Data Min Knowl Disc (2011) 23:169-214
DOI 10.1007/s10618-010-0202-x

KRIMP: mining itemsets that compress

Jilles Vreeken - Matthijs van Leeuwen -
Arno Siebes

Received: 16 September 2009 / Accepted: 21 September 2010 / Published online: 16 October 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract One of the major problems in pattern mining is the explosion of the num-
ber of results. Tight constraints reveal only common knowledge, while loose con-
straints lead to an explosion in the number of returned patterns. This is caused by large
groups of patterns essentially describing the same set of transactions. In this paper
we approach this problem using the MDL principle: the best set of patterns is that set
that compresses the database best. For this task we introduce the KRIMP algorithm.
Experimental evaluation shows that typically only hundreds of itemsets are returned;
a dramatic reduction, up to seven orders of magnitude, in the number of frequent
item sets. These selections, called code tables, are of high quality. This is shown with
compression ratios, swap-randomisation, and the accuracies of the code table-based

Responsible editor: M.J. Zaki.

The research described in this paper builds upon and extends the work appearing in SDM’06
(Siebes et al. 2006) and ECML PKDD’06 (van Leeuwen et al. 2006).

J. Vreeken () - M. van Leeuwen - A. Siebes

Algorithmic Data Analysis, Department of Information and Computing Sciences, Faculty of Science,
Universiteit Utrecht, Utrecht, The Netherlands

e-mail: jillesv@cs.uu.nl

M. van Leeuwen
e-mail: mleeuwen @cs.uu.nl

A. Siebes

e-mail: arno@cs.uu.nl

J. Vreeken
ADReM, Department of Mathematics and Computer Science, Faculty of Science,
University of Antwerp, Antwerp, Belgium

@ Springer

170 J. Vreeken et al.

KRIMP classifier, all obtained on a wide range of datasets. Further, we extensively
evaluate the heuristic choices made in the design of the algorithm.

Keywords MDL - Pattern mining - Pattern selection - Itemsets

1 Introduction
1.1 Patterns

Without a doubt, pattern mining is one of the most important concepts in data mining.
In contrast to models, patterns describe only part of the data (see e.g. Hand et al. 2002;
Morik et al. 2005). In this paper, we consider one class of pattern mining problems,
viz., theory mining (Mannila and Toivonen 1997). In this case, the patterns describe
interesting subsets of the database.

Formally, this task has been described by Mannila and Toivonen (1996) as follows.
Given a database D, a language £ defining subsets of the data and a selection predicate
q that determines whether an element ¢ € £ describes an interesting subset of D or
not, the task is to find

T(L,D,q)={¢peL]|q(D,o)is true }.

That is, the task is to find all interesting subsets.

The best known instance of theory mining is frequent set mining (Agrawal et al.
1996); this is the problem we will consider throughout this paper. The standard exam-
ple for this is the analysis of shopping baskets in a supermarket. Let Z be the set of
items the store sells. The database D consists of a set of transactions in which each
transaction ¢ is a subset of Z. The pattern language £ consists of itemsets, i.e. again
sets of items. The support of an itemset X in D is defined as the number of transactions
that contain X, i.e.

suppp(X) =|{r e D | X C1}|.

The ‘interestingness’ predicate is a threshold on the support of the itemsets, the mini-
mal support: minsup. In other words, the task in frequent set mining is to compute

{X € L | suppp(X) > minsup}.

The itemsets in the result are called frequent itemsets. Since the support of an itemset
decreases w.r.t. set inclusion, the A Priori property,

X CY = suppp(Y) < suppp(X),
a simple level-wise search algorithm suffices to compute all the frequent itemsets.

Many efficient algorithms for this task are known, see, e.g. Goethals and Zaki (2003).
Note, however, that since the size of the output can be exponential in the number

@ Springer

KRIMP : mining itemsets that compress 171

of items, the term efficient is used w.r.t. the size of the output. Moreover, note that
whenever £ and ¢ satisfy an A Priori like property, similarly efficient algorithms exist
(Mannila and Toivonen 1996).

1.2 Sets of patterns

A major problem in frequent itemset mining, and pattern mining in general, is the
so-called pattern explosion. For tight interestingness constraints, e.g. high minsup
thresholds, only few, but well-known, patterns are returned. However, when the con-
straints are loosened, pattern discovery methods quickly return humongous amounts
of patterns; the number of frequent itemsets is often many orders of magnitude larger
than the number of transactions in the dataset.

This pattern explosion is caused by the locality of the minimal support constraint;
each individual itemset that satisfies the constraint is added to the result set, indepen-
dent of the already returned sets. Hence, we end up with a rather redundant set of
patterns, in which many patterns essentially describe the same part of the database.
One could impose additional constraints on the individual itemsets to reduce their
number, such as closed frequent itemsets (Pasquier et al. 1999). While this somewhat
alleviates the problem, redundancy remains an issue.

We take a different approach: rather than focusing on the individual frequent item-
sets, we focus on the resulting set of itemsets. That is, we want to find the best set of
(frequent) itemsets. The question is, of course, what is the best set? Clearly, there is no
single answer to this question. For example, one could search for small sets of patterns
that yield good classifiers, or show maximal variety (Knobbe and Ho 2006a,b).

One of the main reasons for mining a dataset is to gain insight in the data. Hence,
for us, the best set of patterns is the set of patterns that describes the data best. Clearly,
“describing the data best” is still an ill-defined concept. To make it precise, we use
the Minimal Description Length Principle (MDL) (Rissanen 1978; Griinwald 2005,
2007).

One could summarize this approach by the slogan: the best model compresses the
data best. By taking this approach we do not try to compress the set of frequent item-
sets, rather, we want to find that set of frequent itemsets that yields the best lossless
compression of the database.

The MDL principle provides us a fair way to balance the complexities of the com-
pressed database and the encoding. Note that both need to be considered in the case
of lossless compression. Intuitively, we can say that if the encoding is too simple, i.e.
it consists of too few itemsets, the database will hardly be compressed. On the other
hand, if we use too many, the code table for coding/decoding the database will become
too complex.

Considering the combination of the complexities of the compressed data and the
encoding is the cornerstone of the MDL principle; it ensures that the model will not
be overly elaborate or simplistic w.r.t. the complexity of the data.

While MDL removes the need for user defined parameters, it comes with its own
problems: only heuristics, no guaranteed algorithms. However, our experiments show
that these heuristics give a dramatic reduction in the number of itemsets. Moreover, the

@ Springer

172 J. Vreeken et al.

set of patterns discovered is characteristic of the database as independent experiments
verify; see Sect. 7.

We are not the first to address the pattern explosion, nor are we the first to use MDL.
We are the first, however, to employ the MDL principle to select the best pattern set.
For a discussion of related work, see Sect. 2.

A primary version of the KRIMP algorithm (although not yet under that name) was
published as Siebes et al. (2006) and a primary version of the KRIMP classifier as van
Leeuwen et al. (2006). Here, we thoroughly discuss the theory and choices, as well
as providing extensive experimental validation of the methods on 27 datasets. In par-
ticular, we further evaluate the heuristic choices made in the KRIMP algorithm, show
that the selected itemsets model relevant structure in the data and that the method is
robust w.r.t. noise.

The paper is organised as follows. First, we discuss related work in Sect. 2. Next,
we cover the theory of using MDL for selecting itemsets, after which we define our
problem formally and analyse its complexity. We introduce the heuristic KRIMP algo-
rithm for solving the problem in Sect. 4. In a brief interlude we provide a small sample
of the results. We continue with theory on using MDL for classification, and introduce
the KRIMP classifier in Sect. 6. Section 7 provides extensive experimental validation
of our method, as well as an evaluation of the heuristic choices made in the design of
the KRIMP algorithm. We round up with discussion in Sect. 8 and conclude in Sect. 9.

2 Related work
2.1 MDL in data mining

MDL was introduced by Rissanen (1978) as a noise-robust model selection technique.
In the limit, refined MDL is asymptotically the same as the Bayes Information Criterion
(BIC), but the two may differ (strongly) on finite data samples (Griinwald 2007). We
are not the first to use MDL, nor are we the first to use MDL in data mining or machine
learning. Many, if not all, data mining problems can be related to Kolmogorov Com-
plexity, which means they can be practically solved through compression (Faloutsos
and Megalooikonomou 2007), e.g. clustering (unsupervised learning), classification
(supervised learning), distance measurement. Other examples include feature selec-
tion (Pfahringer 1995), finding temporally surprising patterns (Chakrabarti et al. 1998),
defining a parameter-free distance measure on sequential data (Keogh et al. 2004,
2007), discovering communities in matrices (Chakrabarti et al. 2004), and evolving
graphs (Sun et al. 2007).

2.2 Summarizing frequent itemsets
Most, if not all pattern mining approaches suffer from the pattern explosion. As dis-
cussed before, its cause lies primarily in the large redundancy in the returned pattern

sets. This has long since been recognised as a problem and has received ample atten-
tion.

@ Springer

KRIMP : mining itemsets that compress 173

To address this problem, closed (Pasquier et al. 1999) and non-derivable (Calders
and Goethals 2002) itemsets have been proposed, which both provide concise lossless
representations of the original collection of frequent itemsets. That is, the frequen-
cies of all itemsets in the original collection can be reconstructed from the reduced
collection. However, the reduction provided by these exact methods deteriorates even
under small amounts of noise. Similar in goal, but providing a partial (i.e. lossy) rep-
resentation, are maximal itemsets (Bayardo 1998) and §-free sets (Crémilleux and
Boulicaut 2002). Along these lines, Yan et al. (2005) proposed a method that selects k
representative patterns that together summarize the frequent pattern set. To the same
end, Wang and Parthasarathy (2006) propose to use Markov Random Fields to select
those itemsets of which the frequencies cannot be reconstructed within a specified
accuracy threshold. The problem is approached similarly by Xin et al. (2005), albeit
by clustering the itemsets and using the ‘centroids’ itemsets as representatives for
calculating frequencies.

2.3 Summarizing data

Recently, the approach of finding small subsets of informative patterns that describe
the database has attracted a significant amount of research (Mielikdinen and Mannila
2003; Knobbe and Ho 2006a; Bringmann and Zimmermann 2007). KRIMP clearly also
falls in this category.

First, there are the methods that provide a lossy description of the data. These strive
to describe just part of the data, and may so by definition overlook interesting or
even important patterns. Summarization as proposed by Chandola and Kumar (2007)
is such a compression-based approach that identifies a group of itemsets such that
each transaction is summarized by one itemset with as little loss of information as
possible. Wang and Karypis (2006) find summary sets, sets of itemsets such that each
transaction is (partially) covered by the largest itemset that is frequent.

Pattern Teams (Knobbe and Ho 2006b) are groups of most-informative length-k
itemsets (Knobbe and Ho 2006a). These are exhaustively selected through an external
criterion, e.g. joint entropy or classification accuracy. As this approach is compu-
tationally intensive, the number of team members is typically <10. Bringmann and
Zimmermann (2007) proposed a similar selection method that can consider larger
pattern sets. However, it also requires the user to choose a quality measure to which
the pattern set has to be optimized, unlike our parameter-free and lossless method.

Second, in the category of lossless data description, we recently (Siebes et al. 2006)
introduced the MDL-based KRIMP algorithm. In this paper we extend the theory, tune
the pruning techniques and thoroughly verify the validity of the chosen heuristics, as
well as provide extensive experimental evaluation of the quality of the returned code
tables.

Tiling (Geerts et al. 2004) is closely related to our approach. A tiling is a cover of
the database by a group of (overlapping) item sets. Itemsets with maximal uncovered
area are selected, i.e. as few as possible itemsets cover the data. Unlike our approach,
model complexity is not explicitly taken into account. Another major difference in
the outcome is that KRIMP selects more specific (longer) itemsets. Xiang et al. (2008)

@ Springer

174 J. Vreeken et al.

proposed a slight reformulation of Tiling that allows tiles to also cover transactions in
which not all its items are present.

Two approaches inspired by KRIMP are Pack (Tatti and Vreeken 2008) and LESS
(Heikinheimo et al. 2009). Both approaches consider the data 0/1 symmetric, unlike
here, where we only regard items that are present (1s). LESS employs a generalised
KRIMP encoding to select only tens of low-entropy sets (Heikinheimo et al. 2007)
as lossless data descriptions, but attains worse compression ratios than KRIMP. Pack
does provide a significant improvement in that regard. It employs decision trees to
succinctly transmit individual attributes, and these models can be built from data or
candidate sets. Typically, Pack selects many more itemsets than KRIMP.

Our approach seems related to the set cover problem (Karp 1972), as both try to
cover the data with sets. Although NP-complete, fast approximation algorithms exist
for set cover. These are not applicable for our setup though, as in set cover the com-
plexity of the model is not taken into account. Another difference is that we do not
allow overlap between itemsets. As optimal compression is the goal, it makes intuitive
sense that overlapping elements may lead to shorter encodings, as then fewer itemsets
may be required to describe the data. However, it is not immediately clear how to
achieve this in a fast heuristic, which is why here we do not allow overlap.

3 Theory

In this section we state our problem formally. First we briefly discuss the MDL prin-
ciple. Next we introduce our models: code tables. We show how we can encode a
database using such a code table, and what the total size of the coded database is. With
these ingredients, we formally state the problems studied in this paper. Throughout
the paper all logarithms have base 2.

3.1 MDL

MDL (Minimum Description Length) (Rissanen 1978; Griinwald 2005), like its close

cousin MML (Minimum Message Length) (Wallace 2005), is a practical version of

Kolmogorov Complexity (Li and Vitdnyi 1993). All three embrace the slogan Induc-

tion by Compression. For MDL, this principle can be roughly described as follows.
Given a set of models! H, the best model H € H is the one that minimises

L(H)+ LD | H)

in which

— L(H) is the length, in bits, of the description of H, and
— L(D | H) is the length, in bits, of the description of the data when encoded with
H.

