a minimum support threshold
min sup (0 < min sup ≤ 1), S is called a frequent cross-graph quasi-clique
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Fig. 7. A frequent cross-graph quasi-clique may not be a quasi-clique in an individual graph due

to the maximality requirement.

(fCGQC for short) if it is supported by at least (n · min sup) graphs and there
is no proper superset of S has the property.

When min sup = 1, the induced subgraph Gi(S) (1 ≤ i ≤ n) of a frequent
cross-graph quasi-clique S is a γi-quasi-complete subgraph for every given
graph Gi. In this case, S is called a cross-all-graphs quasi-clique (CAGQC for
short). Clearly, in Definition 2, when n = 1 and min sup = 1, a frequent cross-
graph quasi-clique is simply a quasi-clique in a single graph. Therefore, the
concept of frequent cross-graph quasi-clique is a generalization of quasi-clique
crossing multiple graphs. However, when n > 1, due to the maximality require-
ment, a frequent cross-graph quasi-clique may not be a quasi-clique in any
graph even when min sup = 1.

Example 5 (Maximality). Consider graphs G1 and G2 in Figure 7. Suppose
γ1 = γ2 = 0.5 and min sup = 1. Then, S = {a, b, d } is a frequent cross-graph
quasi-clique. However, S is not a 0.5-quasi-clique in either G1 or G2, since S
is a proper subset of {a, b, d , e} which is a 0.5-quasi-clique in G1, and is also a
proper subset of {a, b, c, d } which is a 0.5-quasi-clique in G2.

A frequent cross-graph quasi-clique can be insignificant in data analysis if
it contains a very small number of vertices. For example, a single vertex itself
is a (trivial) quasi-complete graph for any γ . To avoid such triviality, a user
may specify a minimum number of vertices in the frequent cross-graph quasi-
cliques. Only cross-graph quasi-cliques large enough should be returned.

Problem Definition (Mining Frequent Cross-Graph Quasi-Cliques). For a given
set of graphs G1, . . . , Gn on a set of vertices U (that is, V (G1) = · · · = V (Gn) =
U ), parameters γ1, . . . , γn (0 < γi ≤ 1), a minimum support threshold min sup,
and a minimum size threshold min size, the problem of mining frequent cross-
graph quasi-cliques is to find the complete set of frequent cross-graph quasi-
cliques that each has at least min size vertices.

In some cases, such as the joint mining of gene expression data and protein
interaction data (Example 1), the sets of vertices in different graphs are dif-
ferent, and there exist mappings between sets of vertices in different graphs.
Our basic model of mining frequent cross-graph quasi-cliques can be extended
to handle such cases.

Definition 3 (Frequent Cross-Qraph Quasi-Clique with Mapping). Let U
be a set of objets, G1, . . . , Gn be n graphs, and f1, . . . , fn be n functions such
that fi (1 ≤ i ≤ n) is from U to V (Gi). For parameters γ1, . . . , γn (0 < γi ≤ 1) and
a minimum support threshold min sup (0 < min sup ≤ 1), a subset of objects
S ⊆ U is called a frequent cross-graph quasi-clique with mapping (fCGQC(M)
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for short) if there exist at least k = �n · min sup� graphs G j1
, . . . , G jk such that

G jl ( f jl (S)) (1 ≤ l ≤ k) is a γ jl -quasi-complete graph, and there is no proper
superset of S has this property, where f j (S) = { f j (u)|u ∈ S}.

Problem Definition (Mining Frequent Cross-Graph Quasi-Cliques with Map-
ping). For a given set of graphs G1, . . . , Gn and functions f1, . . . , fn such
that fi : U → V (Gi) (1 ≤ i ≤ n) where U is a set of common vertices,
parameters γ1, . . . , γn (0 < γi ≤ 1), a minimum support threshold min sup
(0 < min sup ≤ 1), and a minimum size threshold min size (min size ≥
1), the problem of mining frequent cross-graph quasi-cliques with mapping
is to find the complete set of fCGQC(M)s that each has at least min size
vertices.

3.3 Complexity Analysis

To understand the complexity of the problem of mining frequent cross-graph
quasi-cliques, we first consider the complexity of counting the number of fre-
quent cross-graph quasi-cliques.

THEOREM 4 (COMPLEXITY). The problem of counting the number of frequent
cross-graph quasi-cliques is #P-Complete.

PROOF. We prove by restriction. That is, we show that the problem of count-
ing the number of frequent cross-graph quasi-cliques contains a #P-Complete
problem as a special case. In fact, the problem of counting the number of cliques
from one graph is in #P-Complete [Garey and Johnson 1979], and is a special
case of the problem of counting the number of cross-graph quasi-cliques where
n = 1, γ = 1, and min sup = 1.

Since counting the number of frequent cross-graph quasi-cliques is #P-
Complete, the problem of mining (that is, enumerating) the complete set of
frequent cross-graph quasi-cliques is NP-hard.

4. MINING CROSS-ALL-GRAPHS QUASI-CLIQUES

In this section, we discuss mining cross-all-graphs quasi-cliques, a special case
of mining frequent cross-graph quasi-cliques. We present two algorithms. The
first algorithm is rudimentary. The second algorithm, Crochet, exploits several
effective techniques to achieve efficient mining. These techniques will be ap-
plied or extended in the next section for mining general frequent cross-graph
quasi-cliques.

To make our presentation clear and easy to follow, we assume all given graphs
G1, . . . , Gn share a common set of vertices, that is, V (G1) = · · · = V (Gn) = U .
In this basic case, the mapping function fi (1 ≤ i ≤ n) for each graph Gi is the
identity function f (u) = u (u ∈ U ). The case of non-identity functions can be
easily extended from the basic case.

4.1 A Rudimentary Algorithm

As illustrated in Examples 4 and 5, a cross-all-graphs quasi-clique may not be a
quasi-clique in any graph, and an induced subgraph on a subset of a quasi-clique
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Algorithm 1. The rudimentary algorithm.

Input: graphs G1, . . . , Gn on vertices U ; γ1, . . . , γn; minimum size threshold min size;

Output: the complete set of cross-all-graphs quasi-cliques;

Method:
// Phase 1: mining G1

1: in G1, compute the complete set of γ1-quasi-complete subgraphs H that have at

least min size vertices;

// Phase 2: joint mining

2: for each γ1-quasi-complete subgraph H, in the |V (H)| descending order

3: if H has a proper superset as a cross-graph quasi-clique then continue;

4: let cross-graph-quasi-clique = true;

5: for i = 2 to n
6: if Gi(V (H)) is not a γi-quasi-complete graph

then cross-graph-quasi-clique = false, break;

end-for

7: if (cross-graph-quasi-clique == true)

then output V (H) as a cross-graph quasi-clique;

end-for

may not even be a quasi-complete graph. Hence, we cannot find the quasi-
cliques in each graph and take the intersection. Instead, we have to take a joint
mining approach.

By definition, a cross-all-graphs quasi-clique must be a quasi-complete graph
in every graph by the mapping. Thus, a rudimentary algorithm works in two
steps: mining G1 and jointly mining, as shown in Algorithm 1.

In the first step, we mine the complete set of γ1-quasi-complete graphs in G1

have at least min size vertices. In other words, in graph G1, we find the subsets
of vertices S such that the subgraph induced on S is a γ1-quasi-complete graph.

In the step of joint mining, for each subset of vertices S found in the first step,
we check whether Gi(S) is still a γi-quasi-complete graph for all 2 ≤ i ≤ n. Only
maximal subsets passing the tests are output as the cross-graph quasi-cliques.

Please note that the rudimentary algorithm is not naı̈ve. It never searches
the complete set of quasi-complete subgraphs in all the graphs. Instead, to
prune the search space, it exploits the fact that a cross-all-graphs quasi-clique
must be a maximal subset having the property .

Although the correctness of the rudimentary algorithm is straightforward,
the rudimentary algorithm may not be efficient in mining large graphs due to
the following two reasons.

First, the rudimentary algorithm still has to compute the complete set of
quasi-complete subgraphs in G1 that serve as the base in the joint mining
in the second step. If G1 is large and dense (that is, it has many edges),
then there can be many quasi-complete subgraphs. Computing all of them
can be expensive. Can we compute as few quasi-complete subgraphs in G1 as
possible?

