
MÉMORISATION

let

MÉMORISER : POUR QUOI FAIRE ?

Reprenons notre programme minimum :

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

2

(define minimum ; → nombre

(lambda (l) ; l liste de nombres non vide

(if (null? (cdr l))

(car l)

(if (< (car l) (minimum (cdr l)))

(car l)

(minimum (cdr l))))))

ILLUSTRATION DE L’ALGORITHME VUE AU COURS 1

N. Guin - M. Lefevre

3

Lyon 1 Licence - UE LIFAPR

(minimum '(3 2 1 4))

(minimum '(2 1 4))

(minimum '(1 4))

(minimum '(4))

3

2

1

4

appel récursifpremier élément

appel récursif

appel récursif

premier élément

premier élément

1

1

1

ILLUSTRATION DE L’ALGORITHME VUE AU COURS 1

N. Guin - M. Lefevre

4

Lyon 1 Licence - UE LIFAPR

(define minimum

(lambda (l)

(if (null? (cdr l))

(car l)

Calcul de (minimum (cdr l))

stocké dans min

(if (< (car l) min)

(car l)

min))))

(define minimum

(lambda (l)

(if (null? (cdr l))

(car l)

(if (< (car l)

(minimum (cdr l)))

(car l)

(minimum (cdr l))))))

L’illustration correspond à

cet algorithme :

Notre programme est

celui-ci :

ILLUSTRATION RÉELLE DE NOTRE FONCTION

MINIMUM

N. Guin - M. Lefevre

5

Lyon 1 Licence - UE LIFAPR

(minimum '(3 2 1 4)) → 1

(minimum '(2 1 4)) → 1

(minimum '(1 4)) → 1

(minimum '(4)) → 4

(minimum '(1 4)) → 1

(minimum '(4)) → 4

(minimum '(2 1 4)) → 1

(minimum '(1 4)) → 1

(minimum '(4)) → 4

(minimum '(1 4)) → 1

(minimum '(4)) → 4

COMMENT MÉMORISER ?

On souhaite conserver le résultat du premier

appel à minimum pour s’en resservir

au lieu de provoquer le deuxième appel

On définit donc un identificateur local (variable

locale) grâce à un let

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

6

SYNTAXE DU LET

(let (

(ident1 val1)

(ident2 val2)

…

(identN valN)

)

corps

)

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

7

FONCTIONNEMENT DU LET

Les vali sont évaluées (dans un ordre
quelconque) et ces valeurs sont affectées aux
identi

Dans le corps, on peut utiliser les identi

Attention : les identi ne sont pas définis à
l’extérieur du corps

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

8

APPLICATION AU PROGRAMME MINIMUM

(define minimum ; → nombre

(lambda (l) ; l liste de nombres non vide

(if (null? (cdr l))

(car l)

(let ((m (minimum (cdr l))))

(if (< (car l) m)

(car l)

m)))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

9

FONCTIONNEMENT DU NOUVEAU

PROGRAMME

N. Guin - M. Lefevre

10

Lyon 1 Licence - UE LIFAPR

(minimum '(3 2 1 4)) → 1

(minimum '(2 1 4)) → 1

(minimum '(1 4)) → 1

(minimum '(4)) → 4

m = 4

m = 1

m = 1

AUTRE EXEMPLE

Écrire une fonction qui calcule

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

11

3
x

2

2
+1

x2

2

(define calcule ; → nombre

(lambda (x) ; x nombre non nul

(/ (+ (* 3 (sqrt (/ (sqr x) 2))) 1)

(sqrt (/ (sqr x) 2))))))

AMÉLIORATION

L’utilisation du let permet ici une simplification

d’écriture, mais n’améliore pas significativement

la complexité de l’algorithme

Dans le cas d’un appel récursif comme dans le

programme minimum, l’utilisation du let est

primordiale pour la complexité

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

12

(define calcule ; → nombre

(lambda (x) ; x nombre non nul

(let ((c (sqrt (/ (sqr x) 2))))

(/ (+ (* 3 c) 1) c))))

