Thèmes : Machine Learning, Data Mining, Système de recommandation, Sequence embedding, Deep Neural Networks, Explainable Artificial Intelligence
Encadrant(s) : Marc Plantevit
Laboratoire : LIRIS
Equipe : DM2L
La modélisation de la préférence utilisateur et de la dynamique séquentielle est au coeur de la construction des systèmes de recommandation séquentielle (recommander le prochain item). Les défis résident dans la combinaison réussie entre l'ensemble de l'historique des utilisateurs et de leurs actions récentes pour fournir des recommandations personnalisées. Outre son efficacité, on attend d'un système de recommandation qu'il soit explicable. En d'autres mots, chaque recommandation peut être justifiée.
L'objectif de ce projet est de développer une méthode pour expliquer les recommandations faites par un système de recommandation.
Nous nous focaliserons sur la TOP n recommandation (i.e., des modèles qui proposent une liste ordonnée de n items).
Plusieurs axes de travail sont possibles selon l'appétence du ou des étudiants :
Corentin Lonjarret, Céline Robardet, Marc Plantevit, Roch Auburtin, Martin Atzmueller: Why Should I Trust This Item? Explaining the Recommendations of any Model. DSAA 2020: 526-535
Ce projet est pertinent pour les étudiants désirant s'orienter vers les parcours de masters 2 DS, TIW, IA.