
MÉMORISATION

let



MÉMORISER : POUR QUOI FAIRE ?

Reprenons notre programme minimum :
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(define minimum ; → nombre

(lambda (l) ; l liste de nombres non vide

(if (null? (cdr l))

(car l)

(if  (< (car l) (minimum (cdr l)))

(car l)

(minimum (cdr l))))))



ILLUSTRATION DE L’ALGORITHME VUE AU COURS 1
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ILLUSTRATION DE L’ALGORITHME VUE AU COURS 1
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(define minimum

(lambda (l)

(if (null? (cdr l))

(car l)

Calcul de  (minimum (cdr l)) 

stocké dans min

(if  (< (car l) min )

(car l)

min ))))

(define minimum

(lambda (l)

(if (null? (cdr l))

(car l)

(if  (< (car l) 

(minimum (cdr l)))

(car l)

(minimum (cdr l))))))

L’illustration correspond à 

cet algorithme :

Notre programme est 

celui-ci :



ILLUSTRATION RÉELLE DE NOTRE FONCTION

MINIMUM
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(minimum '(3 2 1 4)) → 1

(minimum '(2 1 4)) → 1

(minimum '(1 4)) → 1

(minimum '(4)) → 4

(minimum '(1 4)) → 1

(minimum '(4)) → 4

(minimum '(2 1 4)) → 1

(minimum '(1 4)) → 1

(minimum '(4)) → 4

(minimum '(1 4)) → 1

(minimum '(4)) → 4



COMMENT MÉMORISER ?

On souhaite conserver le résultat du premier 

appel à minimum pour s’en resservir 

au lieu de provoquer le deuxième appel

On définit donc un identificateur local (variable 

locale) grâce à un let
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SYNTAXE DU LET

(let  (

(ident1 val1)

(ident2 val2)

…

(identN valN)

)

corps

)
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FONCTIONNEMENT DU LET

Les vali sont évaluées (dans un ordre 
quelconque) et ces valeurs sont affectées aux 
identi

Dans le corps, on peut utiliser les identi

Attention : les identi ne sont pas définis à 
l’extérieur du corps
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APPLICATION AU PROGRAMME MINIMUM

(define minimum ; → nombre

(lambda (l) ; l liste de nombres non vide

(if (null? (cdr l))

(car l)

(let ((m (minimum (cdr l))))

(if  (< (car l) m)

(car l)

m)))))
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FONCTIONNEMENT DU NOUVEAU

PROGRAMME
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(minimum '(3 2 1 4)) → 1

(minimum '(2 1 4)) → 1

(minimum '(1 4)) → 1

(minimum '(4)) → 4

m = 4

m = 1

m = 1



AUTRE EXEMPLE

Écrire une fonction qui calcule
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x

2

2
+1

x2

2

(define calcule ; → nombre

(lambda (x) ; x nombre non nul

(/ (+ (* 3 (sqrt (/ (sqr x) 2))) 1)

(sqrt (/ (sqr x) 2))))))



AMÉLIORATION

L’utilisation du let permet ici une simplification 

d’écriture, mais n’améliore pas significativement 

la complexité de l’algorithme

Dans le cas d’un appel récursif comme dans le 

programme minimum, l’utilisation du let est 

primordiale pour la complexité
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(define calcule ; → nombre

(lambda (x) ; x nombre non nul

(let ((c (sqrt (/ (sqr x) 2))))

(/ (+ (* 3 c) 1) c))))

3
x

2

2
+1

x2

2



QUAND LES IDENTIFICATEURS SONT LIÉS

→ erreur car les affectations de a et b ont lieu 
dans un ordre quelconque 
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(define toto ; → nombre
(lambda (x) ; x nombre

(let ( (a (sqr x))
(b (+ (* 2 a) 1)))

(if (< a 80)
(* 3 (+ a 1))
(sqrt b)))))



LET*

Les évaluations des identificateurs se font 

séquentiellement dans un let*

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

14

(define toto ; → nombre
(lambda (x) ; x nombre

(let* ((a (sqr x))
(b (+ (* 2 a) 1)))

(if (< a 80)
(* 3 (+ a 1))
(sqrt b)))))



TRIS

Tri par fusion



QUEL EST LE PROBLÈME À RÉSOUDRE ?

