
IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013 385

Privacy-Preserving Mining of Association Rules
From Outsourced Transaction Databases

Fosca Giannotti, Laks V. S. Lakshmanan, Anna Monreale, Dino Pedreschi, and Hui (Wendy) Wang

Abstract—Spurred by developments such as cloud computing,
there has been considerable recent interest in the paradigm of
data mining-as-a-service. A company (data owner) lacking in
expertise or computational resources can outsource its mining
needs to a third party service provider (server). However,
both the items and the association rules of the outsourced
database are considered private property of the corporation
(data owner). To protect corporate privacy, the data owner
transforms its data and ships it to the server, sends mining
queries to the server, and recovers the true patterns from the
extracted patterns received from the server. In this paper, we
study the problem of outsourcing the association rule mining task
within a corporate privacy-preserving framework. We propose
an attack model based on background knowledge and devise a
scheme for privacy preserving outsourced mining. Our scheme
ensures that each transformed item is indistinguishable with
respect to the attacker’s background knowledge, from at least
k−1 other transformed items. Our comprehensive experiments
on a very large and real transaction database demonstrate that
our techniques are effective, scalable, and protect privacy.

Index Terms—Association rule mining, privacy-preserving
outsourcing.

I. Introduction

W ITH THE ADVENT of cloud computing and its model
for IT services based on the internet and big data

centers, the outsourcing of data and computing services is
acquiring a novel relevance, which is expected to skyrocket in
the near future. Business intelligence and knowledge discovery
services, such as advanced analytics based on data mining
technologies, are expected to be among the services amenable
to be externalized on the cloud, due to their data intensive
nature, as well as the complexity of data mining algorithms.
Thus, the paradigm of mining and management of data as
service will presumably grow as popularity of cloud comput-
ing grows [1]. This is the data mining-as-a-service paradigm,
aimed at enabling organizations with limited computational
resources and/or data mining expertise to outsource their data
mining needs to a third party service provider [2], [3].

Manuscript received September 30, 2011; revised April 26, 2012; accepted
July 26, 2012. Date of publication November 30, 2012; date of current version
July 3, 2013.

F. Giannotti is with the Information Science and Technology
Institute, National Research Council, Pisa 56124, Italy (e-mail:
fosca.giannotti@isti.cnr.it).

L. V. S. Lakshman is with the University of British Columbia, Vancouver,
BC V1V 1V7, Canada (e-mail: laks@cs.ubc.ca).

A. Monreale and D. Pedreschi are with the University of Pisa, Pisa 56126,
Italy (e-mail: annam@di.unipi.it; pedre@di.unipi.it).

H. Wang is with the Stevens Institute of Technology, Hoboken, NJ 07030
USA (e-mail: hui.wang@stevens.edu).

Digital Object Identifier 10.1109/JSYST.2012.2221854

Although it is advantageous to achieve sophisticated anal-
ysis on tremendous volumes of data in a cost-effective way,
there exist several serious security issues of the data-mining-
as-a-service paradigm. One of the main security issues is
that the server has access to valuable data of the owner and
may learn sensitive information from it. For example, by
looking at the transactions, the server (or an intruder who
gains access to the server) can learn which items are always
copurchased. However, both the transactions and the mined
patterns are the property of the data owner and should remain
safe from the server. This problem of protecting important
private information of organizations/companies is referred to
as corporate privacy [4]. Unlike personal privacy, which only
considers the protection of the personal information recorded
about individuals, corporate privacy requires that both the
individual items and the patterns of the collection of data items
are regarded as corporate assets and thus must be protected.

In this paper, we study the problem of outsourcing the
association rule mining task within a corporate privacy-
preserving framework. A substantial body of work has been
done on privacy-preserving data mining (PPDM) in a variety
of contexts. A common characteristic of most of the previously
studied frameworks is that the patterns mined from the data
(which may be distorted, encrypted, anonymized, or otherwise
transformed) are intended to be shared with parties other than
the data owner. The key distinction between such bodies of
work and our problem is that, in the latter, both the underlying
data and the mined results are not intended for sharing and
must remain private to the the data owner.

We adopt a conservative frequency-based attack model in
which the server knows the exact set of items in the owner’s
data and additionally, it also knows the exact support of every
item in the original data. Wong et al. [2] was one of the early
works on defending against the frequency-based attack in the
data mining outsourcing scenario. They introduced the idea of
using fake items to defend against the frequency-based attack;
however, it was lacking a formal theoretical analysis of privacy
guarantees, and has been shown to be flawed very recently in
[5], where a method for breaking the proposed encryption is
given. Therefore, in our previous and preliminary work [6], we
proposed to solve this problem by using k-privacy, i.e., each
item in the outsourced dataset should be indistinguishable from
at least k − 1 items regarding their support.

In this paper, our goal is to devise an encryption scheme
which enables formal privacy guarantees to be proved, and
to validate this model over large-scale real-life transaction

1932-8184/$31.00 c© 2012 IEEE

386 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

Fig. 1. Architecture of mining-as-service paradigm.

databases (TDB). The architecture behind our model is illus-
trated in Fig. 1. The client/owner encrypts its data using an
encrypt/decrypt (E/D) module, which can be essentially treated
as a black box from its perspective. While the details of this
module will be explained in Section V, it is responsible for
transforming the input data into an encrypted database. The
server conducts data mining and sends the (encrypted) patterns
to the owner. Our encryption scheme has the property that
the returned supports are not true supports. The E/D module
recovers the true identity of the returned patterns as well
their true supports. It is trivial to show that if the data are
encrypted using 1–1 substitution ciphers (without using fake
transactions), many ciphers and hence the transactions and
patterns can be broken by the server with a high probability by
launching the frequency-based attack. Thus, the major focus
of this paper is to devise encryption schemes such that formal
privacy guarantees can be proven against attacks conducted
by the server using background knowledge, while keeping the
resource requirements under control.

We make the following contributions. First, we formally
define an attack model for the adversary and make the back-
ground knowledge the adversary may possess precise. Our
notion of privacy requires that, for each ciphertext item, there
are at least k−1 distinct cipher items that are indistinguishable
from the item regarding their supports.

Second, we develop an encryption scheme, called
RobFrugal, that the E/D module can employ to transform
client data before it is shipped to the server.

Third, to allow the E/D module to recover the true patterns
and their correct support, we propose that it creates and keeps
a compact structure, called synopsis. We also provide the E/D
module with an efficient strategy for incrementally maintaining
the synopsis against updates in the form of appends.

Fourth, we conduct a formal analysis based on our attack
model and prove that the probability that an individual item,
a transaction, or a pattern can be broken by the server can
always be controlled to be below a threshold chosen by the
owner, by setting the anonymity threshold k. This result holds
unconditionally for the RobFrugal scheme.

Last but not least, we conduct experimental analysis of our
schema using a large real dataset from the Coop store chain in
Italy. Our results show that our encryption schema is effective,
scalable, and achieve the desired level of privacy.

Related work is described in the next section. The back-
ground on frequent pattern mining is quickly reviewed in
Section III. Our privacy-preserving outsourcing model and
the associated problem statement are given in Section IV.

Section V develops the encryption/decryption scheme we use.
Section VI provides the key theoretical results which concern
the complexity and privacy guarantees. Section VII discusses
the results of a comprehensive set of experiments conducted
using real and synthetic datasets. Finally, we conclude this pa-
per and discuss directions for future research in Section VIII.

