

Arbres binaires
Représentation des arbres
Fonctions primitives sur les arbres
Parcours d'arbres
Arbres ordonnés

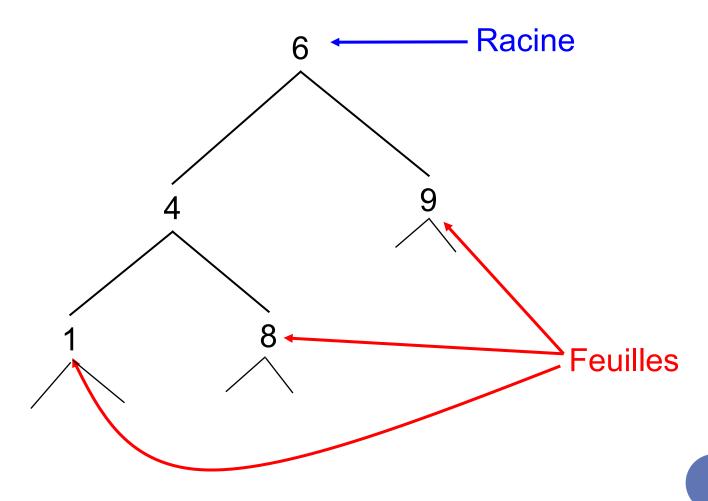
# À QUOI SERVENT LES ARBRES ?

- Les arbres, comme les listes, permettent de représenter un nombre variable de données
- Le principal avantage des arbres par rapport aux listes est qu'ils permettent de ranger les données de telle sorte que les recherches soient plus efficaces

#### **DÉFINITION**

- Un arbre est soit un nœud, soit un arbre vide
- Un nœud a des fils qui sont eux aussi des arbres
- Si tous les fils d'un nœud sont vides, alors le nœud est qualifié de feuille
- Les nœuds portent des valeurs,
   ce sont les données que l'on veut stocker
- Si tous les nœuds de l'arbre ont n fils, alors l'arbre est dit n-aire

## EXEMPLE D'ARBRE



#### **ARBRES BINAIRES**

- Un arbre binaire est :
  - soit l'arbre vide
  - soit un nœud qui a exactement deux fils (éventuellement vides)
- Pour manipuler les arbres binaires, on a besoin de primitives
  - d'accès
  - de test
  - de construction

## PRIMITIVES SUR LES ARBRES BINAIRES (1)

#### o Primitives d'accès

- valeur : retourne la valeur d'un arbre non vide
- fils-g: retourne le fils de gauche d'un arbre non vide
- fils-d: retourne le fils de droite d'un arbre non vide

#### o Primitives de test

- arbre? : retourne vrai si un élément donné est un arbre
- arbre-vide? : retourne vrai si un arbre donné est vide
- feuille? : retourne vrai si un arbre donné est une feuille
- arbre=? : retourne vrai si deux arbres donnés sont égaux

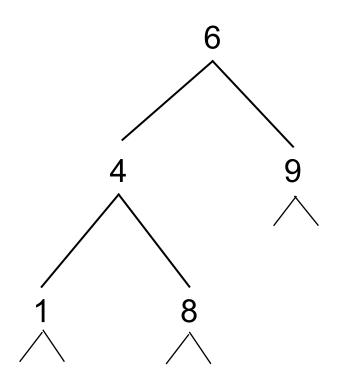
## PRIMITIVES SUR LES ARBRES BINAIRES (2)

#### Primitives de construction

- arbre-vide : crée et retourne un arbre vide
- cons-binaire : crée et retourne un arbre avec une valeur donnée et deux arbres donnés qui seront ses deux uniques fils

#### EXEMPLES D'UTILISATION DES PRIMITIVES

#### Soit l'arbre a :



```
(valeur a) \rightarrow 6
(valeur (fils-g a)) \rightarrow 4
(valeur (fils-d (fils-g a))) \rightarrow 8
```

(arbre? a)  $\rightarrow$  #t

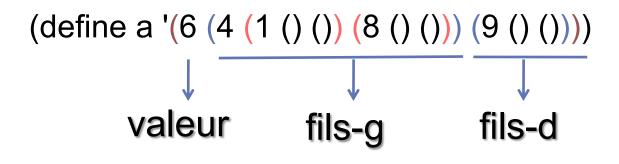
```
(arbre-vide? a) \rightarrow #f
(arbre-vide? (fils-d a)) \rightarrow #f
(arbre-vide? (fils-g (fils-d a))) \rightarrow #t
```

