ARBRES

Arbres binaires

Représentation des arbres
Fonctions primitives sur les arbres
Parcours d’arbres

Arbres ordonnés



A QUOI SERVENT LES ARBRES ?

o Les arbres, comme les listes, permettent de
representer un nombre variable de donnees

o Le principal avantage des arbres par rapport
aux listes est qu’ils permettent de ranger les
données de telle sorte que les recherches
soient plus efficaces
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DEFINITION

o Un arbre est soit un nceud, soit un arbre vide
o Un nceud a des fils qui sont eux aussi des arbres

o Si tous les fils d'un nceud sont vides,
alors le nceud est qualifié de feuille

o Les nceuds portent des valeurs,
ce sont les données que I'on veut stocker

o Si tous les nceuds de I'arbre ont n fils,
alors l'arbre est dit n-aire
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EXEMPLE D'’ARBRE

6 - Racine
4 9
/\ A

/\y Feuilles
O
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ARBRES BINAIRES

o Un arbre binaire est :
e soit I'arbre vide

 soit un nceud qui a exactement deux fils
(éventuellement vides)

o Pour manipuler les arbres binaires,
on a besoin de primitives

o d’acces
e de test
e de construction
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PRIMITIVES SUR LES ARBRES BINAIRES (1)

o Primitives d'acces
o valeur : retourne la valeur d’'un arbre non vide
e fils-g : retourne le fils de gauche d'un arbre non vide
e fils-d : retourne le fils de droite d’'un arbre non vide

o Primitives de test

o arbre? : retourne vrai si un élément donné est un arbre
o arbre-vide? : retourne vrai si un arbre donné est vide

o feuille? : retourne vrai si un arbre donné est une feuille
o arbre=" : retourne vrai si deux arbres donnés sont

égaux
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PRIMITIVES SUR LES ARBRES BINAIRES (2)

o Primitives de construction
e arbre-vide : crée et retourne un arbre vide

e cons-binaire : crée et retourne un arbre avec une
valeur donnee et deux arbres donneés qui seront ses
deux uniques fils
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EXEMPLES D'UTILISATION DES PRIMITIVES

(valeura) —» 6

Soit I'arbre a : (valeur (fils-g a)) — 4
(valeur (fils-d (fils-g a))) —> 8

6
/\ (arbre? a) — #t

(arbre-vide? a) — #f
(arbre-vide? (fils-d a)) — #f

4 9
/\ /N (arbre-vide? (fils-g (fils-d a))) — #t
1 8

/\ /\

(feuille? (fils-d a)) — #t

(feuille? (fils-g a)) — #f
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REPRESENTATION DES ARBRES BINAIRES

o Nous choisissons d’utiliser les listes
pour representer les arbres

o Un arbre vide sera représenté par la liste vide ()
o Un noeud sera une liste de 3 eléments
* le car est sa valeur
» le cadr son fils gauche
e le caddr son fils droit
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EXEMPLE DE REPRESENTATION
D'UN ARBRE BINAIRE

(define a'(6 (4 (10 () (80 () (90 ()
! ! !

valeur fils-g fils-d
6
4 9
/\ /N
1 8
/N /N
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DEFINITIONS DES PRIMITIVES (1)

o valeur : retourne la valeur d’'un arbre non vide
(define valeur ; — atome
(lambda (arbre) ; arbre non vide
(car arbre)))

o fils-g : retourne le fils de gauche d’'un arbre non vide
(define fils-g ; — arbre
(lambda (arbre) ; arbre non vide
(cadr arbre)))
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DEFINITIONS DES PRIMITIVES (2)

o fils-d : retourne le fils de droite d’un arbre non vide
(define fils-d ; — arbre
(lambda (arbre) ; arbre non vide
(caddr arbre)))

o arbre-vide? : retourne vrai si un arbre donné est vide
(define arbre-vide? ; — booléen
(lambda (arbre) ; arbre
(null? arbre)))
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DEFINITIONS DES PRIMITIVES (3)

o arbre? : retourne vrai si une liste donnée est un arbre
(define arbre? ; — booléen
(lambda (l) ; liste
(or (null?1) ; l'arbre vide

(and (= 3 (length I))
(not (list? (car I)))
(list? (cadrl))
(arbre? (cadr |))
(list? (caddr 1))
(arbre? (caddr 1))))))
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DEFINITIONS DES PRIMITIVES (4)

o feuille? : retourne vrai si I'arbre donné est une feuille
(define feuille? ; — booleen
(lambda (arbre) ; arbre
(and (not (arbre-vide? arbre))
(arbre-vide? (fils-g arbre))
(arbre-vide? (fils-d arbre)))))

o arbre=? : retourne vrai si deux arbres donnés sont eégaux
(define arbre=? ; — booléen
(lambda (arbre1 arbre2) ; arbres