I MDL-theorists tend to talk about hypothesis in this context, hence the H; see (Griinwald 2005) for the
details.

@ Springer

KRIMP : mining itemsets that compress 175

Fig. 1 Example code table. The Code table CT
widths of the codes represent
their lengths. 7 = (A, B, C}. [temset Code Usage
Note that the usage column is O 5
not part of the code table, but
shown here as illustration: for — !
optimal compression, codes /1 1
should be shorter the more often
1

they are used ———

..C — 0

This is called two-part MDL, or crude MDL. As opposed to refined MDL, where model
and data are encoded together (Griinwald 2007). We use two-part MDL because we
are specifically interested in the compressor: the set of frequent itemsets that yields the
best compression. Further, although refined MDL has stronger theoretical foundations,
it cannot be computed except for some special cases.

To use MDL, we have to define what our models H are, how a H € H describes a
database, and how all of this is encoded in bits.

3.2 MDL for itemsets

The key idea of our compression based approach is the code table. A code table is a
simple two-column translation table that has itemsets on the left-hand side and a code
for each itemset on its right-hand side. With such a code table we find, through MDL,
the set of itemsets that together optimally describe the data.

Definition 1 Let Z be a set of items and C a set of code words. A code table CT over
7 and C is a two-column table such that:

1. The first column contains itemsets, that is, subsets over Z. This column contains
at least all singleton itemsets.

2. The second column contains elements from C, such that each element of C occurs
at most once.

An itemset X, drawn from the powerset of Z, i.e. X € P(Z), occurs in CT, denoted
by X € CT iff X occurs in the first column of CT7, similarly for a code C € C. For
X € CT, codecr(X) denotes its code, i.e. the corresponding element in the second
column. We call the set of itemsets {X € CT} the coding set, denoted CS. For the
number of itemsets in the code table we write |CT |, i.e. we define |CT| = |{X € CT}|.
Likewise, |CT \ Z| indicates the number of non-singleton itemsets in the code table.

Example I An example code table is shown in Fig. 1. The first column shows the
itemsets in the code table, the second column the corresponding codes. Each bar rep-
resents a code, its width represents the code length. The usage column is not actually
part of the code table—it is only shown for illustrative purposes and will be explained
shortly. Note that Z = {A, B, C} and thus that all singleton itemsets are in the code
table, even though C has no code associated. |CT| =5, |CT \ Z| = 2.

To encode a transaction ¢ from database D over Z with code table CT, we require a
cover function cover(CT, t) that identifies which elements of CT are used to encode

@ Springer

176 J. Vreeken et al.

Database Cover with CT Encoded database
(A B c) @ B c) O

@ B c) (A B c) -

(A B c) (A B c) 1

(A B c) @ B c) 1

(A B c) @ B c) O

——
—
I

Fig. 2 Example database, and the cover and encoded database obtained by using the code table shown in
Fig. 1.Z ={A, B, C}

t. The parameters are a code table CT and a transaction ¢, the result is a disjoint set of
elements of CT that cover ¢. Or, more formally, a cover function is defined as follows.

Definition 2 Let D be a database over a set of items Z, ¢ a transaction drawn from
D, let CT be the set of all possible code tables over Z, and CT a code table with
CT € CT. Then, cover : CT x P(Z) — P(P()) is a cover function iff it returns a
set of itemsets such that

1. cover(CT,1t) is a subset of CS, the coding set of CT, i.e. X € cover(CT,t) —
XecCT

2. if X, Y € cover(CT,t),theneither X =Y orXNY =0

3. the union of all X € cover(CT, t) equals t, i.e.
= UXecover(CT,t) X

We say that cover(CT, t) covers t. Note that there exists at least one well-defined

cover function on any code table CT over Z and any transaction t € P(Z), since CT
contains at least the singleton itemsets from Z.

By not allowing itemsets in the cover of a transaction to overlap, we ensure that it
is always unambiguous what the cover of a transaction is. If we would allow overlap,
it can easily happen that multiple covers are possible and computing and testing all of
them would be a computational burden.

Example 2 In Fig. 2, an example database is shown. This database will be used as
running example from now on. It consists of § itemsets, of which five are identical.
Also shown is the cover of this database with example code table CT (see Fig. 1). In
this example, each transaction is covered by only a single itemset from the code table.

To encode a database D using code table CT we simply replace each transaction
t € D by the codes of the itemsets in the cover of ¢,

t — {codecr(X) | X € cover(CT, 1)}.

Note that to ensure that we can decode an encoded database uniquely we assume that
C is a prefix code, in which no code is the prefix of another code (Cover and Thomas

@ Springer

KRIMP : mining itemsets that compress 177

ith S Encoded with ST

=

Standard code table ST Cover
Itemset ‘ Code Usage

— 7
— 7
— 5

i

1
1
Fig. 3 Example standard code table for the database in Fig. 2, with associated cover and encoded database

2006). (Confusingly, such codes are also known as prefix-free codes (Li and Vitanyi
1993).)

Example 3 Figure 3 shows how the cover of a database can be translated into an
encoded database: replace each itemset in the cover by its associated code.

Since MDL is concerned with the best compression, the codes in CT should be
chosen such that the most often used code has the shortest length. That is, we should
use an optimal prefix code. Note that in MDL we are never interested in materialised
codes, but only in the complexities of the model and the data. Therefore, we are only
interested in the lengths of the codes of itemsets X € CT. As there exists a nice corre-
spondence between code lengths and probability distributions (see e.g. Li and Vitanyi
1993), we can calculate the optimal code lengths through the Shannon entropy. So, to
determine the complexities we do not have to operate an actual prefix coding scheme
such as Shannon-Fano or Huffman encoding.

Theorem 1 Let P be a distribution on some finite set D, there exists an optimal prefix
code C on D such that the length of the code for d € D, denoted by L(d) is given by

L(d) = —log(P(d)).

Moreover, this code is optimal in the sense that it gives the smallest expected code
size for data sets drawn according to P. (For the proof, please refer Theorem 5.4.1 in
Cover and Thomas 2006)

The optimality property means that we introduce no bias using this code length.
The probability distribution induced by a cover function is, of course, simply given by
the relative usage frequency of each of the item sets in the code table. To determine
this, we need to know how often a certain code is used. We define the usage count
of an itemset X € CT as the number of transactions ¢ from D where X is used to
cover. Normalised, this frequency represents the probability that that code is used in
the encoding of an arbitrary ¢+ € D. The optimal code length (Li and Vitanyi 1993)
then is — log of this probability, and a code table is optimal if all its codes have their
optimal length. Note that we use fractional lengths, not integer-valued lengths of ma-
terialised codes. This ensures that the length of a code accurately represents its usage

@ Springer

178 J. Vreeken et al.

probability, and since we are not interested in materialised codes, only relative lengths
are of importance. After all, our ultimate goal is to score the optimal code table and
not to actually compress the data. More formally, we have the following definition.

Definition 3 Let D be a transaction database over a set of items Z, C a prefix code,
cover a cover function, and CT a code table over Z and C. The usage count of an
itemset X € CT is defined as

usagep(X) = |{t € D | X € cover(CT, 1)}].
This implies a probability distribution of X € CT for D, given by

usagep(X)

PXID) = > yecr usagep(Y)

The codecr(X) for X € CT is optimal for D iff
L(codecr (X)) = |codecr(X)| = —log(P (X | D)).
A code table CT is code-optimal for D iff all its codes,
{codecT(X) | X € CT},

are optimal for D.

From now onward we assume that code tables are code-optimal for the database
they are induced on, unless we state differently.

Example 4 Figure 1 shows usage counts for all itemsets in the code table. For exam-
ple, itemset {A, B, C} is used five times in the cover of the database. These usage
counts are used to compute optimal code lengths. For X = {A, B, C}:

P(X|D)=3
L(codecr (X)) = —log(3) = 0.68

And for Y = {A}:
P(Y|D) =g
L(codecr(Y)) = —log(g) =3

So, {A, B, C} is assigned a code of length 0.68bits, while {A, B}, {A} and {B} are
assigned codes of length 3 bits each.

Now, for any database D and a code table CT over the same set of items Z we
can compute L(D | CT). It is simply the summation of the encoded lengths of the
transactions. The encoded size of a transaction is simply the sum of the sizes of the
codes of the itemsets in its cover. In other words, we have the following trivial lemma.

@ Springer

KRIMP : mining itemsets that compress 179

Lemma 1 Let D be a transaction database over I, CT be a code table over T and
code-optimal for D, cover a cover function, and usage the usage function for cover.

1. Foranyt € D its encoded length, in bits, denoted by L(t | CT), is

Lt |CT)= > Llcodecr(X)).
Xecover(CT,t)

2. The encoded size of D, in bits, when encoded by CT, denoted by L(D | CT), is

L(D|CT) = ZL(t | CT).
teD

With Lemma 1, we can compute L(D | H). To use the MDL principle, we still
need to know what L(H) is, i.e. the encoded size of a code table.

Recall that a code table is a two-column table consisting of itemsets and codes. As
we know the size of each of the codes, the encoded size of the second column is easily
determined: it is simply the sum of the lengths of the codes. For encoding the itemsets,
the first column, we have to make a choice.

A naive option would be to encode each item with a binary integer encoding, that
is, using log(Z) bits per item. Clearly, this is hardly optimal; there is no difference in
encoded length between highly frequent and infrequent items.

A better choice is to encode the itemsets using the codes of the simplest code table,
i.e. the code table that contains only the singleton itemsets X € Z. This code table,
with optimal code lengths for database D, is called the standard code table for D,
denoted by ST. It is the optimal encoding of D when nothing more is known than
just the frequencies of the individual items; it assumes the items to be fully indepen-
dent. As such, it provides a practical bound: ST provides the simplest, independent,
description of the data that compresses much better than a random code table. This
encoding allows us to reconstruct the database up to the names of the individual items.

Example 5 Figure 3 shows the standard code table for the database in Fig. 2. It con-
tains all singleton itemsets and usage counts are obtained by covering the database.
Code lengths are based on these usages. It is clear that the standard code table does
not provide a good compression of the data.

Definition 4 Let D be a transaction database over Z and CT a code table that is
code-optimal for D. The size of CT in bits, denoted by L(CT | D), is given by

L(CT | D) = > L(codesr (X)) + L(codecr (X)).
XeCT:usagep (X)7#0

Note that we do not take itemsets with zero usage into account. Such itemsets are not
used to code. We use L(CT) wherever D is clear from context.

With these results we know the total size of our encoded database. It is simply
the size of the encoded database plus the size of the code table. That is, we have the
following result.

@ Springer

180 J. Vreeken et al.

Definition 5 Let D be a transaction database over Z, let CT be a code table that
is code-optimal for D and cover a cover function. The total compressed size of the
encoded database and the code table, in bits, denoted by L(D, CT) is given by

L(D, CT) = L(D | CT) + L(CT | D).

Now that we know how to compute L (D, CT'), we can formalise our problem using
MDL. Before that, we discuss three design choices we did not mention so far, because
they do not influence the total compressed size of a database.

First, when encoding a database D with a code table CT, we do not mark the end
of a transaction, i.e. we do not use stop-characters. Instead, we assume a given frame-
work that needs to be filled out with the correct items upon decoding. Since such a
framework adds the same additive constant to L(D | CT) for any CT over Z, it can
be disregarded.

Second, for more detailed descriptions of the items in the decoded database, one
could add an ASCII table giving the names of the individual items to a code table.
Since such a table is the same for all code tables over Z, this is again an additive
constant we can disregard for our purposes.

Last, since we are only interested in the complexity of the content of the code table,
i.e. the itemsets, we disregard the complexity of its structure. That is, like for the
database, we assume a static framework that fits any possible code table, consisting
of up to |P(Z)| itemsets, and is filled out using the above encoding. The complexity
of this framework is equal for any code table CT and dataset D over Z, and therefore
we can also disregard this third additive constant when calculating L (D, CT).

3.3 The problem

Our goal is to find the set of itemsets that best describe the database D. Recall that
the set of itemsets of a code table, i.e. {X € CT}, is called the coding set C'S. Given
a coding set, a cover function and a database, a (code-optimal) code table CT follows
automatically. Therefore, each coding set has a corresponding code table; we will use
this in formalising our problem.

Given a set of itemsets F, the problem is to find a subset of F which leads to a
minimal encoding; where minimal pertains to all possible subsets of . To make sure
this is possible, F should contain at least the singleton item sets X € Z. We will call
such a set, a candidate set. By requiring the smallest coding set, we make sure the
coding set contains no unused non-singleton elements, i.e. usagepg(X) > 0 for any
non-singleton itemset X € CT.

More formally, we define the problem as follows.

Minimal Coding Set Problem
Let T be a set of items and let D be a dataset over L, cover a cover function, and F a

candidate set. Find the smallest coding set CS C F such that for the corresponding
code table CT the total compressed size, L(D, CT), is minimal.

@ Springer

KRIMP : mining itemsets that compress 181

A solution for the Minimal Coding Set Problem allows us to find the ‘best’ cod-
ing set from a given collection of itemsets, e.g. (closed) frequent itemsets for a given
minimal support. If 7 = {X € P() | suppp(X) > 0}, i.e. when F consists of all
itemsets that occur in the data, there exists no candidate set F’ that results in a smaller
total encoded size. Hence, in this case the solution is truly the minimal coding set for
D and cover.

In order to solve the Minimal Coding Set Problem, we have to find the optimal
code table and cover function. To this end, we have to consider a humonguous search
space, as we will detail in the next subsection.