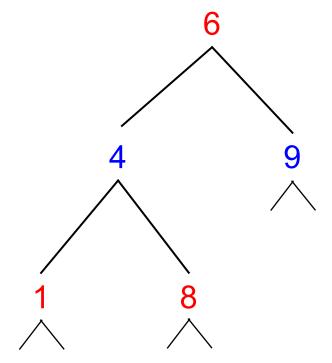
(feuille? (fils-d a)) 
$$\rightarrow$$
 #t (feuille? (fils-g a))  $\rightarrow$  #f

## REPRÉSENTATION DES ARBRES BINAIRES

- Nous choisissons d'utiliser les listes pour représenter les arbres
- Un arbre vide sera représenté par la liste vide '()
- o Un nœud sera une liste de 3 éléments
  - le car est sa valeur
  - le cadr son fils gauche
  - le caddr son fils droit

# EXEMPLE DE REPRÉSENTATION D'UN ARBRE BINAIRE





## DÉFINITIONS DES PRIMITIVES (1)

```
    valeur : retourne la valeur d'un arbre non vide
(define valeur ; → atome
(lambda (arbre) ; arbre non vide
(car arbre)))
```

```
    fils-g: retourne le fils de gauche d'un arbre non vide
(define fils-g; → arbre
(lambda (arbre); arbre non vide
(cadr arbre)))
```

## DÉFINITIONS DES PRIMITIVES (2)

```
    fils-d : retourne le fils de droite d'un arbre non vide
(define fils-d; → arbre
(lambda (arbre); arbre non vide
(caddr arbre)))
```

 arbre-vide? : retourne vrai si un arbre donné est vide (define arbre-vide?; → booléen (lambda (arbre); arbre (null? arbre)))

## DÉFINITIONS DES PRIMITIVES (3)

```
o arbre? : retourne vrai si une liste donnée est un arbre
  (define arbre?; → booléen
       (lambda (l); liste
         (or (null? I); l'arbre vide
              (and (= 3 (length I)))
                      (not (list? (car I)))
                      (list? (cadr I))
                      (arbre? (cadr I))
                      (list? (caddr I))
                      (arbre? (caddr I))))))
```

## DÉFINITIONS DES PRIMITIVES (4)

```
    feuille?: retourne vrai si l'arbre donné est une feuille (define feuille?; → booléen (lambda (arbre); arbre (and (not (arbre-vide? arbre)) (arbre-vide? (fils-g arbre)) (arbre-vide? (fils-d arbre)))))
```

```
    arbre=? : retourne vrai si deux arbres donnés sont égaux
(define arbre=?; → booléen
(lambda (arbre1 arbre2); arbres
(equal? arbre1 arbre2)))
```

## DÉFINITIONS DES PRIMITIVES (5)

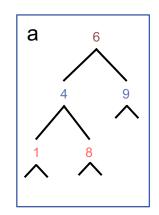
```
    arbre-vide : retourne un arbre vide
(define arbre-vide ; → arbre
(lambda ()
'() ))
```

 cons-binaire : crée un arbre avec une valeur donnée et deux arbres donnés qui seront ses deux uniques fils (define cons-binaire ; → arbre

```
(lambda (val fg fd); val atome, fg et fd arbres (list val fg fd)))
```

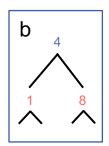
#### **EXEMPLES**

o (define a '(6 (4 (1 () ()) (8 () ())) (9 () ())))



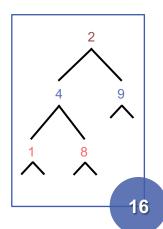
o (define b (fils-g a))

$$ob \rightarrow (4 (1 () ()) (8 () ()))$$



o (cons-binaire 2 b (fils-d a))

$$\rightarrow$$
 (2 (4 (1 () ()) (8 () ())) (9 () ()))



### Pourquoi utiliser des primitives ?

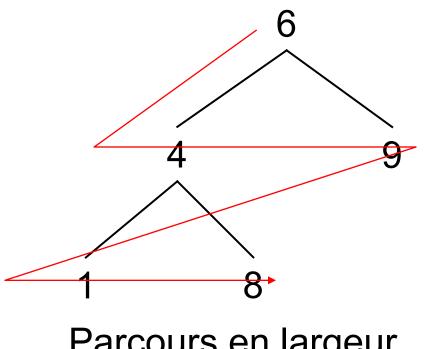
- o Pourquoi utiliser (arbre-vide) au lieu de '() et fils-g au lieu de cadr ?
- Si on décide de changer la représentation des arbres :
  - sans primitives, il faut réécrire toutes les fonctions sur les arbres
  - avec primitives, il suffit de modifier les primitives