Second, the rudimentary algorithm mines the whole graphs. If the graphs
are large, it can be costly. A careful check may find that, some vertices and
edges in the graphs, such as the vertices with low degrees, cannot be a part

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 16, Publication date: January 2009.



16:16 • D. Jiang and J. Pei

Fig. 8. A set enumeration tree.

of a cross-graph quasi-clique or the induced subgraphs. Such parts should be
pruned as early as possible so that the graphs can be reduced. Mining smaller
graphs can definitely improve the efficiency. In order to reduce the graphs, we
may have to consider multiple graphs at the very beginning. Can we reduce the
graphs aggressively to speed up the mining?

In summary, the major drawback of the rudimentary algorithm is that it con-
ducts the joint mining late. Motivated by the above observations, in Section 4.2,
we develop algorithm Crochet, which exploits “aggressive” joint mining of mul-
tiple graphs.

4.2 Algorithm Crochet

4.2.1 General Idea and Framework. In order to efficiently mine the com-
plete set of cross-all-graphs quasi-cliques, we have to address two issues as
follows.

—Correctness and completeness. That is, how can we develop a systematic way
to find all the cross-all-graphs quasi-cliques without duplicates?

—Efficiency. That is, how can we find rules to prune futile search subspaces
(that is, the subspaces do not contain any cross-all-graphs quasi-cliques),
and find heuristics to speed up the mining?

To address the correctness and completeness issue, we compute the complete
set of cross-all-graphs quasi-cliques by enumerating the subsets of vertices sys-
tematically and pruning the unfruitful subsets.

Given a set S of m elements and a total order ≺ on S, the complete set of var-
ious subsets of S (that is, the power set 2S) can be enumerated systematically
using a set enumeration tree [Rymon 1992]. For example, the set enumera-
tion tree for set {a, b, c, d } with respect to order a ≺ b ≺ c ≺ d is shown in
Figure 8.

In a set enumeration tree of vertices, each node is a subset of vertices. Some
nodes are cross-all-graphs quasi-cliques. Algorithm Crochet conducts a depth-
first search on the set enumeration tree of vertices to find the cross-graph quasi-
cliques, which can identify the complete set of answers.

To address the concern on efficiency, Crochet employs several techniques, as
follows.
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Algorithm 2. The framework of algorithm Crochet.

Framework of Crochet
1: conduct a depth-first search on the set enumeration tree of vertices, in the search

of each node, do

2: conduct graph reduction if possible;

3: generate the children of the current node and prune the futile children;

4: dynamically order the surviving children and search them in depth-first manner;

—Aggressively reducing graphs. Crochet removes edges and vertices and even
combines graphs as long as the correct mining results are retained. By
reducing graphs, Crochet can work on smaller graphs and thus can mine
cross-all-graphs quasi-cliques faster.

—Carefully choosing the order of search. In the depth-first search of a set enu-
meration tree, a node in the tree may have multiple children. The order that
we use to search the children may have a substantial effect on the efficiency.
Crochet uses an effective heuristic to dynamically determine the order of chil-
dren based on the information from multiple graphs and accomplishes high
performance.

—Sharply pruning futile subtrees. If a graph has many vertices, the set enu-
meration tree can be huge. Crochet actively detects whether a subtree has the
potential to have some cross-all-graphs cross-cliques before it really searches
the nodes in the subtree. If a subtree is futile, that is, it does not contain any
node of cross-all-graphs quasi-cliques, then the subtree can be pruned early.

The framework of Crochet is shown in Algorithm 2. In the following sections,
we will present the technical details.

4.2.2 Reducing Graphs

4.2.2.1. Reducing Vertices. Some vertices in the graphs can be removed if
their degrees are too small or they are not connected to a sufficient number of
other vertices under the current search to form a quasi-complete graph.

LEMMA 4.1 (REDUCING VERTICES). Given a set of graphs G1, . . . , Gn on vertices
U, a vertex u ∈ U can pruned if there exists any graph Gi (1 ≤ i ≤ n) such that

degi(u) < γi · (min size − 1)

or ∣∣Nki
i (u)

∣∣ < (min size − 1),

where degi(u) is the degree of u in Gi, ki is the upper bound of diameter deter-
mined by Corollary 3 (let S = U), and Nki

i is the set of neighbors of u within ki

steps in graph Gi. Moreover, the edges having u as an endpoint can be removed
from every graph Gi with all cross-all-graphs quasi-cliques retained.

PROOF. If degi(u) < γi · (min size − 1), u fails the requirement on the min-
imum degree in a quasi-complete graph in Gi. If |Nki

i (u)| < (min size − 1), u
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cannot be a vertex in any subgraph which has a diameter ki and also has at
least min size vertices. Hence, in either of the two cases, u cannot be a vertex
in any quasi-complete subgraph in Gi. That means u cannot be a vertex in
any cross-all-graphs quasi-clique in graphs G1, . . . , Gn. Thus, u as well as the
edges having u as an endpoint can be removed from each individual graph Gi

(1 ≤ i ≤ n) and the mining results will not be affected.

Lemma 4.1 can be applied iteratively to reduce the graphs, until no vertex
and edge can be removed. The checking of degrees is simple. However, dynam-
ically maintaining Nki

i (u) for every vertex u in each graph Gi can be costly if k
is large. Fortunately, as shown in Theorem 1, the upper bound of the diameter
of a γ -quasi-complete graph is pretty small if γ is not too small. Moreover, as
discussed before, a user is often interested in only the cross-graph quasi-cliques
with respect to reasonably large γ values, for example, γ ≈ 0.5 or larger. In our
experiments, when γ ≥ 0.5, Lemma 4.1 often improves the efficiency by a factor
of at least 20%.

4.2.2.2. Reducing Edges. Among graphs G1, . . . , Gn, if there is a γi = 1
(1 ≤ i ≤ n), then we can remove some edges in the other graph according to the
distribution of edges in Gi.

LEMMA 4.2 (REDUCING EDGES). When γi = 1, any edge (u, v) ∈ E(G j ) (1 ≤
j �= i ≤ n) can be removed if (u, v) �∈ E(Gi), and all cross-all-graphs quasi-
cliques from G1, . . . , Gn remain intact.

PROOF. Since γi = 1, if (u, v) �∈ E(Gi), u and v cannot be in a complete
subgraph in Gi, and thus cannot be in any cross-all-graphs quasi-clique in
G1, . . . , Gn. Removing (u, v) from E(G j ) (1 ≤ j �= i ≤ n) will not affect any
cross-all-graphs quasi-cliques.

We can apply Lemma 4.2 to reduce the graphs by scanning the edges of the
graphs only once, if their edges are sorted consistently.

4.2.2.3. Combining Graphs. In the case γi1 = · · · = γik = 1 (1 ≤ i1 < · · · <

ik ≤ n), we can combine the k graphs Gi1 to Gik into one graph G ′ as follows.
The vertices in G ′ remain the set of U ; (u, v) is an edge in G ′ if and only if (u, v)
is an edge in all graphs Gi1 to Gik , that is, E(G ′) = E(Gi1 ) ∩ . . . ∩ E(Gik ). Then,
the problem of mining cross-all-graphs quasi-cliques from the n graphs can be
reduced to mining cross-all-graphs quasi-cliques in the combined graph G ′ and
the remaining graphs.

LEMMA 4.3 (COMBINING GRAPHS). When γi1 = · · · = γik = 1 (1 ≤ i1 < · · · <

ik ≤ n), let G ′ be a combined graph such that V (G ′) = U and E(G ′) = E(Gi1 ) ∩
. . . ∩ E(Gik ). A set of vertices S is a cross-all-graphs quasi-clique in G1, . . . , Gn

if and only if S is a cross-all-graphs quasi-clique in G ′ and the graphs Gi

(γi �= 1).

PROOF. We can apply Lemma 4.2 on each graph Gij (1 ≤ j ≤ k) such
that γi j = 1. After the pruning, each graph Gij is identical to the combined
graph G ′. Therefore, S is supported by Gij if and only if it is supported by G ′.
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Hence, S is a cross-all-graphs quasi-clique in G1, . . . , Gn is equivalent to S is a
cross-all-graphs quasi-clique in G ′ and the graphs Gi (γi �= 1).

4.2.3 Searching and Pruning. As discussed in Section 4.2.1, Crochet con-
ducts a depth-first search on a set enumeration tree of vertices. If a graph has
many vertices, the set enumeration tree can be huge. Therefore, one critical
part of Crochet is to prune the futile subtrees as early as possible.