Soit une liste de nombres : '(5 2 14 1 6)

On souhaite la trier : '(1 2 5 6 14)
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ALGORITHMES DE TRI

Tris par sélection du minimum (TDTP)

Tri par insertion (TDTP)

Tri par fusion (CM)

Tri rapide

Tri par tas

…
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PRINCIPES DES TRIS PAR SÉLECTION (EN TDTP)

On cherche le minimum de la liste, 

puis on recommence avec le reste de la liste

Tri du minimum

 fonction minimum

 fonction enlève

Tri bulles

 fonction bulle, qui sélectionne le minimum 

et l’enlève de la liste en un seul passage
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PRINCIPE DU TRI PAR INSERTION (EN TDTP)

Principe : on trie récursivement le cdr de la liste, 

puis on y insère le car

Exemple :
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'(5 2 14 1 6)
cdr

'(1 2 6 14)

'(2 14 1 6)

tri-insertion

'(1 2 5 6 14)
insérer 5

tri-insertion



TRI PAR FUSION : 

L’APPROCHE « DIVISER POUR RÉGNER »

Structure récursive : 

pour résoudre un problème donné, 

l’algorithme s’appelle lui-même récursivement 

une ou plusieurs fois sur des sous-problèmes 

très similaires

Le paradigme « diviser pour régner » donne lieu 

à trois étapes à chaque niveau de récursivité : 

diviser, régner, combiner

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

20



DIVISER POUR RÉGNER : 3 ÉTAPES

Diviser le problème en un certain nombre de 

sous-problèmes

Régner sur les sous-problèmes en les résolvant 

récursivement

Si la taille d’un sous-problème est assez réduite, 

on peut le résoudre directement

Combiner les solutions des sous-problèmes en 

une solution complète pour le problème initial
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TRI PAR FUSION : LE PRINCIPE

Diviser : diviser la liste de n éléments à trier 

en deux sous-listes de n/2 éléments

Régner : trier les deux sous-listes récursivement 

à l’aide du tri par fusion

Combiner : fusionner les deux sous-listes triées 

pour produire la réponse triée
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UN EXEMPLE
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3 2 5 1

3 2 5 1

3 2 5 1

2 3 1 5

1 2 3 5

diviser

fusionner



TRI PAR FUSION : LA MÉTHODE
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'(3 2 5 1) '( (3 2) (5 1) )
divise

(2 3) (1 5)'(1 2 3 5)
fusion

tri-fusiontri-fusion tri-fusion

→ trois fonctions à définir : divise, fusion, tri-fusion



DIVISER LA LISTE EN DEUX SOUS-LISTES : 

LA MÉTHODE
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'(a b c d e f)
cddr

'((. .) (. .))

'(c d e f)

divise

'((a . .) (b . .))

divise



DIVISER LA LISTE EN DEUX SOUS-LISTES : 

LA FONCTION

(define divise ; → liste de deux listes

(lambda (l) ; l liste

(cond ((null? l) '(() ()))

((null? (cdr l)) (list l '()))

(else (let ((r (divise (cddr l))))

(list (cons (car l) (car r))

(cons (cadr l) (cadr r))))))))
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DIVISER LA LISTE EN DEUX SOUS-LISTES : 

ILLUSTRATION DE LA FONCTION
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(divise '(3 2 5 1))

r1 → (divise '(5 1)) car → 3   cadr →2

(list (cons 3 (car r1)) (cons 2 (cadr r1))))

r2 → '( () () )

r2 → (divise '())  car → 5  cadr →1

(list (cons 5 (car r2)) (cons 1 (cadr r2))))
r1 → ‘( (5) (1) )

'( (3 5) (2 1) )

N. Guin - M. Lefevre



FUSIONNER DEUX LISTES TRIÉES :

LA MÉTHODE
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'(2 5 7) '(1 3 4 8) '(2 5 7) '(3 4 8)

1<2

'(2 3 4 5 7 8)'(1 2 3 4 5 7 8)
cons 1

fusionfusion



FUSIONNER DEUX LISTES TRIÉES :

LA FONCTION

(define fusion ; → liste de nb triée

(lambda (l1 l2) ; listes de nb triées

(cond ((null? l1) l2)

((null? l2) l1)

((< (car l1) (car l2))

(cons (car l1) (fusion (cdr l1) l2)))

(else

(cons (car l2) (fusion l1 (cdr l2)))))))
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FUSIONNER DEUX LISTES TRIÉES :