#### PARCOURS D'ARBRES

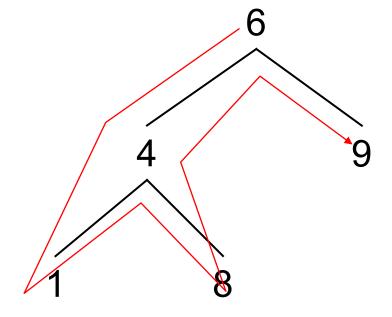
Un arbre contient un ensemble de données

- o Pour utiliser ces données, il faut parcourir l'arbre
  - en profondeur
  - ou en largeur

#### PARCOURS EN LARGEUR / PROFONDEUR



Parcours en largeur



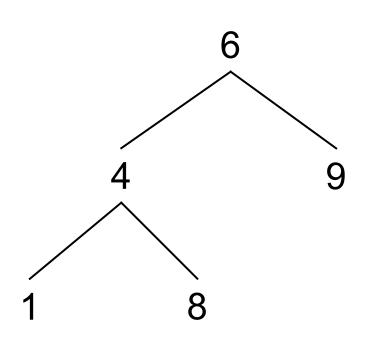
Parcours en profondeur

#### PARCOURS EN PROFONDEUR: PRINCIPE

- Parcourir un arbre en profondeur consiste à passer ses nœuds en revue, en commençant toujours par le même fils, et en descendant le plus profondément possible dans l'arbre
- Lorsque l'on arrive sur un arbre vide, on remonte jusqu'au nœud supérieur et on redescend dans

le fils encore inexploré

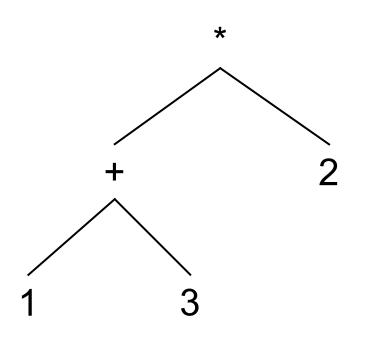
#### 3 PARCOURS EN PROFONDEUR



- o Parcours infixe:
  - o Fils-g Valeur Fils-d
  - $0 \rightarrow 14869$
- Parcours préfixe :
  - Valeur Fils-g Fils-d
  - $0 \rightarrow 64189$
- Parcours postfixe :
  - Fils-g Fils-d Valeur
  - $0 \rightarrow 18496$

#### **EXEMPLE**

En ajoutant des parenthèses pour chaque fils



• Parcours infixe :

$$\circ \rightarrow (((1) + (3)) * (2))$$

- notation classique math
- Parcours préfixe :

$$\circ \rightarrow (* (+ (1) (3)) 2)$$

- o notation préfixe Scheme
- Parcours postfixe :

$$\circ \rightarrow (((1)(3) +)(2) *)$$

o parenthèses inutiles

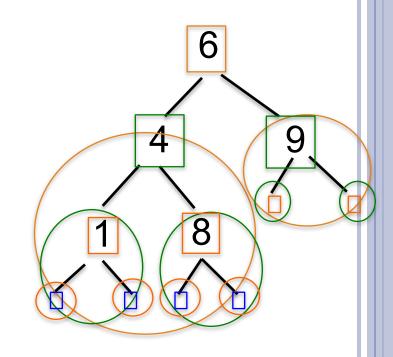
## Pour écrire une fonction qui effectue un parcours en profondeur

- o Pour écrire une fonction f, sur un arbre A
  - Si A est vide, on retourne une valeur constante, généralement l'élément neutre de f
  - Si A n'est pas vide :
    - on rappelle f sur les deux fils de A,
       ce qui retourne deux résultats : Rg et Rd
    - puis on retourne un résultat qui ne dépend que de Rg, Rd et de la valeur de la racine de A

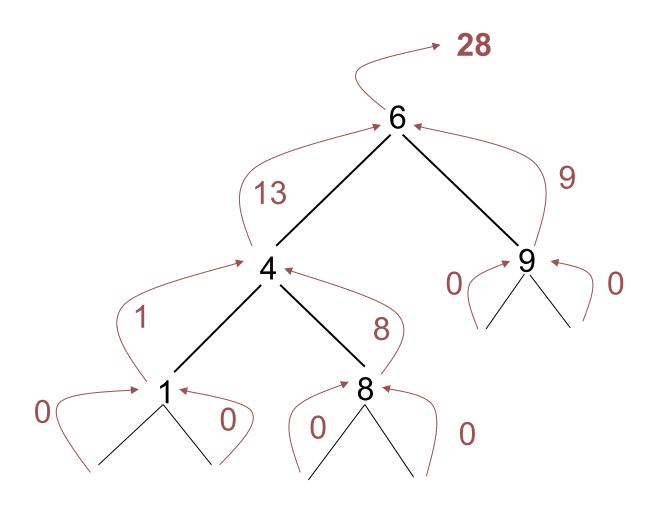
#### EXEMPLE: SOMME DES VALEURS D'UN ARBRE

