MEMORISATION

' let

MEMORISER : POUR QUOI FAIRE ?

Reprenons notre programme minimum :

(define minimum ; —» nombre
(lambda (l) ; | liste de nombres non vide
(if (null? (cdr 1))
(carl)
(if (< (carl) (minimum (cdr1)))
(car l)
(minimum (cdr [))))))

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

ILLUSTRATION DE L'ALGORITHME VUE AU COURS 1

(minimum '(3 2 1 4))

premier élé‘W \fppel récursif
3 (minimum (2 1 4))
premier élément/ \appel récursif

1 « 92 (minimum '(1 4))
premier elemiy \appel récursif

e
1 « 4

(minimum '(4))

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

ILLUSTRATION DE L'ALGORITHME VUE AU COURS 1

L'illustration correspond a Notre programme est
cet algorithme : celui-ci :
(define minimum (define minimum
(lambda (1) (lambda (1) .
(if (null? (cdr 1)) (f (nulf (C‘z(r;;)r)l)
(carl) (if (< (carl)
Calcul de (minimum (cdr 1)) (minimum (cdr 1)))
stocké dans min (carl)
(if (< (car 1) min) (minimum (cdr 1))))))
(carl)
min))))

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

ILLUSTRATION REELLE DE NOTRE FONCTION
MINIMUM

(minimum '(3214)) - 1 \

/ / mlnlmum (21 4 \'A\
mlr:m/um \ mmyum \

(m|n|mum (2 1 4)) -1 (m|n|mum 4)) > 4 (minimum '(4)) — 4
(minimum "(1 fl\)) — 1 (minl/rm1m '14)) > 1
(minimum '(4)) — 4 (minimum '(4)) — 4

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

COMMENT MEMORISER ?

o On souhaite conserver le résultat du premier
appel a minimum pour s’en resservir
au lieu de provoqguer le deuxieme appel

o On définit donc un identificateur local (variable
locale) grace a un let

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

SYNTAXE DU LET

Lyon 1 Licence - UE LIFAPR

(let (
(ident, val,)
(ident, val,)

(identy, valy)

)

corps

)

N. Guin - M. Lefevre

FONCTIONNEMENT DU LET

o Les val; sont evaluées (dans un ordre
guelconque) et ces valeurs sont affectées aux

ident;
o Dans le corps, on peut utiliser les ident;

o Attention : les ident; ne sont pas définis a
I'exterieur du corps

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

APPLICATION AU PROGRAMME MINIMUM

(define minimum ; — nombre
(lambda (1) ; | liste de nombres non vide
(if (null? (cdr 1))
(car l)
(let (M (minimum (cdr 1))))
(if (< (carl) m)
(car l)

m))))

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

FONCTIONNEMENT DU NOUVEAU
PROGRAMME

Lyon 1 Licence - UE LIFAPR

(minimum '(3214)) - 1

N

(minimum '(21 4)) —> 1

-

(minimum '(1 4)) —> 1

G-

(minimum '(4)) — 4

N. Guin - M. Lefevre

AUTRE EXEMPLE

o Ecrire une fonction qui calcule

(define calcule ; — nombre
(lambda (x) ; x nombre non nul

(7 (+ (* 3 (sart (/ (sqr x) 2))) 1)
(sart (/ (sqr x) 2))))))

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

AMELIORATION

(define calcule ; — nombre >
(lambda (x) ; x nombre non nuf 3 x?“
(let ((c (sart (/ (sar x) 2)))) =
(/ (+(*3c)1)c)))

o L'utilisation du let permet ici une simplification
d’'écriture, mais n‘améeéliore pas significativement
la complexité de l'algorithme

o Dans le cas d'un appel récursif comme dans le
programme minimum, l'utilisation du let est
primordiale pour la complexité Q

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

QUAND LES IDENTIFICATEURS SONT LIES

(define toto ; — nombre
(lambda (x) ; x nombre
(let (sqr X))
+("2a)1)))