3.4 How hard is the problem?

The number of coding sets does not depend on the actual database, and nor does the
number of possible cover functions. Because of this, we can compute the size of our
search space rather easily.

A coding set contains the singleton itemsets plus an almost arbitrary subset of P(Z).
Almost, since we are not allowed to choose the |Z| singleton itemsets.

In other words, there are

IZl_ 7| —
k=0 k

possible coding sets. In order to determine which one of these minimises the total
encoded size, we have to consider all corresponding (code-optimal) code tables using
every possible cover function. Since every itemset X € CT can occur only once in the
cover of a transaction and no overlap between the itemsets is allowed, this translates
to traversing the code table once for every transaction. However, as each possible code
table order may result in a different cover, we have to test every possible code table
order per transaction to cover. Since a set of n elements admits n! orders, the total size
of the search space is as follows.

Lemma 2 For one transaction over a set of items I, the number of possible ways to
cover it is given by

2T 7)—1

2271 -1
k

) x (k+|Z])!

k=0

So, even for a rather small set Z and a database of only one transaction, the search
space we are facing is already huge. Table 1 gives an approximation of the number of
cover possibilities for the first few sizes of Z. Clearly, the search space is far too large
to consider exhaustively.

To make matters worse, there is no useable structure that allows us to prune level-
wise as the attained compression is not monotone w.r.t. the addition of itemsets. So,
without calculating the usage of the itemsets in CT, it is generally impossible to call

@ Springer

182 J. Vreeken et al.

Table 1 The number of cover

possibilities for a database of Il # que;r. . Il # qugr. .

one (1) transaction over T possibilities possibilities
1 1 4 2.70 x 10'2
2 8 5 1.90 x 103
3 8742 6 4.90 x 10%7

the effects (improvement or degrading) on the compression when an itemset is added
to the code table. This can be seen as follows.

Suppose a database D, itemsets X, Y and Z suchthat X NY # ¢, X C Z,and a
code table CT, all over Z. Further, suppose Y € CT. The addition of X to CT can lead
to a larger compressed size for two reasons. First and foremost as X may add more
complexity to the code table than is compensated for by using X in the encoding of
D. Second, because we do not allow overlap in a cover, X may get ‘in the way’ of
itemsets already in CT. Say cover prefers using X over Y, then for those transactions
t € D where we had Y € cover(CT, t) but also have X C ¢, then after adding X we
will get X € cover(CT,t) and Y ¢ cover(CT,t), as no overlap is allowed. In turn,
this reduces usage(Y), which leads to longer codes. Hence, even if X is used a good
number of times, by this effect, adding X to CT may still lead to a (much) worse
compression.

Alternatively, let us consider adding Z to CT. As Z is a superset of X, it can cover
more items with one code. If Z ‘gets in the way’ of Y like X does above, fewer codes
(itemsets) might be necessary to encode the transactions at hand, because Z covers
more items. As a result, the total compression might improve; especially if Z is a
superset of Y, or when we happen to have a W € CT that covers (at least) Y \ Z. As
such, depending on the situation, Z may avoid the effect of getting ‘in the way’ of
Y, and thus lead to an improved compression. However, the effect can just as well be
negative again, as W may again ‘get in the way’ of some other sets, etc.

In short, before adding an element to a code table, there is no simple way to predict
what the effect will be on the overall compression.

4 Algorithms

In this section we present algorithms for solving the problem formulated in the previ-
ous section. As shown above, the search space one needs to consider for finding the
optimal code table is far too large to be considered exhaustively. We therefore have to
resort to heuristics.

4.1 Basic heuristic
To cut down a large part of the search space, we use the following simple greedy search
strategy:

— Start with the standard code table ST , containing only the singleton itemsets X € 7.
— Add the itemsets from F one by one. If the resulting codes lead to a better com-
pression, keep it. Otherwise, discard the set.

@ Springer

KRIMP : mining itemsets that compress 183

Algorithm 1 The STANDARD CODE TABLE Algorithm

Input: A transaction database D over a set of items Z.
Output: The standard code table CT for D.

1: CT < ¢

2: forall X € 7 do

3: insert X into CT

4: usagep (X) < suppp(X)

5: codect(X) <« optimal code for X

6: end for

7: return CT

To turn this sketch into an algorithm, some choices have to be made. Firstly, in
which order are we going to encode a transaction? So, what cover function are we
going to employ? Secondly, in which order do we add the itemsets? Finally, do we
prune the newly constructed code table before we continue with the next candidate
itemset or not?

Before we discuss each of these questions, we briefly describe the initial encoding.
This is, of course, the encoding with the standard code table. For this, we need to
construct a code table from the elements of Z. The algorithm called Standard Code
Table, given in pseudo-code as Algorithm 1, returns such a code table. It takes a set
of items and a database as parameters and returns a code table. Note that for this code
table all cover functions reduce to the same, namely the cover function that replaces
each item in a transaction with its singleton itemset. As the singleton itemsets are
mutually exclusive, all elements X € Z will be used suppp(X) times by this cover
function.

4.2 Standard cover function

From the problem complexity analysis in the previous section it is quite clear that
finding an optimal cover of the database is practically impossible, even if we are given
the optimal set of itemsets as the code table: examining all |CT|! possible permuta-
tions is already virtually impossible for one transaction, let alone expanding this to all
possible combinations of permutations for all transactions.

We therefore employ a heuristic and introduce a standard cover function which
considers the code table in a fixed order. The pseudo-code for this Standard Cover
function is given as Algorithm 2. For a given transaction ¢, the code table is traversed
in a fixed order. An itemset X € CT is included in the cover of ¢ iff X C ¢. Then, X
is removed from ¢ and the process continues to cover the uncovered remainder, i.e.
t \ X. Using the same order for every transaction drastically reduces the complexity
of the problem, but leaves the choice of the order.

Again, considering all possible orders would be best, but is impractical at best. A
more prosaic reason is that our algorithm will need a definite order; random choice
does not seem the wisest of ideas. When choosing an order, we should take into account
that the order in which we consider the itemsets may make it easier or more difficult
to insert candidate itemsets into an already sorted code table.

@ Springer

184 J. Vreeken et al.

Algorithm 2 The STANDARD COVER Algorithm

Input: Transaction r € D and code table CT, with CT and D over a set of items Z.
Output: A cover of ¢ using non-overlapping elements of CT'.

1: S <« smallest element X of CT in Standard Cover Order for which X C ¢
1if +\ S = ¢ then

Res < {S}

: else

Res < {S} U STANDARDCOVER(? \ S, CT)

. end if

: return Res

FoUE W

We choose to sort the elements X € CT first decreasing on cardinality, second
decreasing on support in D and thirdly lexicographically increasing to make it a total
order. To describe the order compactly, we introduce the following notation. We use |,
to indicate that an attribute is sorted descending, and 4 to indicate it is sorted ascending:

[X| | suppp(X) | lexicographically 1

We call this the Standard Cover Order. The rationale is as follows. To reach a good
compression we need to replace as many individual items as possible, by as few and
short as possible codes. The above order gives priority to long itemsets, as these can
replace as many as possible items by just one code. Further, we prefer those itemsets
that occur frequently in the database to be used as often as possible, resulting in high
usage values and thus short codes. We rely on MDL not to select overly specific item-
sets, as such sets can only be infrequently used and would thus receive relatively long
codes.

4.3 Standard candidate order

Next, we address the order in which candidate itemsets will be regarded. Preferably,
the candidate order should be in concord with the cover strategy detailed above. We
therefore choose to sort the candidate itemsets such that long, frequently occurring
itemsets are given priority. Again, to make it a total order we thirdly sort lexicograph-
ically. So, we sort the elements of F as follows:

suppp(X) | |X| | lexicographically 1

We refer to this as the Standard Candidate Order. The rationale for it is as follows.
Itemsets with the highest support, those with potentially the shortest codes, end up
at the top of the list. Of those, we prefer the longest sets first, as these will be able
to replace as many items as possible. This provides the search strategy with the most
general itemsets first, providing ever more specific itemsets along the way.

A welcome advantage of the standard orders for both the cover function and the
candidate order is that we can easily keep the code table sorted. First, the length of
an itemset is readily available. Second, with this candidate order we know that any
candidate itemset for a particular length will have to be inserted after any already

@ Springer

KRIMP : mining itemsets that compress 185

present code table element with the same length. Together, this means that we can
insert a candidate itemset at the right position in the code table in O(1) if we store the
code table elements in an array (over itemset length) of lists.

4.4 The KRIMP algorithm

We now have the ingredients for the basic version of our compression algorithm:

— Start with the standard code table ST;

— Add the candidate itemsets from J one by one. Each time, take the itemset that is
maximal w.r.t. the standard candidate order. Cover the database using the standard
cover algorithm. If the resulting encoding provides a smaller compressed size, keep
it. Otherwise, discard it permanently.

This basic scheme is formalised as the KRIMP algorithm given as Algorithm 3. For
the choice of the name: ‘krimp’ is Dutch for ‘to shrink’. The KRIMP pattern selection
process is illustrated in Fig. 4.

KRIMP takes as input a database D and a candidate set F. The result is the best code
table the algorithm has seen, w.r.t. the Minimal Coding Set Problem.

Now, it may seem that each iteration of KRIMP can only lessen the usage of an
itemset in CT. For, if F{ N F> #) and F; is used before F; by the standard cover
function, the usage of F; will go down (provided the support of F> does not equal

Algorithm 3 The KRIMP Algorithm

Input: A transaction database D and a candidate set F, both over a set of items Z
Output: A heuristic solution to the Minimal Coding Set Problem, code table CT
1: CT <« Standard Code Table(D)

2: F, < F in Standard Candidate Order

3: forall F € F, \Z do

4: CT, < (CT UF) in Standard Cover Order

5. if L(D, CT,) < L(D, CT) then
6
7

CT < CT,
end if
8: end for
9: return CT
Database
Krimp select pattern
6 C
accept / add to
v reject code table
2t
O =0
g MDL R §
S = =
N~
S _— 8 I Code table
>~
compress database

Many many patterns

Fig. 4 KRIMP in action

@ Springer

186 J. Vreeken et al.

zero). While this is true, it is not the whole story. Because, what happens if we now
add an itemset F3, which is used before F, such that:

FiNFz=¢ and Fob,NF3 £

The usage of F, will go down, while the usage of F; will go up again; by the same
amount, actually. So, taking this into consideration, even code table elements with
zero usage cannot be removed without consequence. However, since they are not used
in the actual encoding, they are not taken into account while calculating the total
compressed size for the current solution.

In the end, itemsets with zero usage can be safely removed though. After all, they
do not code, so they are not part of the optimal answer that should consist of the
smallest coding set. Since the singletons are required in a code table by definition,
these remain.

4.5 Pruning

That said, we cannot be sure that leaving itemsets with a very low usage count in CT
is the best way to go. As these have a very small probability, their respective codes
will be very long. Such long codes may make better code tables unreachable for the
greedy algorithm; it may get stuck in a local optimum. As an example, consider the
following three code tables:

CT; = {{X1, X2}, {X1}, { X2}, {X3}}
CT> = {{X1, X2, X3}, {X1, Xo}, {X1}, {X2}, {X3}}
CTs; = {{X1, X2, X3}, {X1}, { X2}, {X3}}

Assume that suppp({X1, X2, X3}) = suppp({X1, X2}) — 1. Given these assump-
tions, standard KRIMP will never consider CT3, but it is very well possible that
L(D, CT3) < L(D, CT>) and that CT; provides access to a branch of the search
space that is otherwise left unvisited. To allow for searching in this direction, we can
prune the code table that KRIMP is considering.

There are many possibilities to this end. The most obvious strategy is to check the
attained compression of all valid subsets of CT including the candidate itemset F, i.e.
{CT, CCT | F € CT, A T C CTp}, and choose CT,, with minimal L(D, CT). In
other words, prune when a candidate itemset is added to CT, but before the acceptance
decision. Clearly, such a pre-acceptance pruning approach implies a huge amount of
extra computation. Since we are after a fast and well-performing heuristic we do not
consider this strategy.

A more efficient alternative is post-acceptance pruning. That is, we only prune
when F is accepted: when candidate code table CT, = CT U F is better than CT, i.e.
L(D,CT.) < L(D, CT), we consider its valid subsets. This effectively reduces the
pruning search space, as only few candidate itemsets will be accepted.

To cut the pruning search space further, we do not consider all valid sub-
sets of CT, but iteratively consider for removal those itemsets X<CT for which

@ Springer

KRIMP : mining itemsets that compress 187

Algorithm 4 Code Table Post-Acceptance Pruning

Input: Code tables CT, and CT, for a transaction database D over a set of items Z, where {X € CT} C
{Y € CT¢} and L(D, CT;) < L(D, CT).

Output: Pruned code table CTp, such that L(D, CTp) < L(D, CT,) and CT), € CTe.

1: PruneSet < {X € CT | usagecr,.(X) < usagecr(X)}

2: while PruneSet # ¢) do

3: PruneCand < X € PruneSet with lowest usagecr,.(X)

4: PruneSet <— PruneSet \ PruneCand

5: CTp < CT. \ PruneCand

6: if L(D, CTy) < L(D, CT,) then

7: PruneSet < PruneSet U{X € CT) | usagecr, (X) < usagecr, (X)}
8: CT. < CTy

9: endif

10: end while
11: return CT,

usagep(X) has decreased. The rationale is that for these itemsets we know that their
code lengths have increased; therefore, it is possible that these sets now harm the
compression.

