LIFAPR : ALGORITHMIQUE
o ET PROGRAMMATION RECURSIVE

(] Algorithme itératif / récursif

@ Programmation impérative / fonctionnelle



QU’EST-CE QU'UN ALGORITHME ?

o On souhaite résoudre le probleme :

Trouver le minimum d’une liste de nombres :
par exemple (3 6,5 12 -2 0 7)

o Expliquer a une machine comment trouver le
minimum de n’'importe quelle liste de nombres

o Langage commun entre la machine et nous :

Scheme °
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DEFINITION D'UN ALGORITHME

o Un algorithme est une méethode

o Suffisamment générale pour pouvoir traiter
toute une classe de problemes

 Combinant des opérations suffisamment
simples pour étre effectuées par une machine
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COMPLEXITE D’UN ALGORITHME

oll faut :

e que la machine trouve le plus vite possible

oComplexite en temps

» gu’elle trouve en utilisant aussi peu de place

memoire que possible
oComplexité en espace
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RAPPEL . LA MACHINE N'EST PAS INTELLIGENTE

o L'exécution d’'un algorithme ne doit pas impliquer
des décisions subjectives, ni faire appel a
I'utilisation de l'intuition ou de la créativite

o Exemple : une recette de cuisine n'est pas un
algorithme si elle contient des notions vagues
comme « ajouter du sel »
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MON PREMIER ALGORITHME

o Déterminer le minimum d’une liste de nombres
e parexemple (3 6,5 12 -2 0 7)
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METHODE ITERATIVE

o Je parcours la liste de gauche a droite, en
retenant a chagque pas le minimum provisoire

(3 6,512 -2 0 7)

Entre 3 et6,5, clest3
Entre 3 et12, clest3
Entre 3 et-2, clest-2
Entre -2 et 0, c'est-2
* etc.
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DE QUOI AI-JE BESOIN POUR ECRIRE
L' ALGORITHME ? (1)

o La séquence

Déebut
Instruction(s)

Fin

o L’affectation

Variable «<— Expression
oA« 2
o BX4 <~ A+2*racine(15)
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DE QUOI AI-JE BESOIN POUR ECRIRE
L' ALGORITHME ? (2)

o La conditionnelle (1)
Si Condition Alors
Instruction(s)
FinSi

o Exemple :
Si(A>27)Alors
B <« A*3

FinSi
o

Lyon 1 Licence - UE LIFAPR N. Guin — M. Lefevre




DE QUOI AI-JE BESOIN POUR ECRIRE

L'ALGORITHME ? (3)

o La conditionnelle (2)
Si Condition Alors
Instruction(s)
Sinon
Instruction(s)
FinSi
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o Exemple :
Si ((A<10) et
(B > racine(A*5))) Alors
B < A*3
A<« A+B
Sinon
A<« A+2
B« A'B
FinSi

N. Guin — M. Lefevre




DE QUOI AI-JE BESOIN POUR ECRIRE
L' ALGORITHME ? (4)

La condition est :
- soit une condition élémentaire

- soit une condition complexe,
c'est a dire une conjonction, disjonction, ou negation
de conditions élémentaires et/ou complexes
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DE QUOI AI-JE BESOIN POUR ECRIRE
L'ALGORITHME ? (5)

o L'itérative, ou boucle
TantQue Condition Faire

Instruction(s)
FinTantQue

o Exemple :
TantQue i<10 Faire
a< a’l
| < i+1

FinTantQue a
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OPERATEURS BOOLEENS

o Pour écrire une conjonction, disjonction, ou
negation de conditions, on a besoin des
opéerateurs booleens ET, OU, NON

o Une variable booléeenne est une variable dont les
valeurs peuvent étre vrai ou faux

o Un operateur booléen est un opérateur dont
les arguments sont des variables booléennes
et dont le résultat est booléen °
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L'OPERATEUR ET

X Y XETY
Vrai Vrai Vrai
Vrai Faux Faux
Faux Vrai Faux
Faux Faux Faux
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L’ OPERATEUR OU

X Y XouyY
Vrai Vrai Vrai
Vrai Faux Vrai
Faux Vrai Vrai
Faux Faux Faux
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L'OPERATEUR NON

