
Algorithme itératif / récursif

Programmation impérative / fonctionnelle

LIFAPR : ALGORITHMIQUE 
ET PROGRAMMATION RÉCURSIVE



QU’EST-CE QU’UN ALGORITHME ?

 On souhaite résoudre le problème :

Trouver le minimum d’une liste de nombres : 

par exemple (3  6,5  12  -2  0  7)

Expliquer à une machine comment trouver le 

minimum de n’importe quelle liste de nombres

Langage commun entre la machine et nous : 

Scheme
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DÉFINITION D’UN ALGORITHME

Un algorithme est une méthode

 Suffisamment générale pour pouvoir traiter 

toute une classe de problèmes

 Combinant des opérations suffisamment 

simples pour être effectuées par une machine
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COMPLEXITÉ D’UN ALGORITHME

 Il faut :

 que la machine trouve le plus vite possible

Complexité en temps

 qu’elle trouve en utilisant aussi peu de place 

mémoire que possible

Complexité en espace
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RAPPEL : LA MACHINE N’EST PAS INTELLIGENTE

L’exécution d’un algorithme ne doit pas impliquer 

des décisions subjectives, ni faire appel à 

l’utilisation de l’intuition ou de la créativité

Exemple : une recette de cuisine n’est pas un 

algorithme si elle contient des notions vagues 

comme « ajouter du sel »
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MON PREMIER ALGORITHME

Déterminer le minimum d’une liste de nombres 

 par exemple (3  6,5  12  -2  0  7)
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MÉTHODE ITÉRATIVE

Je parcours la liste de gauche à droite, en 

retenant à chaque pas le minimum provisoire

(3  6,5  12  -2  0  7)

 Entre 3 et 6,5, c’est 3

 Entre 3 et 12, c’est 3

 Entre 3 et -2, c’est -2

 Entre -2 et 0, c’est -2

 etc.
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DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (1)

La séquence

Début

Instruction(s)

Fin

L’affectation

Variable  Expression

A  2

BX4  A+2*racine(15)
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DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (2)

La conditionnelle (1)

Si Condition Alors

Instruction(s)

FinSi

Exemple :

Si (A > 27) Alors

B  A*3

FinSi
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DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (3)

La conditionnelle (2)

Si Condition Alors

Instruction(s)

Sinon

Instruction(s)

FinSi
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Exemple :
Si ((A<10) et

(B > racine(A*5))) Alors

B  A*3

A  A+B

Sinon

A  A+2

B  A*B

FinSi

N. Guin – M. Lefevre
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DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (4)

La condition est :

• soit une condition élémentaire

• soit une condition complexe, 

c’est à dire une conjonction, disjonction, ou négation 

de conditions élémentaires et/ou complexes
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DE QUOI AI-JE BESOIN POUR ÉCRIRE

L’ALGORITHME ? (5)

L’itérative, ou boucle

TantQue Condition Faire

Instruction(s)

FinTantQue

Exemple :
TantQue i<10 Faire

a  a*i

i  i+1

FinTantQue
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OPÉRATEURS BOOLÉENS

Pour écrire une conjonction, disjonction, ou 

négation de conditions, on a besoin des 

opérateurs booléens ET, OU, NON

Une variable booléenne est une variable dont les 

valeurs peuvent être vrai ou faux

Un opérateur booléen est un opérateur dont 

les arguments sont des variables booléennes 

et dont le résultat est booléen
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L’OPÉRATEUR ET

X Y X ET Y

Vrai Vrai Vrai

Vrai Faux Faux

Faux Vrai Faux

Faux Faux Faux
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L’OPÉRATEUR OU

X Y X OU Y

Vrai Vrai Vrai

Vrai Faux Vrai

Faux Vrai Vrai

Faux Faux Faux
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L’OPÉRATEUR NON

X NON X

Vrai Faux

Faux Vrai
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ALGORITHME ITÉRATIF

Soient 

 L : la liste

 premier, longueur, 

ième et écrire : 

des primitives 

(i.e. algorithmes 

déjà définis)

Lyon 1 Licence - UE LIFAPR

Définition de minimum(L)
Début

min  premier(L)
i  2
TantQue i <= longueur(L) Faire

Si ième(L,i) < min Alors
min  ième(L,i)

FinSi
i  i+1

FinTantQue
Écrire(« Le minimum est »)
Écrire(min)

Fin

N. Guin – M. Lefevre
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VOCABULAIRE

minimum et écrire sont des procédures, 

i.e. modifient l’environnement

premier, longueur et ième sont des fonctions, 

i.e. retournent une valeur, 

mais ne modifient pas l’environnement

L est le paramètre de la procédure minimum

 i est l’indice ou le compteur de la boucle

N. Guin – M. Lefevre
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COMPLEXITÉ EN TEMPS DE 

L’ALGORITHME ITÉRATIF DU MINIMUM

Définition de minimum(L)