In line with the standard order philosophy, we first consider the itemset with the
smallest usage and thus the longest code. If by pruning an itemset the total encoded
size decreases, we permanently remove it from the code table. Further, we then update
the list of prune candidates with those item sets whose usage consequently decreased.
This post-acceptance pruning strategy is formalised in Algorithm 4. We refer to the
version of KRIMP that employs this pruning strategy (which would be on line 6 of
Algorithm 3) as KRIMP with pruning. In Sect. 7 we will show that employing pruning
improves the performance of KRIMP.

Example 6 Two example code tables obtained with KRIMP are shown in Fig. 5. With-
out pruning, KRIMP selects 2 itemsets of length > 1 to encode the database. The size of
the database encoded with this code table is 12.4 bits. The total encoded size, including
the size of the code table, is 33 bits. When pruning is enabled, {A, B} is pruned from
the code table. It was accepted into the code table earlier than {A, B, C}, but does
no longer contribute to compression now that this larger set has been added. With
the pruned code table, the size of the encoded database is 12.9 bits. However, since
the code table is smaller, the total encoded size becomes 26 bits; 7 bits smaller than
without pruning.

4.6 Complexity

Here we analyse the complexity of the KRIMP algorithms step—-by—step. We start with
time-complexity, after which we cover memory-complexity.

Given a set of (frequent) itemsets F, we first order this set, requiring O(|F| log | F|)
time. Then, every element F' € F is considered once. Using a hash-table implemen-
tation we need only O(1) to insert an element at the right position in CT, keeping CT
ordered. To calculate the total encoded size L(D, CT), the cover function is applied
to each t € D. For this, the standard cover function considers each X € CT once for a

@ Springer

188 J. Vreeken et al.
CT (no pruning) CTp(with pruning)
Itemset Code Usage Itemset ‘ Code Usage

A B C [o.68vbits 5 A B C [o.85vits 5

1 2
1 2
o] 1 - 0
- 0
Cover with CT Encoded with CT Cover with CT” Encoded with CT”
O =
O =
O =
O =
O -
I I E—
E— —4
[— —

Fig. 5 Example code tables obtained with KRIMP, with and without pruning, on the database shown in
Fig. 2. Also shown are the associated covers and encoded databases

t. Checking whether X is an (uncovered) subset of ¢ takes at most O(|Z]). Therefore,
covering the full database takes O(|D| x |CT| x |Z|) time. Then, optimal code lengths
and the total compressed size can be computed in O(|CT).

Note that we know the code table will grow to at most | F| elements. So, given a set
of (frequent) itemsets F and a cover function that considers the elements of the code
table in a static order, the worst-case time-complexity of the KRIMP algorithm without
pruning is

OC|F[log | F| + [FI x (ID| x [F| x |Z] + | F]))-

When we do employ pruning, in the worst-case we have to reconsider each element
in CT after accepting each F € F,

O(|F|log|F| + |F* x (ID] x | F| x [Z| +|F]).

This looks quite horrendous. However, it is not as bad as it seems.

First of all, due to MDL, the number of elements in the code table is very small,
|CT| < |D] < |F|, in particular when pruning is enabled. In fact, this number (typi-
cally 100 to 1000) can be regarded as a constant, removing it from the big-O notation.
Therefore,

O(|Fllog |[F|+ ID| x [F| x |Z])

is a better estimate for the time-complexity for KRIMP with or without pruning
enabled.

@ Springer

KRIMP : mining itemsets that compress 189

Next, for Z of reasonable size (say, up to 1000), bitmaps can be used to represent
the itemsets. This allows for subset checking in O(1), again removing a term from the
complexity. Further, for any new candidate code table itemset F' € F, the database
needs only to be covered partially; so instead of all |D| transactions only those d trans-
actions in which F occurs need to be covered. If D is large and the minsup threshold
is low, d is generally very small (d < |D]) and can be regarded as a constant. So, in
the end we have

O(|F|log|F| + |F]).

Now, we consider the order of the memory requirements of KRiMP. The worst-case
memory requirements of the KRIMP algorithms are

OC|FI+ DI+ |F1).

Again, as the code table is dwarfed by the size of the database, it can be regarded a
(small) constant. The major part is the storage of the candidate code table elements.
Sorting these can be done in place. As it is iterated in order, it can be handled from the
hard drive without much performance loss. Preferably, the database is kept resident,
as it is covered many times.

5 Interlude

Before we continue with more theory, we will first present some results on a small
number of datasets to provide the reader with some measure and intuition on the
performance of KRIMP. To this end, we ran KRIMP with post-acceptance pruning on
six datasets, using all frequent itemsets mined at minsup = 1 as candidates. The
results of these experiments are shown in Table 2. Per dataset, we show the number of
transactions and the number of candidate itemsets. From these latter figures, the prob-
lem of the pattern explosion becomes clear: up to 5.5 billion itemsets can be mined
from the Mushroom database, which consists of only 8124 transactions. It also shows
that KRIMP successfully battles this explosion, by selecting only hundreds of itemsets
from millions up to billions. For example, from the 5.5 billion for Mushroom, only
442 itemsets are chosen; a reduction of seven orders of magnitude.

For the other datasets, we observe the same trend. In each case, fewer than 2000
itemsets are selected, and reductions of many orders of magnitude are attained. The
number of selected itemsets depends mainly on the characteristics of the data. These
itemsets, or the code tables they form, compress the data to a fraction of its original
size. This indicates that very characteristic itemsets are chosen, and that the selections
are non-redundant. Further, the timings for these experiments show that the compres-
sion-based selection process, although computationally complex, is a viable approach
in practice. The selection of the above mentioned 442 itemsets from 5.5 billion item-
sets takes under 4 h. For the Adult database, KRIMP considers over 400,000 itemsets
per second, and is limited not by the CPUs but by the rate with which the itemsets can
be read from the harddisk.

@ Springer

190 J. Vreeken et al.

Table 2 Results of running KRIMP on a few datasets

Dataset |D| |Z] |F| KRrimP Time
D
CT\I HBSH

Adult 48842 97 58461763 1303 24.4 0:02:25
Chess (kr—k) 28056 58 373421 1684 61.6 0:00:13
Led7 3200 24 15250 152 28.6 0:00:00
Letter recognition 20000 102 580968767 1780 35.7 0:52:33
Mushroom 8124 119 5574930437 442 20.6 3:40:25
Pen digits 10992 86 459191636 1247 423 0:31:33
For all datasets the candidate set 7 was mined with minsup = 1, and KRIMP with post-acceptance pruning

was used. For KRIMP, the size of the resulting code table (minus the singletons), the compression ratio and
the runtime is given. The compression ratio is the encoded size of the database with the obtained code table
divided by the baseline encoded size, in percentages. Timings, in hours, minutes and seconds (h: mm:ss),
as recorded with the parallel implementation on quad-core 3.0 Ghz Xeon machines using four threads.

Given this small sample of results, we now know that indeed few, characteristic and
non-redundant itemsets are selected by KRIMP, in number many orders smaller than
the complete frequent itemset collections. However, this leaves the question of how
good are the returned pattern sets?

6 Classification by compression

In this section, we describe a method to verify the quality of the KRIMP selection in
an independent way. To be more precise, we introduce a simple classification scheme
based on code tables, previously published as van Leeuwen et al. (2006). We answer the
quality question by answering the question: how well do KRIMP code tables classify?
For this, classification performance is compared to that of state-of-the-art classifiers
in Sect. 7.6.

6.1 Classification through MDL

If we assume that our database of transactions is an i.i.d. sample from some underlying
data distribution, we expect the optimal code table for this database to compress an
arbitrary transaction sampled from this distribution well. We make this intuition more
formal in Lemma 3.

We say that the itemsets in CT are independent if any co-occurrence of two itemsets
X, Y € CT inthe cover of a transaction is independent. Thatis, P(XY) = P(X)P(Y).
Clearly, this is a Naive Bayes (Warner et al. 1961) like assumption.

Lemma 3 Let D be a bag of transactions over I, cover a cover function, CT the
optimal code table for D and t an arbitrary transaction over L. Then, if the itemsets

@ Springer

KRIMP : mining itemsets that compress 191

X € cover(CT, t) are independent,
L(t|CT)=—log(P(t|D)).

Proof

L(t|CT) = Z L(codecr (X))
Xecover(CT,t)

= D ~log(P(X|D)

Xecover(CT,t)

= —log]_[P(X | D)

Xecover(CT,t)
— —log (P(1 | D).

]

The last equation is only valid under the Naive Bayes like assumption, which might
be violated. However, if there are itemsets X, Y € CT suchthat P(XY) > P(X)P(Y),
we would expect an itemset Z € CT such that X, Y C Z. Therefore, we do not expect
this assumption to be overly optimistic.

Now, assume that we have two databases generated from two different underlying
distributions, with corresponding optimal code tables. For a new transaction that is
generated under one of the two distributions, we can now decide to which distribu-
tion it most likely belongs. That is, under the Naive Bayes assumption, we have the
following lemma.

Lemma 4 Let Dy and D> be two bags of transactions over I, sampled from two dif-
ferent distributions, cover a cover function, and t an arbitrary transaction over Z.
Let CT; and CT> be the optimal code tables for respectively D1 and D». Then, from
Lemma 3 it follows that

L(t|CT;) > L(t | CT2) = P(t|D;) <P(t|Dy).

Hence, the Bayes optimal choice is to assign ¢ to the distribution that leads to the
shortest code length.

6.2 The Krimp classifier

The previous subsection, with Lemma 4 in particular, suggests a straightforward clas-
sification algorithm based on KRIMP code tables. This provides an independent way
to assess the quality of the resulting code tables. The KRIMP Classifier is given in
Algorithm 5. The KRIMP classification process is illustrated in Fig. 6.

The classifier consists of a code table per class. To build it, a database with class
labels is needed. This database is split according to class, after which the class labels are

@ Springer

192 J. Vreeken et al.

Algorithm 5 The KrRiMP Classifier

Input: A database D with class labels and a transaction #, both over a set of items Z
Output: The class label assigned to ¢

1: K <« {class labels of D}

1 {Dy} < split D on K, remove each k € K fromeacht € D

: for all Dy do

Fi < MineCandidates(Dy)

CTy, < KrRimP (Dy, F)

for each X € CTy, : usagecr, (X) < usagecr, (X) + 1

: end for

: return arg mingec g L(1 | CTy)

Eﬁ_}@

N

Database
(n classes)
. Encode
Split Apply Code table unseen Shortest
= per class KRivMP perclass transactions code wins!
——
Code
] — —

=
=

Fig. 6 The KriMP Classifier in action

removed from all transactions. KRIMP is applied to each of the single-class databases,
resulting in a code table per class. At the very end, after all pruning has been done,
each code table is Laplace corrected: the usage of each itemset in CTy, is increased by
one. This ensures that all itemsets in CT} have non-zero usage, therefore have a code,
i.e. their code length can be calculated, and thus, that any arbitrary transaction r € 7
can be encoded. (Recall that we require a code table to always contain all singleton
itemsets.)

When the compressors have been constructed, classifying a transaction is trivial.
Simply assign the class label belonging to the code table that provides the minimal
encoded length for the transaction.

7 Experiments

In this section we experimentally evaluate the KRIMP algorithms and the underlying
heuristics, and assess the quality of the resulting code tables.

We describe our setup in Sect. 7.1 and the datasets we use in the experiments in
Sect. 7.2. Then, we start our evaluation of KRIMP by looking at how many itemsets
are selected and what compression ratios are attained in Sect. 7.3. The stability of
these results, and whether these rely on specific itemsets is explored in Sect. 7.4. In

@ Springer

KRIMP : mining itemsets that compress 193

Sect. 7.5 we test through swap-randomisation whether the code tables model relevant
structure. The quality of the code tables is independently validated through classifica-
tion in Sect. 7.6. Last, in Sect. 7.7, we evaluate the cover and candidate order heuristics
of KRIMP.

7.1 Setup

We use the shorthand notation L% to denote the relative total compressed size of D,
SO

_ L(D.CT)

L% = —— " x
L(D, ST)

100,

wherever D is clear from context. Since 0 < L(D, CT) < L(D, ST), L% is a value
between 0 and 100. As candidates, F, we typically use all frequent itemsets mined at
minsup = 1, unless indicated otherwise. We use the AFOPT miner (Liu et al. 2004),
taken from the FIMI repository (Goethals and Zaki 2003), to mine (closed) frequent
itemsets. The reported KRIMP timings are of the selection process only and do not
include the mining and sorting of the candidate itemset collections. All experiments
were conducted on quad-core Xeon 3.0 GHz systems running Windows Server 2003.
Timings reported in this section are based on single-threaded runs.

7.2 Data

For the experimental validation of our methods we use a wide range of freely available
datasets. From the LUCS/KDD discretised data set repository (Coenen 2003) we take
some of the largest databases. We transformed the Connect-4 dataset to a less dense for-
mat by removing all ‘empty-field” items. From the FIMI repository (Goethals and Zaki
2003) we use the BMS datasets? (Kohavi et al. 2000). Further, we use the Mammals
presence and DNA Amplification databases. The former consists of presence records
of European mammals® within geographical areas of 50 x 50 kilometers (Mitchell-
Jones et al. 1999). The latter is data on DNA copy number amplifications. Such copies
activate oncogenes and are hallmarks of nearly all advanced tumors (Myllykangas
et al. 2006). Amplified genes represent attractive targets for therapy, diagnostics and
prognostics.

The details for these datasets are depicted in Table 3. For each database we show
the number of attributes, the number of transactions and the density: the percentage
of ‘present’ attributes. Last, we provide the total compressed size in bits as encoded
by the singleton-only standard code tables ST'.

