Lifbdw2 – Aide mémoire

Licence informatique - session 1 2020-2021

1 Dépendances Fonctionnelles (DF)

1.1 Définitions

Syntaxe $R: X \rightarrow Y$ ou simplement $X \rightarrow Y$ lu « X détermine fonctionnellement Y »

Sémantique
$$r \models X \rightarrow Y \Leftrightarrow \forall t_1, t_2 \in r.t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$$

Cas dégénérés $X \to Y$ est *triviale* si $Y \subseteq X$, $X \to Y$ est *standard* si $X \neq \emptyset$

Modèle d'un ensemble de DFs

$$r \models \Sigma \Leftrightarrow \forall f \in \Sigma . r \models f$$

Implication logique de DFs

$$\Sigma \models f \Leftrightarrow \forall r.(r \models \Sigma \Rightarrow r \models f)$$

Fermeture de DFs $\Sigma^+ = \{f \mid \Sigma \models f\}$

1.2 Axiomatisation d'Armstrong

- Le système d'Armstrong est l'ensembles des règles $A = \{Reflex., Aug., Trans.\}$ (fig. 1).
- Les règles {Compo., Decompo., PseudoTrans.} sont déductibles de \mathcal{A} (fig. 2) et donc correctes.

Preuve formelle une $s\acute{e}quence\ \langle f_0,\dots,f_n\rangle$ de DFs telles que $f_n=f$ et $\forall i\in[0..n]$ soit $f_i\in\Sigma$; soit f_i est la conséquence d'une règle de $\mathcal A$ dont toutes les prémisses $f_0\dots f_p$ apparaissent avant f_i dans la séquence. On note $\Sigma\vdash f$ s'il existe une preuve finissant par f avec Σ comme ensemble d'hypothèses.

Fermeture d'un ensemble d'attributs

sémantique
$$X^+ = \{A \mid \Sigma \models X \rightarrow A\}$$

syntaxique
$$X^* = \{A \mid \Sigma \vdash X \rightarrow A\}$$

Lemme 1. $\Sigma \models X \rightarrow Y \Leftrightarrow Y \subseteq X^+$

Lemme 2. $\Sigma \vdash X \rightarrow Y \Leftrightarrow Y \subset X^*$

1.3 Correction et complétude

Le système A est correct et complet.

Théorème 1 (Correction).

$$\Sigma \vdash X \to Y \Rightarrow \Sigma \models X \to Y$$

Théorème 2 (Complétude).

$$\Sigma \models X \to Y \Rightarrow \Sigma \vdash X \to Y$$

Corollaire 1 (Equivalence des fermetures).

$$X^+ = X^*$$

Clef de la preuve de complétude Supposant $\Sigma \not\vdash X \to Y$ exhiber une instance r telle que $r \models \Sigma \land r \not\models X \to Y$. Avec $X^* = X_1 \dots X_n$ et $Z_1 \dots Z_p = R \setminus X^*$, la voici :

1.4 Algorithmes de fermeture

```
Algorithme 1 : Closure(\Sigma, X)
```

```
1 Cl := X;

2 done := false;

3 while (\neg done) do

4 | done := true;

5 | forall W \rightarrow Z \in \Sigma do

6 | if W \subseteq Cl \land Z \not\subseteq Cl then

7 | Cl := Cl \cup Z;

8 | done := false;
```

9 return Cl

Algorithme 2 : $Closure'(\Sigma, X)$ linéaire

```
1 for W \rightarrow Z \in \Sigma do
        count[W \rightarrow Z] := |W|
        for A \in W do
          | list[A] := list[A] \cup W \rightarrow Z
 5 closure := X, update := X
 6 while (update \neq \emptyset) do
        update := update \setminus \{A\}
 7
        for W \to Z \in \mathit{list}[A] do
 8
             count[W \rightarrow Z] := count[W \rightarrow Z] - 1
 9
             if count[W \rightarrow Z] = 0 then
10
                  update := update \cup (Z \setminus closure)
11
                  closure := closure \cup Z
12
```

Théorème 3. Les algorithmes 1 et 2 sont corrects pour le calcul de fermeture des DFs standards¹ :

$$Closure(\Sigma, X) = X^* = X^+ = Closure'(\Sigma, X)$$

Théorème 4 (Résumé).