II. Related Work

The research of PPDM has caught much attention recently.
The main model here is that private data is collected from a
number of sources by a collector for the purpose of consol-
idating the data and conducting mining. The collector is not
trusted with protecting the privacy, so data are subjected to a
random perturbation as it is collected. Techniques have been
developed for perturbing the data so as to preserve privacy
while ensuring the mined patterns or other analytical properties
are sufficiently close to the patterns mined from original data.
This body of work was pioneered by [7] and has been followed
up by several papers since [8]. This approach is not suited
for corporate privacy, in that some analytical properties are
disclosed.

Another related issue is secure multiparty mining over
distributed datasets. Data on which mining is to be performed
is partitioned, horizontally or vertically, and distributed among
several parties. The partitioned data cannot be shared and
must remain private but the results of mining on the union
of the data are shared among the participants, by means of
multiparty secure protocols [9]–[11]. They do not consider
third parties. This approach partially implements corporate
privacy, as local databases are kept private, but it is too weak
for our outsourcing problem, as the resulting patterns are
disclosed to multiple parties.

The particular problem attacked in our paper is outsourcing
of pattern mining within a corporate privacy-preserving frame-
work. A key distinction between this problem and the afore-
mentioned PPDM problems is that, in our setting, not only the
underlying data but also the mined results are not intended for
sharing and must remain private. In particular, when the server
possesses background knowledge and conducts attacks on that
basis, it should not be able to guess the correct candidate item
or itemset corresponding to a given cipher item or itemset with
a probability above a given threshold.

The works that are most related to ours are [2] and [12].
Similar to our study, they assume that the adversary possesses
prior knowledge of the frequency of items or item sets, which
can be used to try to reidentify the encrypted items. The work
[2] utilizes a one-to-n item mapping together with nondeter-
ministic addition of cipher items to protect the identification
of individual items. A recent paper [5] has formally proven
that the encoding system in [2] can be broken without using
context-specific information. The success of the attacks in [5]
mainly relies on the existence of unique, common, and fake
items, defined in [2]; our scheme does not create any such
items, and the attacks in [5] are not applicable to our scheme.
Tai et al. [12] assumed the attacker knows exact frequency of
single items, similarly to us. They use a similar privacy model
as ours, which requires that each real item must have the same

GIANNOTTI et al.: PRIVACY-PRESERVING MINING OF ASSOCIATION RULES 387

Fig. 2. Example of TDB and its support table. (a) TDB. (b) Item support
table.

frequency count as k−1 other items in the outsourced dataset.
They show that their outsourced dataset satisfies k-support
anonymity. However, they do not offer any theoretical analysis
of anonymity of item sets. Instead they confine themselves to
an empirical analysis. Compared with these two works, we
have formal analysis to show that our scheme can always
achieve provable privacy guarantee with respect to the back-
ground knowledge of the attacker and the notion of privacy. In
general, it is prohibitively expensive to achieve perfect secrecy
of outsourced frequent itemset mining [5]. We show that with
less strict privacy models, we can achieve practical privacy-
preserving methods that provide reasonable privacy guarantee.
Our empirical study also shows that in practice, due to
specific characteristics of the real transaction datasets (e.g., the
power-law distribution of items), even the privacy-preserving
methods for less-strict privacy models can enjoy a relatively
high level of privacy in practice. Furthermore, an important
issue in association rule mining (or frequent item set mining)
outsourcing is the ability to deal with updates. Neither of the
works above addresses this concern. In contrast, we propose
an incremental method for updating the compact synopsis
maintained by the owner against updates to the database.

III. Pattern Mining Task

The reader is assumed to be familiar with the basics of
association rule mining. We let I = i1, ..., in be the set of
items and D = t1, ..., tm a TDB of transactions, each of
which is a set of items. We denote the support of an itemset
S ⊆ I as suppD(S) and the frequency by freqD(S). Recall
that freqD(S) = suppD(S)/|D|. For each item i, suppD(i)
and freqD(i) denote, respectively, the individual support and
frequency of i. The function suppD(.), projected over items, is
also called the item support table of D represented in tabular
form [see, the support table in Fig. 2(b)] The well-known
frequent pattern mining problem [13] is: given a TDB D and
a support threshold σ, find all itemsets whose support in D

is at least σ. In this paper, we confine ourselves to the study
of a (corporate) privacy-preserving outsourcing framework for
frequent pattern mining.

IV. Privacy Model

We let D denote the original TDB that the owner has.
To protect the identification of individual items, the owner
applies an encryption function to D and transforms it to D∗,
the encrypted database. We refer to items in D as plain items

and items in D∗ as cipher items. The term item shall mean
plain item by default. The notions of plain item sets, plain
transactions, plain patterns, and their cipher counterparts are
defined in the obvious way. We use I to denote the set of
plain items and E to refer to the set of cipher items.

A. Adversary Knowledge

The server or an intruder who gains access to it may possess
some background knowledge using which they can conduct
attacks on the encrypted database D∗. We generically refer to
any of these agents as an attacker. We adopt a conservative
model and assume that the attacker knows exactly the set of
(plain) items I in the original TDB D and their true supports
in D, i.e., suppD(i), ∀ i ∈ I. The attacker may have access to
similar data from a competing company, may read published
reports, etc. In reality, the attacker may possess approximate
knowledge of the supports or may know the exact/approximate
supports of a subset of items in D. However, to make the
analysis robust, we adopt the conservative assumption that he
knows the exact support of every item.

Note that as the attacker has access to the encrypted
database D∗, he also knows the supports suppD∗ (e), e ∈ E ,
where E is the set of cipher items in the encrypted database
D∗. The encryption schema proposed in this paper are based
on: 1) replacing each plain item in D by a 1–1 substitution
cipher and 2) adding fake transactions to the database. In
particular, no new items are added. We assume the attacker
knows this and thus he knows that |E | = |I|. Essentially,
compared to [2], our adversary knowledge model corresponds
to a (100%, 0%) knowledge model, confined to single items.
However, we assume the attacker neither has the knowledge
of plaintext transactions nor the frequency of item sets and the
distribution of transaction lengths in the original database.

B. Attack Model

We assume the service provider (who can be an attacker)
is semihonest in the sense that although he does not know
the details of our encryption algorithm, he can be curious and
thus can use his background knowledge to make inferences on
the encrypted transactions. We also assume that the attacker
always returns (encrypted) item sets together with their exact
support.

The data owner (i.e., the corporate) considers the true
identity of: 1) every cipher item; 2) every cipher transaction;
and 3) every cipher frequent pattern as the intellectual property
which should be protected. We consider the following attack
model.

1) Item-based attack: ∀ cipher item e ∈ E , the attacker
constructs a set of candidate plain items Cand(e) ⊂ I.
The probability that the cipher item e can be broken
prob(e) = 1/|Cand(e)|.

2) Set-based attack: Given a cipher itemset E, the attacker
constructs a set of candidate plain itemsets Cand(E),
where ∀X ∈ Cand(E), X ⊂ I, and |X| = |E|. The
probability that the cipher itemset E can be broken
prob(E) = 1/|Cand(E)|.

We refer to prob(e) and prob(E) as crack probabilities. From
the point of view of the owner, minimizing the probabilities

388 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

of crack is desirable. Intuitively, Cand(e) and Cand(E) should
be as large as possible. Ideally, Cand(e) should be the whole
set of plaintext items. This can be achieved if we bring each
cipher item to the same level of support, e.g., to the support
of the most frequent item in D. Unfortunately, this option
is impractical, as it will lead to a large size of the fake
transactions, which in turn leads to a dramatic explosion of
the frequent patterns and making pattern mining at the server
side computationally prohibitive. This motivates us of relaxing
the equal-support constraint and introducing item k-anonymity
as a compromise.