2 We wish to thank Blue Martini Software for contributing the KDD Cup 2000 data.

3 The full version of the mammal dataset is available for research purposes upon request from the Societas
Europaeca Mammalogica. http://www.european-mammals.org

@ Springer

http://www.european-mammals.org

194 J. Vreeken et al.

Table 3 Statistics of the datasets used in the experiments

Dataset |D| |Z] Density # Classes L(D | ST)
Accidents 340183 468 7.22 — 74592568
Adult 48842 97 15.33 2 3569724
Anneal 898 71 20.15 5 62827
BMS-pos 515597 1657 0.39 - 25321966
BMS-webview 1 59602 497 0.51 - 1173962
BMS-webview 2 77512 3340 0.14 - 3747293
Breast 699 16 62.36 2 27112
Chess (k—k) 3196 75 49.33 2 687120
Chess (kr—k) 28056 58 12.07 18 1083046
Connect—4 67557 129 33.33 3 17774814
DNA amplification 4590 392 1.47 - 212640
Heart 303 50 27.96 5 20543
Ionosphere 351 157 22.29 2 81630
Iris 150 19 26.32 3 3058
Led7 3200 24 33.33 10 107091
Letter recognition 20000 102 16.67 26 1980244
Mammals 2183 121 20.5 — 320094
Mushroom 8124 119 19.33 2 1111287
Nursery 12960 32 28.13 5 569042
Page blocks 5473 44 25 5 216552
Pen digits 10992 86 19.77 10 1140795
Pima 768 38 23.68 2 26250
Pumsbstar 49046 2088 242 - 19209514
Retail 88162 16470 0.06 - 10237244
Tic—tac—toe 958 29 34.48 2 45977
Waveform 5000 101 21.78 3 656084
Wine 178 68 20.59 3 14101

Per dataset the number of transactions, the number of attributes, the density (average percentage of items)
and the number of bits required by KRIMP to compress the data using the singleton-only standard code table
ST

7.3 Selection

We first evaluate the question whether KRIMP provides an answer to the pattern explo-
sion. To this end, we ran KRIMP on 27 datasets, and analysed the outcome code tables,
with and without post-acceptance pruning. The results of these experiments are shown
as Table 4. As candidates itemset collections we mined frequent itemsets of the indi-
cated minsup thresholds. These were chosen as low as possible, either storage-wise or
computationally feasible.

The main result shown in the table is the reduction attained by the selection pro-
cess: up to seven orders of magnitude. While the candidate sets contain millions up to
billions of itemsets, the resulting code tables typically contain hundreds to thousands

@ Springer

KRIMP : mining itemsets that compress 195

Table 4 Results of KRIMP with and without post-acceptance pruning

Dataset minsup |F| KRIMP w/o pruning KRIMP with pruning
|CT \ T| L% |CT\ Z| L%
Accidents 50000 2881487 4046 55.4 467 55.1
Adult 1 58461763 1914 24.9 1303 24.4
Anneal 1 4223999 133 37.5 102 353
BMS-pos 100 5711447 14628 82.7 1657 81.8
BMS-wvl 32 1531980297 960 86.6 736 86.2
BMS-wv2 10 4440334 5475 84.4 4585 84.0
Breast 1 9919 35 17.4 30 17.0
Chess (k—k) 319 4603732933 691 30.9 280 273
Chess (kr—k) 1 373421 2203 62.9 1684 61.6
Connect—4 1 233142539 4525 11.5 2036 10.9
DNA amp 9 312073710 417 38.6 326 37.9
Heart 1 1922983 108 61.4 79 57.7
Tonosphere 35 225577741 235 63.4 164 61.3
Iris 1 543 13 48.2 13 48.2
Led7 1 15250 194 29.5 152 28.6
Letter 1 580968767 3758 433 1780 35.7
Mammals 200 93808243 597 50.4 316 48.4
Mushroom 1 5574930437 689 222 442 20.6
Nursery 1 307591 356 45.9 260 455
Page blocks 1 63599 56 5.1 53 5.0
Pen digits 1 459191636 2794 48.8 1247 423
Pima 1 28845 72 36.3 58 34.8
Pumsbstar 11120 272580786 734 51.0 389 50.9
Retail 4 4106008 7786 98.1 6264 97.7
Tic—tac—toe 1 250985 232 65.0 160 62.8
Waveform 5 465620240 1820 55.6 921 44.7
Wine 1 2276446 76 80.9 63 77.4

Per dataset, the minsup for mining frequent itemsets, and the size of the resulting candidate set F. For
KRIMP without and with post-acceptance pruning enabled, the number of non-singleton elements in the
returned code tables and the attained compression ratios.

of non-singleton itemsets. These selected itemsets compress the data well, typically
requiring only a quarter to half of the bits of the independent ST encoding. Dense
datasets are compressed very well. For Adult and Mushroom, ratios of respectively 24
and 21% are noted. Sparse data, on the other hand, typically contains little structure.
We see that such datasets (e.g. the Retail and BMS datasets) indeed prove difficult to
compress; relatively many itemsets are required to provide a meagre compression.
Comparing between KRIMP with and without post-acceptance pruning, we see that
enabling pruning provides the best: fewer itemsets (~ 1000, on average) are re-
turned, which provide better compression (avg. 2% improvement). For Accidents and

@ Springer

196 J. Vreeken et al.

BMS-pos the difference in the number of selected itemsets is a factor of 10. The aver-
age length of the itemsets in the code tables is about the same, with respectively 5.9
and 5.7 with and without pruning. However, the average of the usage of these itemsets
differs more, with averages of respectively 80.7 and 48.2.

As post-acceptance pruning provides improved performance, from now onward we
employ KRIMP with post-acceptance pruning, unless indicated otherwise. Further, due
to the differences in code table size, experiments with pruning typically execute faster
than those without pruning.

Next, we examine the development in number of selected itemsets w.r.t. the number
of candidate itemsets. For the Mushroom database, the top graph of Fig. 7 shows the
size of the candidate set and size of the corresponding code table for varying minsup
thresholds. While we see that the number of candidate itemsets grows exponentially,
to 5.5 billion for minsup = 1, the number of selected itemsets stabilises at around 400.
This stabilisation is typical for all datasets, with the actual number being dependent
on the characteristics of the data.

This raises the question whether the total compressed size also stabilises. In the
bottom graph of Fig. 7, we plot the total compressed size of the database for the same
range of minsup. From the graph it is clear that this is not the case: the compressed size
decreases continuously, it does not stabilise. Again, this is typical behaviour; espe-
cially for sparse data we have recorded steep descents at low minsup values. As the
number of itemsets in the code table is stable, we thus know that itemsets are being
replaced by better ones. Further, note that the compressed size of the code table is
dwarfed by the compressed size of the database. This is especially the case for large
datasets.

In Fig. 8 we display histograms of the support of the selected itemsets. These plots
shows that these itemsets are typically frequent. That is, KRIMP does not just choose
itemsets of low-support, but rather selects a range of specific and more general item-
sets. The top graph, for the Accidents database, shows that the itemsets with supports
close to the chosen minsup of 50000 are favored, which is in line with what we saw in
Fig. 7: compression increases if itemsets up till lower minsup are considered. However,
note the long tail of the graph, for also many itemsets of higher support are included
in the code table. We see the same behaviour when we set minsup to 1, like in the
bottom graph for the much smaller Tic—Tac—Toe database.

Next, in Fig. 9, we regard the relation between the support and the length of the
used itemsets. We see that KRIMP selects a broad spectrum of itemsets, and does not
simply focus on short and frequent or long and infrequent. We recorded highly similar
graphs for the other datasets.

Back to the top graph of Fig. 7, we see a linear correlation between the runtime
and the number of candidate sets. The correlation factor depends heavily on the data
characteristics; its density, the number of items and the number of transactions. For
this experiment, we observed 150,000 to 350,000 candidates considered per second,
the performance being limited by 10.

In the top graph of Fig. 10 we provide an overview of the differences in the sizes
of the candidate sets and code tables, and in the bottom graph the runtimes recorded
for these experiments. Those experiments for which the runtime bars are missing fin-
ished within one second. The bottom graph shows that the runtimes are low. Letting

@ Springer

KRIMP : mining itemsets that compress 197

1010 _

10° ,_,_JJ—I_"—/J
10°

Time (s)

=,m Number of sets
= =
X 0

e N

102 e

==
Pl
s
. /
10
i

100 — |F| —= |cT\1| time (s)

106 \\
—
(2] e
= ==
o]
=
[}
N q0°
%]
©
@
1]
(%]
9}
I
g

4
S 10
(&)

— L(D,CT) —— LDICT) L(CT)
TITAFTOOOOWNOANNTTOOOTONOTTITONOOTANODTLHWOOWON T 0O WM
NOONMTEMNNTOUO-TOOFTONONONTANONLNDNCrODOFTTNOANOOVONOLFTANN ™
gga&893&90‘:0}@@@@@“}??0(’)(’)!’)(\1(\1(\‘(\](% rrrrrrr

minsup

Fig. 7 Running KRIMP with post-acceptance pruning on the Mushroom dataset, using 5.5 billion frequent
itemsets as candidates (minsup = 1). (top) Per minsup, the size of the candidate set, |F|, the size of the
code table, |CT \ Z|, and the runtime in seconds in respectively the continuous, the long-dashed and short-
dashed lines. (bottom) Per minsup, in bits the size of the code table, the data, and the total compressed
size (respectively L(CT), L(D | CT) and L(D, CT)) in respectively the short-dashed, long-dashed and
continuous lines

KRIMP consider the largest candidate sets, billions of itemsets, takes up to a couple of
hours. The actual speed (candidates per second) mainly depends on the support of the
itemsets (the number of transactions that have to be covered). The speed at which our
current implementation considers candidate itemsets typically ramps up to thousands,
even hundreds of thousands, per second.

@ Springer

198 J. Vreeken et al.

20

Number of itemsets

0
50000 75000 100000 125000 150000
ltemset support (supp,)

25

20 —.—

Number of itemsets

0 50 100 105 200
ltemset support (suppp)

Fig. 8 Histograms of the support, suppp, of the non-singleton itemsets in the code tables of the experi-
ments on the Accidents (top) and Tic—Tac—Toe (bottom) datasets with, respectively, minsup thresholds of
50000 and 1, employing online pruning

30 o
9
§250
= °
£ 20 ® e
g ° o g
g_ ° B8 o
w15§ 8 e] 8 °
2 g - ° f P
g 10 5
S I L0l
= 8
5 8 o) B8 o]
2 4 6 8 10 12 14

ltemset length

Fig. 9 Scatterplot of the supports and lengths of the non-singleton itemsets in the code table for the
Accidents dataset, using minsup = 50000 and employing online pruning

7.4 Stability

Here, we verify the stability of KRIMP w.r.t. different candidate sets. First we investi-
gate whether good results can be attained without the itemsets normally chosen in the
code table. Given the large redundancy in the frequent pattern set, one would expect
S0.

@ Springer

KRIMP : mining itemsets that compress 199

[7] = |CT]
9
C”108
5 10 — B u-— = — —
(9] 7
1777777 |—] |———| |
g 10
1 o°--B-BBBR—B—B0usl—RBR—R 0B —RB-
=
s AR SRRt Rt
= 10' NN -8 —p- -5 -8 - --5-8- —
210377————————————I ———————————— —
E ¢ - 11 l 7777777777777
Z 10 — - - - - - - - - - R oo —
10° _
= © 0 0 0 A
3232229999235 %00%223332%3%%
[N T ® O 2 S A TF 3% Q 2 ENCIETR A
5783352003573 5335837 8>%85°
2 T %22 z = o 3 > 2 Q2 3 e D, L 2
SR RE LD) T % o o = °
@ ’ 5% C ©3 %% % %3
2
g 10' Ball BB BEE B EE B Ema BN S N B
b 2 —N—N- - —u5—8—8-B-B——B—8-B—
(IJ103 B ER_ B BB | | .
c 1
o 10 _
£ 10 time
=

Fig. 10 The results of KRIMP with post-acceptance pruning on the 27 datasets using the minsup thresholds
of Table 4. The dark coloured bars show the number of itemsets in the candidate set, | F|, the lighter coloured
bars the number of non-singleton itemsets selected in the code table, |CT \ Z|, and the bottom graph the
associated runtimes for the single-threaded implementation

To this end, we first ran KRIMP using candidate set F to obtain CT'. Then, for each
X € {CT \ Z} we ran KRIMP using the candidate set F \ {X}. In addition, we also ran
KRrRimP using F \ {X € {CT \ Z}}.

As a code table typically consists of about 100 to 1000 elements, a considerable
set of experiments is required per database. Therefore, we use five of the datasets.
The results of these experiments are presented in Table 5. The minute differences in
compression ratios show that the performance of KRIMP does not rely on just those
specific itemsets in the original code tables. Excluding all elements from the original
code table results in compression ratios up till only .5% worse than normal. This is
expected, as in this setting all structure in the data captured by the original code table
has to be described differently. The results of the individual itemset exclusion experi-
ments, on the other hand, are virtually equal to the original. In fact, sometimes shorter
(better) descriptions are found this way: the removed itemsets were in the way of ones
that offer a better description.