# (somme A) (+ (somme (fils-g A) (+ (somme (fils-g A) (+ (somme (fils-g A) (somme (fils-d A) (somme (fils-d A) (+ (somme (fils-g A) (somme (fils-d A) (somme (fils-d A) (+ (somme (fils-g A) (somme (fils-d A) 9)

#### **ILLUSTRATION**

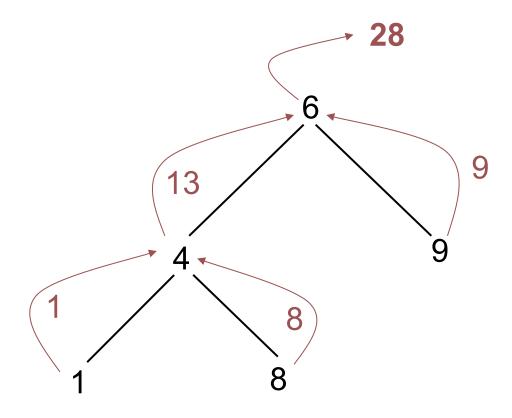


# FONCTIONNEMENT SUR UN EXEMPLE

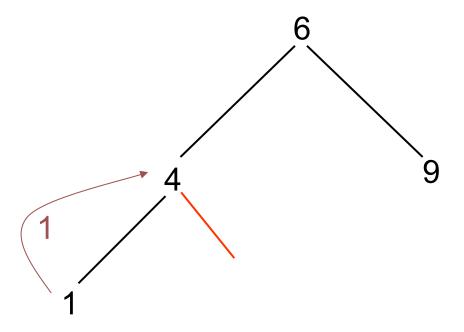


#### MODIFICATION DU CAS D'ARRÊT

#### PREMIER TEST



#### DEUXIÈME TEST



Il manque le cas de l'arbre vide

#### **M**ORALITÉ

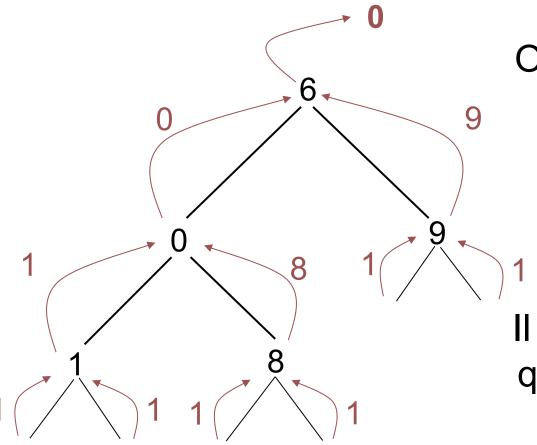
 Il faut toujours tester les fonctions sur un arbre dont un nœud n'a qu'un seul fils

 Il faut toujours prévoir le cas d'arrêt correspondant à l'arbre vide

#### PARCOURS PARTIELS

- Il est parfois souhaitable d'arrêter le parcours même si tous les nœuds n'ont pas été passés en revue
- o Exemple: produit des valeurs d'un arbre