Definition 1: Let D be a TDB and D∗ its encrypted version.
We say D∗ satisfies the property of item k-privacy provided for
every cipher item e ∈ E , if there are at least k−1 other distinct
cipher items e1, ..., ek−1 ∈ E such that suppD∗ (e) = suppD∗ (ei),
1 ≤ i ≤ k − 1. �

The concept of item k-anonymity is similar to the k-support
anonymity [12] (based on the well-known k-anonymity [14],
[15]) as we also require that for each ciphertext item e, there
are at least k−1 distinct cipher items that are indistinguishable
from e regarding their supports.

C. Problem Statement

To quantify the privacy guarantees of an encrypted database,
we define the following notion.

Definition 2: Given a database D and its encrypted version
D∗, we say D∗ is k-private if: 1) for each cipher item e ∈ D∗,
prob(e) ≤ 1/k; and 2) for each cipher itemset E with support
suppD∗ (E) > 0, prob(E) ≤ 1/k. �

Formally, the problem we study is as follows.
Problem studied: Given a plain database D, construct a

k-private cipher database D∗ by using substitution ciphers and
adding fake transactions such that from the set of frequent
cipher patterns and their support in D∗ sent to the owner by
the server, the owner can reconstruct the true frequent patterns
of D and their exact support. Additionally, we would like to
minimize the space and time incurred by the owner in the
process and the mining overhead incurred by the server.

V. Encryption/Decryption Scheme

A. Encryption

In this section, we introduce the encryption scheme, called
RobFrugal, which transforms a TDB D into its encrypted
version D∗. Our scheme is parametric with respect to k > 0
and consists of three main steps: 1) using 1–1 substitution
ciphers for each plain item; 2) using a specific item k-
grouping method; and 3) using a method for adding new
fake transactions for achieving k-privacy. The constructed fake
transactions are added to D (once items are replaced by cipher
items) to form D∗, and transmitted to the server. A record of
the fake transactions, i.e., DF = D∗ \ D, is stored by the E/D
module in the form of a compact synopsis, as discussed in
Sections V-C and V-D.

B. Decryption

When the client requests the execution of a pattern mining
query to the server, specifying a minimum support threshold

σ, the server returns the computed frequent patterns from D∗.
Clearly, for every itemset S and its corresponding cipher item-
set E, we have that suppD(S) ≤ suppD∗ (E). For each cipher
pattern E returned by the server together with suppD∗ (E), the
E/D module recovers the corresponding plain pattern S. It
needs to reconstruct the exact support of S in D and decide on
this basis if S is a frequent pattern. To achieve this goal, the
E/D module adjusts the support of E by removing the effect
of the fake transactions. suppD(S) = suppD∗ (E)−suppD∗\D(E).
This follows from the fact that support of an itemset is additive
over a disjoint union of transaction sets. Finally, the pattern S

with adjusted support is kept in the output if suppD(S) ≥ σ.
The calculation of suppD∗\D(E) is performed by the E/D
module using the synopsis of the fake transactions in D∗ \ D.

The proposed encryption/decryption scheme is a viable
solution for privacy-preserving pattern mining over outsourced
TDB, provided that a correct and efficient implementation
exists. On the efficiency side, it is not practical to store the
support suppD∗\D(E) for every cipher pattern. In order to
realize the encryption scheme efficiently, we need to address
the following technical issues.

1) How do we cluster items into groups of k?
2) How do we create the needed fake transactions?
3) How is the synopsis represented and stored?
4) How is the true support recovered efficiently?

C. Grouping Items for k-Privacy

Given the items support table, several strategies can be
adopted to cluster the items into groups of size k. We start
from a simple grouping method called Frugal. We assume the
item support table is sorted in descending order of support and
refer to cipher items in this order as e1, e2, etc.

Definition 3: The Frugal method consists of grouping to-
gether cipher items into groups of k adjacent items in the item
support table in decreasing order of support, starting from the
most frequent item e1. �

Assume e1, e2, . . . , en is the list of cipher items in descend-
ing order of support (with respect to D), the groups created
by Frugal are {e1, . . . , ek}, {ek+1, . . . , e2k}, and so on. The last
group, if less than k in size, is merged with its previous group.
We denote the grouping obtained using the above definition
as Gfrug. For example, consider the example TDB and its
associated (cipher) item support shown in Fig. 2. For k = 2,
Gfrug has two groups: {e2, e4} and {e5, e1, e3}. This corresponds
to the partitioning groups shown in Table I(a). Thus, in D∗,
the support of e4 will be brought to that of e2; and the support
of e1 and e3 brought to that of e5.

Given the fact that the support of the items strictly decreases
monotonically, Frugal grouping is optimal among all the
groupings with the item support table sorted in descending
order of support. This means, it minimizes ||G||, the size of
the fake transactions added, and hence the size ||D∗||. But is
Frugal a robust grouping, i.e., will it guarantee that itemsets (or
transactions) cannot be cracked with a probability higher than
1
k
? The answer is no, in general. To see this point, consider the

item support table in Table I: the first group created by Frugal
for k = 2, {e2, e4} [see Table I(a)] is supported in D, because
e2, e4 occur together in a transaction of D. Therefore, there

GIANNOTTI et al.: PRIVACY-PRESERVING MINING OF ASSOCIATION RULES 389

TABLE I

Grouping With k = 2

(a) Frugal

Item Support
e2 5
e4 3
e5 2
e1 1
e3 1

(b) RobFrugal

Item Support
e2 5
e5 2
e4 3
e1 1
e3 1

only exists one itemset candidate of {e2, e4}, i.e., the privacy
guarantee is 1-privacy.

To fix the privacy vulnerabilities of Frugal, we introduce
the RobFrugal grouping method, which modifies Frugal by
requiring that no group is a supported itemset in D.

Definition 4: Given a TDB D and its Frugal grouping
Gfrug = (G1, ..., Gm), the grouping method RobFrugal consists
in modifying the groups of Gfrug by repeating the following
operations, until no group of items is supported in D: 1) select
the smallest j ≥ 1 such that suppD(Gj) > 0; 2) find the most
frequent item i′
∈ Gj such that, for the least frequent item i

of Gj we have: suppD(Gj \ {i} ∪ {i′}) = 0; and 3) swap i with
i′ in the grouping. �

For example, given the item support table in Fig. 2, the
grouping illustrated in Table I(b), obtained by exchanging e4

and e5 in the two groups of Frugal, is now robust: none
of the two groups, considered as itemsets, is supported by
any transaction in D. The aim of Step 2 in Definition 4 is
to obtain a robust grouping while maintaining as small as
possible the number of fake transactions that are added to
achieve k-privacy. In particular, we will show the information
about fake transactions can be maintained by the data owner
using a compact synopsis. This step is used to ensure the
synopsis is as small as possible.