Basically, three issues have to be addressed.

(1) At a node X in the set enumeration tree, what are the vertices u ∈ (U − X )
that should be used to extend X to its children and may lead to cross-all-
graphs quasi-cliques?

(2) In what situation is a subtree rooted at the current node in the set enu-
meration tree futile (that is, there is no cross-all-graphs quasi-clique in the
subtree) and thus can be pruned?

(3) A node in the set enumeration tree may have multiple children. In which
order should the children be searched so that the efficiency is likely high?

We answer the above three questions one by one.

4.2.3.1. Generating Children. Let us consider a node X ⊆ U in the set
enumeration tree such that X �= ∅. The following lemma indicates the set of
vertices which can be used to generate the children of X that may lead to some
cross-all-graphs quasi-cliques.

LEMMA 4.4 (CANDIDATE VERTICES). Let X �= ∅ be a subset of vertices. If C ⊃ X
is a cross-all-graphs quasi-clique, then for every vertex u ∈ (C − X ),

u ∈
⋂

v∈X ,1≤i≤n

Nki
Gi

(v),

where ki is the upper bound of diameter of complete γi-quasi-complete subgraph
in Gi given by Corollary 3 (let S = U).

PROOF. Following Corollary 3, for any u ∈ (C − X ) and v ∈ X , d (u, v) in Gi

is bounded by the upper bound of the diameter. Thus, we have the lemma.

For a node X in the set enumeration tree, Lemma 4.4 gives the initial set of
candidate vertices. Moreover, as required by the set enumeration tree, only the
vertices behind the last vertex in X in the order of vertices should be taken.

4.2.3.2. Pruning Futile Children and Subtrees. The initial set of candidate
vertices can be reduced further. The central idea is as follows. Let Y be the
initial set of candidate vertices given by Lemma 4.4. If there is no cross-all-
graphs quasi-clique in G1(X ∪ Y ), . . . , Gn(X ∪ Y ), then X cannot be in any
cross-all-graphs quasi-cliques. In other words, the vertices in Y should not be
used to generate children of X since they are futile.

LEMMA 4.5 (PROJECTION). Let X ⊂ U be a node in the set enumeration tree
and Y be the initial set of candidate vertices given by Lemma 4.4. For any C such
that X ⊂ C ⊆ (X ∪Y ), C is a cross-all-graphs quasi-clique in graphs G1, . . . , Gn

if and only if C is a cross-all-graphs quasi-clique in G1(X ∪ Y ), . . . , Gn(X ∪ Y ).
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PROOF. The necessity is straightforward. We show the sufficiency by contra-
diction.

Suppose C is a cross-all-graphs quasi-clique in G1(X ∪Y ), . . . , Gn(X ∪Y ), but
not in G1, . . . , Gn. Thus, there must be a C′ ⊃ C such that C′ is a cross-all-graphs
quasi-clique in G1, . . . , Gn. However, according to the construction of X and
Y , X ⊂ C′ ⊆ (X ∪ Y ). Thus, C′ must be a cross-all-graphs quasi-clique in
G1(X ∪ Y ), . . . , Gn(X ∪ Y ), which leads to a contradiction.

Gi(X ∪ Y ) is called the projection of Gi on X . Based on Lemma 4.5, we can
recursively apply the vertex reduction (Lemma 4.1) to prune the projections. We
denote the set of vertices in the projections after the pruning by P (X ). Clearly,
in the set enumeration tree, only the children of X in the form of X ∪ {u}
u ∈ (P (X ) − X ) should be considered.

Moreover, in some situations, the whole subtree rooted at X cannot contain
any cross-all-graphs quasi-cliques. The following lemma identifies three cases.

LEMMA 4.6 (PRUNING RULES). Let X be a node in the set enumeration tree.
The subtree rooted at X does not contain any cross-all-graphs quasi-clique if (1)
|P (X )| < min size; (2) X �⊆ P (X ); or (3) P (X ) ⊂ C where C is a cross-all-graphs
quasi-clique already found.

PROOF. The first pruning rule follows the requirement on the minimum
number of vertices in cross-all-graphs quasi-cliques. That is, if the sets of ver-
tices in the subtree are too small, there is no hope to find significant cross-all-
graphs quasi-clique and thus the subtree can be pruned.

The second rule follows the construction of the set enumeration tree. That is,
some vertex in X can be pruned by edge reduction and vertex reduction. Then,
there is no hope to get cross-all-graphs quasi-cliques from the subtree which
are supersets of X .

The third rule follows the requirement of maximality for cross-all-graphs
quasi-clique. In other words, the cross-all-graphs quasi-cliques containing X
as a subset should be found in different branches of the set enumeration tree
instead of the subtree rooted at X .

If one of the three conditions specified in Lemma 4.6 happens, the subtree
rooted at X can be pruned.

In some cases, we may find that any cross-all-graphs quasi-clique containing
the current node X must also contain another subset of vertices S. In such
situation, we can directly substitute the current node X with (X ∪ S) with-
out enumerating the intermediate nodes between X and (X ∪ S) in the set
enumeration tree.

LEMMA 4.7 (PARENT EQUIVALENCE SUBSTITUTION). Let X be a node in a set enu-
meration tree.

—If there exists a graph Gi and an edge (u, v) ∈ E(Gi) (1 ≤ i ≤ n) such that
u ∈ X , v ∈ (P (X )− X ), and the degree of u in the induced subgraph Gi(P (X ))
is γi · (max(|X |, min size) − 1), then node X can be replaced by X ′ = X ∪ {v}
and all cross-all-graphs quasi-cliques are retained;
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—If the induced subgraph of P (X ) is a quasi-complete graph for every graph
Gi, X can be replaced by P (X ) and then reported as a cross-all-graphs quasi-
clique.

PROOF. For the first case, if the subtree of node X contains any cross-all-
graphs quasi-clique S, then |S| ≥ max(|X |, min size). Since Gi(S) must be a γi-
quasi-complete graph, the degree of any vertex u ∈ X in Gi(S) must be greater
than or equal to γi · (max(|X |, min size) − 1). According to the construction of
P (X ), we have S ⊆ P (X ). Therefore, if the degree of any vertex u ∈ X in
Gi(P (X )) is exactly γi · (max(|X |, min size) − 1), then all the neighbors of u in
Gi(P (X )) must belong to S. In other words, any cross-all-graphs quasi-clique
S in the subtree of X must contain all the neighbors of u in Gi(P (X )). If a
neighbor v of u in Gi(P (X )) does not belong to X , we can directly extend X
with X ∪ {v}.

For the second case, if the induced subgraph of P (X ) is a quasi-complete
graph for every graph Gi, and X is not pruned by Lemma 4.6, then P (X ) must
be a cross-all-graphs quasi-clique. Therefore, we can stop the enumeration and
report P (X ) as a cross-all-graphs quasi-clique.

4.2.3.3. Ordering Children and Identifying Cross-Graph Quasi-Cliques. In-
tuitively, a vertex with a high degree is likely a member of a quasi-complete
subgraph. Heuristically, we can use θ (v) = ldeg(v)

γ
to measure how well a vertex

satisfies the γ -quasi-complete graph requirement, where ldeg(v) is the degree
of v in the induced graph on the current node X in the set enumeration tree. The
vertices can be sorted in the θ (v) descending order. However, a vertex may have
different θ values in different graphs. An observation is that how well a vertex
is connected to the others crossing the graphs is bounded by the minimum θ (v)
value in the graphs. Therefore, we have the following heuristic.

HEURISTIC 1 (ORDERING VERTICES). Let θmin(v) = minG1,...,Gn{θ (v)}. The chil-
dren vertices of a node in the set enumeration tree can be extended in the θmin(v)
descending order.

The experimental results (see Section 4.2 of [Pei 2005]) showed that the
heuristic accomplishes good performance in practice. On the other hand, since
it is a heuristic, there is no theoretical guarantee that the rule gives optimal
efficiency.

After searching the subtree rooted at X , we can determine that X is a cross-
all-graphs quasi-clique if the induced graph of X is a quasi-complete graph
for every graph Gi (1 ≤ i ≤ n) and there is no cross-graph quasi-clique in the
subtree of X .