(equal? arbre1 arbre2))) 0
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DEFINITIONS DES PRIMITIVES (5)

o arbre-vide : retourne un arbre vide
(define arbre-vide ; — arbre
(lambda ()

()))

o cons-binaire : crée un arbre avec une valeur donnée et
deux arbres donnés qui seront ses deux uniques fils

(define cons-binaire ; — arbre
(lambda (val fg fd) ; val atome, fg et fd arbres
(list val fg d)))
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EXEMPLES

o(definea’6 (4 (1(0)())B00NCON) |~ A

o (define b (fils-g a)) b

ob—> 4 (100 @00 /\/\/\

o (cons-binaire 2 b (fils-d a)) A
—->2@E4010MEO0NMe00) AN
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POURQUOI UTILISER DES PRIMITIVES ?

o Pourquoi utiliser (arbre-vide) au lieu de ()
et fils-g au lieu de cadr ?

o Si on décide de changer la representation des
arbres :

e sans primitives, il faut réécrire toutes les
fonctions sur les arbres

» avec primitives, il suffit de modifier les
primitives
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PARCOURS D’'ARBRES

o Un arbre contient un ensemble de données

o Pour utiliser ces donnees, il faut parcourir I'arbre
e en profondeur
* oU en largeur
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PARCOURS EN LARGEUR / PROFONDEUR

1 8" 1
Parcours en largeur  Parcours en profondeur
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PARCOURS EN PROFONDEUR : PRINCIPE

o Parcourir un arbre en profondeur consiste a
passer ses noeuds en revue, en commencant
toujours par le méme fils, et en descendant le
plus profondement possible dans I'arbre

o Lorsque I'on arrive sur un arbre vide, on remonte
jusqu’au nceud supeérieur et on redescend dans

e fils encore inexploré 6
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3 PARCOURS EN PROFONDEUR
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o Parcours infixe :
o Fils-g Fils-d
od014869

o Parcours préfixe :
o Fils-g Fils-d
od064189

o Parcours postfixe :
o Fils-g Fils-d

od018496 0
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EXEMPLE

En ajoutant des parentheses pour chaque fils
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o Parcours infixe :

o0 (((1) +(3)) ™ (2))

o notation classique math
o Parcours préfixe

oO (" (+ (1) (3)) (2))

o notation préfixe Scheme
o Parcours postfixe :

o0 (((1) (3) +) (2) )

o parentheses inutiles
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POUR ECRIRE UNE FONCTION QUI EFFECTUE
UN PARCOURS EN PROFONDEUR

o Pour écrire une fonction f, sur un arbre A

o Si A est vide, on retourne une valeur constante,
généralement I'élément neutre de f

e SiAn’est pas vide :

o on rappelle f sur les deux fils de A,
ce qui retourne deux resultats : Rg et Rd

o puis on retourne un résultat qui ne depend que
de Rg, Rd et de la valeur de la racine de A
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EXEMPLE : SOMME DES VALEURS D'UN ARBRE

(define somme ; — nombre
(lambda (A) ; A arbre de nombres
(if (arbre-vide? A)
0
(+ (somme (fils-g A))
(somme (fils-d A))
(valeur A)))))
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(somme A)
(+ (somme (fils-g A)
(+ (somme (fils-g A)
(+ (somme (fils-g A)
(somme (fils-d A)
1) 0
(somme (fils-d A)
(+ (somme (fils-g A)
(sommeO (fils-d A)
g8 0
4)
(somme (fils-d A)
(+ (somme (fils-g A)

0
(somme (fils-d A)

6) 9) ’
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ILLUSTRATION
6
/ O\
4 9
/7 \ &
N /8 Q1

N. Guin - M. Lefevre




FONCTIONNEMENT SUR UN EXEMPLE

q23
N}
(/\w o(/\jo
TA? AN .