Next, we consider excluding far more itemsets as candidates. That is, we use closed,
as opposed to all, frequent itemsets as candidates for KRIMP. For datasets with little
noise the closed frequent pattern set can be much smaller and faster to mine and pro-
cess. For the minsup thresholds depicted in Table 4, we mined both the complete and
closed frequent itemset collections, and used these as candidate sets F for running
KRIMP. Due to crashes of the closed frequent itemset miner, we have no results for the
Chess (k—k) dataset. Figure 11 shows the comparison between the results of either can-
didate set in terms of the relative compression ratio. The differences in performance
are slight, with an average increase in L% of about 1%. The only exception seems
Ionosphere, where a 12% difference is noted, the reason of which is unclear. (The
reduction in the number of candidate itemsets obtained by using closed itemsets is
not exceptional compared to the other datasets. It may be an artifact of discretisation,

@ Springer

200 J. Vreeken et al.

Table 5 Stability of the KRIMP given candidate sets with exclusions

Dataset minsup L% given candidates

F F\X F\CT
Chess (kr—k) 1 61.6 61.7+£0.21 61.6
Mushroom 1 24.7 24.7+0.01 25.0
Nursery 1 45.5 45.4+0.36 46.0
Pen digits 50 46.7 46.7+0.12 472
Wine 1 77.4 77.4+0.26 78.0

Per dataset, the minsup threshold at which frequent itemsets were mined as candidates F for KrRiMP. Fur-
ther, the relative compression L% for running KRIMP with F, the average relative compression attained by
excluding single original code table elements from F, and the relative compression attained by excluding
all itemsets normally chosen from F, i.e. using F \ {X € CT | X ¢ Z} as candidates for KRIMP. For
Mushroom and Pen digits the closed frequent itemset collections were used as candidates.

100
90

80 =

70 -1 e
60— |- - e —

50 [— -1 — - 1—

40 —
30 —

20 - -I-
o1
0

-

Relative compression (L%)

all = closed

Fig. 11 The results of KRIMP with post-acceptance pruning on 26 datasets using the minsup thresholds of
Table 4. Per dataset, the upward bars indicated the relative total compressed size (L%). As candidates, F,
all (left bars), and closed (right bars) frequent itemsets were used

leading to dependent items.) Further, the resulting code tables are of approximately
the same size; the ‘closed’ code tables consist of fewer itemsets: 10 on average. From
these experiments we can conclude that closed frequent itemsets are a good alternative
to be used as input for KRIMP, especially if otherwise too many frequent itemsets are
mined.

7.5 Relevance

To evaluate whether KRIMP code tables model relevant structure, we employ swap
randomisation (Gionis et al. 2007). Swap randomisation is the process of randomis-
ing data to obscure the internal dependencies, while preserving the row and column
margins of the data. This is achieved by applying individual swap operations that
maintain these margins. That is, one randomly finds and replaces two items /; and [

@ Springer

KRIMP : mining itemsets that compress 201

120
j2}
3
@ 100
©
©
o 80
0
£
5 60
©
C
IS
- 40 —
o Original
P data
2 2 ; _
E l
=}
Z O L L A L
1.018 1.02 1.144 1.146 1.148 1.15
. . 10°
Total compressed size (bits) X
120
1]
?
& 100
(1]
©
S 90400000 OO
B 8o
[0
IS
S 60— — — —
©
C
IS}
o
“w o0 RERRRER
o Original
g data
20 -—_ e m B R
= l
>
z 0 L L A 0 L
2.59 2.6 4.39 4.4 4.41 s
. . x10
Total compressed size (bits)
120
§2}
a
@ 100 _
8
©
©
e
g o
(7]
IS
S 60
o
o
o
40
© Original
g data
20 1
E l
2
0 ‘ ‘ A S
1.1 1.11 1.3 1.31 1.32
x 10*

Total compressed size (bits)

Fig. 12 Histograms of the total compressed sizes of 1000 swap randomised BMS-wvl (top), Nursery (mid-
dle) and Wine (bottom) datasets, using all frequent itemsets as candidates for KRIMP with post-acceptance
pruning. Total compressed sizes of the original datasets are indicated by the arrows. Note the jumps in
compressed size on the x-axes

(with i # j), and two transactions #; and #; (with k 7~ [), such that I; occurs in #; but
notin,i.e. I; € ty and I; ¢ 1;, and analogously for /; and #;,1.e. I; € t; and I; ¢ 1.
Then, a swap operation swaps the items, i.e. fy < {fy UI;}\ I; and t; < {f U L;}\ I;.

@ Springer

202 J. Vreeken et al.

Table 6 Swap randomisation experiments

Dataset Original data Swap randomised

|CT \ Z| x| L% |ICT\ Z| X L%
BMS-wvl 718 2.8 86.7 2779+73 2.74+0.0 97.8+£0.1
Nursery 260 5.0 45.5 849.2 +19.9 4.0+0.0 77.5+0.1
Wine 67 3.8 77.4 76.8 +3.4 3.1+0.1 93.1+0.4

Results of 1000 independent swap randomisation experiments per dataset. As many swaps were applied as
there are 1’s in the data. By | X| we denote the average cardinality of itemsets X € CT \ Z. The results for
the swap randomisations are averaged over the 1000 experiments per dataset. As candidates for KRIMP with
post-acceptance pruning we used all frequent itemsets, minsup = 1, except for BMS-wv1 for which we set
minsup = 35.

This process, effectively a Markov chain, has to be repeated numerous times, as often
as is required to break down the significant structure of the data, i.e. the mixing time
of the chain. No hard results exist on the optimal value of swaps, so we follow Gionis
et al. and apply as many swaps as there are 1s in the data.

The idea is that if the true structure of the data is captured, there should be significant
differences between the models found in the original and randomised datasets.

To this end, we compare the total compressed size of the actual data to those of 1000
swap randomised versions of the data. As this implies a large number of experiments,
we have to restrict ourselves to a small selection of datasets. To this end, we chose
three datasets with very different characteristics: BMS-wvl, Nursery and Wine. To get
reasonable numbers of candidate itemsets (i.e. a few million) from the randomised
data we use minsup thresholds of 1 for the latter two datasets and 35 for BMS-wv].

Figure 12 shows the histogram of the total compressed sizes of these 1000 randomi-
sations. The total compressed sizes of the original databases are indicated by arrows.
The standard encoded size for these three databases, L (D, ST), are 1173962, 569042
and 14100 bits, respectively. The graphs show that the original data can be compressed
significantly better than the randomised datasets (p-value of 0). Further quantitative
results are shown in Table 6. Besides much better compression, we see that for Nursery
and Wine the code tables induced on the original data contain fewer, but more specific
(i.e. longer) itemsets. For BMS-wvI the randomised data is virtually incompressible
with KRIMP (L% =~ 98%), and as such much fewer itemsets are selected.

7.6 Classification

As an independent evaluation of the quality of the itemsets picked by KRIMP, we
compare the performance of the KRIMP classifier (detailed in Sect. 6.2) to the per-
formance of a wide range of well-known and top-performing classifiers. We con-
sider rule-induction-based methods such as C4.5 (Quinlan 1993a), FOIL (Quinlan
1993b) and CPAR (Yin and Han 2003). Mehta et al. (1996) use MDL to prune
decision trees for classification. However, we are more interested in the comparison
to association-rule-based algorithms like iCAEP (Zhang et al. 2000), HARMONY

@ Springer

KRIMP : mining itemsets that compress 203

(Wang and Karypis 2005), CBA (Liu et al. 1998) and LB (Meretakis et al. 2000) as
these also employ a collection of itemsets for classification. Because we argued that
our method is strongly linked to the principle of Naive Bayes (NB) (Duda and Hart
1973) it is imperative we compare to it. Our hypothesis is that, if the code table-based
classifier performs on-par, KRIMP selects itemsets that are characteristic for the data.
Further, because these methods were devised with the goal of classification in mind,
opposed to KRIMP, we would expect them to (slightly) outperform the KRIMP classifier.

We use the same minsup thresholds as we used for the compression experiments,
listed in Table 4. Although the databases are now split on class before they are com-
pressed by KRIMP, these thresholds still provide large numbers of candidate itemsets
and result in code tables that compress well.

It is not always beneficial to use the code tables obtained for the lowest minsup,
as class sizes are often unbalanced or more structure is present in one class than in
another. Also, overfitting may occur for very low values of minsup. Therefore, we
store code tables at fixed support intervals during the pattern selection process. Dur-
ing classification, we need to select one code table for each class. To this end, we
‘pair’ the code tables using two methods: absolute and relative. In absolute pairing,
code tables that have been generated at the same support levels are matched. Relative
pairing matches code tables of the same relative support between 100% and 1% of the
maximum support value (per class, equals the number of transactions in a class). We
evaluate all pairings and choose that one that maximises accuracy.

All results reported in this section have been obtained using 10-fold cross-valida-
tion. As performance measure we use accuracy, the percentage of true positives on
the test data. We compare to results obtained with six state-of-the-art classifiers. All
scores for Naive Bayes, C4.5 and SVM have been obtained using Weka (Witten and
Frank 2005), with default parameter settings. For CBA we used the implementation
that is part of the LUCS-KDD software library (Coenen 2004) and the settings rec-
ommended by Liu et al. (1998) (minsup = 1%, minimum confidence = 50%). With
CBA, the parameters can make a large difference and we had to fine-tune these for
two datasets to get reasonable results. For all scores for NB, C4.5, SVM and CBA,
exactly the same discretisation was used as for KRIMP. The scores for iCAEP and
HARMONY have been taken from Zhang et al. (2000) and Wang and Karypis (2005)
respectively. Note that, in contrast with the other methods, we used the sparse version
of Connect—4 for KRIMP, as described in Sect. 7.2.

Before we compare the KRIMP classification performance to other methods, we
verify whether there is a qualitative difference between using all or only closed fre-
quent itemsets as candidates and using post-acceptance pruning or not. Table 7 shows

Table 7 Results of KRIMP classification, for all/closed frequent itemsets and without/with pruning

Candidates w/o Pruning With pruning
All 843+ 14.2 84.5+13.1
Closed 84.0£13.9 83.7+14.2

For each combination of candidates and pruning, the average accuracy (%) over the 19 datasets from Table 8
is given. Standard deviation is high as a result of the diverse range of datasets used.

@ Springer

204 J. Vreeken et al.

Table 8 Results of KRIMP classification, compared to six state-of-the-art classifiers

Dataset Baseline KRrimMP NB C4.5 CBA HRM iCAEP SVM
Adult 76.1 84.3 80.2 85.5 84.2 81.9 80.9 84.7
Anneal 76.2 96.6 96.3 97.8 94.7 95.1 95.3
Breast 65.5 94.1 93.3 94.1 94.0 97.4 93.7
Chess (k—k) 52.2 90.0 87.6 99.4 72.8 94.6 93.9
Chess (kr—k) 16.2 57.9 359 78.5 25.82 449 46.3
Connect—4 65.8 69.4 67.9 80.1 68.7 68.1 69.9 77.6
Heart 54.1 61.7 55.1 54.8 57.3 80.3 58.4
Ionosphere 64.1 91.0 90.9 90.9 87.20 90.6 90.9
Iris 333 96.0 94.7 94.0 94.0 94.7 93.3 94.0
Led7 11.0 753 754 75.3 66.6 74.6 75.8
Letter 4.1 70.9 57.2 71.5 28.6 76.8 69.8
Mushroom 51.8 100 94.0 100 46.4 99.9 99.8 99.9
Nursery 33.3 92.3 92.2 99.5 90.1 92.8 84.7 97.6
Page blocks 89.8 92.6 91.8 92.5 90.9 91.6 92.2
Pen digits 104 95.0 84.2 95.6 87.4 96.2 96.6
Pima 65.1 72.7 73.8 72.7 75.0 73.0 72.3 74.0
Tic—tac—toe 65.3 88.7 68.8 93.3 100 81.0 92.1 87.9
Waveform 339 77.1 774 74.1 77.6 80.5 81.7 80.1
Wine 39.9 100 95.5 96.6 532 63.0 98.9 97.2
Average 47.8 84.5 79.6 87.0 75.4 84.5

For each dataset, baseline accuracy and accuracy (%) obtained with KRIMP classification is given, as well
as accuracies obtained with six other classifiers are given. We use HRM as abbreviation for HARMONY.
The highest accuracy per dataset is displayed in boldface. Additionally, the average score is given for all
methods for which all scores are available. For KRIMP with post-acceptance pruning, per class, frequent
itemsets mined at thresholds found in Table 4 were used as candidates. All results are 10-fold cross-validated.
Non-default settings for CBA: @ minconf = 25%. b minsup = 10%.

that the variation in average accuracy is very small, but using all frequent itemsets as
candidates with pruning gives the highest accuracy, making it an obvious choice for
inspection of more detailed results in the rest of this subsection.

Classification results with all frequent itemsets as candidates and post-acceptance
pruning are presented in Table 8, together with accuracies obtained with 6 competitive
classifiers. Baseline accuracy is the (relative) size of the largest class in a dataset. For
about half of the datasets, the maximum score is provided by an absolute pairing, in
the other cases the scores are obtained with a relative pairing. As expected, relative
pairing performs well especially for datasets with small classes or unbalanced class
sizes. In general though, the difference in maximum accuracy between the two types
of pairings is very small, i.e. <1%. For a few datasets, the difference is more notable,
2-10%.

Looking at the scores, we observe that performance on most datasets is very simi-
lar for most algorithms. For Pima, for example, all accuracies are within a very small
range. Because of this, it is important to note that performance may vary up to a few

@ Springer

KRIMP : mining itemsets that compress 205

percent depending on the (random) partitioning used for cross-validation, especially
for datasets having smaller classes. Although the same partitioning was used for all
results obtained with Weka, this is not the case for the other results. Therefore, we
cannot conclude that a particular classifier is better on a certain dataset if the difference
is not larger than by a margin of, e.g. 2-3%.

We used a two-tailed paired t-test to analyse whether the results obtained by the
KRIMP classifier are significantly different (with a p-value of 0.05). This analysis
shows us that this is indeed the case for the comparisons to Naive Bayes and CBA.
However, there is no significant difference between KRiMP and C4.5, HARMONY,
or iCAEP (respective test scores of 0.10, 0.20 and 0.22). Moreover, the comparison
between the KRIMP classifier and SVM shows they perform highly similar, with a
score of 0.99. For our goal, these are excellent scores, as they show that the results
obtained by KRIMP are on par with the best scoring classifiers around—which says a
lot about how well the patterns that KRIMP selects describe the data distribution.