The key property of RobFrugal is that, by construction, it is
a robust grouping for any input TDB D. It is immediate to note
that if the support in D of each group Gi of the initial grouping
Gfrug is 0, then RobFrugal produces a robust and optimal
grouping, where optimal means that it minimizes the number
of the fake transactions that are created by our encryption
approach. On the other hand, it should be noted that a grouping
according to RobFrugal may not exist, depending on the extent
of density/sparsity in the TDB. For example, in a TDB where
each pair of items occurs at least once together, RobFrugal
will not find a grouping for k = 2. In this case, a simple
solution is to keep increasing the value of k until a RobFrugal
grouping scheme exists. The intuition is that as k gets larger
it is less likely that there is a real transaction containing all
items in a group. However, with a large k, the number of fake
transactions increases. This affects storage and processing at
the server side although the data owner can always maintain
information about fake transactions using a compact synopsis

TABLE II

Noise Table and Its Hash Table

(a) Noise table for k = 2

Item Support Noise
e2 5 0
e5 2 3
e4 3 0
e1 1 2
e3 1 2

(b) Hash tables of items of nonzero noise in (a)

Table1
0 〈e5, 1, 2〉
1 〈e3, 2, 0〉

Table2
0 〈e1, 2, 0〉

of size O(n), n being the number of items. In practice, we
have found that even for small values of k = 10 to 50, a
RobFrugal grouping scheme does exist. This was the case in
all our experiments with real transaction data.

In the RobFrugal encryption scheme, the output of grouping
can be represented as the noise table. It extends the item
support table with an extra column “Noise” indicating, for
each cipher item e, the difference among the support of the
most frequent cipher item in e’s group and the support of e

itself, as reported in the item support table. We denote the
noise of a cipher item e as N(e). Continuing the example,
the noise table obtained with RobFrugal is reported in Table
II(a). The noise table represents the tool for generating the
fake transactions to be added to D to obtain D∗.

D. Constructing Fake Transactions

Given a noise table specifying the noise N(e) needed for
each cipher item e, we generate the fake transactions as
follows. First, we drop the rows with zero noise, corresponding
to the most frequent items of each group or to other items with
support equal to the maximum support of a group. Second,
we sort the remaining rows in descending order of noise.
Let e′

1, . . . , e′
m be the obtained ordering of (remaining) cipher

items, with associated noise N(e′
1), . . . , N(e′

m). The following
fake transactions are generated:

1) N(e′
1) − N(e′

2) instances of the transaction {e′
1};

2) N(e′
2) − N(e′

3) instances of the transaction {e′
1, e

′
2};

3) . . . ;
4) N(e′

m−1) − N(e′
m) instances of the transaction {e′

1, . . . ,

e′
m−1};

5) N(e′
m) instances of the transaction {e′

1, . . . , e′
m}.

Continuing the example, we consider cipher items of
nonzero noise in Table II(a). The following two fake transac-
tions are generated: two instances of the transaction {e5, e3, e1}
and one instance of the transaction {e5}. Note that even though
the attacker may know the details of the construction method,
he/she is not able to distinguish these fake transactions from
the true ones, since the attacker does not have any background
knowledge of frequency of item sets or of original transaction
length distribution.

It can be shown that this method yields a minimum number
of different types of fake transactions that equal the number
of cipher items with distinct noise. This observation yields

390 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

a compact synopsis for the client of the introduced fake
transactions. The purpose of using a compact synopsis is to
reduce the storage overhead at the side of the data owner who
may not be equipped with sufficient computational resources
and storage, which is common in the outsourcing data model.

In order to implement the synopsis efficiently, we use a hash
table generated with a minimal perfect hash function [16].
Minimal perfect hash functions are widely used for memory
efficient storage and fast retrieval of items from static sets. A
minimal perfect hash function is a perfect hash function that
maps n keys to n consecutive integers, usually [0 . . . n − 1].
Hence, h is a minimal perfect hash function over a set S if and
only if ∀i, j ∈ S, h(j) = h(i) implies j = i, and there exists
an integer p such that the range of h is p, . . . , p + |S| − 1. A
minimal perfect hash function h is order-preserving if for any
keys j and i, j < i implies h(j) < h(i).

In our scheme, the items of the noise table ei with
N(ei) > 0 are the keys of the minimal perfect hash function.
Given ei, function h computes an integer in [0 . . . n − 1],
denoting the position of the hash table storing the triple of
values 〈ei, timesi, occi〉, where timesi represents the number
of times that the fake transaction {e1, e2, . . . , ei} occurs in
the set of fake transactions, and occi is the number of times
that ei occurs altogether in the future fake transactions after
the transaction {e1, e2, . . . , ei}.

Given a noise table with m items with nonnull noise, our
approach generates hash tables for the group of items. In gen-
eral, the ith entry of a hash table HT containing the item ei has
timesi = N(ei) − N(ei+1), occi =

∑g
j=i+1 N(ej), where g is the

number of items in the current group. Note that each hash table
HT represents concisely the fake transactions involving all and
only the items in a group of g ≤ lmax items. The hash tables for
the items of nonzero noise in Table II(a) are shown in Table
II(b). Finally, we use a (second-level) ordinary hash function
H to map each item e to the hash table HT containing e.

Note that after the data owner outsources the encrypted
database (including the fake transactions), he/she does not
need to maintain the fake transactions in its own storage.
Instead the data owner only has to maintain a compact
synopsis, which stores all the information needed on the fake
transactions, for later recovery of real supports of item sets.
The size of the synopsis is linear in the number of items and
is much smaller than that of the fake transactions.

With the above data structure, we can define the function
RS that allows an efficient computation of the real support of
a pattern E = {e1, e2, . . . , en} with fake support s as follows:
RS(E) = s − (HT[h(emax)].times + HT[h(emax)].occ), where:
i) emax is the item in E such that for 1 ≤ j ≤ n, we
have h(ej) ≤ h(emax), and ii) HT = H(ei) is the hash
table associated by H to any item ei of E. For example, in
Table I(b), for E1 = {e5}, RS(E1) = s1 − (1 + 2), whereas for
E2 = {e5, e3}, RS(E2) = s2 − (2 + 0), where si is the fake
support of Ei. This is exactly right since e5 is fakely added
three times while e3 is fakely added two times.

E. Incremental Maintenance

We now consider incremental maintenance of the encrypted
TDB. The E/D module is responsible for this. We focus on

batches of appends, which are very natural in data warehouses.
Let D be an initial TDB and �D be a set of transactions that
are appended. Let D∗ be the original encrypted TDB. The E/D
module stores D as a prefix tree T . Let syn(D, D∗) denote the
compact synopsis stored by the E/D module for encoding the
generation of fake transactions in D∗. The server and client
have the item support tables IST of D and IST∗ of D∗.

Next, the new TDB �D arrives, together with its item
support table IST�. The following steps can be applied to
obtain an incremental version of the E/D module according to
the RobFrugal scheme.

1) The new transactions in �D are inserted into the prefix-
tree T , obtaining a cumulative representation of D∪�D.
Also, a cumulative item support table IST is constructed
by adding the support of each item in IST∗ and IST�.
In particular, for each item ei ∈ IST∗ the support of ei is
added to the support of ei ∈ IST�. Clearly, IST� could
both: a) not contain some item belonging to IST∗, and
b) contain some new items.
In case a, the support of these items in the cumulative
item support table IST is equal to the support of them
in IST∗; while in case b the support of these items in
IST is equal to their support in IST�. Note that when
the cumulative item support table IST is constructed the
method keeps the order of the items in the IST∗. Thus,
if an item belonging to IST∗ is in the position i, then
in the cumulative item support table IST its position
is i. When an item only belongs to the IST�, then this
item is appended to the list. Clearly, the balance of
support in each group is now generally destroyed by
the new item supports, and it is needed to add new fake
transactions to restore the balance.