LEMMA 4.8 (DETERMINATION OF CROSS-ALL-QRAPHS QUASI-CLIQUE). Let X be a
node in the set enumeration tree. X is a cross-all-graphs quasi-clique if and
only if Gi(X ) is a γi-quasi-complete graph for 1 ≤ i ≤ n and there exists no
cross-graph quasi-clique C such that X ⊂ C ⊆ P (X ).

4.2.4 The Algorithm and an Example. Algorithm 3 shows the algorithm of
Crochet. The correctness of the algorithm is shown in the above discussion.
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Algorithm 3. Algorithm Crochet: mining cross-all-graphs quasi-cliques.

Input: graphs G1, . . . , Gn on vertices U ; γ1, . . . , γn; minimum size threshold min size;

Output: the complete set of cross-all-graphs quasi-cliques;

Method:
1: apply edge reduction (Lemma 4.2), vertex reduction (Lemma 4.1), and combine

graphs (Lemma 4.3) if possible; // graph reduction

2: if all the graphs can be combined

then compute the complete set of cliques in the combined graph; exit;

3: let G1, . . . , Gn denote the reduced graphs;

// depth-first search

4: for each vertex v ∈ U in θmin(v) descending order // Heuristic 1

5: let X = {x}; call recursive-mine(X , G1, . . . , Gn);

end for

Function recursive-mine(X , G1, . . . , Gn)

6: compute P (X ) according to Lemma 4.4; // graph reduction

7: let Gi = Gi(P (X )) (1 ≤ i ≤ n); // Lemma 4.5

8: apply vertex reduction (Lemma 4.1);

9: let G1, . . . , Gn denote the reduced graphs;

10: if at least one condition in Lemma 4.6 holds then return(0);

// depth-first search

11: if the induced subgraph Gi(P (X )) is γi-quasi-complete for every graph Gi

then output P (X ) and return(1); // Lemma 4.7(2)

12: if X can be substituted with X ′ according to Lemma 4.7(1)

then let X = X ′ and goto 7:

13: let unsubsumed= 1;

14: for each vertex v ∈ P (X ) − X , in θmin(v) descending order // Heuristic 1

15: call recursive-mine(X ∪ {v}, G1, . . . , Gn);

16: if the returned value is 1 then unsubsumed= 0;

end for

17: if unsubsumed is 0 then return(1)

else if Gi(X ) is a γi-quasi-complete graph // Lemma 4.8

18: then output X and return(1);

19: else return(0);

THEOREM 3 (CORRECTNESS OF ALGORITHM Crochet). Algorithm Crochet com-
putes the complete set of cross-graph quasi-cliques without duplicate.

We use the following example to demonstrate the execution of algorithm
Crochet.

Example 6 (Algorithm Crochet). Figure 9 shows three graphs as the input
of our example. Suppose γ1 = γ2 = 1, γ3 = 0.5, and min size = 3.

The algorithm first iteratively applies edge reduction, vertex reduction, and
graph combination. In the step of edge reduction, edges (A, E), (C, E), and
(E, G) can be removed from G1 according to Lemma 4.2. Similarly, edges (B, E)
and (E, F ) can be removed from G2. Figure 10 shows the graphs after edge
reduction.
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Fig. 9. The three graphs as the input of an example of Crochet.

Fig. 10. The reduced graphs of Figure 9 after edge reduction.

In the next step, the Crochet algorithm applies vertex reduction to the graphs.
According to Lemma 4.1, vertices D and E can be pruned. Moreover, G1 and G2

can be combined into one graph G12 according to Lemma 4.3. Figure 11 shows
the final output of the graph reduction process.

As discussed in Section 4.2.3, Crochet conducts a depth-first search on a set
enumeration tree of vertices and prunes the futile subtrees as early as possible.
Figure 12 shows the set enumeration tree searched by Crochet for graphs G12

and G3 in Figure 11. For each node on the tree, the vertices of the node and the
candidates are separated by a vertical bar ’|’. A comment is given under a node
if a particular pruning rule is applicable at the node, or the node is reported as a
cross-graph quasi-clique. Please note that with the pruning rules, Crochet only
needs to search a small part of the whole search space, that is, the complete set
enumeration tree.

After the search process of the set enumeration tree, Crochet terminates and
outputs three cross-graph quasi-cliques: {A, B, C}, {A, B, G}, and {B, C, F, G}.

5. MINING FREQUENT CROSS-GRAPH QUASI-CLIQUES

In this section, we extend Crochet to Crochet+ for the general case of mining
frequent cross-graph quasi-cliques, that is, when 0 < min sup ≤ 1. Compared
with mining cross-all-graphs quasi-cliques, mining the general case is more
challenging because we have to handle not only combinations of vertices but
also combinations of graphs. To be specific, to test whether a subset of vertices S
is a cross-all-graphs quasi-clique, we only need to test whether it is supported by
every given graph—if one graph says no, S is not a cross-all-graphs quasi-clique.
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Fig. 11. The final reduced graphs of Figure 9 after the graph reduction process.

Fig. 12. The search and pruning process of Crochet for the reduced input graphs of Figure 11.

However, to test whether S is a general frequent cross-graph quasi-clique, we
have to test whether it is supported by a subset of at least (n · min sup) graphs.
How to conduct the tests efficiently is far from trivial.

The Crochet+ algorithm adopts the framework of the Crochet algorithm
(Algorithm 2). That is, it enumerates the subsets of vertices and prunes fu-
tile branches as much as possible. However, the technical details of Crochet+

are substantially different from those of Crochet.
First, in Crochet, a vertex u can be pruned from the subtree T of node X if

there exists any graph Gi such that no superset of X ∪ {u} in T is supported by
Gi. However, a frequent cross-graph quasi-clique is not necessarily supported by
every graph. Therefore, most graph reduction and pruning techniques, such as
Lemmas 4.1, 4.2, 4.3, and 4.6, cannot be directly applied to Crochet+. Moreover,
we need to reconsider the issue of determining candidate vertices.

Second, unlike cross-all-graphs quasi-cliques, which are invariably sup-
ported by the whole set of given graphs, different frequent cross-graph quasi-
cliques are usually supported by various combinations of graphs. Therefore,
for a node X on the set enumeration tree, we need to record which graphs
are likely to support the nodes in the subtree of X . These graphs are called
candidate graphs of node X .

In the rest of this section, we will discuss how to determine candidate ver-
tices and candidate graphs in the context of searching frequent cross-graph
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quasi-cliques. Moreover, new pruning rules and searching heuristics will be
explored.

5.1 Determining Candidate Vertices

In Crochet, the initial candidate vertices candV for a node X on the set enu-
meration tree is determined by Lemma 4.4. The basic idea of Lemma 4.4 is to
intersect the candidate vertices cand Vi with respect to each individual graph
Gi, where cand Vi can be computed from

⋂
v∈X Nki

Gi
(v) and ki can be derived from

Corollary 3. In other words, if a vertex u does not belong to the candidate vertex
list cand Vi with respect to any individual graph Gi, X ∪ {u} cannot lead to any
cross-all-graphs quasi-clique, and thus u can be pruned from cand V . However,
a frequent cross-graph quasi-clique is not necessarily supported by every graph.
Therefore, a vertex u can be pruned from candV only if it appears in less than
(n·min sup) candidate vertex lists candVi with respect to the individual graphs
Gi.

Based on the above analysis, we can use an idea similar to Lemma 4.4 to de-
termine the initial candidate vertex list cand Vi with respect to each individual
graph Gi. We can then apply Lemma 4.1 to the induced subgraph Gi(X ∪candVi)
to recursively reduce the size of the candidate list. Let Pi(X ) be the subset of
vertices after reduction. If Pi(X ) satisfies any condition specified in Lemma 4.6,
then candVi = null , otherwise, candVi = Pi(X ) − X .

Example 7 (Pruning Candidate Vertices). Suppose we have six graphs
G1, . . . , G6 and nine vertices v1, . . . , v9. At node {v1, v2}, the candidate vertex
list cand Vi with respect to each individual graph Gi is listed in Table I(a). To
facilitate the pruning of unpromising vertices, for each vertex u, we use an in-
verted list, denoted by inv(u), to record the graphs Gi with respect to which u
appears in cand Vi. Table I (b) shows the inverted lists of the vertices. Suppose
min sup = 0.5, v3, v7, and v9 can be pruned since the size of their inverted lists
is smaller than n · min sup = 6 × 0.5 = 3.