If we go back to the plain accuracy scores, we note that the KRIMP classifier scores
5 wins, indicated in boldface, which is only beaten by C4.5 with 8 wins. Additionally,
the achieved accuracy is close to the winning score in five cases, and average for the
remaining 9 datasets.

Compared to Naive Bayes, to which our method is closely related, we observe that
the obtained scores are indeed quite similar, with a slight advantage for KrRiMP. This
also shows in the average accuracy, which is equal to that of SVM, only C4.5 performs
better. Note that CBA was ran with the default parameter settings: minimum support
1% and minimum confidence 50%.

We also looked at the performance of FOIL, PRM and CPAR (Quinlan 1993b; Yin
and Han 2003) reported in Coenen (2004). These classifiers perform sub-par in com-
parison to those in Table 8 though. A comparison to LB and/or LB-chi2 (Meretakis et
al. 2000) is problematic, as no implementation is publically available, only few accu-
racies are reported for the (large) datasets we use, and for those that are available, the
majority of the LB results is based on train/test, and are not 10-fold cross-validated.

To provide further insight in the classification results, confusion matrices for three
datasets are given in Table 9. The confusion matrix for Heart shows us why the
KRIMP classifier is unable to perform well on this dataset: it contains four very small
classes. For such small databases, the size of the code table is dominant, precluding
the discovery of the important frequent itemsets. This is obviously the case for some
Heart classes. If we consider Mushroom and Iris, then the bigger the classes, the better
the results. In other words, if the classes are big enough, the KRIMP classifier performs
very well.

We can zoom in even further to show how the classification principle works in
practice. Take a look at the effect of coding a transaction with the ‘wrong’ code table,
which is illustrated in Fig. 13. The rounded boxes in this figure visualise the itemsets
that make up the cover of the transaction. Each of the itemsets is linked to its code
by the dashed line. The widths of the black and white encodings represent the actual
computed code lengths. From this figure, it is clear that code tables can be used to
both characterise and recognise data distributions.

Recall that KRIMP was not designed with classification in mind. We designed the
KRIMP classifier primarily to test the quality of the selected patterns. Because the

@ Springer

206 J. Vreeken et al.

Table 9 Confusion matrices

Mushroom Iris Heart

1 2 1 2 3 1 2 3 4 5
1 4208 0 47 2 0 142 22 9 6 2
2 0 3916 2 48 1 17 23 8 9 5
3 1 0 40 3 2 12 4 2
4 0 7 5 10 4
5 2 1 2 6 0

The values denote how many transactions with class column are classified as class row

Transaction 1 Transaction 2

(619291529 290 1D (IDEOEHED 016192029 (6 7 30T 2HD @D

CT,

CTZ { - k A EO S]
EDETDODODDDBOO@ ODO®E®DDDDDE®@®

Fig. 13 Wine; two transactions from class 1, D1, encoded by the code tables for class 1, CTy (fop), and
class 2, CT, (bottom)

results of the code table-based classifier are on par to those of the state-of-the-art, we
conclude that the itemsets selected by KRIMP are very characteristic for the data. That
a high quality selection of itemsets is crucial for good classification performance can
be deduced from the sub-par performance of CBA, a classifier based on all associa-
tion-rules that satisfy a given minsup and minimum confidence threshold.

7.7 Order

Next, we investigate the order heuristics of the KRIMP algorithm. Both the standard
cover order and standard candidate order are rationally made choices, but choices
nevertheless. Here, we consider a number of alternatives for either and evaluate the
quality of possible combinations through compression ratios and classification accu-
racies. The outcome of these experiments are shown in Table 10. Before we cover
these results, we discuss the orders. As before, | indicates the property to be sorted
descending, and 1 ascending.

For the Standard Cover Algorithm, we experimented with the following orders
of the coding set.

— Standard Cover Order:

|[X| | suppp(X) | lexicographically 1

@ Springer

KRIMP : mining itemsets that compress 207

Table 10 Evaluation of candidate and cover orders

Fl Cover order

Standard Entry Area Random

L% acc.(%) L% acc.(%) L% acc.(%) L% acc.(%)

Standard 44.2 88.6 43.7 88.7 S51.1 88.1 49.5 88.1
Standard’ 44.2 88.5 43.7 88.8 51.6 88.1 49.5 88.3
Length 45.2 88.0 43.9 87.9 554 87.1 49.1 78.8
Area 48.6 88.0 64.5 88.4 64.4 88.1 65.0 88.0
Random 49.4 86.8 51.2 87.0 57.5 86.8 50.8 87.0

Results for 20 combinations of candidate and cover orders for KRIMP with post-acceptance pruning. Shown
are average relative KRIMP compression, L%, and average classification accuracy (%) on a number of data-
sets. Results for compression and classification are averaged over 16 respectively 11 datasets. Table 11 in
Appendix shows which datasets were used and at what minsup thresholds the candidate sets, 7, were mined
for these experiments.

— Entry:
position of X in F, |
— Area ascending:
| X| x suppp(X) + position of X in F, |

We also consider the Random cover order, where new itemsets are entered at arandom
position in the code table. For all the above orders, we sort the singleton itemsets below
itemsets of longer length. In Table 10 we refer to these orders, respectively, as Standard,
Entry, Area and Random. We further experimented with a number of alternatives of
the above, but the measured performance did not warrant their inclusion in the overall
comparison.

As for the lineup in which the itemsets are considered by the KRIMP algorithm, the
candidate order, we experimented with the following options.

— Standard Candidate Order:

suppp(X) | |X| | lexicographically 4
— Standard, but length ascending:

suppp(X) | |X| 1 lexicographically 4
— Length ascending, support descending:

|X| 1 suppp(X) | lexicographically 1

@ Springer

208 J. Vreeken et al.

— Area descending, support descending:

| X| x suppp(X) I suppp(X) | lexicographically 1

A Random candidate order is also considered, which is simply a random permuta-
tion of the candidate set. In Table 10 we refer to these orders as, respectively, Standard,
Standard’, Length, Area and Random. Again, we considered a number of variants of
the above, for none of which the performance was good enough to be included here.
This includes the order with which the (depth-first) frequent itemset mining algorithm
we employ outputs the itemsets. Most likely, this is because the most specific itemsets
come first in this order, disallowing the algorithm to incrementally refine compression.

For all 20 combinations of the above cover and candidate orders we ran compres-
sion experiments on 16 datasets and classification experiments for 11 datasets. As
candidate itemsets, we ran experiments with both the complete and closed frequent
itemset collections. Due to the amount of experiments required by this evaluation we
only used single samples for the random orders. Classification scores are 10-fold cross-
validated, as usual. Per dataset, the score of the best performing pairing (absolute or
relative) was chosen. The details on which datasets and what minsup thresholds were
used can be found in Appendix Table 11.

The results of these experiments are depicted in Table 10. Shown are, per combi-
nation of orders, the total compression ratio L% and the classification accuracy, both
of which are averaged over all databases and both all and closed frequent itemsets as
candidate sets.

Between the orders, we measure considerable differences in compression ratio,
up to 15%. For the candidate orders, the standard cover order is the best choice.
The difference between the two variants Standard and Standard’, is negligible, while
the other options perform significantly worse for cover orders Standard and Entry. The
same can be said for classification. We note that, although intuitively it seems a good
choice, all variants of the area-descending order we further tested perform equally, but
sub-par.

For the standard cover algorithm, order-of-entry performs best, with the standard
cover order second at a slight margin of half a percent. Covering in order of area shows
outright bad performance, loosing even to random. As order-of-entry shows the best
compression ratios, it is preferred from a MDL point of view. However, the standard
order has the practical benefit of being (much) faster in practice. As it does not always
insert new elements at the ‘top’ of the code table, partially covered transactions can
be cached, speeding up the cover process significantly. The differences between the
two, both in terms of compression and classification accuracies, are small, warranting
the choice of the ‘suboptimal’ standard cover order for the practical reason of speed.

The scores for the random orders show that the greedy covering and MDL-based
selection are most important for attaining good compression ratios. With either the
candidate and/or cover order being random, KRIMP still typically attains ratios of 50%
and average accuracies are far above the baseline of 47.7%. This is due to the redun-
dancy in the candidate sets and the cover order being fixed, even when the insertion
position for a candidate is random. This allows the selection process to still pick sets
of high-quality itemsets, albeit sub-optimal.

@ Springer

KRIMP : mining itemsets that compress 209

8 Discussion

The experimental evaluation shows that KRIMP provides a practical solution to the
well-known explosion in pattern mining. It reduces the highly redundant frequent
itemset collections with many orders of magnitude to sets of only hundreds of high-
quality itemsets. High compression ratios indicate that these itemsets are characteristic
for the data and non-redundant in-between. Swap randomisation experiments show
that the selections model relevant structure, and exclusion of itemsets shows that the
method is stable with regard to noise. The quality of the itemsets is independently val-
idated through classification, for which we introduced theory to classify by code-table
based compression. While the patterns are chosen to compress well, the KRIMP clas-
sifier performs on par with state-of-the-art classifiers.

KRIMP is a heuristic algorithm, as is usual with MDL.: the search space is by far too
large to consider fully, especially since it is unstructured. The empirical evaluation of
the choices made in the design of the algorithm show that the standard candidate order
is the best, both from a compression and a classification perspective. The standard
order in which itemsets are considered for covering a transaction is near-optimal; the
order-of-entry approach, where new itemsets are used maximally, achieves slightly
better compression ratios and classification accuracies. However, the standard order
allows for efficient caching, speeding up the cover process considerably while hardly
giving in on quality. Post-acceptance pruning is shown to improve the results: fewer
itemsets are selected, providing better compression ratios and higher classification
accuracies. Although pruning requires itemsets in the code table to be reconsidered
regularly, its net result is a speed-up as code tables are kept smaller and the cover
process thus needs to consider fewer itemsets to cover a transaction.

The timings reported in this study show that compression is not only a good, but
also a realistic approach, even for large databases and huge candidate collections;
the single-threaded implementation already considers up to hundreds of thousands of
itemsets per second. While highly efficient frequent itemset miners were used, we
observed that mining the candidates sometimes takes (much) longer than the actual
KRIMP selection. Also, the algorithm can be easily parallelised, both in terms of cover-
ing parts of the database and of checking the candidate itemsets. The implementation®
we used for the experiments in this chapter uses the latter option, as experiments
showed that the performance of the former deteriorates rapidly for candidate itemsets
with low support.

In general, the larger the candidate set, the better the compression ratio. The total
compressed size decreases continuously, even for low minsup values, i.e. it never con-
verges. Hence, F should be mined at a minsup threshold as low as possible. Given a
suited frequent itemset miner, experiments could be done iteratively, continuing from
the so-far optimal code table and corresponding previous minsup. For many datasets,
it is computationally feasible to set minsup = 1.

When mining all frequent itemsets for a low minsup is infeasible, using closed
frequent itemsets as candidate set is a good alternative instead. For most datasets,

4 Our implementation of KRIMP is freely available for research purposes from
http://www.cs.uu.nl/groups/ ADA/krimp/

@ Springer

http://www.cs.uu.nl/groups/ADA/krimp/

210 J. Vreeken et al.

results obtained with closed are almost as good as with all frequent itemsets, while
for some datasets this makes the candidate set much smaller and thus computationally
attractive.

KRIMP selects both specific and more general itemsets to describe the data. The best
data descriptions are attained when it can consider all possible itemsets in the data-
base. However, if only itemsets of particular supports or characteristics are desired,
the input can be adjusted accordingly: by simply providing KRIMP only those itemsets,
e.g. mined at a particular minsup.

KRIMP can be regarded a parameter-free algorithm and used as such in practice.
The candidate set is a parameter, but since larger candidate sets give better results this
can always be set to all frequent itemsets with minsup = 1. Only when this default
candidate set turns out to be too large to handle for the available implementation and
hardware, this needs to be tuned. Additionally, using post-acceptance pruning always
improves the results and even results in a speed-up in computation time, so there is no
reason not to use this.

Although code tables are made to just compress well, it turns out they can easily be
used for classification. Because other classifiers have been designed with classification
in mind, we expected these to outperform the KRIMP classifier. We have shown this is
not the case: KRIMP performs on par with the best classifiers available. We draw two
conclusions from this observation. Firstly, KRIMP selects itemsets that are very char-
acteristic for the data. Secondly, the compression-based classification scheme works
very well.

While this paper covers a large body of work done, there remains plenty of future
work left to do. For example, KRIMP could be further improved by directly generating
candidate itemsets from the data and its current cover. Or, all frequent itemsets could
be generated on-the-fly from a closed candidate set. Both extensions would address the
problems that occur with extremely large candidate sets, i.e. crashing itemset miners
and IO being the bottleneck instead of CPU time.

9 Conclusions

In this paper we have shown how MDL gives a dramatic reduction in the number of
frequent itemsets that one needs to consider. For twenty-seven data sets, the reductions
reached by the KRIMP algorithm ranges up to seven orders of magnitude; only hundreds
of itemsets are required to succinctly describe the data. The algorithm shows a high
stability w.r.t. different candidate sets. It is parameter-free for all practical purposes;
for the best result, use as large as possible candidate sets and enable pruning.

Moreover, by designing a simple classifier we have shown that KRIMP picks item-
sets that matter. This is all the more telling since the selection of code table elements
does not take predictions into account. The small sets that are selected character-
ise the database accurately, as is also indicated by small compressed sizes and swap
randomisation experiments.