X NON X
Vrai Faux
Faux Vrai
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ALGORITHME ITERATIF

o Soient
o L :laliste

e premier, longueur,
leme et ecrire
des primitives
(i.e. algorithmes
déja definis)

Fin
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Définition de minimum(L)
Début

min < premier(L)
| < 2
TantQue i <= longueur(L) Faire
Siieme(L,i) < min Alors
min < ieme(L,i)
FinSi
| < I+1
FinTantQue
Ecrire(« Le minimum est »)
Ecrire(min)

P N
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VOCABULAIRE

o minimum et écrire sont des procedures,
l.e. modifient 'environnement

o premier, longueur et ieme sont des fonctions,
l.e. retournent une valeur,

mais ne modifient pas I'environnement

oL est le parametre de la procédure minimum
ol est l'indice ou le compteur de la boucle
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COMPLEXITE EN TEMPS DE
LALGORITHME ITERATIF DU MINIMUM

Définition de minimum(L) Soit n la longueur de la liste L
Début
min <— premier(L) 1 affectation (initialisation)
i< 2 1 affectation (initialisation)
TantQue i <= longueur(L) Faire n comparaisons
Siieme(L,i) < min Alors n-1 comparaisons
min < ieme(L,i) m affectations
FinSi
| < i+1 n-1 affectation (incrémentation)
FinTantQue
Ecrire(« Le minimum est ») .
.. . 1 écriture
Ecrire(min) .
: 1 écriture
Fin
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LE NOMBRE m DEPEND DE LA LISTE

o : m=0
si le premier nombre de la liste est le minimum

o . m=n-1
si les nombres de la liste sont ranges en ordre
décroissant

o : m=1+1/2+...+1/n (de l'ordre de In n)
s'ils respectent une distribution parfaitement

aléatoire °
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COMPLEXITE EN ESPACE DE
LALGORITHME

o Une variable min pour stocker le minimum
provisoire

o Une variable / pour savoir ou on en est dans la
liste
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METHODE RECURSIVE (1)

o Pour trouver le minimum de la liste (3 6,5 12 -2 0 7)

o On suppose le probleme résolu pour la liste privée de son
premier élémenti.e. (6,5 12 -20 7)

o Soit min le minimum de cette sous-liste, ici -2

o Le minimum de la liste complete s’obtient par
comparaison entre le premier élément de la liste (ici 3)
et min (ici -2)
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METHODE RECURSIVE (2)

o Comment résout-on le probleme pour
la sous-liste ?

> En faisant le méme raisonnement
oC'estla

o Quand s’arréte-t-on ?

» Quand on ne peut plus parler de sous-liste,
l.e. quand la liste a un seul élement
C’est alors le minimum
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ILLUSTRATION DE LA METHODE

Enlever le premier élément

(36,512 -207) . (6,512-207)

minimum minimum

2 -2

Comparer -2 et 3
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ALGORITHME RECURSIF

o Soient vide?, reste et premier des fonctions
primitives

Définition de la fonction (L)

Sivide?(reste(L)) Alors
retourne premier(L)
Sinon
Si premier(L) < minimum(reste(L)) Alors
retourne premier(L)
Sinon
retourne minimum(reste(L))
FinSi
FinSi
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REMARQUES

o est ici une fonction,
le mot retourne permet de dire quel est son
resultat

o minimum est I'appel recursif

o En programmation fonctionnelle,
on n’a plus besoin de la sequence

o En programmation recursive,
on n’a plus besoin de la boucle
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ILLUSTRATION DE L’ALGORITHME
(36,512-207)

premier élémy \ippel récursif

3 (6,512 -207)
prem|er élément appel récursif
N (12-207)

-2
premler élément appel récursif
P | / N\
12 (-2 07)
premier élémen‘t/ \appel récursif
-2 * -2 (0 7)
. I
-2 & Premie cgent \?gcpuersﬁ
0 (7)
0 N 7 /minimum
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COMPLEXITE EN TEMPS DE
L’ALGORITHME RECURSIF DU MINIMUM