2) The old grouping is checked for robustness with respect
to the overall prefix-tree T and the existing synopsis,
which is equivalent to checking against to D∗ ∪ F ∗.
If the check for robustness fails, then a new grouping
is tried out with swapping, until a robust grouping
is found. Then, the new synopsis for the new fake
transactions is constructed as usual; notice that the
new grouping is robust with respect to the new fake
transactions by construction, as the most frequent item
of each group does not occur in any fake transaction.

3) The E/D module uses both old and new synopses to
reconstruct the exact support of a pattern from the server.
Our method extends to the case when simultaneously,
a new batch is appended and old batch is dropped; the
method also works in the case when new items arrive
or old items are dropped. Details can be found in [17].

VI. Analysis

We now provide the main technical results on the robustness
and the effectiveness of our encryption/decryption schema.

A. Complexity

Our complexity analysis shows that the encryption method
requires O(n) storage and O(n2) time, where n is the number
of distinct items. These complexity figures essentially concern

GIANNOTTI et al.: PRIVACY-PRESERVING MINING OF ASSOCIATION RULES 391

the space and time needed for the creation and maintenance
of the synopsis representing the fake transactions.

Concerning decryption, we find that the procedure to re-
cover the true support of a pattern by using the synopsis
requires O(m) time, where m is the size of the patterns.

B. Privacy

Against the item-based attack: Recall that we assume the
attack does not know the details of our encryption algorithms.
However, when the attacker tries to map plaintext and cipher-
text items based on their frequencies, he may observe that
for every ciphertext item e, there always exist a plaintext
item whose frequency is no larger than that of e. Then he
may guess that fake transactions are inserted into the original
dataset. Assume that he does so. Then, he can infer that for
every cipher item e, suppD(i) ≤ suppD∗ (e), where i is the
true plain item corresponding to e. For each cipher item e,
the attacker tries to infer the true plain item i corresponding
to e. Recall that the attacker knows suppD∗ (e) and suppD(i),
and that suppD(i) ≤ suppD∗ (e). Based on this, for each cipher
item e, he can construct a set of candidate items which could
have been transformed by the owner to e. It is tempting
to think that all items i′ such that suppD(i′) ≤ suppD∗ (e)
are candidates for e. However, this can be narrowed down
substantially as follows. Let en be any cipher item with
the smallest support in D∗. Consider the set of all cipher
items E that have the same support in D∗ as en and let
S = {i′ | suppD(i) ≤ suppD∗ (en)}. By the grouping established
using RobFrugal, we must have |S| = |E| and ∀e ∈ E, the
set of candidate items must be S. Now, consider any cipher
item e with support suppD∗ (e) > suppD∗ (en). It is easy to see
that any item i ∈ S corresponding to en cannot be in the
candidate set of e, since mapping e (back) to i would make
it infeasible to map all cipher items consistently to an item,
while respecting the support constraints. Using this notion,
the attacker can prune the set of candidate sets of items as
follows. Let ICand(e) = {i′ | suppD(i′) ≤ suppD∗ (e)} be the
initial candidate set ∀e ∈ E . The attacker can sort the cipher
items in nondecreasing order of their frequency in D∗. Let
S = {e1, ..., em} be the set of cipher items with the smallest
support in D∗. He can infer ICand(e1) = · · · = ICand(em) and
|ICand(ei)| = m(1 ≤ i ≤ m). Clearly, every cipher item ei ∈ S

must be mapped to a plain item in ICand(ei), and no cipher
item in E − S can be mapped to a plain item in ICand(ei),
since doing so makes it impossible to map all cipher items
consistently back to some plain item. Thus, the attacker can
remove both S and ICand(e) from further consideration. This
has the effect of pruning ICand(e), for every cipher item
e ∈ E − S. The attack can repeat the procedure on the
remaining list of E−S until he prunes the initial candidate set
of every cipher item. Denote the set of candidates for a cipher
item e as Cand(e)∀e ∈ E . Define a mapping ι : E → I to be
consistent provided suppD(ι(e)) ≤ suppD∗ (e). An assignment
e �→ i of an item to a cipher item is feasible if there is
a consistent mapping ι : E → I such that ι(e) = i. A
candidate set for a cipher item is minimal provided assigning
any item from the candidate set to the cipher item is a feasible
assignment.

Theorem 1: For every cipher item e ∈ E , let Cand(e) be the
corresponding candidate set computed by the above pruning
procedure. Then, every candidate set Cand(e) is minimal.
Furthermore, Cand(e) = {i′ | suppD∗ (e′) = suppD∗ (e)}, where
i′ is the true plain item corresponding to e′. �

The proof of Theorem 1 is straightforward from the pruning
procedure. Following the construction details of fake items
for RobFrugal, it is easy to see that for each ciphertext item
e ∈ E , Cand(e) must contain at least k items. Assuming
every candidate item is equally likely to be the true plain item
corresponding to a given cipher item. We have:

Theorem 2: Let D be a TDB and D∗ the encrypted database
produced by the RobFrugal scheme. Then, for every cipher
item e, the probability of its crack is bounded by prob(e) ≤
1/k, where k is a given parameter for item k-anonymity. �

The theorem shows that the probability that an individual
item is broken can always be controlled to be below a threshold
chosen by the owner. By controlling the parameter k, the
owner can control the crack probability of cipher items. This
is exactly in the same spirit as in the classical notion of
k-anonymity in the case of microdata [14].
Against the set-based attack: Consider a cipher itemset E =
{e1, e2, . . . , em} in D∗, and suppose that this itemset has
support suppD∗ (E) > 0 (patterns with zero support are
uninteresting). Note that the itemset can be a transaction or
a pattern. The attacker can construct the possible candidate
sets for E as follows.

Definition 5: The set of possible plain item candidate sets
Cand(E) for E are defined as follows: ∀ cipher item ej ∈ E,
pick any plain item ij from Cand(ej), making sure that for
any ej, e� ∈ E, j
= �, the chosen plain items ij ∈ Cand(ej)
and i� ∈ Cand(e�) are distinct. A plain itemset belongs to
Cand(E) iff it is generated using the above step. �

It is worth emphasizing that Cand(e) for a cipher item is a
candidate set of items whereas Cand(E) for a cipher itemset
denotes the set of candidate itemsets for E. Note that by the
construction of D∗, each cipher item is indistinguishable from
at least k − 1 other cipher items, based on support. Thus,
given a cipher itemset E, the attacker can map each cipher
item ej ∈ E independently to some distinct item plain item i�
such that e� is indistinguishable from ej . This is the intuition
behind the candidate set of itemsets Cand(E).

Given a cipher itemset E, the attacker finds the candidate
set of itemsets Cand(E). Assuming equal likelihood, he can
guess the correct itemset corresponding to the given cipher
itemset with probability prob(E) = 1/|Cand(E)|. We refer to
the probability prob(E) as the crack probability of E. Given an
encrypted database, determining the crack probability prob(E)
for a cipher itemset E requires that we determine the size
|Cand(E)| of its candidate set of possible itemsets. We make
use of the following notion.

