
ARBRES

Arbres binaires

Représentation des arbres

Fonctions primitives sur les arbres

Parcours d’arbres

Arbres ordonnés

À QUOI SERVENT LES ARBRES ?

Les arbres, comme les listes, permettent de

représenter un nombre variable de données

Le principal avantage des arbres par rapport

aux listes est qu’ils permettent de ranger les

données de telle sorte que les recherches

soient plus efficaces

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

2

DÉFINITION

Un arbre est soit un nœud, soit un arbre vide

Un nœud a des fils qui sont eux aussi des arbres

Si tous les fils d’un nœud sont vides,

alors le nœud est qualifié de feuille

Les nœuds portent des valeurs,

ce sont les données que l’on veut stocker

Si tous les nœuds de l’arbre ont n fils,

alors l’arbre est dit n-aire

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

3

EXEMPLE D’ARBRE

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

4

6

4 9

1 8

Racine

Feuilles

ARBRES BINAIRES

Un arbre binaire est :

 soit l’arbre vide

 soit un nœud qui a exactement deux fils

(éventuellement vides)

Pour manipuler les arbres binaires,

on a besoin de primitives

 d’accès

 de test

 de construction

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

5

PRIMITIVES SUR LES ARBRES BINAIRES (1)

Primitives d’accès
 valeur : retourne la valeur d’un arbre non vide

 fils-g : retourne le fils de gauche d’un arbre non vide

 fils-d : retourne le fils de droite d’un arbre non vide

Primitives de test

 arbre? : retourne vrai si un élément donné est un arbre

 arbre-vide? : retourne vrai si un arbre donné est vide

 feuille? : retourne vrai si un arbre donné est une feuille

 arbre=? : retourne vrai si deux arbres donnés sont
égaux

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

6

PRIMITIVES SUR LES ARBRES BINAIRES (2)

Primitives de construction

 arbre-vide : crée et retourne un arbre vide

 cons-binaire : crée et retourne un arbre avec une

valeur donnée et deux arbres donnés qui seront ses

deux uniques fils

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

7

EXEMPLES D’UTILISATION DES PRIMITIVES

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

8

Soit l’arbre a :

(valeur a) → 6

(valeur (fils-g a)) → 4

(valeur (fils-d (fils-g a))) → 8

(arbre? a) → #t

(arbre-vide? a) → #f

(arbre-vide? (fils-d a)) → #f

(arbre-vide? (fils-g (fils-d a))) → #t

(feuille? (fils-d a)) → #t

(feuille? (fils-g a)) → #f

6

4 9

1 8

REPRÉSENTATION DES ARBRES BINAIRES

Nous choisissons d’utiliser les listes

pour représenter les arbres

Un arbre vide sera représenté par la liste vide '()

Un nœud sera une liste de 3 éléments

 le car est sa valeur

 le cadr son fils gauche

 le caddr son fils droit

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

9

EXEMPLE DE REPRÉSENTATION

D’UN ARBRE BINAIRE

N. Guin - M. Lefevre

10

Lyon 1 Licence - UE LIFAPR

6

4 9

1 8

(define a '(6 (4 (1 () ()) (8 () ())) (9 () ())))

valeur fils-g fils-d

DÉFINITIONS DES PRIMITIVES (1)

 valeur : retourne la valeur d’un arbre non vide

(define valeur ; → atome

(lambda (arbre) ; arbre non vide

(car arbre)))

 fils-g : retourne le fils de gauche d’un arbre non vide

(define fils-g ; → arbre

(lambda (arbre) ; arbre non vide

(cadr arbre)))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

11

DÉFINITIONS DES PRIMITIVES (2)

 fils-d : retourne le fils de droite d’un arbre non vide

(define fils-d ; → arbre

(lambda (arbre) ; arbre non vide

(caddr arbre)))

 arbre-vide? : retourne vrai si un arbre donné est vide

(define arbre-vide? ; → booléen

(lambda (arbre) ; arbre

(null? arbre)))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

12

DÉFINITIONS DES PRIMITIVES (3)

 arbre? : retourne vrai si une liste donnée est un arbre

(define arbre? ; → booléen

(lambda (l) ; liste

 (or (null? l) ; l'arbre vide

 (and (= 3 (length l))