Début

min premier(L)

i  2

TantQue i <= longueur(L) Faire

Si ième(L,i) < min Alors

min  ième(L,i)

FinSi

i  i+1

FinTantQue

Écrire(« Le minimum est »)

Écrire(min)

Fin

Lyon 1 Licence - UE LIFAPR

Soit n la longueur de la liste L

1 affectation (initialisation)

1 affectation (initialisation)

n comparaisons

n-1 comparaisons

m affectations

n-1 affectation (incrémentation)

1 écriture

1 écriture

N. Guin – M. Lefevre
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LE NOMBRE m DÉPEND DE LA LISTE

Meilleur cas : m=0 

si le premier nombre de la liste est le minimum

Pire cas : m=n-1 

si les nombres de la liste sont rangés en ordre 

décroissant

Cas moyen : m=1+1/2+…+1/n  (de l’ordre de ln n)

s’ils respectent une distribution parfaitement 

aléatoire
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COMPLEXITÉ EN ESPACE DE 

L’ALGORITHME

Une variable min pour stocker le minimum 

provisoire

Une variable i pour savoir où on en est dans la 

liste
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MÉTHODE RÉCURSIVE (1)

 Pour trouver le minimum de la liste (3  6,5  12  -2  0  7)

 On suppose le problème résolu pour la liste privée de son 

premier élément i.e. (6,5  12  -2 0  7)

 Soit min le minimum de cette sous-liste, ici -2

 Le minimum de la liste complète s’obtient par 

comparaison entre le premier élément de la liste (ici 3) 

et min (ici -2)
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MÉTHODE RÉCURSIVE (2)

Comment résout-on le problème pour 

la sous-liste ? 

➢ En faisant le même raisonnement

C’est la récursivité

Quand s’arrête-t-on ? 

➢ Quand on ne peut plus parler de sous-liste, 

i.e. quand la liste a un seul élément

C’est alors le minimum

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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ILLUSTRATION DE LA MÉTHODE

Lyon 1 Licence - UE LIFAPR

(6,5 12 -2 0 7)

Enlever le premier élément

Comparer -2 et 3

(3 6,5 12 -2 0 7)

-2

minimum

Sur quoi faire l’appel récursif ?

Comment passer du résultat de l’appel récursif 

au résultat qu’on cherche ?

-2

minimum

appel récursif

N. Guin – M. Lefevre
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ALGORITHME RÉCURSIF

Soient vide?, reste et premier des fonctions 

primitives

Lyon 1 Licence - UE LIFAPR

Définition de la fonction minimum (L)

Si vide?(reste(L)) Alors
retourne premier(L)

Sinon
Si premier(L) < minimum(reste(L)) Alors

retourne premier(L)
Sinon

retourne minimum(reste(L))
FinSi

FinSi

N. Guin – M. Lefevre
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REMARQUES

minimum est ici une fonction, 

le mot retourne permet de dire quel est son 

résultat

minimum est l’appel récursif

En programmation fonctionnelle, 

on n’a plus besoin de la séquence

En programmation récursive, 

on n’a plus besoin de la boucle

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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ILLUSTRATION DE L’ALGORITHME

Lyon 1 Licence - UE LIFAPR

(3 6,5 12 -2 0 7)

(6,5 12 -2 0 7)

(12 -2 0 7)

(-2 0 7)

(0 7)

(7)

3

6,5

12

-2 

0

7

appel récursifpremier élément

minimum

appel récursif

appel récursif

appel récursif

appel 

récursif

premier élément

premier élément

premier élément

premier élément

0

-2 

-2 

-2 

-2 
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COMPLEXITÉ EN TEMPS DE 

L’ALGORITHME RÉCURSIF DU MINIMUM

Définition de la fonction minimum(L)

Si vide?(reste(L)) Alors

retourne premier(L)

Sinon

Si premier(L) < minimum(reste(L)) 

Alors

retourne premier(L)

Sinon

retourne minimum(reste(L))

FinSi

FinSi

Lyon 1 Licence - UE LIFAPR

1 test

1 comparaison

+ le nombre de 

comparaisons de 

l’appel récursif

N. Guin – M. Lefevre
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COMPLEXITÉ EN TEMPS DE 

L’ALGORITHME (2)

 Si n est la longueur de la liste

 Si C(i) est le nombre de comparaisons de l’algorithme 

pour une liste de longueur i

 Alors C(n) = 1+C(n-1)

= 1+1+C(n-2)

= ...

