
Algorithme itératif / récursif

Programmation impérative / fonctionnelle

LIFAPR : ALGORITHMIQUE
ET PROGRAMMATION RÉCURSIVE

QU’EST-CE QU’UN ALGORITHME ?

 On souhaite résoudre le problème :

Trouver le minimum d’une liste de nombres :

par exemple (3 6,5 12 -2 0 7)

Expliquer à une machine comment trouver le

minimum de n’importe quelle liste de nombres

Langage commun entre la machine et nous :

Scheme

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

2

DÉFINITION D’UN ALGORITHME

Un algorithme est une méthode

 Suffisamment générale pour pouvoir traiter

toute une classe de problèmes

 Combinant des opérations suffisamment

simples pour être effectuées par une machine

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

3

COMPLEXITÉ D’UN ALGORITHME

 Il faut :

 que la machine trouve le plus vite possible

Complexité en temps

 qu’elle trouve en utilisant aussi peu de place

mémoire que possible

Complexité en espace

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

4

RAPPEL : LA MACHINE N’EST PAS INTELLIGENTE

L’exécution d’un algorithme ne doit pas impliquer

des décisions subjectives, ni faire appel à

l’utilisation de l’intuition ou de la créativité

Exemple : une recette de cuisine n’est pas un

algorithme si elle contient des notions vagues

comme « ajouter du sel »

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

5

MON PREMIER ALGORITHME

Déterminer le minimum d’une liste de nombres

 par exemple (3 6,5 12 -2 0 7)

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

6

MÉTHODE ITÉRATIVE

Je parcours la liste de gauche à droite, en

retenant à chaque pas le minimum provisoire

(3 6,5 12 -2 0 7)

 Entre 3 et 6,5, c’est 3

 Entre 3 et 12, c’est 3

 Entre 3 et -2, c’est -2

 Entre -2 et 0, c’est -2

 etc.

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

7

DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (1)

La séquence

Début

Instruction(s)

Fin

L’affectation

Variable  Expression

A  2

BX4  A+2*racine(15)

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

8

DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (2)

La conditionnelle (1)

Si Condition Alors

Instruction(s)

FinSi

Exemple :

Si (A > 27) Alors

B  A*3

FinSi

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

9

DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (3)

La conditionnelle (2)

Si Condition Alors

Instruction(s)

Sinon

Instruction(s)

FinSi

Lyon 1 Licence - UE LIFAPR

Exemple :
Si ((A<10) et

(B > racine(A*5))) Alors

B  A*3

A  A+B

Sinon

A  A+2

B  A*B

FinSi

N. Guin – M. Lefevre

10

DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (4)

La condition est :

• soit une condition élémentaire

• soit une condition complexe,

c’est à dire une conjonction, disjonction, ou négation

de conditions élémentaires et/ou complexes

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

11

DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (5)

L’itérative, ou boucle

TantQue Condition Faire

Instruction(s)

FinTantQue

Exemple :
TantQue i<10 Faire

a  a*i

i  i+1

FinTantQue

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

12

OPÉRATEURS BOOLÉENS

Pour écrire une conjonction, disjonction, ou

négation de conditions, on a besoin des

opérateurs booléens ET, OU, NON

Une variable booléenne est une variable dont les

valeurs peuvent être vrai ou faux

Un opérateur booléen est un opérateur dont

les arguments sont des variables booléennes

et dont le résultat est booléen

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

13

L’OPÉRATEUR ET

X Y X ET Y

Vrai Vrai Vrai

Vrai Faux Faux

Faux Vrai Faux

Faux Faux Faux

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

14

L’OPÉRATEUR OU

X Y X OU Y

Vrai Vrai Vrai

Vrai Faux Vrai

Faux Vrai Vrai

Faux Faux Faux

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

15

L’OPÉRATEUR NON

X NON X

Vrai Faux

Faux Vrai

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

16

ALGORITHME ITÉRATIF

Soient

 L : la liste

 premier, longueur,

ième et écrire :

des primitives

(i.e. algorithmes

déjà définis)

Lyon 1 Licence - UE LIFAPR

Définition de minimum(L)
Début

min  premier(L)
i  2
TantQue i <= longueur(L) Faire

Si ième(L,i) < min Alors
min  ième(L,i)

FinSi
i  i+1

FinTantQue
Écrire(« Le minimum est »)
Écrire(min)