Définition de la fonction minimum(L)
Si vide?(reste(L)) Alors 1 test
retourne premier(L)
Sinon
Si premier(L) < minimum(reste(L)) 1 comparaison
Alors + le nombre de

retourne premier(L) comparaisons de
Sinon I'appel récursif

retourne minimum(reste(L))
FinSi

FinSi
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COMPLEXITE EN TEMPS DE
’ALGORITHME (2)

o Si n est la longueur de la liste

o Si C(i) est le nombre de comparaisons de l'algorithme
pour une liste de longueur |

o Alors C(n) = 1+C(n-1)

= 1+1+C(n-2)
=1+1+...+C(1)
=1+1+...4+0

= n-1
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RESUME SUR LA COMPLEXITE

o Choisir ce que I'on va compter
» unité de comparaison des algorithmes
» par exemple le nombre de comparaisons
o Ce qui importe est I'ordre de grandeur de la
complexité
» constant, log n, linéaire, n*log n, n?, 2"

o En LIFAPR on s’intéressera essentiellement au
nombre de fois ou I'on parcourt une structure de
donnee (liste, arbre) e
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POUR ECRIRE UN ALGORITHME RECURSIF

o Il faut choisir
1. Sur quoi on fait 'appel recursif

2. Comment on passe du resultat de I'appel
recursif au resultat que I'on cherche

3. Le cas d’'arrét

> DANS CET ORDRE LA !l!
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STRUCTURE TYPE D'UNE FONCTION RECURSIVE

Si je suis dans le cas d'arrét
Alors voila le resultat
Sinon le résultat est

le résultat de I'application d’'une fonction
sur le résultat de I'appel recursif
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LES BUGS

o Mon algorithme est faux car son résultat n’est
pas défini si la liste est vide ou si elle contient
autre chose que des nombres

o Pour eviter les bugs il faut :

o Définir le probléme aussi bien que possible
C’est la spéecification

» Tenter de prouver que son programme réepond a la
specification

» Passer des , aussi divers et tordus que
possible
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POUR RESUMER

LIFAPI :
Programmation

Langage C

LIFAPR :
Programmation

Langage Scheme

Lyon 1 Licence - UE LIFAPR

Imperative

Séquence
(faire les choses
I'une aprés l'autre)

Fonctionnelle

Appliquer une fonction
a des arguments
pour obtenir un résultat

Composer les fonctions
pour enchainer les
traitements

ltérative

Boucle
(répéter)

Récursive

La répetition est assurée
par I'enchainement
des appels récursifs

Le test de la boucle
est remplacé par

le cas d’arrét @
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DEBUTS EN SCHEME

' Evaluer une expression

® Définir une fonction




POURQUOI LE LANGAGE SCHEME ?

o Pour découvrir un langage fonctionnel
» Autres langages fonctionnels en L2 : OCaml,
Javascript
o Pour utiliser un langage avec une syntaxe tres
simple, et rester proche de l'algorithme

o Scheme est un langage LISP

* Premier langage de I'l|A avec Prolog

o Utilisé actuellement : éditeur Emacs avec de
nombreuses extensions dont SLIME, distribution
Debian de Linux, Lilypond (musique)
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https://slime.common-lisp.dev/

LES FONCTIONS EN SCHEME

o Une fonction a des
et retourne un

o Parametres et résultat peuvent étre de n'importe
quel
» Nombre
» Booléen
» Caractere
» Chaine de caracteres
o Liste
Fonction
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ECRITURE DE L’APPEL A UNE FONCTION (1)

o Syntaxe :

Parenthese ouvrante
Nom de la fonction
Espace

Premier argument
Espace

Deuxieme argument
Etc.

Parenthése fermante
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(NomFct Arg1 Arg2 ... Argn)
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ECRITURE DE L’APPEL A UNE FONCTION (2)

o Sémantique : il faut donner a la fonction le bon
nombre d’arguments, et du bon type

o Exemples :
e (+513) retourne 18

e (- 10 b) retourne la différence
si b a une valeur numeérique, une erreur sinon

e (+(*295)(-31))retourne 12
e (*5) n'est pas correct
e (/5 "a") non plus
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EVALUATION DE LAPPEL A UNE FONCTION

o Lorsqu’on lui fournit un appel de fonction,
Scheme
 Evalue chacun des arguments

» Regarde s’il connait la fonction,
sinon affiche un message d’erreur

» Applique la fonction aux résultats de I'évaluation
des arguments

o Affiche le résultat

o C’est un processus recursif
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EXEMPLES D'ERREURS

o(1+ 2) — erreur : 1 nest pas une fonction
o (toto (1 2 3)) — erreur : 1 n'est pas une fonction

o Dans certains cas particuliers, les arguments
ne sont pas evalues avant I'application de la
fonction.