Definition 6: Let E be any cipher itemset and ei, ej ∈ E

any two cipher items. Then, ei ≡ ej iff Cand(ei) = Cand(ej).
We denote by [ei] the equivalence class containing ei, i.e., the
set {e ∈ E | e ≡ ei}. �

To determine the size of Cand(E), consider the hypergraph
HE with nodes E whose edges are the sets Cand ′(e), where
e ∈ E and Cand ′(e) denote the set obtained by replacing every

392 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

plain item in Cand(e) by its substitution cipher. Clearly, E

is a transversal of this hypergraph, i.e., it has a nonempty
overlap with every edge of the hypergraph. The size of the set
Cand(E) can be determined as follows. For every edge S of
the hypergraph HE, the contribution of that edge to the number
of candidates is given by

(|S|
|S∩E|

)
. The size of Cand(E) is the

product of the contributions from all the hyperedges of HE.
We call an equivalence class C ⊆ E of cipher items in E

complete if ∃e ∈ C : Cand ′(e) = C, that is, the equivalence
class includes all cipher items in the set Cand ′(e). Clearly,
the contribution of a complete equivalence class to the size of
Cand(E) is a factor of 1. Let C be an equivalence class in E.
We denote by Cand ′(E) the set Cand ′(e) for any element e ∈
C. This is well defined since ∀e, e′ ∈ C, we have Cand ′(e) =
Cand ′(e′). We now have Theorem 3.

Theorem 3: Given a cipher itemset E = {e1, e2, . . . , em}, let
C1, ..., Ct be the collection of equivalence classes of E. Then,
the size of the candidate set of itemsets is |Cand(E)| = �t

i=1(|Cand(Ci)|
|Ci|

)
. �

Proof: Recall that E is a union of one or more equivalence
classes. Since construction of candidate itemsets from each
equivalence class is independent of each other, |Cand(E)|
equals to product of

(|Cand(Ci)|
|Ci|

)
, the size of candidate itemsets

constructed from the equivalent class Ci. Since |Cand(Ci)| >

|Ci| and |Cand(Ci)| ≥ k, the result follows.
In RobFrugal, cipher itemsets that are complete cannot exist

with nonzero (fake) support. In fact, we can show Theorem 4.
Theorem 4: Given the original TDB D, let D∗

r be its
encrypted version obtained using any robust grouping scheme.
Then ∀ itemset E with nonzero support in D∗

r , the crack
probability prob(E) ≤ 1/k, where k is the given threshold
for k-anonymity. �

The key to prove the correctness of Theorem 4 is to show
that no cipher itemset can be complete under the RobFrugal
scheme. Assume there is a complete cipher itemset. Then,
E must be the union of one or more complete equivalence
classes. In other words, every equivalence class in E has
nonzero support in D∗

r . This contradicts the property ensured
by the construction of RobFrugal. Thus, there must exist at
least one equivalence class that is not complete. Theorem 3 has
shown that the bound of the candidate itemset for each incom-
plete equivalence class is at least k. Thus the size of candidate
itemset for E must be at least k. The theorem follows.

From Theory to Practice. Although the theoretical results
demonstrate a remarkable guarantee of protection against the
two kind of attacks, presented in Section IV, and the practica-
bility and the effectiveness of the proposed schema, through
our experiments on both real-world and synthetic transactional
databases we observed that both privacy protection and run
time performance are much better than the theoretical worst-
cases suggested by the above results. Why?

Concerning privacy, the explanation is that the probability
of crack generally decreases with the size of the itemset: 1

k

is an upper bound that essentially applies only to individual
items, not itemsets (under the hypothesis that the adopted
grouping is robust). Concerning performance, the explanation
is in the item support distribution. In real-life transaction
datasets, the item support distribution (as well as the itemset

support distribution) follows a power law: the item at rank x in
the item support table has a support that is proportional to α

xβ ,
for some parameters α and β. This is a natural assumption in
real-life TDB, studied in depth in [18]; in our experiments over
the Coop TDB, described in Section VII, we found β ≈ 0.5
and α ≈ 30.000. The power-law distribution implies that there
are a few items with large support and a heavy right-skewed
tail of items with very low support [see Fig. 3(a)].

Concerning the run time performance, the power-law dis-
tribution also facilitates the search for a robust grouping: the
identification of robust k-groups becomes quicker and quicker
while proceeding from left to right in the item distribution, as
the probability that k items in the same group do not co-occur
in any transactions grows fast. All our experiments confirm
that for all values of k, the actual incurred overhead of using
RobFrugal is negligible, far below the theoretical worst-case
O(n2) complexity.

VII. Experiments

In this section, we report our empirical evaluation to assess
the encryption/decryption overhead and the overhead at the
server side incurred by the proposed schema.

A. Datasets

We experimented on a large real-world database. The real-
world database is donated to us by Coop, a cooperative of
consumers that is today the largest supermarket chain in Italy.1

We selected the transactions occurring during four periods of
time in a subset of Coop stores, creating in this way four
different databases with varying number of transactions: from
100k to 300k transactions. In all the datasets the transactions
involve 15 713 different products grouped into 366 marketing
categories. Transactions are itemsets, i.e., no product occurs
twice in the same transaction. We consider two distinct kinds
of TDBs: 1) product-level Coop TDBs, denoted by Coop-
Prod, where items correspond to products, and 2) category-
level Coop TDBs, that we denote by CoopCat, where items
correspond to the category of the products in the original
transactions. In these datasets, lmax = 188 for CoopProd,
while lmax = 90 for CoopCat. Also, the two kind of TDBs
exhibit very different sparsity/density properties, as made
evident in Fig. 3(a) and (b), in which we depict the support
distribution of the items in CoopProd and in CoopCat with
300 000 transactions; we only show the support distribution
on these two TDBs because the others are very similar. The
heavy-tailed distribution in Fig. 3(a) (many items with very
low support) indicates that CoopProd is much sparser than
CoopCat [shown in Fig. 3(b)]. Sparsity/density of the two
TDBs has a dramatic effect on pattern mining: the number of
frequent patterns found in CoopCat tends to explode for higher
support thresholds, compared to CoopProd. We experimented
with our algorithms for both CoopProd and CoopCat.

B. Experimental Evaluation

We implemented the RobFrugal encryption scheme, as
well as the decryption scheme, as described in Section V,

1Available at http://www.e-coop.it, in Italian.

GIANNOTTI et al.: PRIVACY-PRESERVING MINING OF ASSOCIATION RULES 393

Fig. 3. Item support distribution. (a) CoopProd 300k trans. (b) CoopCat
300k trans.

in Java. All experiments were performed on an intel Core2
Duo processor with a 2.66 GHz CPU and 6 GB RAM over
a Linux platform (ubuntu 8.10). We adopted the a priori
implementation by Christian Borgelt,2 written in C and one
of the most highly optimized implementations.

1) Encryption Overhead: First, we assessed the total time
needed by the ED module to encrypt the database (grouping,
synopsis construction, creation of fake transactions): timings
are reported in Fig. 4 for CoopProd and CoopCat, for different
values of k and different number of transactions. The results
show that the encryption time is always small; it is under
1 s for the biggest CoopProd TDB, and below 0.8 s for the
biggest CoopCat TDB. Indeed, it is always less than the time
of a single mining query, which is at least 1 s by Apriori, as
shown in Fig. 5(d). Therefore, when there are multiple mining
queries, which is always the case for the outsourcing system,
the encryption overhead of our scheme is negligible compared
with the cost of mining.