#### PREMIER TEST

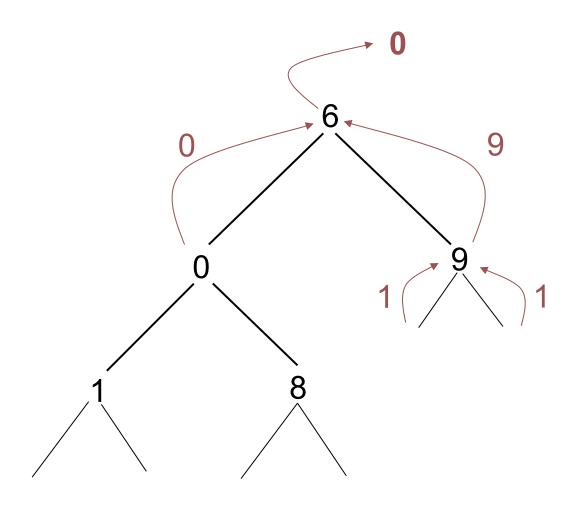


On fait des calculs inutiles

Il faut s'arrêter dès qu'on rencontre la valeur 0

#### MODIFICATION DE LA FONCTION

## DEUXIÈME TEST



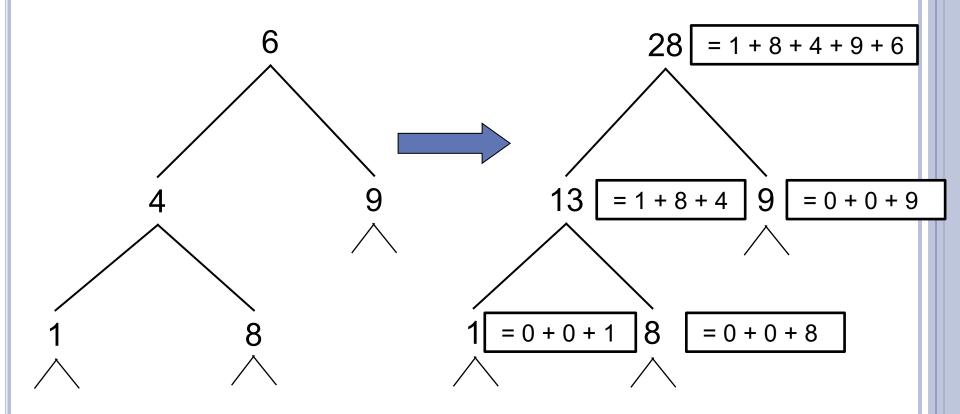
#### MODIFICATION ET CRÉATION D'ARBRES

- Exemple : écrire une fonction qui ajoute 1 à tous les nœuds d'un arbre qui contient des nombres
- Il ne s'agit pas d'une modification (ajouter 1), mais d'une création :
  - écrire une fonction qui retourne un arbre identique à celui passé en argument, mais dans lequel on a ajouté 1 à tous les nœuds

#### **FONCTION AJOUTE 1**

```
(define ajoute 1; \rightarrow arbre
 (lambda (A); A arbre de nombres
  (if (arbre-vide? A)
     (cons-binaire
                          (+ 1 (valeur A))
                          (ajoute1 (fils-g A))
                          (ajoute1 (fils-d A))))))
```

#### SOMME DES VALEURS DES FILS

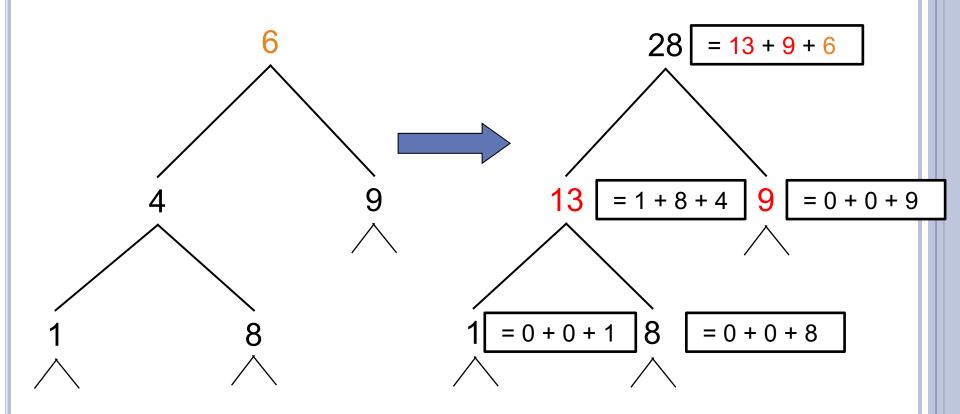


# PREMIÈRE SOLUTION : UTILISER LA FONCTION SOMME

#### RÉFLEXION SUR CETTE FONCTION

- La complexité de cette fonction est beaucoup trop grande
- Il faut utiliser la valeur de la racine du résultat de l'appel récursif sur les fils :
  - ils contiennent déjà la somme des valeurs de tous les nœuds de chacun des fils