NN

— erreur car les affectations de a et b ont lieu
dans un ordre quelconque

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

LET"

(define toto ; — nombre
(lambda (x) ; x nombre

(let* ((a (sqgr x))
_(b(+(F2a)1)))
(if (<a80)
(*3(+al))
(sqrt b)))))

Les évaluations des identificateurs se font
sequentiellement dans un let”

Lyon 1 Licence - UE LIFAPR

N. Guin - M. Lefevre

TRIS
O

® Tri par fusion

QUEL EST LE PROBLEME A RESOUDRE ?

o Soit une liste de nombres : (52 14 1 6)

o On souhaite la trier: '(1 2 56 14)

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

ALGORITHMES DE TRI

o Tris par sélection du minimum (TDTP)
o Tri par insertion (TDTP)
o Tri par fusion (CM)

o Tri rapide

o Tri par tas
o...

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefe

PRINCIPES DES TRIS PAR SELECTION (EN TDTP)

o On cherche le minimum de la liste,
puis on recommence avec le reste de la liste

o Tri du minimum
e fonction minimum
e fonction enleve

o Tri bulles
» fonction bulle, qui sélectionne le minimum
et I'enleve de la liste en un seul passage e

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

PRINCIPE DU TRI PAR INSERTION (EN TDTP)

o Principe : on trie récursivement le cdr de la liste,
puis on y insere le car

o Exemple :
cdr
(5214 10) > (214 16)
tri-insertion tri-insertion
\ iInserer 5 '
(1256 14) - (126 14)

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

TRI PAR FUSION :
L’APPROCHE « DIVISER POUR REGNER »

o Structure récursive :
pour résoudre un probleme donne,
I'algorithme s’appelle lui-méme recursivement
une ou plusieurs fois sur des sous-problemes
tres similaires

o Le paradigme « diviser pour regner » donne lieu
a trois etapes a chaque niveau de récursivite :
diviser, regner, combiner

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

DIVISER POUR REGNER : 3 ETAPES

o Diviser le probleme en un certain nombre de
sous-problemes

o Regner sur les sous-problemes en les resolvant

recursivement
Si la taille d’'un sous-probleme est assez réeduite,
on peut le resoudre directement

o Combiner les solutions des sous-problemes en
une solution complete pour le probleme initial e

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

TRI PAR FUSION : LE PRINCIPE

o Diviser : diviser la liste de n éléments a trier
en deux sous-listes de n/2 éléments

o Regner : trier les deux sous-listes récursivement
a I'aide du tri par fusion

o Combiner : fusionner les deux sous-listes triees
pour produire la reponse triee

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

UN EXEMPLE

3251

/\

32

T

N

diviser

fusionner

51

N

5

1

e

15

\/

Lyon 1 Licence - UE LIFAPR

1235

N. Guin - M. Lefevre

TRI PAR FUSION : LA METHODE

divise
'(3251) = '((32)(51))
tri-fusion tri-fusion | tri-fusion
fusion
'(1235) . (23)(195)

- trois fonctions a définir : divise, fusion, tri-fusion

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

DIVISER LA LISTE EN DEUX SOUS-LISTES :

LA METHODE

cddr

‘abcdef)

> '(cd ef)

\
divise divise

)

Lyon 1 Licence - UE LIFAPR

() ()

N. Guin - M. Lefevre

DIVISER LA LISTE EN DEUX SOUS-LISTES :
LA FONCTION

(define divise ; — liste de deux listes
(lambda (l) ; | liste
(cond ((null? 1) (() ()
((null? (cdr 1)) (list 1'()))
(else (let ((r (divise (cddr [))))
(list (cons (car |) (car r))
(cons (cadr |) (cadrr)))))))

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

DIVISER LA LISTE EN DEUX SOUS-LISTES .
ILLUSTRATION DE LA FONCTION

(divise (32 5 1))

\
r1 - (divise '(5 1)) car > 3 cadr 22 '((35)(21))
(list (cons 3 (car r1)) (cons 2 (cadr r1))))