It is worth noting that these experiments provide empirical
evidence that the theoretical complexity upper bound of O(n2)
is indeed overpessimistic. To see this point, we counted the
number of queries (to check that each group is unsupported)
performed by the ED module (RobFrugal), over the two TDBs
for the different values of k, and we discovered that such
number always coincides with n

k
, except for CoopCat TDBs

in the cases k = 10 and k = 20: for example, for k = 10 and
number of transactions 400K (the biggest TDB), an additional
3790 item swaps are needed to find a robust grouping and
only 10 for k = 20. This is a strong empirical evidence that in
real life databases RobFrugal reaches a solution very fast, with
complexity far below the O(n2) worst case: e.g., for CoopCat
with k = 10 and 400 transactions, RobFrugal only needs to
check a total of 3826 queries, while 3662 = 133, 956!

Second, we assessed the size of fake transactions added
to the databases after encryption. Fig. 5(c) reports the sizes
of fake transactions for different values of k in CoopProd∗

and CoopCat∗ with 300k transactions. We observe that the
size of fake transactions increases linearly with k. Also, we
observe that sparsity/density affects the generation of fake
transactions: e.g., we have that CoopProd∗, for k = 30, is only
8% larger than CoopProd while, for the same k, CoopCat∗ is
80% larger than CoopCat. We also assessed the size of the
fake transactions on synthetic databases.

Finally, we assessed the overhead of incremental encryp-
tion, which occurs when a new TDB is appended; to this
end, we split CoopProd with 500k transactions into two

2Available at http://www.borgelt.net.

halves CoopProd1 and CoopProd2, and treat CoopProd1 as
the original TDB and CoopProd2 as the appended one. We
consider the nonincremental method, which is to encrypt
CoopProd1∪CoopProd2 from scratch, and compare its encryp-
tion time with that of the incremental approach. We ignore
the time for transmitting TDBs between the client and server
as we assume that the TDB streams into the ED module
and the client can send the data that has been encrypted to
the server while encrypting the remaining data. The results,
shown in Fig. 4(c), are positive: essentially, for any value of k,
the incremental procedure always achieves better performance
than the nonincremental approach. Furthermore, thanks to
the incremental procedure, the client avoids to send different
encrypted versions of the same set of transactions to the server.
This reduces the cost for data retransmission and makes our
approach more robust against the possible attack based on the
comparison of multiple versions of the encrypted TDB.

2) Mining Overhead: We studied the overhead at the server
side for the pattern mining task over CoopProd∗ with respect to
CoopProd with 300K transactions. Instead of measuring per-
formance in run time, we measure the increase in the number
of frequent patterns obtained from mining the encrypted TDB,
considering different support thresholds. Results are plotted in
Fig. 5(a), for different values of k; notice that k = 1 means
that the original and encrypted TDB are the same. The x-axis
shows the relative support threshold in the mining query, wrt
the total number of original transactions (300k); the number
of frequent patterns obtained is reported on the y-axis. We
observe that the number of frequent patterns, at a given support
threshold, increases with k, as expected. However, mining
over CoopProd∗ exhibits a small overhead even for very small
support thresholds, e.g., a support threshold of about 1% for
k = 10 and 1.5% for k = 20. Mining over CoopCat with 300k

transactions and CoopCat∗ is more demanding, given the far
higher density, but we have similar observation, although at
higher support thresholds [see Fig. 5(b)]. In either case, we
found that, for reasonably small values of the support thresh-
old, the incurred overhead at server side is kept under control;
clearly, a tradeoff exists between the level of privacy, which in-
creases with k, and the minimum affordable support threshold
for mining, which also increases with k. Note that, the client
for extracting pattens from CoopProd∗ has to consider the
number of fake transactions when he specifies the minimum
support threshold in his query. Indeed, the increasing of the
number of transactions in CoopProd∗ requires to use a smaller
support threshold to have the same patterns that one could have
from the original data. For example, for k = 10 CoopProd∗ has
306k transactions so, to have the patterns obtained from the
original data (300k trans.) with a support of 2% the client
has to use the support threshold equal to 1.9%, obtained by
the computation 2 × 300k/306k. The need to use a smaller
support could make harder the discovery of frequent patterns.
But in our experiments, given the sparsity of the real TDBs, we
found that the number of fake transactions does not change the
support threshold too much, making the problem still tractable.

3) Decryption Overhead by the ED Module: We now
consider the feasibility of the proposed outsourcing model.
The ED module encrypts the TDB once which is sent to

394 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

Fig. 4. Encryption overhead. (a) Encryption overhead on CoopProd. (b) Encryption overhead on CoopCat. (c) Overhead of incremental encryption.

Fig. 5. Overhead at server side and decryption overhead. (a) Mining overhead CoopProd. (b) Mining overhead CoopCat. (c) Fake transactions. (d) Decryp.
versus mining time.

the server. Mining is conducted repeatedly at the server side
and decrypted every time by the ED module. Thus, we need
to compare the decryption time with the time of directly
executing a priori over the original database. This comparison
is particularly challenging, as we have chosen one of the most
optimized versions of a priori (written in C), while our decryp-
tion method is written in Java without particular optimizations,
except for the use of hash tables for the synopsis. Nevertheless,
as shown in Fig. 5(d), the decryption time is about one order
of magnitude smaller than the mining time; for higher support
threshold, the gap increases to about two orders of magnitude.
The situation is similar in CoopCat.

4) Crack Probability: We also analyze the crack prob-
ability for transactions and patterns over the Coop TDBs.
We discovered that in both CoopCat and CoopProd TDBs
encrypted by RobFrugal, around 90% of the transactions can
be broken with probability strictly less than 1

k
. For example,

considering the encrypted version of CoopProd with 300K
transactions, we discovered from experiments the following
facts, even for small k. For instance, for k = 10, every
transaction E has at least 10 plain itemset candidates, i.e.,
prob(E) ≤ 1

10 . Around 5% of transactions have exactly a crack
probability 1

10 , while 95% have a probability strictly smaller
than 1

10 . Around 90% have a probability strictly smaller than
1

100 . No single transaction contains any pattern consisting
exactly of the items in a group created by RobFrugal.

VIII. Conclusion and Future Work

In this paper, we studied the problem of (corporate)
privacy-preserving mining of frequent patterns (from which
association rules can easily be computed) on an encrypted
outsourced TDB. We assumed that a conservative model
where the adversary knows the domain of items and their
exact frequency and can use this knowledge to identify cipher

items and cipher itemsets. We proposed an encryption scheme,
called RobFrugal, that is based on 1–1 substitution ciphers for
items and adding fake transactions to make each cipher item
share the same frequency as ≥ k − 1 others. It makes use of a
compact synopsis of the fake transactions from which the true
support of mined patterns from the server can be efficiently
recovered. We also proposed a strategy for incremental
maintenance of the synopsis against updates consisting of
appends and dropping of old transaction batches. Unlike
previous works, such as [2] and [12], we formally proved that
our method is robust against an adversarial attack based on the
original items and their exact support. Our experiments based
on both large real and synthetic datasets yield strong evidence
in favor of the practical applicability of our approach.

Currently, our privacy analysis is based on the assumption
of equal likelihood of candidates. It would be interesting
to enhance the framework and the analysis by appealing to
cryptographic notions such as perfect secrecy [19]. Moreover,
our work considers the ciphertext-only attack model, in which
the attacker has access only to the encrypted items. It could
be interesting to consider other attack models where the
attacker knows some pairs of items and their cipher values. For
example, we could study the privacy guarantees of our method
in case of known-plaintext attacks (where the adversary knows
some item, cipher item pairs), chosen-plaintext attacks (where
the attacker knows some item and cipher pairs for selected
items), and chosen-ciphertext attacks (where the adversary
knows some itemset and cipher pairs for selected ciphers).
Another interesting direction is to relax our assumptions
about the attacker by allowing him to know the details of
encryption algorithms and/or the frequency of item sets and
the distribution of transaction lengths. Our current framework
assumes that the attacker does not possess such knowledge.
Any relaxation may break our encryption scheme and bring

GIANNOTTI et al.: PRIVACY-PRESERVING MINING OF ASSOCIATION RULES 395

privacy vulnerabilities. We will investigate encryption schemes
that can resist such privacy vulnerabilities. We are also inter-
ested in exploring how to improve the RobFrugal algorithm
to minimize the number of spurious patterns.