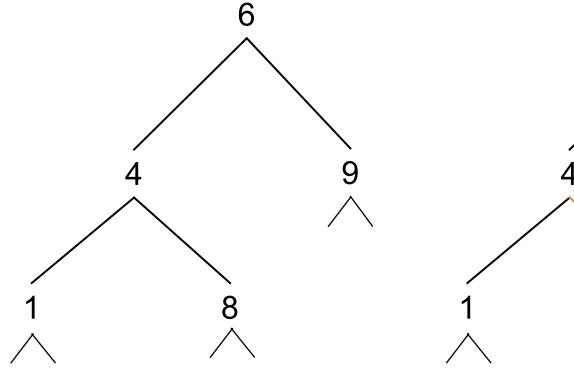
#### SOMME DES VALEURS DES FILS

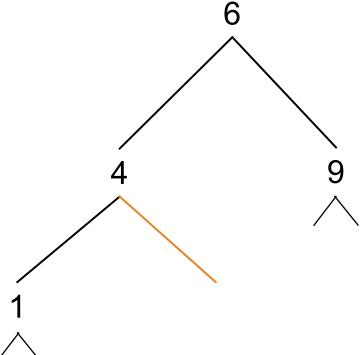


#### MODIFICATION DE LA FONCTION

```
(define somme-fils; → arbre
 (lambda (A); A arbre de nombres
  (if (arbre-vide? A)
      (arbre-vide)
      (let ((g (somme-fils (fils-g A)))
            (d (somme-fils (fils-d A))))
        (cons-binaire
            (+ (valeur A) (valeur g) (valeur d))
            d)))))
```

## TEST DE LA FONCTION



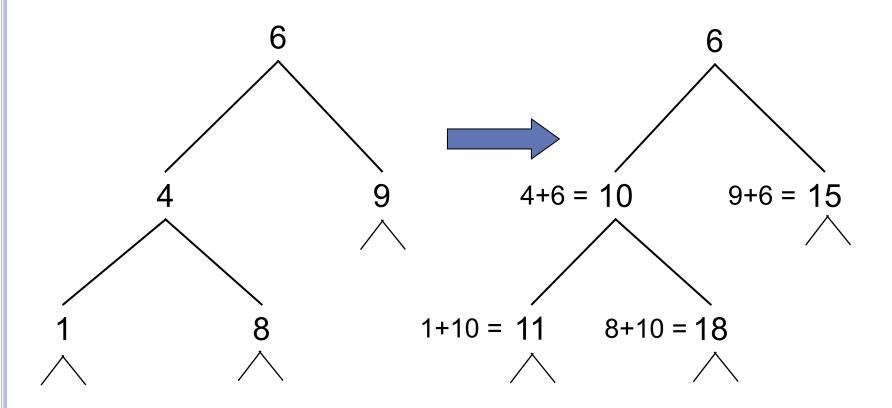


#### CORRECTION DE LA FONCTION

```
(define somme-fils; \rightarrow arbre
 (lambda (A); A arbre
  (if (arbre-vide? A))
      (arbre-vide)
      (let ((g (somme-fils (fils-g A)))
            (d (somme-fils (fils-d A))))
         (cons-binaire
                   (+ (valeur A)
                       (if (arbre-vide? g) 0 (valeur g))
                       (if (arbre-vide? d) 0 (valeur d)))
```

d)))))

### SOMME DES VALEURS DES PÈRES



# CALCUL EN REMONTANT OU EN DESCENDANT

- Dans toutes les fonctions précédemment écrites, le résultat dépendait des fils
  - ⇒ calcul en remontant

- o lci, le résultat dépend du père
  - ⇒ calcul en descendant
  - ⇒ paramètre supplémentaire pour passer le résultat du père au fils

#### **FONCTION SOMME-PERE**

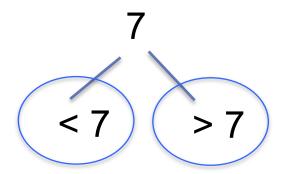
```
o (define somme-pere; → arbre
      (lambda (A); A arbre de nombres
            (somme-pere2 A 0)))
\circ (define somme-pere2; \rightarrow arbre
   (lambda (A n); A arbre de nb, n nombre
      (if (arbre-vide? A)
            (arbre-vide)
            (let ((v (+ (valeur A) n)))
              (cons-binaire
                  (somme-pere2 (fils-g A) v)
                  (somme-pere2 (fils-d A) v))))))
```

## (Somme-pere2 A 0) **ILLUSTRATION** y = 0 + 6(cons-binaire 6 (somme-pere2 (fils-g A) 6) v = 6 + 4 = 10(cons-binaire 10 (somme-pere2 (fils-g A) 10) v = 10 + 1 = 11(cons-binaire 11 (somme-pere2 (fils-g A) 11) → (arbre-vide) (somme-pere2 (fils-d A) 11) → (arbre-vide) (somme-pere2 (fils-d A) 10) v = 10 + 8 = 18(cons-binaire 18 (somme-pere2 (fils-g A) 18) → (arbre-vide) (somme-pere2 (fils-d A) 18) → (arbre-vide) (somme-pere2 (fils-d A) 6)