13 return closure

$$\begin{array}{lll} Y\subseteq Closure(\Sigma,X) \\ & \equiv & Y\subseteq X^* & (th\'eor\`eme~3) \\ & \equiv & \Sigma\vdash X\subseteq Y & (lemme~1) \\ & \equiv & \Sigma\models X\subseteq Y & (th\'eor\`emes~1~et~2) \\ & \equiv & Y\subseteq X^+ & (lemme~2) \end{array}$$

^{1.} l'algorithme 2 peut être modifié pour traiter les DFs non-standards.

$$\frac{Y \subseteq X}{X \to Y}$$
 Reflex.

$$\frac{X \to Y}{WX \to WY}$$
 Aug.

$$X \to Y \qquad Y \to Z \over X \to Z$$
 Trans.

FIGURE 1 – Axiomatisation d'Armstrong pour les DFs

$$X \rightarrow X \qquad X \rightarrow Z \qquad Compo.$$

$$X \to YZ \over X \to Y$$
 Decompo.

$$\frac{X \to Y \qquad WY \to Z}{WX \to Z}$$
 PseudoTrans.

FIGURE 2 - Règles admissibles pour les DFs

1.5 Relation d'Armstrong

Ensemble des fermés l'ensemble des fermés $CI(\Sigma)$ d'un ensemble de DFs Σ est défini par $Cl(\Sigma) = \{X^+ \mid X \subseteq R\}$

Définition équivalente $Cl(\Sigma)$ est défini de façon équivalente par $CI(\Sigma) = \{X \mid X \subseteq R \land X^+ = X\}$

L'algorithme 3 répète la construction clef de la preuve de complétude (théorème 2) pour chaque élément de $CI(\Sigma)$.

Algorithme 3: $Armstrong(\Sigma, R)$

```
1 r := \emptyset; i := 0
2 for A \in R do t[A] := 0;
r := r \cup \{t\}
4 for X \in Cl(\Sigma) \setminus R do
      for A \in R do
        if A \in X then t[A] := 0;
        else t[A] := i;
      r := r \cup \{t\}
      i := i + 1
```

10 return r

Théorème 5. Soit $r = Armstrong(\Sigma, R)$ une instance obtenue avec l'algorithme 3 :

$$\forall f.\Sigma \models f \Rightarrow r \models f \text{ et } \forall f.\Sigma \not\models f \Rightarrow r \not\models f$$

2 **Autres dépendances**

Dépendances d'Inclusion (DI)

Soient $R, S \in \mathbf{R}$, X et Y des séquences d'attributs distincts respectivement de R et de S, avec |X| = |Y|.

Syntaxe $R[X] \subseteq S[Y]$

Sémantique
$$r,s \models R[X] \subseteq S[Y] \Leftrightarrow \forall t_r \in r, \exists t_s \in s.t_r[X] = t_s[Y] \Leftrightarrow \pi_X(r) \subseteq \pi_Y(s)$$

Théorème 6. L'axiomatisation de Casanova pour les DIs C ={Reflex., Trans., Proj.} (fig. 3) est correcte et complète.

Lemme 3. Les propriétés suivantes d'interactions entre DFs et Dls sont vérifiées :

$$- \{R[XY] \subseteq S[TU], S: T \to U\} \models R: X \to Y$$

$$- \{R[XY] \subseteq S[TU], R[XZ] \subseteq S[TV], S: T \to U\} \models R[XYZ] \subseteq S[TUV]$$

2.2 Dépendances MultiValuées (DMV)

Syntaxe X woheadrightarrow Y lu « X multidétermine Y »

Sémantique
$$r \models X \twoheadrightarrow Y$$
 ssi $\forall t_1, t_2 \in r$ tels que $t_1[X] = t_2[X] \exists t_3, t_4 \in r$ tels que :

$$-t_3[XY] = t_1[XY] \text{ et } t_3[R \setminus Y] = t_2[R \setminus Y]$$

$$-t_1[XY] = t_2[XY] \text{ et } t_2[R \setminus Y] = t_2[R \setminus Y]$$

$$- t_4[XY] = t_2[XY] \text{ et } t_4[R \setminus Y] = t_1[R \setminus Y]$$

Lemme 4. Toute DF est une DMV.