= 1+1+…+C(1)

= 1+1+…+0

= n-1

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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RÉSUMÉ SUR LA COMPLEXITÉ

Choisir ce que l’on va compter

 unité de comparaison des algorithmes

 par exemple le nombre de comparaisons

Ce qui importe est l’ordre de grandeur de la 

complexité

 constant, log n, linéaire, n*log n, n2, 2n

En LIFAPR on s’intéressera essentiellement au 

nombre de fois où l’on parcourt une structure de 

donnée (liste, arbre)

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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POUR ÉCRIRE UN ALGORITHME RÉCURSIF

 Il faut choisir

1. Sur quoi on fait l’appel récursif

2. Comment on passe du résultat de l’appel 

récursif au résultat que l’on cherche

3. Le cas d’arrêt

➢DANS CET ORDRE LÀ !!!

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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STRUCTURE TYPE D’UNE FONCTION RÉCURSIVE

Si je suis dans le cas d’arrêt

Alors voilà le résultat

Sinon le résultat est 

le résultat de l’application d’une fonction 

sur le résultat de l’appel récursif

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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LES BUGS

Mon algorithme est faux car son résultat n’est 

pas défini si la liste est vide ou si elle contient 

autre chose que des nombres 

Pour éviter les bugs il faut :

 Définir le problème aussi bien que possible

C’est la spécification

 Tenter de prouver que son programme répond à la 

spécification

 Passer des jeux d’essai, aussi divers et tordus que 

possible

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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POUR RÉSUMER

LIFAPI : 

Programmation

LIFAPR : 

Programmation

Impérative Itérative

Fonctionnelle Récursive

Séquence

(faire les choses 

l’une après l’autre)

Boucle

(répéter)

Appliquer une fonction 

à des arguments 

pour obtenir un résultat

Composer les fonctions 

pour enchaîner les 

traitements

La répétition est assurée 

par l’enchaînement 

des appels récursifs

Le test de la boucle 

est remplacé par 

le cas d’arrêt

Langage C

Langage Scheme

34
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DÉBUTS EN SCHEME

Évaluer une expression

Définir une fonction



POURQUOI LE LANGAGE SCHEME ?

Pour découvrir un langage fonctionnel

 Autres langages fonctionnels en L2 : OCaml, 

Javascript

Pour utiliser un langage avec une syntaxe très 

simple, et rester proche de l’algorithme

Scheme est un langage LISP

 Premier langage de l’IA avec Prolog

 Utilisé actuellement : éditeur Emacs avec de 

nombreuses extensions dont SLIME, distribution 

Debian de Linux, Lilypond (musique)

N. Guin – M. LefevreLyon 1 Licence - UE LIFAPR
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LES FONCTIONS EN SCHEME

Une fonction a des paramètres 

et retourne un résultat

Paramètres et résultat peuvent être de n’importe 

quel type :

 Nombre

 Booléen

 Caractère

 Chaîne de caractères

 Liste

 Fonction

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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ÉCRITURE DE L’APPEL À UNE FONCTION (1)

Syntaxe :

 Parenthèse ouvrante

 Nom de la fonction

 Espace

 Premier argument

 Espace

 Deuxième argument

 Etc.

 Parenthèse fermante

Lyon 1 Licence - UE LIFAPR

(NomFct Arg1   Arg2 …  Argn)

N. Guin – M. Lefevre
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ÉCRITURE DE L’APPEL À UNE FONCTION (2)

Sémantique : il faut donner à la fonction le bon 

nombre d’arguments, et du bon type

Exemples :

 (+ 5 13) retourne 18

 (- 10 b) retourne la différence 

si b a une valeur numérique, une erreur sinon

 (+ (* 2 5) (- 3 1)) retourne 12

 (* 5) n’est pas correct

 (/ 5 "a") non plus

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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ÉVALUATION DE L’APPEL À UNE FONCTION

Lorsqu’on lui fournit un appel de fonction, 

Scheme

 Évalue chacun des arguments

 Regarde s’il connaît la fonction, 

sinon affiche un message d’erreur

 Applique la fonction aux résultats de l’évaluation 

des arguments

 Affiche le résultat

C’est un processus récursif

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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EXEMPLES D’ERREURS

 (1 + 2) → erreur : 1 n’est pas une fonction

 (toto (1 2 3)) → erreur : 1 n’est pas une fonction

Dans certains cas particuliers, les arguments 

ne sont pas évalués avant l’application de la 

fonction. 

On parle alors de forme spéciale plutôt que de 

fonction

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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LES VARIABLES

Dans le langage Scheme, une variable se 

nomme symbole

L’affectation revient à attribuer une valeur à un 

symbole. 