\ |

r2 = (divise '()) car 2 5 cadr 2>1 ‘
(list (cons 5 (car r2)) (cons 1 (cadr r2)))) 1 =>°(00)(1))

\\ /
2=2'001(0)

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

FUSIONNER DEUX LISTES TRIEES :

LA METHODE
1<2
(257)'(1348) . (257)'(348)
fusion fusion
cons 1
123457 8) : (23457 8)

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

FUSIONNER DEUX LISTES TRIEES :
LA FONCTION

(define fusion ; — liste de nb triee
(lambda (11 I12) ; listes de nb triées
(cond ((null? 11) 12)
((null? 12) 11)
((< (car 1) (car 12))

(cons (car 1) (fusion (cdr 1) 12)))

(else

(cons (car |12) (fusion 11 (cdr 12)))))))

Lyon 1 Licence - UE LIFAPR

N. Guin - M. Lefevre

FUSIONNER DEUX LISTES TRIEES :

ILLUSTRATION DE LA FONCTION
(fusion (2 57)'(1 34 8))

N, 2> 1
(cons 1 (fusion'(257)'(348))) - =--- > (123457 8)
N\, 23 /
(cons 2 (fusion'(57)'(348))) - ----- »'(234578)
N\, 5>3 f
(cons 3 (fusion'(57)'(4 8))) -.-. - - »'(3457 8)
N\ 5>4
(cons 4 (fusion'(57) '(8))) ----= > '(4578)
\, 5<8 |
(cons 5 (fusion '(7) '(8))) ----» (57 8)
N/ <8
(cons 7 (fusion'() '(8))) ----» (7 8)
e — O

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

TRI PAR FUSION : LA FONCTION

(define tri-fusion ; — liste de nb triée
(lambda (1) ; liste de nb non vide
(if (null? (cdr 1))
I
(let ((r (divise l)));r=((...) (...))
(fusion (tri-fusion (car r))
(tri-fusion (cadrr)))))))

Lyon 1 Licence - UE LIFAPR N. Guin

- M. Lefevre

TRI PAR FUSION : ILLUSTRATION

(tri-fusion (74 9 1))

r1 > (divise '(7 4 9 1)) s, (79 ¢4
(fusion —
(tri-fusion '(7 9))

r2 > (divise (7 9)) — '((7) (9))
(fusion (tri-fusion (7)) (7)™
(tri-fusion '(9))) 9 '(79)

(tri-fusion '(4 1))) o _(_1_;r 79

ﬁ

r3 > (divise'(4 1)) — '((4) (1))
(fusion (tri-fusion '(4 5 '(4) —

)
(tri-fusion '(1))) . — '(14)
— (1) @

——

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

CALCULS EN REMONTANT
OU EN DESCENDANT

CALCULS EN REMONTANT OU EN DESCENDANT

o Jusqu’a présent, nous avons toujours effectuée
les calculs en remontant des appels récursifs

o Exemple : retour sur la fonction factorielle

(define factorielle ; — entier positif
(lambda (n) ; n entier positif
(if (=n0)
1
(* n (factorielle (- n 1))))))

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

FONCTION FACTORIELLE : ILLUSTRATION

(factorielle 3) On remonte pour faire les calculs
(* 3 (factorielle 2)) === ==~ - > 6
(* 2 (factorielle 1)) ===~ > 2

\\ /

(* 1 (factorielle 0))--
N\ /

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

EFFECTUER LES CALCULS EN DESCENDANT

(fact 3 1); n= 3, res =1 au départ

N
(fact2 (*13));n=2,res=3

Les calculs effectués \ .
en descendant (fact1(*32));n=1,res=6

sont stockés dans res N\,
(fact0(*61));n=0,res=6

N

6
On renvoie directement

le résultat contenu dans res

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

INTRODUIRE UN PARAMETRE SUPPLEMENTAIRE
POUR EFFECTUER LES CALCULS EN DESCENDANT

(define factorielle-compteur ; — entier positif
(lambda (n) ; n entier positif
(factn 1)))

; effectue le calcul de factorielle(n) en utilisant un paramétre
supplémentaire res dans lequel on effectue le calcul

(define fact ; — entier positif
(lambda (n res) ; entiers positifs
(if (= n0)
res
(fact (- n 1) (* res n)))))

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

REMARQUES

o La fonction factorielle-compteur est
celle qui répond a la spécification.
|l estindispensable d’écrire une fonction qui répond a la

spécification, méme si elle ne fait rien d’autre que d’appeler la
fonction fact.