Fin

N. Guin – M. Lefevre

17

Lyon 1 Licence - UE LIFAPR

VOCABULAIRE

minimum et écrire sont des procédures,

i.e. modifient l’environnement

premier, longueur et ième sont des fonctions,

i.e. retournent une valeur,

mais ne modifient pas l’environnement

L est le paramètre de la procédure minimum

 i est l’indice ou le compteur de la boucle

N. Guin – M. Lefevre

18

COMPLEXITÉ EN TEMPS DE

L’ALGORITHME ITÉRATIF DU MINIMUM

Définition de minimum(L)

Début

min premier(L)

i  2

TantQue i <= longueur(L) Faire

Si ième(L,i) < min Alors

min  ième(L,i)

FinSi

i  i+1

FinTantQue

Écrire(« Le minimum est »)

Écrire(min)

Fin

Lyon 1 Licence - UE LIFAPR

Soit n la longueur de la liste L

1 affectation (initialisation)

1 affectation (initialisation)

n comparaisons

n-1 comparaisons

m affectations

n-1 affectation (incrémentation)

1 écriture

1 écriture

N. Guin – M. Lefevre

19

LE NOMBRE m DÉPEND DE LA LISTE

Meilleur cas : m=0

si le premier nombre de la liste est le minimum

Pire cas : m=n-1

si les nombres de la liste sont rangés en ordre

décroissant

Cas moyen : m=1+1/2+…+1/n (de l’ordre de ln n)

s’ils respectent une distribution parfaitement

aléatoire

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

20

COMPLEXITÉ EN ESPACE DE

L’ALGORITHME

Une variable min pour stocker le minimum

provisoire

Une variable i pour savoir où on en est dans la

liste

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

21

MÉTHODE RÉCURSIVE (1)

 Pour trouver le minimum de la liste (3 6,5 12 -2 0 7)

 On suppose le problème résolu pour la liste privée de son

premier élément i.e. (6,5 12 -2 0 7)

 Soit min le minimum de cette sous-liste, ici -2

 Le minimum de la liste complète s’obtient par

comparaison entre le premier élément de la liste (ici 3)

et min (ici -2)

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

22

MÉTHODE RÉCURSIVE (2)

Comment résout-on le problème pour

la sous-liste ?

➢ En faisant le même raisonnement

C’est la récursivité

Quand s’arrête-t-on ?

➢ Quand on ne peut plus parler de sous-liste,

i.e. quand la liste a un seul élément

C’est alors le minimum

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

23

ILLUSTRATION DE LA MÉTHODE

Lyon 1 Licence - UE LIFAPR

(6,5 12 -2 0 7)

Enlever le premier élément

Comparer -2 et 3

(3 6,5 12 -2 0 7)

-2

minimum

Sur quoi faire l’appel récursif ?

Comment passer du résultat de l’appel récursif

au résultat qu’on cherche ?

-2

minimum

appel récursif

N. Guin – M. Lefevre

24

ALGORITHME RÉCURSIF

Soient vide?, reste et premier des fonctions

primitives

Lyon 1 Licence - UE LIFAPR

Définition de la fonction minimum (L)

Si vide?(reste(L)) Alors
retourne premier(L)

Sinon
Si premier(L) < minimum(reste(L)) Alors

retourne premier(L)
Sinon

retourne minimum(reste(L))
FinSi

FinSi

N. Guin – M. Lefevre

25

REMARQUES

minimum est ici une fonction,

le mot retourne permet de dire quel est son

résultat

minimum est l’appel récursif

En programmation fonctionnelle,

on n’a plus besoin de la séquence

En programmation récursive,

on n’a plus besoin de la boucle

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

26

ILLUSTRATION DE L’ALGORITHME

Lyon 1 Licence - UE LIFAPR

(3 6,5 12 -2 0 7)

(6,5 12 -2 0 7)

(12 -2 0 7)

(-2 0 7)

(0 7)

(7)

3

6,5

12

-2

0

7

appel récursifpremier élément

minimum

appel récursif

appel récursif

appel récursif

appel

récursif

premier élément

premier élément

premier élément

premier élément

0

-2

-2

-2

-2

N. Guin – M. Lefevre

27

COMPLEXITÉ EN TEMPS DE

L’ALGORITHME RÉCURSIF DU MINIMUM

Définition de la fonction minimum(L)