(not (list? (car l)))

(list? (cadr l))

(arbre? (cadr l))

(list? (caddr l))

(arbre? (caddr l))))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

13

DÉFINITIONS DES PRIMITIVES (4)

 feuille? : retourne vrai si l’arbre donné est une feuille

(define feuille? ; → booléen

(lambda (arbre) ; arbre

(and (not (arbre-vide? arbre))

(arbre-vide? (fils-g arbre))

(arbre-vide? (fils-d arbre)))))

 arbre=? : retourne vrai si deux arbres donnés sont égaux

(define arbre=? ; → booléen

(lambda (arbre1 arbre2) ; arbres

(equal? arbre1 arbre2)))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

14

DÉFINITIONS DES PRIMITIVES (5)

 arbre-vide : retourne un arbre vide

(define arbre-vide ; → arbre

(lambda ()

’()))

 cons-binaire : crée un arbre avec une valeur donnée et

deux arbres donnés qui seront ses deux uniques fils

(define cons-binaire ; → arbre

(lambda (val fg fd) ; val atome, fg et fd arbres

(list val fg fd)))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

15

2

4 9

1 8

EXEMPLES

 (define a '(6 (4 (1 () ()) (8 () ())) (9 () ())))

 (define b (fils-g a))

b → (4 (1 () ()) (8 () ()))

 (cons-binaire 2 b (fils-d a))

→ (2 (4 (1 () ()) (8 () ())) (9 () ()))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

16

6

4 9

1 8

a

b
4

1 8

POURQUOI UTILISER DES PRIMITIVES ?

Pourquoi utiliser (arbre-vide) au lieu de '()

et fils-g au lieu de cadr ?

Si on décide de changer la représentation des

arbres :

 sans primitives, il faut réécrire toutes les

fonctions sur les arbres

 avec primitives, il suffit de modifier les

primitives

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

17

PARCOURS D’ARBRES

Un arbre contient un ensemble de données

Pour utiliser ces données, il faut parcourir l’arbre

 en profondeur

 ou en largeur

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

18

PARCOURS EN LARGEUR / PROFONDEUR

Lyon 1 Licence - UE LIFAPR

19

6

4 9

1 8

N. Guin - M. Lefevre

6

4 9

1 8

Parcours en largeur Parcours en profondeur

PARCOURS EN PROFONDEUR : PRINCIPE

Parcourir un arbre en profondeur consiste à

passer ses nœuds en revue, en commençant

toujours par le même fils, et en descendant le

plus profondément possible dans l’arbre

Lorsque l’on arrive sur un arbre vide, on remonte

jusqu’au nœud supérieur et on redescend dans

le fils encore inexploré

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

20

3 PARCOURS EN PROFONDEUR

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

21

6

4 9

1 8

Parcours infixe :

Fils-g Valeur Fils-d

 1 4 8 6 9

Parcours préfixe :

Valeur Fils-g Fils-d

 6 4 1 8 9

Parcours postfixe :

Fils-g Fils-d Valeur

 1 8 4 9 6

EXEMPLE

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

22

*

+ 2

1 3

Parcours infixe :

 (((1) + (3)) * (2))

notation classique math

Parcours préfixe :

 (* (+ (1) (3)) (2))

notation préfixe Scheme

Parcours postfixe :