After pruning v3, v7, and v9, the candidate vertex lists with respect to indi-
vidual graphs are shown in Table I(c). The whole candidate list cand V for node
X is then the union of all the individual candidate lists. In this example,

candV =
⋃

1≤i≤6

candVi = {v4, v5, v6, v8}.

5.2 Determining Candidate Graphs

In Table I(a), candV4 with respect to graph G4 is null . As described in the
previous subsection, this means that the subtree of node X = {v1, v2} does not
contain any node X ′ whose induced subgraph is a quasi-complete subgraph in
G4. Therefore, when searching the frequent cross-graph quasi-cliques in the
subtree of X , we do not need to consider G4 any more. Based on this idea,
for each node X on the set enumeration tree, we maintain a list of candidate
graphs, denoted by candG, to record which graphs are possible to support the
frequent cross-graph quasi-cliques in the subtree of X . In the running example,
the initial candidate graph list candG for node X is {G1, G2, G3, G5, G6}.
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Table I. An Example of Determining and Pruning the Candidate Vertices and Candidate

Graphs.

Graph Candidate vertices

G1 {v4, v5, v6, v9}
G2 {v4, v5, v6, v8, v9}
G3 {v4, v7, v8}
G4 null
G5 {v4, v5, v6, v7, v8}
G6 {v3, v5}

Vertex The inverted list

v3 {G6}
v4 {G1, G2, G3, G5}
v5 {G1, G2, G5, G6}
v6 {G1, G2, G5}
v7 {G3, G5}
v8 {G2, G3, G5}
v9 {G1, G2}

(a) The initial candidate vertices (b) The initial inverted lists for

w.r.t. individual graphs candidate vertices

Graph Candidate vertices

G1 {v4, v5, v6}
G2 {v4, v5, v6, v8}
G3 {v4, v8}
G4 null
G5 {v4, v5, v6, v8}
G6 {v5}

Vertex The inverted list

v4 {G1, G2, G5}
v5 {G1, G2, G5}
v6 {G1, G2, G5}
v8 {G2, G5}

(c) The candidate vertices w.r.t. individual (d) The inverted lists for candidate

graphs after v3, v7, and v9 are pruned vertices after G3, G4, and G6 are pruned

Graph Candidate vertices

G1 {v4, v5, v6}
G2 {v4, v5, v6}
G5 {v4, v5, v6}

Vertex The inverted list

v4 {G1, G2, G5}
v5 {G1, G2, G5}
v6 {G1, G2, G5}

(e) The candidate vertices w.r.t. individual (f) The inverted lists for candidate vertices

graphs after v8 is pruned after v8 is pruned

The initial candidate graph list can be further reduced. For example, after
v3 is pruned from the candidate vertex list candV, the size |X | + |candV3| =
4 < min size. According to Lemma 4.6, the subtree of X cannot contain any X ′

whose induced subgraph is quasi-complete in G3. Therefore, G3 can be pruned
from candG. Similarly, the size |X | + |candV6| is also smaller than min size,
therefore, G6 is also pruned from candG. After G3 and G6 are pruned, the
inverted list of the vertices should also be updated accordingly: G3 and G6

should be removed from the inverted lists as well (see Table I(d)).
The above analysis leads to the following result immediately.

LEMMA 5.1 (CANDIDATE VERTICES AND CANDIDATE GRAPHS). Given a set of
graphs G1, . . . , Gn, let X be a node on the set enumeration tree. A vertex u can
be pruned from the candidate vertex list candV for X if |inv(u)| < n · min sup,
where inv(u) is the inverted list of u. Moreover, a graph Gi (1 ≤ i ≤ n) can be
pruned from the candidate graph list candG for X if |X |+ |candVi| < min size,
where candVi is the candidate vertex list of X with respect to graph Gi.

Lemma 5.1 can be applied iteratively. Let us consider the running example in
Table I again. After we prune the vertices v3, v7, v9 and graphs G3, G4, G6, the
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size of inv(v8) drops below the threshold n·min sup = 3, thus v8 is removed from
candV and also the candidate vertex lists with respect to graphs G2 and G5 (see
Table I(e)). Till now, no more vertices or graphs can be pruned by Lemma 5.1.
Then we can apply Lemmas 4.1 and 4.4 again to further prune the candidate
vertex lists with respect to individual graphs. That is, Lemmas 4.1, 4.4, and 5.1
can be applied repeatedly until none of them can prune more vertices or graphs.

After the candidate vertices candV and candidate graphs candG for node X
become stable, the whole subtree of X can be pruned if any of the following
situations happens.

LEMMA 5.2 (PRUNING SUBTREES). Let X be a node on the set enumeration tree,
and candV and candG be the corresponding candidate vertices and graphs of X ,
respectively. The subtree rooted at X can be pruned if (1) |X | + |candV| < mins;
(2) |candG| < n · min sup; or (3) X ⊂ X ′, where X ′ is a frequent cross-graph
quasi-clique already found.

5.2.1 Generating Children Nodes and Identifying Frequent Cross-Graph
Quasi-Cliques. Let candV be the candidate vertices of X . For each vertex
u ∈ candV, we generate a child X ′ = X ∪ {u}. Clearly, we can set the ini-
tial candidate graph list candG′ for X ′ as the inverted list of u. Moreover, the
initial candidate vertex list candV′ for X consists of the vertices v such that
v ∈ candV and inv(v) ⊇ candG′.

Heuristic 1 can still be applied to choose the order to explore the children.
The only modification is that θmin(v) should be considered among the graphs in
inv(v), that is, θmin(v) = minGi∈inv(v){θ (v)}.

The process to identify whether a node X is a frequent cross-graph quasi-
clique is similar to Lemma 4.8. After searching the subtree rooted at X , we can
determine that X is a frequent cross-graph quasi-clique if there exist at least
n · min sup graphs Gi in the candidate graph list candG for X such that Gi(X )
is a γi-quasi-complete graph and there is no frequent cross-graph quasi-clique
in the subtree of X .

Algorithm 4 shows the algorithm of Crochet+ (the subroutine is shown in
Algorithm 5).

Algorithm 4. Algorithm Crochet+: mining frequent cross-graph quasi-cliques.

Input: graphs G1, . . . , Gn on a set of vertices U ; γ1, . . . , γn;

minimum size threshold min size; minimum support threshold min sup
Output: the complete set of frequent cross-graph quasi-cliques;

Method:
// depth-first search

1: for each vertex v ∈ U in θmin(v) descending order //see Section 5.2.1

2: let X = {x}, candV = {u | u ∈ U and u is behind x in the order of vertices},
candG = {G1, . . . , Gn},

3: call recursive-mine(X , candV, candG); // see Algorithm 5

end for
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Algorithm 5. Subroutine recursive-mine() in Algorithm Crochet+.

Function recursive-mine(X , candV, candG)

1: for each graph Gi ∈ candG do

2: compute the initial candidate vertices candVi as described in Section 5.1;

3: repeat // recursively reduce candV and candG
4: for each graph Gi ∈ candG // reduce candVi w.r.t. graph Gi

5: let Gi = Gi(X ∪ candVi); // graph projection (Lemma 4.5)

6: iteratively reduce the vertices and edges in the projection according to

Lemma 4.1 until there is no change;

7: let Pi(X ) be the set of vertices remaining in the projection;

8: if any of the three conditions in Lemma 4.6 is satisfied // prune Gi

9: then let candG− = {Gi}, candVi = null ;

10: else let candVi = Pi(X ) − X , candV∪ = candVi ;

end for

12: prune candV and candG using Lemma 5.1;

13: until no more vertices or graphs can be pruned from candV or candG;

14: if any condition in Lemma 5.2 is satisfied, then return 0;

let unsubsumed = 1;

15: for each vertex u ∈ candV do inv(u) = {Gi | (1 ≤ i ≤ n) ∨ (u ∈ candVi)};
16: for each vertex u ∈ candV // depth-first search

17: let candG′ = inv(u), candV′ = {v | inv(v) ⊇ candG′};
18: call recursive-mine(X ∪ {u}, candV′, candG′);
19: if the returned value is 1 then unsubsumed = 0;

end for

20: if unsubsumed is 0 then return(1) else

21: if there exists at least n · min sup graphs Gi in candG such that Gi(X ) is a

γi-quasi-complete graph

then output X as a cross-all-graphs quasi-clique, return(1);

else return(0);

6. EXPERIMENTAL RESULTS

We conducted an extensive performance study using both real data sets and syn-
thetic data sets. The algorithms were implemented in Java and the experiments
were run on a Sun Ultra 10 work station with a 440MHz CPU and 1G main
memory. Since the performance of the rudimentary algorithm (Algorithm 1)
and the Crochet algorithm (Algorithm 3) has been reported in Pei et al. [2005],
here we focus on the results of the Crochet+ algorithm.