Si vide?(reste(L)) Alors

retourne premier(L)

Sinon

Si premier(L) < minimum(reste(L))

Alors

retourne premier(L)

Sinon

retourne minimum(reste(L))

FinSi

FinSi

Lyon 1 Licence - UE LIFAPR

1 test

1 comparaison

+ le nombre de

comparaisons de

l’appel récursif

N. Guin – M. Lefevre

28

COMPLEXITÉ EN TEMPS DE

L’ALGORITHME (2)

 Si n est la longueur de la liste

 Si C(i) est le nombre de comparaisons de l’algorithme

pour une liste de longueur i

 Alors C(n) = 1+C(n-1)

= 1+1+C(n-2)

= ...

= 1+1+…+C(1)

= 1+1+…+0

= n-1

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

29

RÉSUMÉ SUR LA COMPLEXITÉ

Choisir ce que l’on va compter

 unité de comparaison des algorithmes

 par exemple le nombre de comparaisons

Ce qui importe est l’ordre de grandeur de la

complexité

 constant, log n, linéaire, n*log n, n2, 2n

En LIFAPR on s’intéressera essentiellement au

nombre de fois où l’on parcourt une structure de

donnée (liste, arbre)

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

30

POUR ÉCRIRE UN ALGORITHME RÉCURSIF

 Il faut choisir

1. Sur quoi on fait l’appel récursif

2. Comment on passe du résultat de l’appel

récursif au résultat que l’on cherche

3. Le cas d’arrêt

➢DANS CET ORDRE LÀ !!!

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

31

STRUCTURE TYPE D’UNE FONCTION RÉCURSIVE

Si je suis dans le cas d’arrêt

Alors voilà le résultat

Sinon le résultat est

le résultat de l’application d’une fonction

sur le résultat de l’appel récursif

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

32

LES BUGS

Mon algorithme est faux car son résultat n’est

pas défini si la liste est vide ou si elle contient

autre chose que des nombres

Pour éviter les bugs il faut :

 Définir le problème aussi bien que possible

C’est la spécification

 Tenter de prouver que son programme répond à la

spécification

 Passer des jeux d’essai, aussi divers et tordus que

possible

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

33

POUR RÉSUMER

LIFAPI :

Programmation

LIFAPR :

Programmation

Impérative Itérative

Fonctionnelle Récursive

Séquence

(faire les choses

l’une après l’autre)

Boucle

(répéter)

Appliquer une fonction

à des arguments

pour obtenir un résultat

Composer les fonctions

pour enchaîner les

traitements

La répétition est assurée

par l’enchaînement

des appels récursifs

Le test de la boucle

est remplacé par

le cas d’arrêt

Langage C

Langage Scheme

34

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

34

DÉBUTS EN SCHEME

Évaluer une expression

Définir une fonction

POURQUOI LE LANGAGE SCHEME ?

Pour découvrir un langage fonctionnel

 Autres langages fonctionnels en L2 : OCaml,

Javascript

Pour utiliser un langage avec une syntaxe très

simple, et rester proche de l’algorithme

Scheme est un langage LISP

 Premier langage de l’IA avec Prolog

 Utilisé actuellement : éditeur Emacs avec de

nombreuses extensions dont SLIME, distribution

Debian de Linux, Lilypond (musique)

N. Guin – M. LefevreLyon 1 Licence - UE LIFAPR

36

https://slime.common-lisp.dev/

LES FONCTIONS EN SCHEME

Une fonction a des paramètres

et retourne un résultat

Paramètres et résultat peuvent être de n’importe

quel type :

 Nombre

 Booléen

 Caractère

 Chaîne de caractères

 Liste

 Fonction

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

37

ÉCRITURE DE L’APPEL À UNE FONCTION (1)

Syntaxe :

 Parenthèse ouvrante

 Nom de la fonction

 Espace

 Premier argument

 Espace

 Deuxième argument

 Etc.