On parle alors de forme spéciale plutdét que de
fonction
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LES VARIABLES

o Dans le langage Scheme, une variable se
nomme

o L’affectation revient a attribuer une aun

symbole.
On utilise pour cela la forme spéciale define

o Exemples :
e (define a 5)
e (define b 2)

e (+ab)—>7 e
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LA FORME SPECIALE QUOTE

o La forme spéciale quote permet d’empécher

I’évaluation

o Exemples :
e (define a 5)
ea—>>

e (quote a) —» a
(quote (+12)) > (+12)
e '(+12)> (+12)

Lyon 1 Licence - UE LIFAPR

N. Guin — M. Lefevre




LA FORME SPECIALE EVAL
o A l'inverse de quote, eval force I'évaluation

o Exemples :
(eval'(+32)) > 5

(define toto 5) - -
(define tata toto)
tata - 5 toto tata

(define titi 'toto)
titi —» toto
(eval titi) > 5 toto titi a

Lyon 1 Licence - UE LIFAPR N. Guin — M. Lefevre




DEFINITION D'UNE FONCTION

o Syntaxe :
(define fonction
(lambda liste-des-parametres

instructions))
o Exemple :
(define plus-1
(lambda (x)
(+x 1))
o Test: (plus-13) > 4 o
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SPECIFICATION D'UNE FONCTION

; description de ce que fait la fonction
(define fonction ; — type du resultat
(lambda liste-des-parametres ; type des parametres
instructions))

Exemple :

, ajoute 1 a un nombre
(define plus-1; — un nombre

(lambda (x) ; x un nombre

(+x1))
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LA FORME SPECIALE IF

o L’alternative est définie en Scheme
par la forme spéciale if

o Syntaxe :
(if condition valeur-si-vrai valeur-si-faux)

o Exemples :
e (if(>32)'yes 'no) —> yes
e (if(>23)'yes 'no) > no

e (if(>32)(-32)(+32)) > 1 0
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QUELQUES FONCTIONS PREDEFINIES (1)

o Opérateurs arithmétiques :
+ - * [, sqrt, min, max, abs, ...

(sqrt 9) > 3
(mMn5213)—>1

o Opérateurs booléens :
not, or, and

(not #t) — #f

(and (>3 2)(>25)) > #f Formes spéciales
(or (>3 2)(>25)) - #t (voir TDTP1) °
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QUELQUES FONCTIONS PREDEFINIES (2)

o Opérateurs de comparaison :
o = < > <= >=pourles nombres
e equal? pour tout y compris les listes

o Pour tester le type d'un objet :
boolean”, number?, symbol?, string”?

o modulo : reste de la division entiere
e (Modulo 12 5) > 2

e (modulo 512) > 5 °
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MA PREMIERE FONCTION RECURSIVE :
CHOIX DE LA METHODE

o On veut écrire une fonction qui étant donné un
entier n calcule n!

n - N-1

factorielle factorielle

n! - (n-1)!

X N
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MA PREMIERE FONCTION RECURSIVE :
ECRITURE

Cas d’arrét: 0! =1

Récursivité : nl=1x2x3x ... xn=nx(n-1)! pour n>0

(define factorielle ; — entier positif
(lambda (n) ; n entier positif
(if (=n0)
1
(* n (factorielle (- n 1))))))
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UNE AUTRE FONCTION RECURSIVE :
CHOIX DE LA METHODE

o On veut ecrire une fonction qui étant donné un
nombre x et un entier positif n calcule x"

-1 sur n
X,N - X,N-1

puissance puissance

Xn « Xn-1
X X
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UNE AUTRE FONCTION RECURSIVE : ECRITURE

Cas d'arrét: X0 =1
Récursivité : Xn =X x X x ... x X =X x X(n-1)

(define puissance ; — nombre
(lambda (x n) ; x nombre, n entier positif
(if (=n0)
1
(* X (puissance X (- n 1))))))
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