6.1 The Datasets

We used both a real dataset and several synthetic datasets. We explain the
configurations of the datasets in this section.

6.1.1 The Real Dataset. We used the gene expression data CDC28 [Cho
et al. 1998] and the protein-protein interaction (PPI) data from GRID1 as the

1(http://biodata.mshri.on.ca/grid/servlet/Index). We did not use the DIP data as in [Pei et al.

2005] because the GRID database records the source of protein-protein interactions and thus we

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 4, Article 16, Publication date: January 2009.



Mining Frequent Cross-Graph Quasi-Cliques • 16:29

real dataset. The CDC28 dataset [Cho et al. 1998] records the mRNA transcript
levels of the budding yeast S. cerevisiae during the cell cycle. It contains the
expression values of 6, 096 genes during a 17-point time-series. This dataset is
publicly available.2 The GRID database includes protein-protein interactions in
S. cerevisiae from three major sources: yeast two hybrid, affinity precipitation,
and synthetic lethality. We organized the protein-protein interactions from each
source into an individual dataset.

We found 6,196 genes or proteins which appear in at least one data set. Genes
and proteins were one-to-one mapped through their ORF (Open Reading Frame)
identifications. For the CDC28 data set, we used the Pearson’s correlation co-
efficient as the measure of coherence. A pair of genes were connected with an
edge if their coherence is among top 10% of all pairs. As the result, the gene
coexpression graph GE contains 1, 928, 153 edges. For the protein-protein inter-
action datasets, two proteins were connected with an edge if they interact with
each other. After removing the self-interacting protein pairs, the three protein-
protein interaction graphs consist of 6,228, 7,244, and 5,329 edges, respectively,

In our experiments, we found the complete set of frequent CGQCs
across the gene coexpression graph GE and the three protein-protein in-
teraction graphs G P1 (yeast two hybrid), G P2 (affinity precipitation), and
G P3 (synthetic lethality). Unless particularly specified, we set γE = 1 for
GE , γP = 0.5 for G P1, G P2, G P3. Moreover, we set min size = 5 and
min sup = 50%.

6.1.2 Synthetic Datasets. We wrote a data generator for synthetic datasets,
which generates synthetic data sets as follows. Given the number of graphs n
and a set of vertices U , the data generator first creates n graphs G1, . . . , Gn

such that for each graph Gi (1 ≤ i ≤ n), V (Gi) = U and E(Gi) = ∅. Then, given
the expected number Nq of frequent cross-graph quasi-cliques and the parame-
ters γ1, . . . , γn, the data generator randomly generates Nq frequent cross-graph
quasi-cliques and embeds each one into a set of n · min sup randomly selected
graphs. The sizes of the frequent cross-graph quasi-cliques are uniformly dis-
tributed between qMin and qMax that are specified by users. Finally, given the
density value σi for graph Gi, the data generator keeps adding randomly gen-
erated edges into the graph Gi until the overall density of Gi reaches σi. Here,
the density of a graph G is defined as

density(G) = |E(G)|
(|V (G)|·(|V (G)|−1))

2

= 2|E(G)|
(|V (G)| · (|V (G)| − 1))

.

In the experiments reported in this section, the default values for the pa-
rameters were as follows: n = 4, γ1 = γ2 = 1 for G1 and G2, γ3 = γ4 = 0.5 for G3

and G4, density = 0.05 for all graphs, min size = 5, min sup = 75%, qMin = 5
and qMax = 20.

can construct separate interaction graphs for various sources. In fact, the GRID database contains

most interactions in the DIP data.
2http://cellcycle-www.stanford.edu.
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The experimental results on the real datasets and the synthetic datasets
are consistent. To keep our presentation concise, we use the results from the
real dataset to illustrate the effectiveness of the mining and the effect of the
pruning techniques, and use both the real dataset and the synthetic datasets
to examine the efficiency and the scalability.

6.2 Findings in the Real Data

We applied the Crochet+ algorithm to the genomic data and obtained
2,667 frequent cross-graph quasi-cliques. Many frequent cross-graph quasi-
cliques are very similar to each other. For example, one frequent CGQC S1

across the gene expression data set CDC28 and the affinity precipitation
PPI dataset contains five ORFs: YGR145W, YCR057C, YGR090W, YHR196W,
and YJL033W; another frequent CGQC S2 across the same two datasets
contains YNL132W, YCR057C, YGR090W, YHR196W, and YJL033W. S1

and S2 share four ORFs. The only difference is that S1 contains
YGR145W, but S2 contains YNL132W. In fact, all the six ORFs,
YGR145W, YNL132W, YCR057C, YGR090W, YHR196W, and YJL033W, be-
long to a large known protein complex. This group of ORFs broke into two
frequent CGQCs because the correlation information between YGR145W and
YNL132W was missed in the highly noisy data. To handle this problem, we
merged two frequent CGQCs C1 and C2 if they are frequent CGQCs across the
same graphs and |C1∩C2|

|C1∪C2| ≥ η. In the experiment, we set η = 0.6 and obtained 369

merged frequent CGQCs. In the following, we will not distinguish the original
frequent CGQCs and the merged ones.

To evaluate the biological meaning of the reported frequent CGQCs, we
compared them with the known complexes in MIPS (Munich Information
Center for Protein Sequences, http://mips.gsf.de/). Clearly, the better the fre-
quent CGQCs match the known complexes, the more meaningful they are. To
measure the “matchingness” between the clusters and known complexes, we
first defined the matching coefficient between a reported frequent CGQC Ci

and a known complex X j as MC(Ci, X j ) = |Ci∩X j |
|Ci | . We then matched each

cluster Ci with the complex having the highest matching coefficient, that is,
MC(Ci) = max{MC(Ci, X j )|X j ∈ MIPS}. Among the 369 frequent CGQCs,
252 have a matching coefficient higher than 0.8. Many matched complexes are
involved in biological processes such as RNA metabolism, protein synthesis
turnover, transcription, DNA maintenance, chromatin structure, and signal
transduction. Since these biological processes are closely related to the cell cy-
cle, the identified frequent CGQCs are biologically meaningful.

Figure 13 shows a frequent CGQC which is supported by three out of
the four data sets. This pattern exactly matches the STE5-MAPK complex,
which is a signal transduction complex [Choi et al. 1994; Lyons et al. 1996;
Mewes et al. 2006]. However, when mining individual graphs, we found in
the yeast two hybrid graph another pattern which substitutes YDR103w
with YLR313c (Figure 14(b)). Interestingly, this pattern is not supported
by other graphs (Figures 14(a), (c), and (d)). In fact, this pattern is a false
positive since YLR313c does not form a complex with the other members in the
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Fig. 13. The STE5-MAPK complex identified from the (a) yeast two hybrid, (b) affinity precipitation

PPI data, and (c) synthetic lethality PPI data.

Fig. 14. A pattern which is only supported by yeast two hybrid data but not other data.

pattern [Mewes et al. 2006]. Some interactions in the yeast two hybrid data
are possibly errors in the experiment. Crochet+ can successfully prune such
patterns since it searches across multiple graphs and filters out false positives
using the minimum support threshold.

Figure 15 is a subcomplex of a huge complex with 83 ORFs involved in the
RNA matabolism. It is not surprising that Crochet+ only detected a part of the
whole complex. The reason is that the complexes are often formed dynamically
during the biological processes. In the cell-cycle process, it is possible that only
15 out of the whole 83 ORFs are expressed. Please note that none of the patterns
in Figures 13 and 15 can be detected by the Crochet algorithm since they are
not supported by all of the four graphs. Therefore, Crochet+ is a relaxed version
of the Crochet algorithm and can find more useful patterns.

6.3 Effect of Parameters

We now study the effect of the mining parameters (that is, min sup, min size
and γ ) in the Crochet+ algorithm on the mining effectiveness and efficiency.
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Fig. 15. A subcomplex involved in the RNA matabolism. Identified from (a) the cell-cycle gene

expression data and (b) the affinity precipitation PPI data.