Théorème 7. L'axiomatisation {Reflex., Aug., Complement. Trans.} est correcte et complète pour l'inférence des DMVs (fig. 4).

Théorème 8. L'axiomatisation précédente à laquelle on ajoute les règles {Gene., Mix.} (fig. 5) est correcte et complète pour l'inférence des DFs et des DMVs considérées ensemble.

3 **Normalisation**

3.1 **Définitions**

DF élémentaire une DF $X \rightarrow Y$ est élémentaire ssi $\forall X' \subseteq Y$ $X \Rightarrow X' \not\rightarrow Y$

DF directe une DF $X \rightarrow Y$ est *directe* ssi $\not\exists Z.X \rightarrow Z \land Z \not\rightarrow$ $X \wedge Z \rightarrow Y$ (pas de transivité)

Clé C'est un ensemble d'attributs X tels que $X \to R$

Clé minimale C'est une clé X avec $X \to R$ élémentaire.

Attribut premier Un attribut $A \in R$ est premier s'il appartient à *au moins* une clé minimale de R.

Couverture Soient Σ et Γ deux ensembles de DFs, Γ est une couverture de Σ ssi $\Gamma^+ = \Sigma^+$.

Algorithme 4 : $Minimize(\Sigma)$

1 G := ∅

/* Fermeture des parties droites

2 for $X \to Y \in \Sigma$ do

 $G := G \cup \{X \to X^+\};$

/* Suppression des redondances

4 for $X \rightarrow X^+ \in G$ do

if $G - \{X \rightarrow X^+\} \vdash X \rightarrow X^+$ then

 $G := G - \{X \to X^+\};$

7 return G

Théorème 9. Soit $F = Reduce(Minimize(\Sigma))$ donnés par les algorithmes 4 et 5, alors :

- F est une couverture de Σ (F+ = Σ^+)
- F est minimal en nombre de dépendances ($\forall G.G^+ =$ $\Sigma^+ \Rightarrow |F| < |G|$
- toutes les parties gauches sont réduites ($\forall X \rightarrow Y \in$ $F. \forall . X'. X' \subsetneq X \Rightarrow X' \not\rightarrow Y$)
- toutes les parties droites sont réduites ($\forall X \rightarrow Y \in$ $F.\forall Y' \subseteq Y.F \setminus \{X \rightarrow Y\} \cup \{X \rightarrow Y'\} \not\models X \rightarrow Y)$

Pertes d'information et de dépendances

Décomposition Une décomposition d'un ensemble d'attributs R est un schéma de base de données $\mathbf{R} = \{R_1, \dots, R_n\}$ avec $R_i \subseteq R$ et $\bigcup R_i = R$

$$\frac{R[X] \subseteq R[X]}{R[X] \subseteq R[X]} \text{ Reflex.} \qquad \frac{R[X] \subseteq S[Y] \qquad S[Y] \subseteq T[Z]}{R[X] \subseteq T[Z]} \text{ Trans.} \qquad \frac{R[A_1 \dots A_n] \subseteq S[B_1 \dots B_n]}{R[A_{\sigma(1)} \dots A_{\sigma(k)}] \subseteq S[B_{\sigma(1)} \dots B_{\sigma(k)}]} \text{ Proj.}$$

$$\text{Avec } \sigma \text{ une permutation d'un sous-ensemble de } \{1 \dots n\}$$

FIGURE 3 – Axiomatisation de Casanova pour les DIs

$$\frac{Y\subseteq X}{X\twoheadrightarrow Y} \text{ Reflex.} \qquad \frac{X\twoheadrightarrow Y}{WX\to WY} \text{ Aug.} \qquad \frac{X\twoheadrightarrow Y}{X\twoheadrightarrow R\setminus XY} \text{ Compl.} \qquad \frac{X\twoheadrightarrow Y}{X\to Z\setminus Y} \text{ Trans.}$$