In this paper, we verified the heuristic choices we made for the KRIMP algorithm
in Siebes et al. (2006). We extensively evaluated different possible orders for both the
candidate set and code table. The outcome is that the standard orders are very good: no

@ Springer

KRIMP : mining itemsets that compress 211

combination of orders was found that performs significantly better, while the standard
orders offer good opportunities for optimisation.

Because we set the frequent pattern explosion, the original problem, in a wide con-
text but discussed only frequent itemsets, the reader might wonder: does this also work
for other types of patterns? The answer is affirmative, in Bathoorn et al. (2006) we
have shown that our MDL-based approach also works for pattern-types such as fre-
quent episodes for sequence data and frequent subgraphs for graph data. In Koopman
and Siebes (2008, 2009), we extended the approach to multi-relational databases, i.e.
to select patterns over multiple tables. Also, the LESS algorithm (Heikinheimo et al.
2009) (see also Sect. 2) introduces an extension of the encoding such that it can be
used to select more generic patterns, e.g. low-entropy sets.

Like detailed in Faloutsos and Megalooikonomou (2007), there are many data min-
ing tasks for which compression, and thus the foundations presented in this paper, can
be used. e.g. we have independently shown that compression (or, more specifically,
KRIMP) can be successfully employed for (but not limited to), including characterising
differences (Vreeken et al. 2007a), generating data and preserving privacy (Vreeken et
al. 2007b), detecting change in data streams (van Leeuwen and Siebes 2008), imput-
ing missing values (Vreeken and Siebes 2008), and identifying components in a data-
base (van Leeuwen et al. 2009).

Acknowledgements Jilles Vreeken is supported by the NWO project Mining Factors of Celiac Disease,
part of the Computational Life Sciences Programme. Matthijs van Leeuwen is supported by the NBIC
Biorange Programme and the NWO project Exceptional Model Mining, under number 612.065.822. The
authors would like to thank Sander Schuckmann for parallelising the KRIMP implementation.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

See Table 11

Table 11 Datasets and settings used for the candidate and cover order experiments

Dataset minsup Used for
All Closed Compression Classification

Adult 20 1 v Vv

Anneal 1 1 Vv v

Breast 1 1 v Vv

Chess (kr—k) 1 1 N

DNA amplification 10 1 v

Tonosphere 50 1 v Vv

@ Springer

212 J. Vreeken et al.

Table 11 continued

Dataset minsup Used for
All Closed Compression Classification

Iris 1 1 V Vv
Led? 1 1 J J
Letter recognition 50 20 V

Mammals 545 545 Vv

Mushroom 1 Vv V
Nursery 1 1 N

Pen digits 20 1 Vv V
Pima 1 1 v v
Waveform 50 5 Vv Vv
Wine 1 1 V Vv

Details for which datasets and which settings were used for the candidate and cover order experiments.
Per dataset, shown are the minsup thresholds at which candidate sets, F, were mined for all and closed
frequent itemsets. Ticks indicate which datasets were used for compression experiments and which for the
classification experiments. In total, tens of thousands of individual KRIMP compression runs were required
for these order experiments

References

Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996) Fast discovery of association rules. In:
Advances in knowledge discovery and data mining, AAAI, pp 307-328

Bathoorn R, Koopman A, Siebes A (2006) Reducing the frequent pattern set. In: Proceedings of the ICDM-
workshops’06, pp 55-59

Bayardo R (1998) Efficiently mining long patterns from databases. In: Proceedings of SIGMOD’98, pp
85-93

Bringmann B, Zimmermann A (2007) The chosen few: on identifying valuable patterns. In: Proceedings
of the ICDM’07, pp 63-72

Calders T, Goethals B (2002) Mining all non-derivable frequent itemsets. In: Proceedings of the ECML
PKDD’02, pp 74-85

Chakrabarti D, Papadimitriou S, Modha DS, Faloutsos C (2004) Fully automatic cross-associations. In:
Proceedings of KDD’04, pp 79-88

Chakrabarti S, Sarawagi S, Dom B (1998) Mining surprising patterns using temporal description length.
In: Proceedings of VLDB’98, Morgan Kaufmann, San Francisco, pp 606-617

Chandola V, Kumar V (2007) Summarization—compressing data into an informative representation. Knowl
Inf Syst 12(3):355-378

Coenen F (2003) The LUCS-KDD discretised/normalised ARM and CARM data library. http://www.csc.
liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html

Coenen F (2004) The LUCS-KDD software library. http://www.csc.liv.ac.uk/~frans/KDD/Software

Cover T, Thomas J (2006) Elements of information theory, 2nd edn. John Wiley and Sons, New York

Crémilleux B, Boulicaut JF (2002) Simplest rules characterizing classes generated by §-free sets. In: Pro-
ceedings of KBSAAI'02, pp 33-46

Duda R, Hart P (1973) Pattern classification and scene analysis. John Wiley and Sons, New York

Faloutsos C, Megalooikonomou V (2007) On data mining, compression and Kolmogorov complexity. Data
Min Knowl Discov 15(1):3-20

Geerts F, Goethals B, Mielikdinen T (2004) Tiling databases. In: Proceedings of DS’04, pp 278-289

Gionis A, Mannila H, Mielikédinen T, Tsaparas P (2007) Assessing data mining results via swap randomi-
zation. ACM Trans Knowl Discov Data 1(3):14

Goethals B, Zaki MJ (2003) Frequent itemset mining implementations repository (FIMI). http://fimi.cs.
helsinki.fi

@ Springer

http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html
http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html
http://www.csc.liv.ac.uk/~frans/KDD/Software
http://fimi.cs.helsinki.fi
http://fimi.cs.helsinki.fi

KRIMP : mining itemsets that compress 213

Griinwald PD (2005) Minimum description length tutorial. In: Griinwald P, Myung I (eds) Advances in
minimum description length. MIT Press, Cambridge

Griinwald PD (2007) The minimum description length principle. MIT Press, Cambridge

Hand D, Adams N, Bolton R (eds) (2002) Pattern detection and discovery. Springer, New York

Heikinheimo H, Hinkkanen E, Mannila H, Mielikédinen T, Seppdnen JK (2007) Finding low-entropy sets
and trees from binary data. In: Proceedings of KDD’07, pp 350-359

Heikinheimo H, Vreeken J, Siebes A, Mannila H (2009) Low-entropy set selection. In: Proceedings of
SDM’09, pp 569-579

Karp RM (1972) Reducibility among combinatorial problems. In: Miller R, Thatcher J (eds) Proceedings
of a symposium on the complexity of computer computations. Plenum Press, New York, USA, pp
85-103

Keogh E, Lonardi S, Ratanamahatana CA (2004) Towards parameter-free data mining. In: Proceedings of
KDD’04, pp 206-215

Keogh E, Lonardi S, Ratanamahatana CA, Wei L, Lee SH, Handley J (2007) Compression-based data
mining of sequential data. Data Min Knowl Discov 14(1):99-129

Knobbe AJ, Ho EKY (2006a) Maximally informative k-itemsets and their efficient discovery. In: Proceed-
ings of KDD’06, pp 237-244

Knobbe AJ, Ho EKY (2006b) Pattern teams. In: Proceedings of the ECML PKDD’06, pp 577-584

Kohavi R, Brodley C, Frasca B, Mason L, Zheng Z (2000) KDD-Cup 2000 organizers’ report: peeling the
onion. SIGKDD Explor 2(2):86-98. http://www.ecn.purdue.edu/KDDCUP

Koopman A, Siebes A (2008) Discovering relational items sets efficiently. In: Zaki M, Wang K (eds)
Proceedings of SDM’08, SIAM, pp 108-119

Koopman A, Siebes A (2009) Characteristic relational patterns. In: Proceedings of KDD’09, pp 437-446

Li M, Vitdnyi P (1993) An introduction to Kolmogorov complexity and its applications. Springer, New
York

Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining. In: Proceedings of
KDD’98, pp 80-86

Liu G, LuH, YuJX, Wei W, Xiao X (2004) AFOPT: an efficient implementation of pattern growth approach.
In: Proceedings of the 2nd workshop on frequent itemset mining implementations

Mannila H, Toivonen H (1996) Multiple uses of frequent sets and condensed representations. In: Proceedings
of KDD’96, pp 189-194

Mannila H, Toivonen H (1997) Levelwise search and borders of theories in knowledge discovery. Data
mining and knowledge discovery, pp 241-258

Mehta M, Agrawal R, Rissanen J (1996) Sliq: a fast scalable classifier for data mining. In: Advances in
database technology. Springer, NY, pp 18-32

Meretakis D, Lu H, Wiithrich B (2000) A study on the performance of large bayes classifier. In: Proceedings
of the ECML’00, pp 271-279

Mielikédinen T, Mannila H (2003) The pattern ordering problem. In: Proceedings of the ECML PKDD’03,
pp 327-338

Mitchell-Jones AJ, Amori G, Bogdanowicz W, Krystufek B, Reijnders PJH, Spitzenberger F, Stubbe M,
Thissen JBM, Vohralik V, Zima J (1999) The atlas of European mammals. Academic Press, London

Morik K, Boulicaut JF, Siebes A (eds) (2005) Local pattern detection. Springer, New York

Myllykangas S, Himberg J, Bohling T, Nagy B, Hollmén J, Knuutila S (2006) Dna copy number amplifi-
cation profiling of human neoplasms. Oncogene 25(55)

Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules.
In: Proceedings of the ICDT 99, pp 398-416

Pfahringer B (1995) Compression-based feature subset selection. In: Proceedings of the IICAI’95 workshop
on data engineering for inductive learning, pp 109-119

Quinlan J (1993b) C4.5: programs for machine learning. Morgan-Kaufmann, Los Altos

Quinlan J (1993b) FOIL: a midterm report. In: Proceedings of the ECML’93

Rissanen J (1978) Modeling by shortest data description. Automatica 14(1):465-471

Siebes A, Vreeken J, van Leeuwen M (2006) Item sets that compress. In: Proceedings of SDM’06, pp
393-404

Sun J, Faloutsos C, Papadimitriou S, Yu PS (2007) Graphscope: parameter-free mining of large time-evolv-
ing graphs. In: Proceedings of KDD’07, pp 687-696

Tatti N, Vreeken J (2008) Finding good itemsets by packing data. In: Proceedings of the ICDM’08, pp
588-597

@ Springer

http://www.ecn.purdue.edu/KDDCUP

214 J. Vreeken et al.

van Leeuwen M, Siebes A (2008) Streamkrimp: detecting change in data streams. In: Proceedings of
ECMLPKDD’08, Springer, Heidelberg, pp 672—687

van Leeuwen M, Vreeken J, Siebes A (2006) Compression picks the item sets that matter. In: Proceedings
of the ECML PKDD’06, pp 585-592

van Leeuwen M, Vreeken J, Siebes A (2009) Identifying the components. Data Min Knowl Discov
19(2):173-292

Vreeken J, Siebes A (2008) Filling in the blanks—KRIMP minimisation for missing data. In: Proceedings
of the ICDM’08, pp 1067-1072

Vreeken J, van Leeuwen M, Siebes A (2007a) Characterising the difference. In: Proceedings of KDD’07,
pp 765-774

Vreeken J, van Leeuwen M, Siebes A (2007b) Preserving privacy through data generation. In: Proceedings
of the ICDM’07, pp 685-690

Wallace C (2005) Statistical and inductive inference by minimum message length. Springer, New York

Wang J, Karypis G (2005) HARMONY: efficiently mining the best rules for classification. In: Proceedings
of SDM’05, pp 205-216

Wang J, Karypis G (2006) On efficiently summarizing categorical databases. Knowl Inf Syst 9(1):19-37

Wang C, Parthasarathy S (2006) Summarizing itemset patterns using probabilistic models. In: Proceedings
of KDD’06, pp 730-735

Warner H, Toronto A, Veasey L, Stephenson R (1961) A mathematical model for medical diagnosis, appli-
cation to congenital heart disease. J] Am Med Assoc 177:177-184

Witten I, Frank E (2005) Data mining: practical machine learning tools and techniques. 2nd edn. Morgan
Kaufmann, San Francisco

Xiang Y, Jin R, Fuhry D, Dragan FF (2008) Succinct summarization of transactional databases: an over-
lapped hyperrectangle scheme. In: Proceedings of KDD’08, pp 758-766

Xin D, Han J, Yan X, Cheng H (2005) Mining compressed frequent-pattern sets. In: Proceedings of
VLDB’05, pp 709-720

Yan X, Cheng H, Han J, Xin D (2005) Summarizing itemset patterns: a profile-based approach. In: Pro-
ceedings of KDD’05, pp 314-323

Yin X, Han J (2003) CPAR: Classification based on predictive association rules. In: Proceedings of SDM’03,
pp 331-335

Zhang X, Guozhu D, Ramamohanarao K (2000) Information-based classification by aggregating emerging
patterns. In: Proceedings of IDEAL’00, pp 48-53

@ Springer

	Krimp: mining itemsets that compress
	Abstract
	1 Introduction
	1.1 Patterns
	1.2 Sets of patterns

	2 Related work
	2.1 MDL in data mining
	2.2 Summarizing frequent itemsets
	2.3 Summarizing data

	3 Theory
	3.1 MDL
	3.2 MDL for itemsets
	3.3 The problem
	3.4 How hard is the problem?

	4 Algorithms
	4.1 Basic heuristic
	4.2 Standard cover function
	4.3 Standard candidate order
	4.4 The Krimp algorithm
	4.5 Pruning
	4.6 Complexity

	5 Interlude
	6 Classification by compression
	6.1 Classification through MDL
	6.2 The Krimp classifier

	7 Experiments
	7.1 Setup
	7.2 Data
	7.3 Selection
	7.4 Stability
	7.5 Relevance
	7.6 Classification
	7.7 Order

	8 Discussion
	9 Conclusions
	Acknowledgements
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