Licence Lyon1 - UE LIFAP2

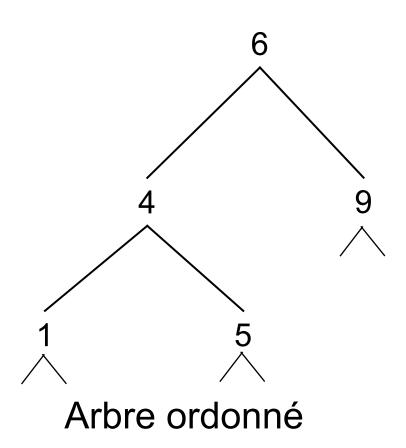
# ARBRES BINAIRES DE RECHERCHE (OU ORDONNÉS)

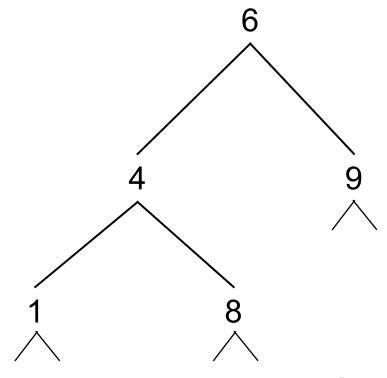
- Les valeurs des nœuds doivent pouvoir être ordonnées
- o En chaque nœud de l'arbre, la valeur du nœud est :
  - supérieure à toutes celles de son fils gauche
  - inférieure à toutes celles de son fils droit



 On suppose qu'il n'y a pas deux fois la même valeur dans un ABR

## **EXEMPLES**





Arbre non ordonné

# RECHERCHE D'UN ÉLÉMENT DANS UN ARBRE BINAIRE QUELCONQUE (1)

On souhaite écrire une fonction qui teste
 l'appartenance d'une valeur V à un arbre A

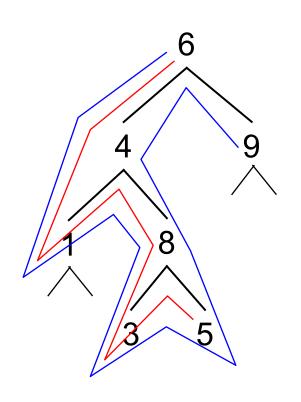
 Principe : tant qu'on n'a pas trouvé la valeur V, il faut comparer V avec toutes les valeurs de l'arbre A

# RECHERCHE D'UN ÉLÉMENT DANS UN ARBRE BINAIRE QUELCONQUE (2)

### • Algorithme :

- Cas d'arrêt :
  - Si A est vide Alors Retourne Faux
  - Si valeur(A)=V Alors Retourne Vrai
- Appels récursifs :
  - Chercher V dans fils-gauche(A)
  - Puis si on n'a toujours pas trouvé V, chercher V dans fils-droit(A)

#### **EXEMPLE**



Recherche fructueuse:

Chercher 5

Cas le pire

Recherche infructueuse:

Chercher 7

Complexité au pire : nombre de nœuds de l'arbre

# RECHERCHE D'UN ÉLÉMENT DANS UN ARBRE BINAIRE ORDONNÉ (1)

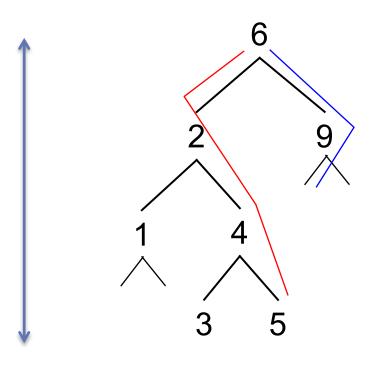
 Principe : utiliser le fait que l'arbre est ordonné pour choisir dans quelle branche de l'arbre chercher

# RECHERCHE D'UN ÉLÉMENT DANS UN ARBRE BINAIRE ORDONNÉ (2)

### • Algorithme :

- Cas d'arrêt :
  - Si A est vide Alors Retourne Faux
  - Si valeur(A)=V Alors Retourne Vrai
- Appels récursifs :
  - Si V>valeur(A) Alors chercher V dans fils-droit(A)
  - Si V<valeur(A) Alors chercher V dans fils-gauche(A)</li>