Figures 16(a) and (b) show the number of frequent CGQCs and runtime of
Crochet+ with respect to various min sup values. When the support value
increases, a frequent CGQC needs to be supported by more graphs and thus is
less likely to be a false positive. In real applications such as mining biological
data, since the datasets are often noisy, a relatively high support value, for ex-
ample, above 50%, would result in more reliable patterns. From Figures 16(a)
and (b), we can see when the support value increases, the number of frequent
CGQCs decreases dramatically and the runtime also decreases accordingly. The
two curves follow the same trend.

The effect of the minimum size threshold min size is shown in Figures 16(c)
and (d). As min size grows, the number of frequent CGQCs decreases and the
runtime also decrease sharply. This is because many small frequent CGQCs, for
example, those of size 3 or 4, were formed by noise (false positives) in the data
sets. When the requirement on the size became more stringent, those small
frequent CGQCs were filtered out.

We also tested the effect of γP and γE , as shown in Figures 16(e)–(h). In
the cell-cycle gene expression dataset, there exist several large groups of coex-
pressed genes that exhibit similar expression patterns [Spellman et al. 1998].
These coexpressed genes form highly dense areas in the gene coexpression
graph GE and generate a huge number of small quasi-complete subgraphs
when γE is less than 1. To remove the influence of these small quasi-complete
subgraphs, we set min size = 12 when we tested the effect of γE . As can be seen,
the curves in Figures 16(e)–(h) follow the decreasing trend when the value of
the values of γE and γP increase.

In fact, the curves in Figures 16(c)–(h) are consistent with those in Figures
12(a)–(f) in [Pei et al. 2005]. That means the effect of parameters min size, γE ,
and γP is similar in both Crochet and Crochet+.

Particularly, when γE decreases, the computational cost increases. However,
as shown in Figure 16(h), the runtime increases mildly when γE ≤ 0.55. When
γE is smaller than or equal to 0.5, the number of CGCQs increases dramatically,
and so does the computation time.
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Fig. 16. The effect of parameters min sup, min size, γP and γE .

6.4 Effect of the Pruning Rules

In the Crochet+ algorithm, we used a series of pruning rules and heuristics.
The effect of some of these techniques, such as Lemmas 4.1, 4.5 and 4.6, as
well as Heuristic 1, was tested and reported in Pie et al. [2005]. Here, we only
report the effect of a newly developed technique, Lemma 4.7, and two pruning
rules, Lemmas 5.1 and 5.2, which were devised specifically for mining frequent
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Table II. The Effect of Various Techniques in Crochet+ (γE = 1.0, γP = 0.5, min size = 5)

Technique Runtime (sec) Without the Technique Runtime (sec) with the Technique Speedup

Lemma 4.7 4, 668 2, 551 1.830

Lemma 5.1 2, 702 2, 551 1.059

Lemma 5.2 1, 588 2, 551 0.623

cross-graph quasi-cliques. For each specific technique, we recorded the ratio of
the runtime of Crochet+ without the technique against using the technique.
The results are shown in Table II.

From Table II, we can see that Lemma 4.7 is effective to improve the mining
efficiency. By substituting the current node X with some appropriate superset
X ′, we can skip the nodes between X and X ′ and go directly to the deeper
level of the set enumeration tree. In our experiments, we found that this rule
is particularly useful for big patterns. Once we find that the projection P (X ) of
the current node X is a frequent cross-graph quasi-clique, we can immediately
return P (X ) without enumerating the whole subtree of X . When the pattern
is big, this rule can often save the enumeration of a large subtree and thus
improve the mining efficiency substantially.

However, the improvement by Lemma 5.1 is not substantial, which means
that the computation cost to apply this lemma almost offsets the the benefit
brought by the lemma. Finally, Lemma 5.2 is expensive and costs more than it
can save. The reason is that rule (3) of this lemma, checking whether a poten-
tial frequent CGQC is a subset of a frequent cross-graph quasi-clique, is time-
consuming. However, to guarantee the maximality of frequent CGQCs, this step
cannot be avoided from the algorithm. Interestingly, rule (3) of Lemma 5.2 for
the Crochet+ algorithm is analogous to rule (3) of Lemma 4.6 for the Crochet
algorithm. By comparing Figure 13 in Pie et al. [2005] with Table II in this
paper, we find that the speedup factors of these two rules are quite close: both
are around 0.6.

6.5 Scalability on Synthetic Datasets

Using the synthetic datasets, we tested the scalability of Crochet+ on four fac-
tors, namely, (1) the number of vertices of the graphs, (2) the density of the
graphs, (3) the maximal size of frequent cross-graph quasi-cliques, and (4) the
number of graphs.

To test the scalability with respect to the number of vertices, we fixed the
density of the synthetic graphs to 1% and embedded 100 frequent CGQCs in
the graphs. As the number of vertices increases, the size of the set enumeration
tree increases exponentially. However, with the graph reduction, graph projec-
tion and other pruning techniques, Crochet+ is able to handle large graphs in
practical time (Figure 17(a)).

We explored the runtime of Crochet+ with respect to the density of graphs.
We first fixed the density of G1 and G2 (with γ1 = γ2 = 1) to 5% and increased
the density of the graphs G3 and G4 (with γ3 = γ4 = 0.5) from 10% to 20%.
The runtime is shown by the curve with filled squares in Figure 17(b). We then
fixed the density of G3 and G4 and increased the density of G1 and G2 (shown
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Fig. 17. Scalability of the Crochet+ algorithm.

by the curve with crosses in Figure 17(b)). The general trend of the curves is
that the runtime of Crochet+ increases as the density increases. Moreover, the
increase of density in graphs with higher γ value brings more significant effect
on the increase of Crochet+ runtime. As can be seen in Figure 17(b), the runtime
is longer and increases faster with respect to the density of graphs with higher
γ values (γ1 = γ2 = 1 and γ3 = γ4 = 0.5). This is because, likely, the number
of frequent cross-graph quasi-cliques is bounded by the graphs with higher γ

values.
In our synthetic datasets, the noisy edges are randomly added to satisfy the

density requirement. However, in real applications, the distribution of edges
may not be uniform. To test the performance of Crochet+ with skewed edge
distribution, we increase the maximal size of frequent CGQCs embedded in
the graphs. Intuitively, a large frequent CGQC forms a local dense area in the
graphs, and the larger the size, the more skewed the data distribution. Since
the local dense area contains potential frequent CGQCs, few vertices and edges
can be pruned from the area, and thus the search is more costly. As can be
seen in Figure 17(c), the runtime of Crochet+ increases dramatically when the
maximal size of frequent CGQCs increases.

Last, Figure 17(d) shows the scalability of Crochet+ with respect to the num-
ber of graphs. The number of graphs influences the runtime in two aspects.
First, given a fixed min sup threshold, the more graphs, the less likely a subset
of vertices form a frequent cross-graph quasi-clique. Therefore, more vertices
can be pruned and the mining cost is lower. For example, when n = 4, 5, 6,
the minimum frequencies are 3, 4, and 5, respectively. That means, a frequent
cross-graph quasi-clique has to be supported by at least 3, 4, and 5 graphs,
respectively. As a result, the runtime decreases when the number of graphs in-
creases. Similarly, when n = 8, 9, 10, 11, the minimum frequencies are 6,7,8,9,
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Table III. A Collection of Twenty Microarray Datasets

Experiments # Genes # Time Points Reference

1 Cdc28 block release 6178 17 [Spellman et al. 1998]

2 Cdc15 block release 6178 24 [Spellman et al. 1998]

3 Alpha factor release 6178 18 [Spellman et al. 1998]

4 Elutriation 6178 14 [Spellman et al. 1998]

5 Mec1 mutant irradiation 6129 11 [Gasch et al. 2001]

6 Mec1 mutant MMS 6129 7 [Gasch et al. 2001]

7 Wildtype irradiation 6129 12 [Gasch et al. 2001]

8 Wildtype MMS 6129 7 [Gasch et al. 2001]

9 Diamide exposure 6139 8 [Gasch et al. 2000]

10 Diauxic 6139 8 [Gasch et al. 2000]

11 DTT (exp. 1) 6139 8 [Gasch et al. 2000]

12 DTT (exp. 2) 6139 7 [Gasch et al. 2000]

13 H2 O2 response 6139 10 [Gasch et al. 2000]

14 Heat shock (exp. 1) 6139 8 [Gasch et al. 2000]

15 Heat shock (exp. 2) 6139 7 [Gasch et al. 2000]

16 Menadione exposure 6139 9 [Gasch et al. 2000]

17 Nitrogen depletion 6139 10 [Gasch et al. 2000]

18 Sorbitol effects 6139 7 [Gasch et al. 2000]

19 YPD Stationary phase (exp. 1) 6139 12 [Gasch et al. 2000]

20 YPD Stationary phase (exp. 2) 6139 10 [Gasch et al. 2000]

and the runtime roughly show a decreasing trend. Again, when n increases
from 12 to 15, the minimum frequency increases from 9 to 12, and the runtime
shows a decreasing trend.