 (((1) (3) +) (2) *)

parenthèses inutiles

En ajoutant des parenthèses pour chaque fils

POUR ÉCRIRE UNE FONCTION QUI EFFECTUE

UN PARCOURS EN PROFONDEUR

Pour écrire une fonction f, sur un arbre A

 Si A est vide, on retourne une valeur constante,

généralement l’élément neutre de f

 Si A n’est pas vide :

 on rappelle f sur les deux fils de A,

ce qui retourne deux résultats : Rg et Rd

 puis on retourne un résultat qui ne dépend que

de Rg, Rd et de la valeur de la racine de A

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

23

EXEMPLE : SOMME DES VALEURS D’UN ARBRE

(define somme ; → nombre

(lambda (A) ; A arbre de nombres

(if (arbre-vide? A)

0

(+ (somme (fils-g A))

(somme (fils-d A))

(valeur A)))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

24

ILLUSTRATION

N. Guin - M. Lefevre

25

(somme A)

(+ (somme (fils-g A)

(somme (fils-d A)

6)

(+ (somme (fils-g A)

(somme (fils-d A)

4)

(+ (somme (fils-g A)

(somme (fils-d A)

9)

0

0

(+ (somme (fils-g A)

(somme (fils-d A)

1)
0

0

(+ (somme (fils-g A)

(somme (fils-d A)

8)

0

0

6

4 9

1 8

Lyon 1 Licence - UE LIFAPR

FONCTIONNEMENT SUR UN EXEMPLE

N. Guin - M. Lefevre

26

Lyon 1 Licence - UE LIFAPR

6

4 9

1 8
0 0

1 8

13

0 0

9

28

0 0

MODIFICATION DU CAS D’ARRÊT

(define somme ; → nombre

(lambda (A) ; A arbre de nombres

(if (feuille? A)

(valeur A)

(+ (somme (fils-g A))

(somme (fils-d A))

(valeur A)))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

27

PREMIER TEST

N. Guin - M. Lefevre

28

Lyon 1 Licence - UE LIFAPR

6

4 9

1 8

1 8

13
9

28

DEUXIÈME TEST

N. Guin - M. Lefevre

29

Lyon 1 Licence - UE LIFAPR

6

4 9

1

1

Il manque le cas de l’arbre vide

MORALITÉ

 Il faut toujours tester les fonctions sur un arbre

dont un nœud n’a qu’un seul fils

Quand la fonction peut retourner une valeur pour

l’arbre vide, il faut toujours prévoir ce cas d’arrêt

 Quand ce n’est pas possible, il y a de nombreux cas à

prévoir (voir fonction minimum, TDTP7) :

 feuille

 fils gauche vide mais pas le fils droit

 fils droit vide mais pas le fils gauche

 deux fils non vides

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

30

PARCOURS PARTIELS

 Il est parfois souhaitable d’arrêter le parcours

même si tous les nœuds n’ont pas été passés en

revue

Exemple : produit des valeurs d’un arbre

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

31

(define produit ; → nombre

(lambda (A) ; A arbre de nombres

(if (arbre-vide? A)

1

(* (produit (fils-g A))

(produit (fils-d A))

(valeur A)))))

PREMIER TEST

N. Guin - M. Lefevre

32

Lyon 1 Licence - UE LIFAPR

6

0 9

1 8

0

0

9

11

11 11

1 8

On fait des calculs

inutiles

Il faut s’arrêter dès

qu’on rencontre la

valeur 0

MODIFICATION DE LA FONCTION

(define produit ; → nombre

(lambda (A) ; A arbre de nombres

(cond ((arbre-vide? A) 1)

((= 0 (valeur A)) 0)

(else (* (produit (fils-g A))

(produit (fils-d A))

(valeur A))))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

33

DEUXIÈME TEST

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

34

6

0 9

1 8

0

0

9

11

MODIFICATION ET CRÉATION D’ARBRES

Exemple : écrire une fonction qui ajoute 1 à tous

les nœuds d’un arbre qui contient des nombres

 Il ne s’agit pas d’une modification (ajouter 1),

mais d’une création :