FIGURE 4 – Axiomatisation pour les DMVs

```
Algorithme 5 : Reduce(\Sigma)
1 Min := F
   /* Réduction des parties gauches
 2 for X \rightarrow Y \in Min do
       W := X
       for A \in X do
        if Min \models (W - A) \rightarrow Y then W := W - \{A\};
       Min := (Min - \{X \rightarrow Y\}) \cup \{W \rightarrow Y\}
   /* Réduction des parties droites
 7 for X \rightarrow Y \in Min do
       W := Y
       for A \in Y do
9
           G := (Min - \{X \rightarrow Y\}) \cup \{X \rightarrow (W - A)\}
10
           if G \models X \rightarrow Y then W := W - \{A\};
11
12
       Min := (Min - \{X \rightarrow Y\}) \cup \{X \rightarrow W\};
14 return Min;
```

Perte d'information Une décomposition $\mathbf{R} = \{R_1, ..., R_n\}$ est sans perte d'information (ou de jointure) ssi $\forall r.r = \pi_{R_1}(r) \bowtie ... \bowtie \pi_{R_n}(r)$

Projection de DFs (1) soit $S \subseteq R$ et Σ en un ensemble de DFs, la *projection de* Σ *sur* S est $\Sigma[S] = \{X \to Y \mid X \to Y \in \Sigma^+ \land XY \subseteq S\}$.

Projection de DFs (2) La projection de Σ sur un schéma de base de données \mathbf{R} est $\Sigma[\mathbf{R}] = \bigcup \{\Sigma[R] \mid R \in \mathbf{R}\}$

Perte de dépendances Une décomposition ${\bf R}$ est sans perte de dépendances ssi $(\Sigma[{\bf R}])^+ = \Sigma^+$

3.2 Formes normales

On considère les paires $\langle R, \Sigma \rangle$ formées d'un schéma de relation R et d'un ensemble de DFs Σ sur R.

2FN $\langle R, \Sigma \rangle$ est en 2FN ssi il n'existe pas de DF non-triviale $X \to A \in \Sigma^+$ avec A non-premier et X sous-ensemble propre d'une clé minimale.

3FN $\langle R, \Sigma \rangle$ est en 3FN, de façons équivalentes ² :

- ssi elle est en 2FN et qu'il n'existe pas d'attribut nonpremier qui dépende transitivement d'une clé minimale:
- ssi pour toute DF non-triviale $X \to A \in \Sigma^+$, A n'est pas-premier implique que X est une (super)clé .

FNBC $\langle R, \Sigma \rangle$ est en FN de Boyce-Codd (FNBC) *ssi pour toute DF non-triviale X* \rightarrow *A* \in Σ^+ , *X est une (super)clé.*

4FN $\langle R, \Sigma \rangle$ est en 4FN *ssi pour toute DMV non-triviale X* \rightarrow $A \in \Sigma^+$, X est une (super)clé.

2. On préfèrera la seconde définition, sans référence à la 2FN.

```
Contre-exemples
```

- $\langle ABC, \{AB \rightarrow C, B \rightarrow C\} \rangle$ n'est pas 2FN.
- $\langle ABC, \{A \rightarrow B, B \rightarrow C\} \rangle$ est 2FN mais *pas* 3FN.
- $\langle ABC, \{AB \rightarrow C, C \rightarrow B\} \rangle$ est 3FN mais pas FNBC.
- $\langle ABC, \{A \rightarrow B\} \rangle$ est FNBC mais pas 4FN.

Théorème 10. La 4FN implique la FNBC, la FNBC implique la 3FN, la 3FN implique la 2FN et les inclusions sont strictes.

Lemme 5. Toute relation en 3FN avec une unique clef minimale est en FNBC. Toute relation à deux attributs est en FNBC.

Forme normale d'une base de données Un schéma de base de données $\mathbf{R} = \{R_1 \dots R_n\}$ et un ensemble de dépendances Σ sur ces relations est en 2FN (respectivement 3FN, FNBC, 4FN) ssi $\langle R_i, (\Sigma[R_i]) \rangle$ est en 2FN (resp. 3FN, FNBC, 4FN) pour tout $1 \leq i \leq n$.