3
x

2

2
+1

x2

2

QUAND LES IDENTIFICATEURS SONT LIÉS

→ erreur car les affectations de a et b ont lieu
dans un ordre quelconque

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

13

(define toto ; → nombre
(lambda (x) ; x nombre

(let ((a (sqr x))
(b (+ (* 2 a) 1)))

(if (< a 80)
(* 3 (+ a 1))
(sqrt b)))))

LET*

Les évaluations des identificateurs se font

séquentiellement dans un let*

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

14

(define toto ; → nombre
(lambda (x) ; x nombre

(let* ((a (sqr x))
(b (+ (* 2 a) 1)))

(if (< a 80)
(* 3 (+ a 1))
(sqrt b)))))

TRIS

Tri par fusion

QUEL EST LE PROBLÈME À RÉSOUDRE ?

Soit une liste de nombres : '(5 2 14 1 6)

On souhaite la trier : '(1 2 5 6 14)

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

16

ALGORITHMES DE TRI

Tris par sélection du minimum (TDTP)

Tri par insertion (TDTP)

Tri par fusion (CM)

Tri rapide

Tri par tas

…

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

17

PRINCIPES DES TRIS PAR SÉLECTION (EN TDTP)

On cherche le minimum de la liste,

puis on recommence avec le reste de la liste

Tri du minimum

 fonction minimum

 fonction enlève

Tri bulles

 fonction bulle, qui sélectionne le minimum

et l’enlève de la liste en un seul passage

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

18

PRINCIPE DU TRI PAR INSERTION (EN TDTP)

Principe : on trie récursivement le cdr de la liste,

puis on y insère le car

Exemple :

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

19

'(5 2 14 1 6)
cdr

'(1 2 6 14)

'(2 14 1 6)

tri-insertion

'(1 2 5 6 14)
insérer 5

tri-insertion

TRI PAR FUSION :

L’APPROCHE « DIVISER POUR RÉGNER »

Structure récursive :

pour résoudre un problème donné,

l’algorithme s’appelle lui-même récursivement

une ou plusieurs fois sur des sous-problèmes

très similaires

Le paradigme « diviser pour régner » donne lieu

à trois étapes à chaque niveau de récursivité :

diviser, régner, combiner

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

20

DIVISER POUR RÉGNER : 3 ÉTAPES

Diviser le problème en un certain nombre de

sous-problèmes

Régner sur les sous-problèmes en les résolvant

récursivement

Si la taille d’un sous-problème est assez réduite,

on peut le résoudre directement

Combiner les solutions des sous-problèmes en

une solution complète pour le problème initial

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

21

TRI PAR FUSION : LE PRINCIPE

Diviser : diviser la liste de n éléments à trier

en deux sous-listes de n/2 éléments

Régner : trier les deux sous-listes récursivement

à l’aide du tri par fusion

Combiner : fusionner les deux sous-listes triées

pour produire la réponse triée

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

22

UN EXEMPLE

N. Guin - M. Lefevre

23

Lyon 1 Licence - UE LIFAPR

3 2 5 1

3 2 5 1

3 2 5 1

2 3 1 5

1 2 3 5

diviser

fusionner

TRI PAR FUSION : LA MÉTHODE

N. Guin - M. Lefevre

24

Lyon 1 Licence - UE LIFAPR

'(3 2 5 1) '((3 2) (5 1))
divise

(2 3) (1 5)'(1 2 3 5)
fusion

tri-fusiontri-fusion tri-fusion

→ trois fonctions à définir : divise, fusion, tri-fusion

DIVISER LA LISTE EN DEUX SOUS-LISTES :

LA MÉTHODE

N. Guin - M. Lefevre

25

Lyon 1 Licence - UE LIFAPR

'(a b c d e f)
cddr

'((. .) (. .))