» L'utilisateur n'a pas a savoir que nous utilisons
un deuxieme parametre.

o La fonction fact est celle qui fait effectivement tout le travail.

o On se rapproche d’'une solution itérative :

res « 1

TantQue n>0 Faire
res < res*n
n < n-1

FinTantQue
Afficher res e

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

QUEL INTERET ?

o Simplifier I'écriture des fonctions qui renvoient une liste de 2 résultats
ou plus, en introduisant autant de parametres que de résultats.

o Exemple de la fonction divise :

(define divise ; -> liste de 2 sous-=listes de taille similaires
(lambda (1) ; liste d'éléments

(div 1T '() '()))) ; ici on initialise 2 listes vides

(define div ; -> liste de 2 sous-listes
(lambda (1 11 12) ; 3 listes : 1 est la donnée,

; 11 et 12 les résultats qui se construisent
(cond

((null? 1) (list 11 12)) ; cas d'arrét : on renvoie la liste de 2 résultats
((null? (cdr 1)) (list (cons (car 1) 11) 12))

(else (div (cddr 1) ; sinon on fait un appel résursif en construisant 11 et 12
(cons (car 1) 11)

(cons (cadr 1) 12))))))

o Remarque : les listes se construisent a I'envers.
Ici ce n’est pas génant. Sinon on peut utiliser la fonction reverse dans

le cas d’arrét. o

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

	Slide 1: Mémorisation
	Slide 2: Mémoriser : pour quoi faire ?
	Slide 3: Illustration de l’algorithme vue au cours 1
	Slide 4: Illustration de l’algorithme vue au cours 1
	Slide 5: Illustration réelle de notre fonction minimum
	Slide 6: Comment mémoriser ?
	Slide 7: Syntaxe du let
	Slide 8: Fonctionnement du let
	Slide 9: Application au programme minimum
	Slide 10: Fonctionnement du nouveau programme
	Slide 11: Autre exemple
	Slide 12: Amélioration
	Slide 13: Quand les identificateurs sont liés
	Slide 14: let*
	Slide 15: Tris
	Slide 16: Quel est le problème à résoudre ?
	Slide 17: Algorithmes de tri
	Slide 18: Principes des tris par sélection (en TDTP)
	Slide 19: Principe du Tri par insertion (en TDTP)
	Slide 20: Tri par fusion : l’approche « Diviser pour régner »
	Slide 21: Diviser pour régner : 3 étapes
	Slide 22: Tri par fusion : le principe
	Slide 23: Un exemple
	Slide 24: Tri par fusion : la méthode
	Slide 25: Diviser la liste en deux sous-listes : la méthode
	Slide 26: Diviser la liste en deux sous-listes : la fonction
	Slide 27: Diviser la liste en deux sous-listes : illustration de la fonction
	Slide 28: Fusionner deux listes triées : la méthode
	Slide 29: Fusionner deux listes triées : la fonction
	Slide 30: Fusionner deux listes triées : illustration de la fonction
	Slide 31: Tri par fusion : la fonction
	Slide 32: Tri par fusion : illustration
	Slide 33: Calculs en remontant ou en descendant
	Slide 34: Calculs en remontant ou en descendant
	Slide 35: Fonction factorielle : illustration
	Slide 36: Effectuer les calculs en descendant
	Slide 37: Introduire un paramètre supplémentaire pour effectuer les calculs en descendant
	Slide 38: Remarques
	Slide 39: Quel intérêt ?