 Parenthèse fermante

Lyon 1 Licence - UE LIFAPR

(NomFct Arg1 Arg2 … Argn)

N. Guin – M. Lefevre

38

ÉCRITURE DE L’APPEL À UNE FONCTION (2)

Sémantique : il faut donner à la fonction le bon

nombre d’arguments, et du bon type

Exemples :

 (+ 5 13) retourne 18

 (- 10 b) retourne la différence

si b a une valeur numérique, une erreur sinon

 (+ (* 2 5) (- 3 1)) retourne 12

 (* 5) n’est pas correct

 (/ 5 "a") non plus

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

39

ÉVALUATION DE L’APPEL À UNE FONCTION

Lorsqu’on lui fournit un appel de fonction,

Scheme

 Évalue chacun des arguments

 Regarde s’il connaît la fonction,

sinon affiche un message d’erreur

 Applique la fonction aux résultats de l’évaluation

des arguments

 Affiche le résultat

C’est un processus récursif

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

40

EXEMPLES D’ERREURS

 (1 + 2) → erreur : 1 n’est pas une fonction

 (toto (1 2 3)) → erreur : 1 n’est pas une fonction

Dans certains cas particuliers, les arguments

ne sont pas évalués avant l’application de la

fonction.

On parle alors de forme spéciale plutôt que de

fonction

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

41

LES VARIABLES

Dans le langage Scheme, une variable se

nomme symbole

L’affectation revient à attribuer une valeur à un

symbole.

On utilise pour cela la forme spéciale define

Exemples :

 (define a 5)

 (define b 2)

 (+ a b) → 7

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

42

LA FORME SPÉCIALE QUOTE

La forme spéciale quote permet d’empêcher

l’évaluation

Exemples :

 (define a 5)

 a → 5

 (quote a) → a

 (quote (+ 1 2)) → (+ 1 2)

 '(+ 1 2) → (+ 1 2)

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

43

LA FORME SPÉCIALE EVAL

 À l’inverse de quote, eval force l’évaluation

 Exemples :

(eval '(+ 3 2)) → 5

(define toto 5)

(define tata toto)

tata → 5

(define titi 'toto)

titi → toto

(eval titi) → 5

Lyon 1 Licence - UE LIFAPR

5

toto

5

tata

5

toto

toto

titi

N. Guin – M. Lefevre

44

DÉFINITION D’UNE FONCTION

Syntaxe :

(define fonction

(lambda liste-des-paramètres

instructions))

 Exemple :

(define plus-1

(lambda (x)

(+ x 1)))

 Test : (plus-1 3) → 4

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

45

SPÉCIFICATION D’UNE FONCTION

; description de ce que fait la fonction

(define fonction ; → type du résultat

(lambda liste-des-paramètres ; type des paramètres

instructions))

Exemple :

; ajoute 1 à un nombre

(define plus-1 ; → un nombre

(lambda (x) ; x un nombre

(+ x 1)))

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

46

LA FORME SPÉCIALE IF

L’alternative est définie en Scheme

par la forme spéciale if

Syntaxe :

(if condition valeur-si-vrai valeur-si-faux)

Exemples :

 (if (> 3 2) 'yes 'no) → yes

 (if (> 2 3) 'yes 'no) → no

 (if (> 3 2) (- 3 2) (+ 3 2)) → 1

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

47

QUELQUES FONCTIONS PRÉDÉFINIES (1)

Opérateurs arithmétiques :

+, -, *, /, sqrt, min, max, abs, ...

(sqrt 9) → 3

(min 5 2 1 3) → 1

Opérateurs booléens :

not, or, and

(not #t) → #f

(and (> 3 2) (> 2 5)) → #f

(or (> 3 2) (> 2 5)) → #t

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

48

Formes spéciales

(voir TDTP1)

QUELQUES FONCTIONS PRÉDÉFINIES (2)

Opérateurs de comparaison :

 =, <, >, <=, >= pour les nombres

 equal? pour tout y compris les listes

Pour tester le type d’un objet :

boolean?, number?, symbol?, string?

modulo : reste de la division entière

 (modulo 12 5) → 2

 (modulo 5 12) → 5

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre

49

MA PREMIÈRE FONCTION RÉCURSIVE :

CHOIX DE LA MÉTHODE

On veut écrire une fonction qui étant donné un

entier n calcule n!

Lyon 1 Licence - UE LIFAPR

n-1
-1

 n

n

n!

factorielle

Sur quoi faire l’appel récursif ?

Comment passer du résultat de l’appel

récursif au résultat qu’on cherche ?