'(c d e f)

divise

'((a . .) (b . .))

divise

DIVISER LA LISTE EN DEUX SOUS-LISTES :

LA FONCTION

(define divise ; → liste de deux listes

(lambda (l) ; l liste

(cond ((null? l) '(() ()))

((null? (cdr l)) (list l '()))

(else (let ((r (divise (cddr l))))

(list (cons (car l) (car r))

(cons (cadr l) (cadr r))))))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

26

DIVISER LA LISTE EN DEUX SOUS-LISTES :

ILLUSTRATION DE LA FONCTION

Lyon 1 Licence - UE LIFAPR

27

(divise '(3 2 5 1))

r1 → (divise '(5 1)) car → 3 cadr →2

(list (cons 3 (car r1)) (cons 2 (cadr r1))))

r2 → '(() ())

r2 → (divise '()) car → 5 cadr →1

(list (cons 5 (car r2)) (cons 1 (cadr r2))))
r1 → ‘((5) (1))

'((3 5) (2 1))

N. Guin - M. Lefevre

FUSIONNER DEUX LISTES TRIÉES :

LA MÉTHODE

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

28

'(2 5 7) '(1 3 4 8) '(2 5 7) '(3 4 8)

1<2

'(2 3 4 5 7 8)'(1 2 3 4 5 7 8)
cons 1

fusionfusion

FUSIONNER DEUX LISTES TRIÉES :

LA FONCTION

(define fusion ; → liste de nb triée

(lambda (l1 l2) ; listes de nb triées

(cond ((null? l1) l2)

((null? l2) l1)

((< (car l1) (car l2))

(cons (car l1) (fusion (cdr l1) l2)))

(else

(cons (car l2) (fusion l1 (cdr l2)))))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

29

FUSIONNER DEUX LISTES TRIÉES :

ILLUSTRATION DE LA FONCTION

Lyon 1 Licence - UE LIFAPR

30

(fusion '(2 5 7) '(1 3 4 8))

(cons 1 (fusion '(2 5 7) '(3 4 8)))

(cons 2 (fusion '(5 7) '(3 4 8)))

(cons 3 (fusion '(5 7) '(4 8)))

(cons 4 (fusion '(5 7) '(8)))

(cons 5 (fusion '(7) '(8)))

(cons 7 (fusion '() '(8)))

'(8)

2 > 1

2 < 3

5 > 3

5 > 4

5 < 8

7 < 8

N. Guin - M. Lefevre

'(1 2 3 4 5 7 8)

'(2 3 4 5 7 8)

'(3 4 5 7 8)

'(4 5 7 8)

'(5 7 8)

'(7 8)

TRI PAR FUSION : LA FONCTION

(define tri-fusion ; → liste de nb triée

(lambda (l) ; liste de nb non vide

(if (null? (cdr l))

l

(let ((r (divise l))) ; r = ((…) (…))

(fusion (tri-fusion (car r))

(tri-fusion (cadr r)))))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

31

TRI PAR FUSION : ILLUSTRATION

32

(tri-fusion '(7 4 9 1))

r1 → (divise '(7 4 9 1)) ((7 9) (4 1))

(fusion

(tri-fusion '(7 9))

(tri-fusion '(4 1)))

r2 → (divise '(7 9)) '((7) (9))

(fusion (tri-fusion '(7))

(tri-fusion '(9)))
'(7)
'(9)

r3 → (divise '(4 1)) '((4) (1))

(fusion (tri-fusion '(4))

(tri-fusion '(1)))
'(1)

'(4)

'(7 9)

'(1 4)

'(1 4 7 9)

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre

CALCULS EN REMONTANT

OU EN DESCENDANT

CALCULS EN REMONTANT OU EN DESCENDANT

Jusqu’à présent, nous avons toujours effectué

les calculs en remontant des appels récursifs

Exemple : retour sur la fonction factorielle

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

34

(define factorielle ; → entier positif

(lambda (n) ; n entier positif

(if (= n 0)

1

(* n (factorielle (- n 1))))))

FONCTION FACTORIELLE : ILLUSTRATION

Lyon 1 Licence - UE LIFAPR

35

N. Guin - M. Lefevre

(factorielle 3)

(* 3 (factorielle 2))

(* 2 (factorielle 1))

(* 1 (factorielle 0))