#### EXEMPLE



# Recherche fructueuse:

Chercher 5

### Recherche infructueuse:

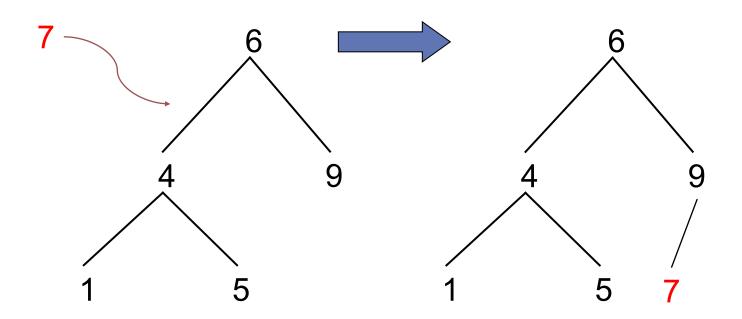
Chercher 7

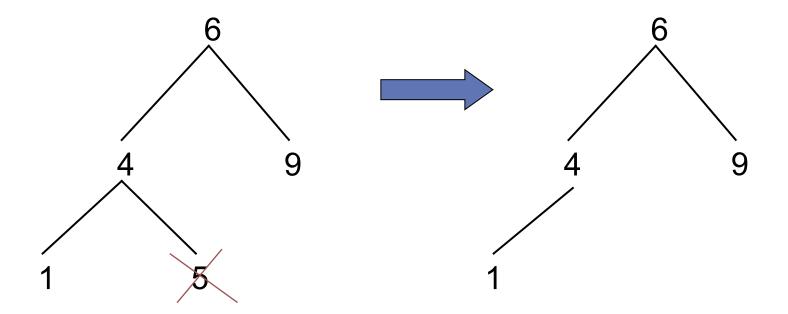
Complexité au pire :

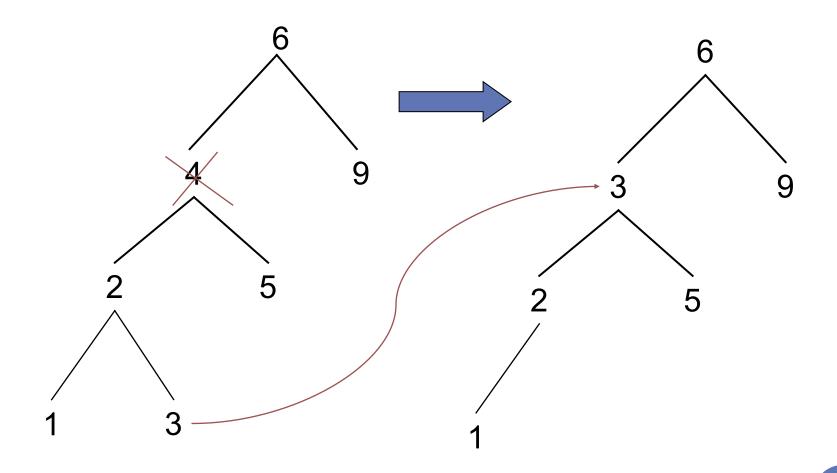
hauteur de l'arbre

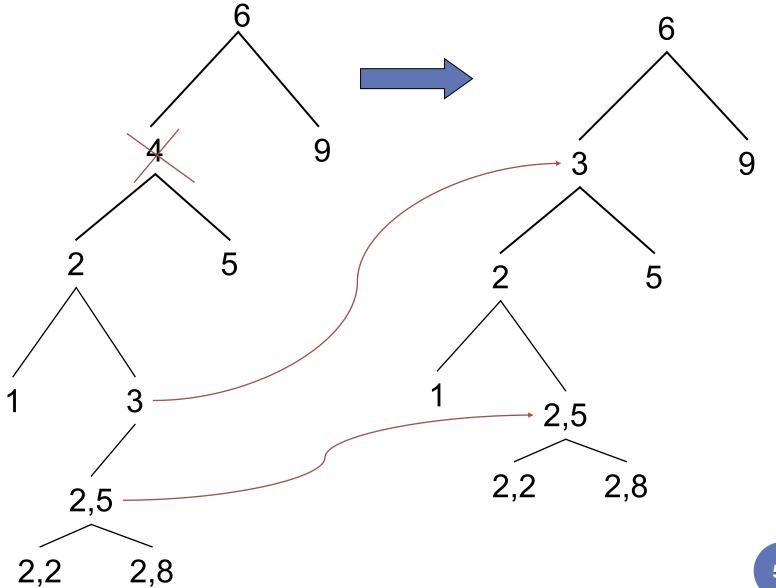
#### INSERTION DANS UN ABR

Principe : on insère aux feuilles









### Pour supprimer la valeur V dans un ABR

- Si V est une feuille, alors on supprime la feuille
- Sinon on remplace la valeur V par la valeur V' qui lui est immédiatement inférieure (ou immédiatement supérieure), de manière à respecter l'ordre, puis on supprime V' qui est le plus grand élément du fils gauche de V (resp. le plus petit élément de son fils droit)
- V' est une feuille ou un élément qui n'a pas de fils droit (resp. pas de fils gauche), et peut donc être supprimée facilement