écrire une fonction qui retourne un arbre

identique à celui passé en argument,

mais dans lequel on a ajouté 1 à tous les

nœuds

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

35

FONCTION AJOUTE1

(define ajoute1 ; → arbre

(lambda (A) ; A arbre de nombres

(if (arbre-vide? A)

A

(cons-binaire (+ 1 (valeur A))

(ajoute1 (fils-g A))

(ajoute1 (fils-d A))))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

36

SOMME DES VALEURS DES FILS

N. Guin - M. Lefevre

37

Lyon 1 Licence - UE LIFAPR

28

13 9

1 8

6

4 9

1 8

= 1 + 8 + 4 + 9 + 6

= 1 + 8 + 4 = 0 + 0 + 9

= 0 + 0 + 8= 0 + 0 + 1

PREMIÈRE SOLUTION :

UTILISER LA FONCTION SOMME

(define somme-fils ; → arbre
(lambda (a) ; a arbre de nombres

(if (arbre-vide? a)
(arbre-vide)

(cons-binaire

(somme a)
(somme-fils (fils-g a))

(somme-fils (fils-d a))))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

38

RÉFLEXION SUR CETTE FONCTION

La complexité de cette fonction est beaucoup

trop grande

 Il faut utiliser la valeur de la racine du résultat de

l’appel récursif sur les fils :

ils contiennent déjà la somme des valeurs

de tous les nœuds de chacun des fils

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

39

SOMME DES VALEURS DES FILS

N. Guin - M. Lefevre

40

Lyon 1 Licence - UE LIFAPR

28

13 9

1 8

6

4 9

1 8

= 13 + 9 + 6

= 1 + 8 + 4 = 0 + 0 + 9

= 0 + 0 + 8= 0 + 0 + 1

MODIFICATION DE LA FONCTION

(define somme-fils ; → arbre

(lambda (A) ; A arbre de nombres

(if (arbre-vide? A)

(arbre-vide)

(let ((g (somme-fils (fils-g A)))

(d (somme-fils (fils-d A))))

(cons-binaire

(+ (valeur A) (valeur g) (valeur d))
g

d)))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

41

TEST DE LA FONCTION

N. Guin - M. Lefevre

42

Lyon 1 Licence - UE LIFAPR

6

4 9

1 8

6

4 9

1

CORRECTION DE LA FONCTION

(define somme-fils ; → arbre
(lambda (A) ; A arbre

(if (arbre-vide? A))
(arbre-vide)

(let ((g (somme-fils (fils-g A)))

(d (somme-fils (fils-d A))))
(cons-binaire

(+ (valeur A)

(if (arbre-vide? g) 0 (valeur g))
(if (arbre-vide? d) 0 (valeur d)))

g

d)))))
N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

43

SOMME DES VALEURS DES PÈRES

N. Guin - M. Lefevre

44

Lyon 1 Licence - UE LIFAPR

6

4 9

1 8

6

10 15

11 18

4+6 = 9+6 =

1+10 = 8+10 =

LE PÈRE DOIT PARLER À SES FILS

Dans toutes les fonctions précédemment écrites,

le résultat dépendait des fils

 Ici, le résultat dépend du père

 il doit transmettre une information à ses fils

au moment des appels récursifs

 paramètre supplémentaire pour passer le

résultat du père au fils

NB : la fonction construit quand même le résultat

en remontant

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

45

FONCTION SOMME-PERE

 (define somme-pere ; → arbre
(lambda (A) ; A arbre de nombres

(somme-pere2 A 0)))

 (define somme-pere2 ; → arbre
(lambda (A n) ; A arbre de nb, n nombre

(if (arbre-vide? A)
(arbre-vide)
(let ((v (+ (valeur A) n)))

(cons-binaire
v

(somme-pere2 (fils-g A) v)
(somme-pere2 (fils-d A) v))))))

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

46

ILLUSTRATION

N. Guin - M. Lefevre

47

(Somme-pere2 A 0)

v = 0 + 6

(cons-binaire 6

(somme-pere2 (fils-g A) 6)