Second, given a fixed minimum frequency, when the number of graphs in-
creases, the number of possible combinations of graphs increases exponen-
tially. Therefore, it takes more time for the algorithm to test whether a sub-
set of vertices is frequently supported by the given graphs. For example, with
min sup = 0.75, when the number of graphs is 7 and 8, the minimum frequency
is both 6. From Figure 17(d), we can see that the runtime of 8 is much longer
than that of 7. As another example, when the number of graphs is 11 and 12,
the minimum frequency is both 9. The runtime for 12 graphs is much longer
than that for 11 graphs.

The results of the first three scalability tests are consistent with those of
Crochet. That is, the runtime shows the similar trends with respect to the
number of vertices, the density of graphs, and the maximal size of patterns.
The major difference occurs when the number of graphs increases. The run-
time of Crochet decreases monotonically when the number of graphs increases,
while Crochet+ shows a periodic trend due to the resulted support threshold
value.

6.6 Scalability on Real Datasets

To further test the scalability of Crochet+ on real datasets, we collected twenty
gene-expression (cDNA microarray) datasets on yeast from Stanford Microar-
ray Database (http://smd.stanford.edu/). Table III shows the description of the
datasets.
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Fig. 18. The (a) runtime and (b) number of vertices after pruning with respect to the number of

graphs (γE = 1, min sup = 75%, and min size = 5).

Figure 18(a) shows the runtime of Crochet+ with respect to the number of
graphs (γE = 1, min sup = 75%, and min size = 5). One might expect that the
runtime should increase when the number of graphs increases, since the more
graphs, the more data to process. However, the runtime only increases when
the number of graphs is 7, 11, 15, and 19. In those situations, the number of
graphs satisfies the following relation:

�n × min sup� = �(n + 1) × min sup�. (1)

For other cases, the runtime actually decreases when the number of graphs
increases. This is because the more graphs, the less likely a frequent cross-
graph quasi-cliques is formed. For example, when min sup = 0.75 and the
number of graphs is 4, a frequent cross-graph quasi-cliques only needs to be
supported by 3 graphs. However, when the number of graphs increases to 20,
a frequent cross-graph quasi-clique should be supported by at least 15 graphs.
As a result, the more the graphs, the sharper the cross graph pruning rules
(edge reduction in Lemma 4.2 and vertex reduction in Lemma 4.1).

To further understand the pruning effect, Figure 18(b) shows the number
of vertices remaining after the pruning process. As can be seen, generally, the
larger the number of graphs, the more vertices are pruned. The exceptions hap-
pen when the number of graphs and the support threshold satisfy Equation (1).
The trends in Figures 18(a) and 18(b) are similar, which well explain the scal-
ability of Crochet+.

6.7 Comparing Crochet+ and the Integrated Graph Approach

In Example 3, we discuss the integrated graph approach, and show why it is
insufficient in mining CGQCs. Comparing to the integrated graph approach,
Crochet+ has the following advantages.

First, Crochet+ can mine CGQCs when min sup < 1, but the integrated
graph approach only works when min sup = 1. This is because, after integra-
tion, we lose the information from which graphs an edge in the integrated graph
originates.

Second, Crochet+ can handle different graphs having various γ values, but
the integrated graph approach can only work when all graphs sharing a uniform
γ value. This is because, after integration, we have only a single integrated
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Fig. 19. The induced subgraphs of proteins S1 = {YBL026W, YCR077C, YDL160C, YER146W,

YNL147W} in (a) the yeast two hybrid graph G P1, (b) the affinity precipitation graph G P2, and

(c) the intersected graph Ginter.

graph. Consequently, we can apply only one γ value when mining the single
integrated graph.

Last, even in case of min sup = 1 and all graphs sharing a uniform γ value,
Crochet+ can find patterns which cannot be found by an integrated graph ap-
proach.

In this section, we report the experiments systematically compare Crochet+

with the integrated approach, that is, intersecting the edges in all graphs on
two real data sets: one is the yeast two hybrid data set, and the other is the
affinity precipitation data set. We set min sup = 1, γ = 0.5, and min size = 5
in the experiments.

The Crochet+ algorithm reports 51 patterns while the integrated graph ap-
proach identifies 53 patterns. We found 34 patterns appearing in both result
sets. There are two cases for the inconsistent patterns, that is, the patterns
found by one method but missing in the other method.

6.7.1 Patterns Found by Crochet+ but not by the Integrated Graph Approach.
For example, Figure 19 shows the induced subgraphs of the subset of proteins
S1 = {YBL026W, YCR077C, YDL160C, YER146W, YNL147W} in (a) the yeast
two hybrid graph G P1, (b) the affinity precipitation graph G P2, and (c) the
intersected graph Ginter, respectively. We can see that these proteins form a
cross-graph quasi-clique across G P1 and G P2, but do not form a quasi-clique
in Ginter. We checked this subset of proteins with MIPS (http://mips.gsf.de/)
complexes, and found all these proteins belong to a common complex related to
mRNA metabolism. Out of the 51 patterns reported by Crochet+, 13 patterns
fall in this category.

6.7.2 Patterns Found by Crochet+ Broken into Smaller Patterns by the In-
tegrated Graph Approach. For example, Figure 20 shows the induced sub-
graphs of the subset of proteins S2 = {YBL026W, YCR077C, YDL160C,
YDR378C, YER112W, YJL124C, YOL149W} in (a) the yeast two hybrid graph
G P1, (b) the affinity precipitation graph G P2, and (c) the intersected graph
Ginter, respectively. Again, we can see that these proteins form a cross-graph
quasi-clique across G P1 and G P2. However, they do not form a single quasi-
clique in Ginter because the degree of YDL160C is smaller than the threshold
(|S2|−1)×γ = 3. Instead, they are broken into several smaller quasi-cliques by
the integration graph method. We checked this subset of proteins with MIPS
(http://mips.gsf.de/) complexes, and found that all but one protein, YOL149W,
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Fig. 20. The induced subgraphs of the subset of proteins S2 = {YBL026W, YCR077C, YDL160C,

YDR378C, YER112W, YJL124C, YOL149W} in (a) the yeast two hybrid graph G P1, (b) the affinity

precipitation graph G P2, and (c) the intersected graph Ginter.

belong to a common complex related to mRNA metabolism. The finding may
provide a good hypothesis for biologists that YOL149W share a similar function
with other proteins in the pattern. Out of the 51 patterns reported by Crochet+,
4 patterns fall in this category.

In summary, Crochet+ can find frequent CGQC patterns which cannot be
identified by the integrated graph approach and each quasi-clique pattern re-
ported by the integrated graph approach is subsumed by some frequent CGQC
found by Crochet+. We further checked the MIPS complexes and found that
all the frequent CGQC patterns reported by Crochet+ have clear biological
meaning.

7. CONCLUSIONS

In this paper, we proposed a novel and interesting problem, mining frequent
cross-graph quasi-cliques from multiple graphs, and showed some application
examples. The complexity analysis showed that the problem is difficult. We de-
veloped two efficient algorithms, Crochet and Crochet+, which exploit several
effective techniques to mine the complete set of cross-all-graphs quasi-cliques
and general frequent cross-graph quasi-cliques, respectively. An extensive per-
formance study using both real data sets and synthetic data sets illustrated
that the mining results are interesting and algorithms Crochet and Crochet+

are efficient and scalable.
As future work, mining frequent cross-graph quasi-cliques with various con-

straints is interesting and useful in applications. Moreover, efficient and scal-
able mining many large graphs is important. For example, it is interesting to
explore efficient implementations and improvements of Crochet and Crochet+

and investigate effective and efficient mining of disk-based graph databases.
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