ILLUSTRATION DE LA FONCTION
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(fusion '(2 5 7) '(1 3 4 8))

(cons 1 (fusion '(2 5 7) '(3 4 8)))

(cons 2 (fusion '(5 7) '(3 4 8)))

(cons 3 (fusion '(5 7) '(4 8)))

(cons 4 (fusion '(5 7) '(8)))

(cons 5 (fusion '(7) '(8)))

(cons 7 (fusion '() '(8)))

'(8)

2 > 1

2 < 3

5 > 3

5 > 4

5 < 8

7 < 8
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'(1 2 3 4 5 7 8)

'(2 3 4 5 7 8)

'(3 4 5 7 8)

'(4 5 7 8)

'(5 7 8)

'(7 8)



TRI PAR FUSION : LA FONCTION

(define tri-fusion ; → liste de nb triée

(lambda (l) ; liste de nb non vide

(if (null? (cdr l))

l

(let ((r (divise l))) ; r = ( (…) (…) )

(fusion (tri-fusion (car r)) 

(tri-fusion (cadr r)))))))
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TRI PAR FUSION : ILLUSTRATION
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(tri-fusion '(7 4 9 1))

r1 → (divise '(7 4 9 1)) ((7 9) (4 1))

(fusion 

(tri-fusion '(7 9))

(tri-fusion '(4 1)))

r2 → (divise '(7 9)) '((7) (9))

(fusion  (tri-fusion '(7 ))

(tri-fusion '(9)))
'(7)
'(9)

r3 → (divise '(4 1)) '((4) (1))

(fusion (tri-fusion '(4 ))

(tri-fusion '(1)))
'(1)

'(4)

'(7 9)

'(1 4)

'(1 4 7 9)
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CALCULS EN REMONTANT

OU EN DESCENDANT



CALCULS EN REMONTANT OU EN DESCENDANT

Jusqu’à présent, nous avons toujours effectué 

les calculs en remontant des appels récursifs

Exemple : retour sur la fonction factorielle
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(define factorielle ; → entier positif

(lambda (n) ; n entier positif

(if (= n 0)

1

(* n (factorielle (- n 1))))))



FONCTION FACTORIELLE : ILLUSTRATION
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(factorielle 3)

(* 3 (factorielle 2))

(* 2 (factorielle 1))

(* 1 (factorielle 0))

1

1

2

6

On remonte pour faire les calculs



EFFECTUER LES CALCULS EN DESCENDANT
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(fact 3 1) ; n = 3, res = 1 au départ

(fact 2 (* 1 3)) ; n = 2, res = 3

(fact 1 (* 3 2)) ; n = 1, res = 6

(fact 0 (* 6 1)) ; n = 0, res = 6

6 
On renvoie directement 

le résultat contenu dans res

Les calculs effectués 

en descendant 

sont stockés dans res



INTRODUIRE UN PARAMÈTRE SUPPLÉMENTAIRE

POUR EFFECTUER LES CALCULS EN DESCENDANT

(define factorielle-compteur ; → entier positif

(lambda (n) ; n entier positif

(fact n 1)))

; effectue le calcul de factorielle(n) en utilisant un paramètre 

supplémentaire res dans lequel on effectue le calcul

(define fact ; → entier positif

(lambda (n res) ; entiers positifs

(if (= n 0)

res

(fact (- n 1) (* res n)))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

37



REMARQUES

 La fonction factorielle-compteur est 

celle qui répond à la spécification. 

 Il est indispensable d’écrire une fonction qui répond à la 

spécification, même si elle ne fait rien d’autre que d’appeler la 

fonction fact. 

 L’utilisateur n’a pas à savoir que nous utilisons 

un deuxième paramètre.

 La fonction fact est celle qui fait effectivement tout le travail.

 On se rapproche d’une solution itérative :
res  1

TantQue n>0 Faire

res  res*n

n  n-1

FinTantQue

Afficher res
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QUEL INTÉRÊT ?
 Simplifier l’écriture des fonctions qui renvoient une liste de 2 résultats 

ou plus, en introduisant autant de paramètres que de résultats.

 Exemple de la fonction divise :

 Remarque : les listes se construisent à l’envers.

Ici ce n’est pas gênant. Sinon on peut utiliser la fonction reverse dans 

le cas d’arrêt.
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