MODIFICATION DU CAS D'ARRET

(define somme ; — nombre
(lambda (A) ; A arbre de nombres

(

(+ (somme (fils-g A))
(somme (fils-d A))
(valeur A)))))
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PREMIER TEST
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DEUXIEME TEST

AN
N

Il manque le cas de l'arbre vide
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MORALITE

o Il faut toujours tester les fonctions sur un arbre
dont un nceud n’a qu’un seul fils

o Quand la fonction peut retourner une valeur pour
I'arbre vide, il faut toujours prévoir ce cas d'arrét
* Quand ce n'est pas possible, il y a de nombreux cas a

prevoir (voir fonction minimum, TDTP7) :

feuille
fils gauche vide mais pas le fils droit
fils droit vide mais pas le fils gauche

deux fils non vides Q
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PARCOURS PARTIELS

o Il est parfois souhaitable d’arréter le parcours
méme si tous les nceuds n'ont pas eté passes en

revue
o Exemple : produit des valeurs d'un arbre

(define produit ; — nombre

(lambda (A) ; A arbre de nombres
(if (arbre-vide? A)
1
(* (produit (fils-g A))
(produit (fils-d A))

(valeur A))))) °
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PREMIER TEST

On fait des calculs

g | inutiles
N
| K/ \\8 7N :I faut s'arréter dés

1 8 ’
1(/ \\1 1N1 - Onv;elgff gtre ;
@
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MODIFICATION DE LA FONCTION

(define produit ; — nombre
(lambda (A) ; A arbre de nombres
(cond ((arbre-vide? A) 1)
((= 0 (valeur A)) 0)
(else (* (produit (fils-g A))
(produit (fils-d A))
(valeur A))))))
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DEUXIEME TEST

-
ZN
AN
/\ A




MODIFICATION ET CREATION D’ARBRES

o Exemple : écrire une fonction qui ajoute 1 a tous
les noeuds d’'un arbre qui contient des nombres

o |l ne s’agit pas d'une modification (ajouter 1),
mais d’'une creation :
écrire une fonction qui retourne un arbre
identique a celui passé en argument,
mais dans lequel on a ajouté 1 a tous les
noeuds
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FONCTION AJOUTE

(define ajoutel ; — arbre
(lambda (A) ; A arbre de nombres
(if (arbre-vide? A)
A
(cons-binaire (+ 1 (valeur A))
(ajoute (fils-g A))
(ajoutel (fils-d A))))))
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SOMME DES VALEURS DES FILS

/\-/\

28 =1+8+4+9+6

13

=1+8+4

=0+0+9

A /\ )
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—0+0+1

=0+0+8
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PREMIERE SOLUTION :
UTILISER LA FONCTION SOMME

(define somme-fils ; — arbre
(lambda (a) ; a arbre de nombres
(if (arbre-vide? a)

(arbre-vide)

(cons-binaire
( a)
(somme-fils (fils-g a))
(somme-fils (fils-d a))))))
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REFLEXION SUR CETTE FONCTION

o La complexite de cette fonction est beaucoup

trop grande

o |l faut utiliser la valeur de la racine du résultat de

I'appel récursif sur les fils :

Ils contiennent d¢ja la somme des valeurs
de tous les nceuds de chacun des fils
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SOMME DES VALEURS DES FILS

/\-/\

28| =13+9+6

13

=1+8+4

=0+0+9

A /\ )
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MODIFICATION DE LA FONCTION

(define somme-fils ; — arbre
(lambda (A) ; A arbre de nombres
(if (arbre-vide? A)
(arbre-vide)
(let ((g (somme-fils (fils-g A)))
(d (somme-fils (fils-d A))))
(cons-binaire
(+ (valeur A) (valeur g) (valeurd))
g

d))
@
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TEST DE LA FONCTION

-
oo
RN
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CORRECTION DE LA FONCTION

(define somme-fils ; — arbre
(lambda (A) ; A arbre
(if (arbre-vide? A))
(arbre-vide)
(let ((g (somme-fils (fils-g A)))
(d (somme-fils (fils-d A))))
(cons-binaire
(+ (valeurA)
(if (arbre-vide? g) O (valeur g))
(if (arbre-vide? d) O (valeur d)))

g
d)) O

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre




SOMME DES VALEURS DES PERES

6 6
/\ — /\
4 9 4+6 = 10 9+6 = 15
/\ . /\ A
1 8 1+10=11  8+10=18
/N /N /\ /N
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LE PERE DOIT PARLER A SES FILS

o Dans toutes les fonctions precedemment ecrites,
le résultat dependait des fils

o lci, le resultat depend du pere
= il doit transmettre une information a ses fils
au moment des appels recursifs
—> parametre suppléementaire pour passer le
resultat du pere au fils
o NB : la fonction construit guand méme le résultat
en remontant
©
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FONCTION SOMME-PERE

o (define somme-pere ; — arbre
(lambda (A) ; A arbre de nombres
(somme-pere2 A0)))

o (define somme-pere2 ; — arbre
(lambda (A n) ; A arbre de nb, n nombre
(if (arbre-vide? A)
(arbre-vide)
(let ((v (+ (valeur A) n)))
(cons-binaire
Y