(somme-pere2 (fils-d A) 6)

…

v = 6 + 4 = 10

(cons-binaire 10

(somme-pere2 (fils-g A) 10)

(somme-pere2 (fils-d A) 10)

6

4 9

1 8

v = 10 + 1 = 11

(cons-binaire 11

(somme-pere2 (fils-g A) 11)

(somme-pere2 (fils-d A) 11)
(arbre-vide)
(arbre-vide)

v = 10 + 8 = 18

(cons-binaire 18

(somme-pere2 (fils-g A) 18)

(somme-pere2 (fils-d A) 18)

(arbre-vide)
(arbre-vide)

Lyon 1 Licence - UE LIFAPR

ARBRES BINAIRES DE RECHERCHE

(OU ORDONNÉS)

 Les valeurs des nœuds doivent pouvoir être ordonnées

 En chaque nœud de l’arbre, la valeur du nœud est :

 supérieure à toutes celles de son fils gauche

 inférieure à toutes celles de son fils droit

 On suppose qu’il n’y a pas deux fois la même valeur

dans un ABR

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

48

7

< 7 > 7

EXEMPLES

N. Guin - M. Lefevre

49

Lyon 1 Licence - UE LIFAPR

6

4 9

1 5

6

4 9

1 8

Arbre ordonné Arbre non ordonné

RECHERCHE D’UN ÉLÉMENT DANS UN

ARBRE BINAIRE QUELCONQUE (1)

On souhaite écrire une fonction qui teste

l’appartenance d’une valeur V à un arbre A

Principe : tant qu’on n’a pas trouvé la valeur V,

il faut comparer V avec toutes les valeurs de

l’arbre A

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

50

RECHERCHE D’UN ÉLÉMENT DANS UN

ARBRE BINAIRE QUELCONQUE (2)

Algorithme :

 Cas d’arrêt :

Si A est vide Alors Retourne Faux

Si valeur(A)=V Alors Retourne Vrai

 Appels récursifs :

Chercher V dans fils-gauche(A)

Puis si on n’a toujours pas trouvé V,

chercher V dans fils-droit(A)

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

51

EXEMPLE

N. Guin - M. Lefevre

52

Lyon 1 Licence - UE LIFAPR

6

4 9

1 8

3 5

Recherche fructueuse :

Chercher 5

Cas le pire

Recherche infructueuse :

Chercher 7

Complexité au pire :

nombre de nœuds de

l’arbre

RECHERCHE D’UN ÉLÉMENT DANS UN

ARBRE BINAIRE ORDONNÉ (1)

Principe : utiliser le fait que l’arbre est ordonné

pour choisir dans quelle branche de l’arbre

chercher

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

53

RECHERCHE D’UN ÉLÉMENT DANS UN

ARBRE BINAIRE ORDONNÉ (2)

Algorithme :

 Cas d’arrêt :

Si A est vide Alors Retourne Faux

Si valeur(A)=V Alors Retourne Vrai

 Appels récursifs :

Si V>valeur(A) Alors chercher V dans fils-droit(A)

Si V<valeur(A) Alors chercher V dans fils-gauche(A)

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

54

EXEMPLE

N. Guin - M. Lefevre

55

Lyon 1 Licence - UE LIFAPR

6

2 9

1 4

3 5

Recherche fructueuse :

Chercher 5

Recherche infructueuse :