1

1

2

6

On remonte pour faire les calculs

EFFECTUER LES CALCULS EN DESCENDANT

N. Guin - M. Lefevre

36

Lyon 1 Licence - UE LIFAPR

(fact 3 1) ; n = 3, res = 1 au départ

(fact 2 (* 1 3)) ; n = 2, res = 3

(fact 1 (* 3 2)) ; n = 1, res = 6

(fact 0 (* 6 1)) ; n = 0, res = 6

6
On renvoie directement

le résultat contenu dans res

Les calculs effectués

en descendant

sont stockés dans res

INTRODUIRE UN PARAMÈTRE SUPPLÉMENTAIRE

POUR EFFECTUER LES CALCULS EN DESCENDANT

(define factorielle-compteur ; → entier positif

(lambda (n) ; n entier positif

(fact n 1)))

; effectue le calcul de factorielle(n) en utilisant un paramètre

supplémentaire res dans lequel on effectue le calcul

(define fact ; → entier positif

(lambda (n res) ; entiers positifs

(if (= n 0)

res

(fact (- n 1) (* res n)))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

37

REMARQUES

 La fonction factorielle-compteur est

celle qui répond à la spécification.

 Il est indispensable d’écrire une fonction qui répond à la

spécification, même si elle ne fait rien d’autre que d’appeler la

fonction fact.

 L’utilisateur n’a pas à savoir que nous utilisons

un deuxième paramètre.

 La fonction fact est celle qui fait effectivement tout le travail.

 On se rapproche d’une solution itérative :
res  1

TantQue n>0 Faire

res  res*n

n  n-1

FinTantQue

Afficher res

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

38

QUEL INTÉRÊT ?
 Simplifier l’écriture des fonctions qui renvoient une liste de 2 résultats

ou plus, en introduisant autant de paramètres que de résultats.

 Exemple de la fonction divise :

 Remarque : les listes se construisent à l’envers.

Ici ce n’est pas gênant. Sinon on peut utiliser la fonction reverse dans

le cas d’arrêt.

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

39

	Slide 1: Mémorisation
	Slide 2: Mémoriser : pour quoi faire ?
	Slide 3: Illustration de l’algorithme vue au cours 1
	Slide 4: Illustration de l’algorithme vue au cours 1
	Slide 5: Illustration réelle de notre fonction minimum
	Slide 6: Comment mémoriser ?
	Slide 7: Syntaxe du let
	Slide 8: Fonctionnement du let
	Slide 9: Application au programme minimum
	Slide 10: Fonctionnement du nouveau programme
	Slide 11: Autre exemple
	Slide 12: Amélioration
	Slide 13: Quand les identificateurs sont liés
	Slide 14: let*
	Slide 15: Tris
	Slide 16: Quel est le problème à résoudre ?
	Slide 17: Algorithmes de tri
	Slide 18: Principes des tris par sélection (en TDTP)
	Slide 19: Principe du Tri par insertion (en TDTP)
	Slide 20: Tri par fusion : l’approche « Diviser pour régner »
	Slide 21: Diviser pour régner : 3 étapes
	Slide 22: Tri par fusion : le principe
	Slide 23: Un exemple
	Slide 24: Tri par fusion : la méthode
	Slide 25: Diviser la liste en deux sous-listes : la méthode
	Slide 26: Diviser la liste en deux sous-listes : la fonction
	Slide 27: Diviser la liste en deux sous-listes : illustration de la fonction
	Slide 28: Fusionner deux listes triées : la méthode
	Slide 29: Fusionner deux listes triées : la fonction
	Slide 30: Fusionner deux listes triées : illustration de la fonction
	Slide 31: Tri par fusion : la fonction
	Slide 32: Tri par fusion : illustration
	Slide 33: Calculs en remontant ou en descendant
	Slide 34: Calculs en remontant ou en descendant
	Slide 35: Fonction factorielle : illustration
	Slide 36: Effectuer les calculs en descendant
	Slide 37: Introduire un paramètre supplémentaire pour effectuer les calculs en descendant
	Slide 38: Remarques
	Slide 39: Quel intérêt ?