On utilise pour cela la forme spéciale define

Exemples :

 (define a 5)

 (define b 2)

 (+ a b) → 7

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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LA FORME SPÉCIALE QUOTE

La forme spéciale quote permet d’empêcher 

l’évaluation

Exemples :

 (define a 5)

 a → 5

 (quote a) → a

 (quote (+ 1 2)) → (+ 1 2)

 '(+ 1 2) → (+ 1 2)

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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LA FORME SPÉCIALE EVAL

 À l’inverse de quote, eval force l’évaluation

 Exemples :

(eval '(+ 3 2)) → 5

(define toto 5)

(define tata toto)

tata → 5

(define titi 'toto)

titi → toto

(eval titi) → 5

Lyon 1 Licence - UE LIFAPR

5

toto

5

tata

5

toto

toto

titi

N. Guin – M. Lefevre
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DÉFINITION D’UNE FONCTION

Syntaxe :

(define fonction

(lambda liste-des-paramètres

instructions))

 Exemple :

(define plus-1

(lambda (x)

(+ x 1)))

 Test : (plus-1 3) → 4

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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SPÉCIFICATION D’UNE FONCTION

; description de ce que fait la fonction

(define fonction ; → type du résultat

(lambda liste-des-paramètres ; type des paramètres

instructions))

Exemple :

; ajoute 1 à un nombre

(define plus-1 ; → un nombre

(lambda (x) ; x un nombre

(+ x 1)))

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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LA FORME SPÉCIALE IF

L’alternative est définie en Scheme

par la forme spéciale if

Syntaxe :

(if condition valeur-si-vrai valeur-si-faux)

Exemples :

 (if (> 3 2) 'yes 'no) → yes

 (if (> 2 3) 'yes 'no) → no

 (if (> 3 2) (- 3 2) (+ 3 2)) → 1

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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QUELQUES FONCTIONS PRÉDÉFINIES (1)

Opérateurs arithmétiques :

+, -, *, /, sqrt, min, max, abs, ...

(sqrt 9) → 3

(min 5 2 1 3) → 1

Opérateurs booléens : 

not, or, and

(not #t) → #f

(and (> 3 2) (> 2 5)) → #f

(or (> 3 2) (> 2 5)) → #t

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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QUELQUES FONCTIONS PRÉDÉFINIES (2)

Opérateurs de comparaison :

 =, <, >, <=, >= pour les nombres

 equal? pour tout y compris les listes

Pour tester le type d’un objet :

boolean?, number?, symbol?, string?

modulo : reste de la division entière

 (modulo 12  5) → 2 

 (modulo 5 12) → 5

Lyon 1 Licence - UE LIFAPR N. Guin – M. Lefevre
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MA PREMIÈRE FONCTION RÉCURSIVE : 

CHOIX DE LA MÉTHODE

On veut écrire une fonction qui étant donné un 

entier n calcule n!

Lyon 1 Licence - UE LIFAPR

n-1
-1

 n

n

n!

factorielle

Sur quoi faire l’appel récursif ?

Comment passer du résultat de l’appel 

récursif au résultat qu’on cherche ?

(n-1)!

factorielle

appel récursif

N. Guin – M. Lefevre
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MA PREMIÈRE FONCTION RÉCURSIVE : 

ÉCRITURE

(define factorielle ; → entier positif

(lambda (n) ; n entier positif

(if (= n 0)

1

(* n (factorielle (- n 1))))))

Lyon 1 Licence - UE LIFAPR

Cas d’arrêt : 0! = 1 

Récursivité : n! = 1 x 2 x 3 x … x n = n x (n-1)! pour n>0

N. Guin – M. Lefevre
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UNE AUTRE FONCTION RÉCURSIVE : 

CHOIX DE LA MÉTHODE

On veut écrire une fonction qui étant donné un 

nombre x et un entier positif n calcule xn

Lyon 1 Licence - UE LIFAPR

x,n-1
-1 sur n

 x

x,n

xn

puissance

Sur quoi faire l’appel récursif ?

Comment passer du résultat de l’appel 

récursif au résultat qu’on cherche ?

xn-1

puissance

appel récursif

N. Guin – M. Lefevre
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UNE AUTRE FONCTION RÉCURSIVE : ÉCRITURE

(define puissance ; → nombre

(lambda (x n) ; x nombre, n entier positif

(if (= n 0)

1

(* x (puissance x (- n 1))))))

Lyon 1 Licence - UE LIFAPR

Cas d’arrêt : x0 = 1 

Récursivité : xn = x x x x … x x = x x x(n-1)

N. Guin – M. Lefevre
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