Chercher 7

Complexité au pire :

hauteur de l’arbre

INSERTION DANS UN ABR

Principe : on insère aux feuilles

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

56

6

4 9

1 5

7 6

4 9

1 5 7

SUPPRESSION DANS UN ABR

N. Guin - M. Lefevre

57

Lyon 1 Licence - UE LIFAPR

6

4 9

1 5

6

4 9

1

SUPPRESSION DANS UN ABR

N. Guin - M. Lefevre

58

Lyon 1 Licence - UE LIFAPR

6

4 9

2 5

1 3

6

3 9

2 5

1

SUPPRESSION DANS UN ABR

N. Guin - M. Lefevre

59

Lyon 1 Licence - UE LIFAPR

6

4 9

2 5

1 3

6

3 9

2 5

1

2,5

2,2 2,8

2,5

2,2 2,8

SUPPRESSION DANS UN ABR

Pour supprimer la valeur V dans un ABR

 Si V est une feuille, alors on supprime la feuille

 Sinon on remplace la valeur V par la valeur V’ qui lui

est immédiatement inférieure (ou immédiatement

supérieure), de manière à respecter l’ordre,

puis on supprime V’ qui est le plus grand élément du

fils gauche de V (resp. le plus petit élément de son fils

droit)

 V’ est une feuille ou un élément qui n’a pas de fils

droit (resp. pas de fils gauche), et peut donc être

supprimée facilement

N. Guin - M. LefevreLyon 1 Licence - UE LIFAPR

60

	Slide 1: Arbres
	Slide 2: À quoi servent les arbres ?
	Slide 3: Définition
	Slide 4: Exemple d’arbre
	Slide 5: Arbres binaires
	Slide 6: Primitives sur les arbres binaires (1)
	Slide 7: Primitives sur les arbres binaires (2)
	Slide 8: Exemples d’utilisation des primitives
	Slide 9: Représentation des arbres binaires
	Slide 10: Exemple de représentation d’un arbre binaire
	Slide 11: Définitions des primitives (1)
	Slide 12: Définitions des primitives (2)
	Slide 13: Définitions des primitives (3)
	Slide 14: Définitions des primitives (4)
	Slide 15: Définitions des primitives (5)
	Slide 16: Exemples
	Slide 17: Pourquoi utiliser des primitives ?
	Slide 18: Parcours d’arbres
	Slide 19: Parcours en largeur / profondeur
	Slide 20: Parcours en profondeur : principe
	Slide 21: 3 parcours en profondeur
	Slide 22: Exemple
	Slide 23: Pour écrire une fonction qui effectue un parcours en profondeur
	Slide 24: Exemple : somme des valeurs d’un arbre
	Slide 25: Illustration
	Slide 26: Fonctionnement sur un exemple
	Slide 27: Modification du cas d’arrêt
	Slide 28: Premier test
	Slide 29: Deuxième test
	Slide 30: Moralité
	Slide 31: Parcours partiels
	Slide 32: Premier test
	Slide 33: Modification de la fonction
	Slide 34: Deuxième test
	Slide 35: Modification et création d’arbres
	Slide 36: Fonction ajoute1
	Slide 37: Somme des valeurs des fils
	Slide 38: Première solution : utiliser la fonction somme
	Slide 39: Réflexion sur cette fonction
	Slide 40: Somme des valeurs des fils
	Slide 41: Modification de la fonction
	Slide 42: Test de la fonction
	Slide 43: Correction de la fonction
	Slide 44: Somme des valeurs des pères
	Slide 45: Le père doit parler à ses fils
	Slide 46: Fonction somme-pere
	Slide 47: Illustration
	Slide 48: Arbres binaires de recherche (ou ordonnés)
	Slide 49: Exemples
	Slide 50: Recherche d’un élément dans un arbre binaire quelconque (1)
	Slide 51: Recherche d’un élément dans un arbre binaire quelconque (2)
	Slide 52: Exemple
	Slide 53: Recherche d’un élément dans un arbre binaire ordonné (1)
	Slide 54: Recherche d’un élément dans un arbre binaire ordonné (2)
	Slide 55: Exemple
	Slide 56: Insertion dans un ABR
	Slide 57: Suppression dans un ABR
	Slide 58: Suppression dans un ABR
	Slide 59: Suppression dans un ABR
	Slide 60: Suppression dans un ABR