References

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as computing
utilities,” in Proc. IEEE Conf. High Performance Comput. Commun.,
Sep. 2008, pp. 5–13.

[2] W. K. Wong, D. W. Cheung, E. Hung, B. Kao, and N. Mamoulis,
“Security in outsourcing of association rule mining,” in Proc. Int. Conf.
Very Large Data Bases, 2007, pp. 111–122.

[3] L. Qiu, Y. Li, and X. Wu, “Protecting business intelligence and customer
privacy while outsourcing data mining tasks,” Knowledge Inform. Syst.,
vol. 17, no. 1, pp. 99–120, 2008.

[4] C. Clifton, M. Kantarcioglu, and J. Vaidya, “Defining privacy for data
mining,” in Proc. Nat. Sci. Found. Workshop Next Generation Data
Mining, 2002, pp. 126–133.

[5] I. Molloy, N. Li, and T. Li, “On the (in)security and (im)practicality of
outsourcing precise association rule mining,” in Proc. IEEE Int. Conf.
Data Mining, Dec. 2009, pp. 872–877.

[6] F. Giannotti, L. V. Lakshmanan, A. Monreale, D. Pedreschi, and
H. Wang, “Privacy-preserving data mining from outsourced databases,”
in Proc. SPCC2010 Conjunction with CPDP, 2010, pp. 411–426.

[7] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2000, pp. 439–450.

[8] S. J. Rizvi and J. R. Haritsa, “Maintaining data privacy in association
rule mining,” in Proc. Int. Conf. Very Large Data Bases, 2002, pp. 682–
693.

[9] M. Kantarcioglu and C. Clifton, “Privacy-preserving distributed mining
of association rules on horizontally partitioned data,” IEEE Trans.
Knowledge Data Eng., vol. 16, no. 9, pp. 1026–1037, Sep. 2004.

[10] B. Gilburd, A. Schuster, and R. Wolff, “k-ttp: A new privacy model
for large scale distributed environments,” in Proc. Int. Conf. Very Large
Data Bases, 2005, pp. 563–568.

[11] P. K. Prasad and C. P. Rangan, “Privacy preserving birch algorithm
for clustering over arbitrarily partitioned databases,” in Proc. Adv. Data
Mining Appl., 2007, pp. 146–157.

[12] C. Tai, P. S. Yu, and M. Chen, “K-support anonymity based on pseudo
taxonomy for outsourcing of frequent itemset mining,” in Proc. Int.
Knowledge Discovery Data Mining, 2010, pp. 473–482.

[13] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proc. Int. Conf. Very Large Data Bases, 1994, pp. 487–499.

[14] P. Samarati, “Protecting respondents’ identities in microdata release,”
IEEE Trans. Knowledge Data Eng., vol. 13, no. 6, pp. 1010–1027, Nov.
2001.

[15] V. Ciriani, S. D. C. di Vimercati, S. Foresti, and P. Samarati, “k-
anonymity,” in Proc. Secure Data Manage. Decentralized Syst., 2007,
pp. 323–353.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[17] F. Giannotti, L. V. Lakshmanan, A. Monreale, D. Pedreschi, and
H. Wang, “Privacy-preserving outsourcing of association rule mining,”
ISTI-CNR, Pisa, Italy, Tech Rep. 2009-TR-013, 2009.

[18] K.-T. Chuang, J.-L. Huang, and M.-S. Chen, “Power-law relationship
and self-similarity in the itemset support distribution: Analysis and
applications,” Very Large Data Bases J., vol. 17, no. 5, pp. 1121–1141,
2008.

[19] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., vol. 28, pp. 656–715, 1948.

Fosca Giannotti received the Masters degree in
computer science from the University of Pisa, Pisa,
Italy.

She is currently a Senior Researcher with the Infor-
mation Science and Technology Institute, National
Research Council, Pisa, where she leads the Knowl-
edge Discovery and Data Mining Laboratory—a
joint research initiative with the University of Pisa,
Pisa. She has been the Coordinator of various
European-wide research projects, including Geo-
graphic Privacy-Aware Knowledge Discovery and

Delivery. Her current research interests include data mining query languages,
mobility data mining, privacy preserving data mining, and complex network
analysis.

Ms. Giannotti has served as the Program Committee Chair and a Program
Committee Member in the main conferences on databases and data mining.

Laks V. S. Lakshmanan received the B.E. degree
in electronics and communications from the A. C.
College of Engineering and Technology, Karaikudi,
India, and the M.E. and Ph.D. degrees in computer
science from the Indian Institute of Science, Banga-
lore, India.

He is currently a Professor of computer science
with the University of British Columbia, Vancouver,
BC, Cananda. He collaborates with both the industry
and academia around the world. His current research
interests include relational, object-oriented, XML

databases, data models, data warehousing, data cleaning and mining, data
integration, social or information networks, search, and recommender systems.
He is a Research Fellow with the British Columbia Advanced Systems
Institute, Vancouver.

Mr. Lakshmanan has served on the program committees of all top database
and data mining conferences, chaired several, and edited several special issues
of top journals. Currently, he is an Associate Editor of the Very Large Data
Bases Journal.

Anna Monreale received the B.S., M.S., and Ph.D.
degrees in computer science from the University of
Pisa, Pisa, Italy.

She is currently a Post-Doctoral Researcher with
the Department of Computer Science, University of
Pisa, and a member of the Knowledge Discovery
and Data Mining Laboratory—a joint research group
with the Information Science and Technology In-
stitute of the National Research Council, Pisa. She
has been a Visiting Student with the Department of
Computer Science, Stevens Institute of Technology,

Hoboken, NJ, since 2010. Her current research interests include anonymity
of complex forms of data, including sequences, trajectories of moving objects
and complex networks, and privacy-preserving outsourcing of analytical and
mining tasks.

Dino Pedreschi received the Masters and Ph.D.
degrees in computer science from the University of
Pisa, Pisa, Italy.

He is currently a Full Professor of computer
science with the University of Pisa, where he has
served as the Coordinator of undergraduate studies in
computer science and as the Vice Rector. His current
research interests include data mining and privacy-
preserving data mining (PPDM).

Mr. Pedreschi is a member of program committees
of the main international conferences on data mining

and knowledge discovery and is an Associate Editor of the Journal of
Knowledge and Information Systems. He was a recipient of the Google
Research Award in 2009 for his research on PPDM and anonymity-preserving
data publishing.

Hui (Wendy) Wang received the B.S. degree in
computer science from Wuhan University, Wuhan,
China, in 1998, and the M.S. and Ph.D. degrees
in computer science from the University of British
Columbia, Vancouver, BC, Canada, in 2002 and
2007, respectively.

She has been an Assistant Professor with the
Department of Computer Science, Stevens Institute
of Technology, Hoboken, NJ, since 2008. Her cur-
rent research interests include data management,
database security, and data privacy.