(n-1)!

factorielle

appel récursif

N. Guin – M. Lefevre

50

MA PREMIÈRE FONCTION RÉCURSIVE :

ÉCRITURE

(define factorielle ; → entier positif

(lambda (n) ; n entier positif

(if (= n 0)

1

(* n (factorielle (- n 1))))))

Lyon 1 Licence - UE LIFAPR

Cas d’arrêt : 0! = 1

Récursivité : n! = 1 x 2 x 3 x … x n = n x (n-1)! pour n>0

N. Guin – M. Lefevre

51

UNE AUTRE FONCTION RÉCURSIVE :

CHOIX DE LA MÉTHODE

On veut écrire une fonction qui étant donné un

nombre x et un entier positif n calcule xn

Lyon 1 Licence - UE LIFAPR

x,n-1
-1 sur n

 x

x,n

xn

puissance

Sur quoi faire l’appel récursif ?

Comment passer du résultat de l’appel

récursif au résultat qu’on cherche ?

xn-1

puissance

appel récursif

N. Guin – M. Lefevre

52

UNE AUTRE FONCTION RÉCURSIVE : ÉCRITURE

(define puissance ; → nombre

(lambda (x n) ; x nombre, n entier positif

(if (= n 0)

1

(* x (puissance x (- n 1))))))

Lyon 1 Licence - UE LIFAPR

Cas d’arrêt : x0 = 1

Récursivité : xn = x x x x … x x = x x x(n-1)

N. Guin – M. Lefevre

53

	Slide 1
	Slide 2: Qu’est-ce qu’un algorithme ?
	Slide 3: Définition d’un algorithme
	Slide 4: COMPLEXITÉ D’UN ALGORITHME
	Slide 5: Rappel : la machine n’est pas intelligente
	Slide 6: Mon premier algorithme
	Slide 7: Méthode itérative
	Slide 8: De quoi ai-je besoin pour écrire l’algorithme ? (1)
	Slide 9: De quoi ai-je besoin pour écrire l’algorithme ? (2)
	Slide 10: De quoi ai-je besoin pour écrire l’algorithme ? (3)
	Slide 11: De quoi ai-je besoin pour écrire l’algorithme ? (4)
	Slide 12: De quoi ai-je besoin pour écrire l’algorithme ? (5)
	Slide 13: Opérateurs booléens
	Slide 14: L’opérateur ET
	Slide 15: L’opérateur OU
	Slide 16: L’opérateur NON
	Slide 17: Algorithme itératif
	Slide 18: Vocabulaire
	Slide 19: COMPLEXITÉ EN TEMPS DE L’ALGORITHME ITÉRATIF DU MINIMUM
	Slide 20: LE NOMBRE m DÉPEND DE LA LISTE
	Slide 21: COMPLEXITÉ EN ESPACE DE L’ALGORITHME
	Slide 22: Méthode récursive (1)
	Slide 23: Méthode récursive (2)
	Slide 24: Illustration de la méthode
	Slide 25: Algorithme récursif
	Slide 26: Remarques
	Slide 27: Illustration de l’algorithme
	Slide 28: COMPLEXITÉ EN TEMPS DE L’ALGORITHME RÉCURSIF DU MINIMUM
	Slide 29: COMPLEXITÉ EN TEMPS DE L’ALGORITHME (2)
	Slide 30: RÉSUMÉ SUR LA COMPLEXITÉ
	Slide 31: Pour écrire un algorithme récursif
	Slide 32: Structure type d’une fonction récursive
	Slide 33: Les bugs
	Slide 34: Pour résumer
	Slide 35: Débuts en Scheme
	Slide 36: Pourquoi le langage scheme ?
	Slide 37: Les fonctions en Scheme
	Slide 38: Écriture de l’appel à une fonction (1)
	Slide 39: Écriture de l’appel à une fonction (2)
	Slide 40: Évaluation de l’appel à une fonction
	Slide 41: Exemples d’erreurs
	Slide 42: Les variables
	Slide 43: La forme spéciale quote
	Slide 44: La forme spéciale eval
	Slide 45: Définition d’une fonction
	Slide 46: Spécification d’une fonction
	Slide 47: La forme spéciale IF
	Slide 48: Quelques fonctions prédéfinies (1)
	Slide 49: Quelques fonctions prédéfinies (2)
	Slide 50: Ma première fonction récursive : choix de la méthode
	Slide 51: Ma première fonction récursive : écriture
	Slide 52: Une autre fonction récursive : choix de la méthode
	Slide 53: Une autre fonction récursive : écriture