(somme-pere2 (fils-g A) v)
(somme-pere? (fils-d A) v)))))) €
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(Somme-pere2 A Q)

v=0+6 ILLUSTRATION
(cons-binaire 6
(somme-pere2 (fils-g A) 6) y \ 9
z/ =6+4=10 / \
cons-binaire 10
(somme-pere?2 (fils-g A) 10) @
v=10+1=11

(cons-binaire 11

(somme-pere?2 (fils-g A) 11) = (arbre-vide
(somme-pere2 (fils-d A) 11) — (arbre-vide

(somme-pere?2 (fils-d A) 10)
v=10+8=18
(cons-binaire 18
(somme-pere2 (fils-g A) 18) — (arbre-vid
(somme-pere? (fils-d A) 18) = (arbre-vid
(somme-pere2 (fils-d A) 6)
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ARBRES BINAIRES DE RECHERCHE
(OU ORDONNES)

o Les valeurs des nceuds doivent pouvoir étre ordonnéees

o En chaque nceud de I'arbre, la valeur du nceud est :
e supérieure a toutes celles de son fils gauche
« inférieure a toutes celles de son fils droit

I
o On suppose qu’il N’y a pas deux fois la méme valeur
dans un ABR
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EXEMPLES

6 6
4 9 4 9
/\ /N /\ /N
1 5 1 3
/\ /\ /N /\
Arbre ordonnée Arbre non ordonné
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RECHERCHE D’UN ELEMENT DANS UN
ARBRE BINAIRE QUELCONQUE (1)

o On souhaite écrire une fonction qui teste
I'appartenance d’'une valeur V a un arbre A

o Principe : tant qu’on n’a pas trouveé la valeur V,
Il faut comparer V avec toutes les valeurs de
I'arbre A
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RECHERCHE D’UN ELEMENT DANS UN
ARBRE BINAIRE QUELCONQUE (2)

o Algorithme :

e Cas d’arrét :
oSi A est vide Alors Retourne Faux
oSi valeur(A)=V Alors Retourne Vrai

» Appels recursifs :
oChercher V dans fils-gauche(A)

oPuis sion n'a toujours pas trouveé V,
chercher V dans fils-droit(A)
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EXEMPLE

6 Recherche fructueuse :
/\ Chercher 5
: X Cas le pire
/\8 Recherche infructueuse :
Chercher 7
NN
9 Complexité au pire :

nombre de nceuds de

'arbre e
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RECHERCHE D'’UN ELEMENT DANS UN
ARBRE BINAIRE ORDONNE (1)

o Principe : utiliser le fait que 'arbre est ordonné
pour choisir dans quelle branche de l'arbre
chercher
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RECHERCHE D'’UN ELEMENT DANS UN
ARBRE BINAIRE ORDONNE (2)

o Algorithme :
o Cas d'arrét:

oSi A est vide Alors Retourne Faux
oSi valeur(A)=V Alors Retourne Vrai

» Appels recursifs :
oSi V>valeur(A) Alors chercher V dans fils-droit(A)
oSi V<valeur(A) Alors chercher V dans fils-gauche(A)
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EXEMPLE

Recherche fructueuse :

Chercher 5
Recherche infructueuse :
/\ Chercher 7
1
N /N Complexité au pire :

hauteur de I'arbre
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INSERTION DANS UN ABR

o Principe : on insere aux feuilles
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SUPPRESSION DANS UN ABR
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SUPPRESSION DANS UN ABR
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SUPPRESSION DANS UN ABR
6
6

A—» yaN

/ 9
A

2 5 2,2 2,8
/\

22 28 O

Lyon 1 Licence - UE LIFAPR N. Guin - M. Lefevre




SUPPRESSION DANS UN ABR

o Pour supprimer la valeur V dans un ABR
e Si V est une feuille, alors on supprime la feuille

e Sinon on remplace la valeur V par la valeur V' qui lui
est immediatement inférieure (ou immeédiatement
supérieure), de maniéere a respecter l'ordre,
puis on supprime V' qui est le plus grand €lément du
fils gauche de V (resp. le plus petit élement de son fils
droit)

» V' est une feuille ou un élément qui n’a pas de fils
droit (resp. pas de fils gauche), et peut donc étre
supprimée facilement
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