3.3 Algorithmes de normalisation

```
Algorithme 6: Synthesis(\Sigma, U)
   /* 1. minimisation et réduction
 1 F := Reduce(Minimize(\Sigma))
   /* 2. une relation pour chaque DF
 2 for X \rightarrow Y \in F do
 \mathbf{R} := \mathbf{R} \cup \{XY\}
   /* 3. suppression des non-maximaux
4 for R \in \mathbf{R} do
 5 | if \exists R'.R \subsetneq R' then \mathbf{R} := \mathbf{R} \setminus \{R\};
   /* 4. pertes de jointure
 6 Cle := \{X \mid X \to U \land \forall Z.Z \subseteq X \Rightarrow Z \not\to U\}
 7 if \forall R ∈ \mathbf{R}. \not\exists K ∈ Cle.K \subseteq R then
       /* ajout d'une clé si nécessaire
       choisir K \in Cle
     R := R \cup \{K\}
10 return R
```

```
Algorithme 7: Decompose(\Sigma, U)

1 F := Reduce(Minimize(\Sigma))

2 \mathbf{R} = \{U\};

/* tant que tout n'est pas en BCNF */

3 while (\exists R \in \mathbf{R}. \neg BCNF(R)) do

/* trouver une DF non-triviale non-clef */

4 let X \to Y with Y \not\subseteq X and F \not\models X \to U;

/* remplacer R par R_1 = X^+ et

R_2 = (R \setminus X^+) \cup X */

5 \mathbf{R} := \mathbf{R} \setminus \{R\} \cup \{X^+, (R \setminus X^+) \cup X\};
```

6 return R

$$\frac{X \to Y}{X \twoheadrightarrow Y}$$
 Gene.

 $\frac{X \twoheadrightarrow Y, Z \subseteq Y \qquad W \cap Y = \emptyset, W \to Z}{X \to Z} \text{ Mix.}$

FIGURE 5 – Axiomes supplémentaires pour les DMVs et DFs considérées ensembles

END:

4.3.6 Vues

/* SELECT QUERY */;

Théorème 11. La décomposition obtenue par l'algorithme 6 de synthèse termine en 3FN sans perte d'information ni de dépendances et en FNBC si c'est possible sans perte de dépendances.

Théorème 12. La décomposition obtenue par l'algorithme 7 de décomposition termine en FNBC sans perte d'information, avec éventuellement perte de dépendances.

Programmation PL/SQL

4.1 **Exceptions**

```
NO_DATA_FOUND aucun résultat (dans un SELECT ...INTO).
TOO MANY ROWS plusieurs résultats.
VALUE_ERROR érreur numérique.
ZERO_DIVIDE division par zéro
OTHERS toutes erreurs non interceptées.
```

Structures

IF v1 = c1 THEN

4.2.1 Branchements

```
ELSIF v1 = c2 THEN
END IF;
val := CASE c
 WHEN c1 THEN v1
 WHEN c1 THEN v2
  ELSE v_default
END;
```

4.2.2 Boucles

LOOP

```
instructions \ ; \\
EXIT [WHEN condition];
  instructions;
END LOOP;
WHILE condition LOOP
  instructions;
END LOOP;
FOR variable IN [REVERSE] debut..fin
   instructions;
END LOOP;
```

Déclarations types

4.3.1 Exceptions

```
DECLARE
 MY_EXCEPTION EXCEPTION;
BEGIN
    RAISE MY_EXCEPTION;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
```

```
WHEN MY_EXCEPTION THEN
  WHEN OTHERS THEN -- optionnel
END:
4.3.2 Procédures
CREATE OR REPLACE PROCEDURE
  nomP(arg1 IN type1, arg2 IN OUT type2,...)
IS
BEGIN
  DECLARE
  BEGIN
  END:
END:
4.3.3 Fonctions
CREATE OR REPLACE FUNCTION
  nomF(arg1 IN type1, arg2 IN type2,...)
  RETURN typeRetour IS
BEGIN
  DECLARE
  BEGIN
  END:
END:
4.3.4 Curseurs
DECLARE
  CURSOR c(param type) IS
    SELECT . . .
    FROM ...
    WHERE ...;
  FOR v_c in c(10) LOOP
  END LOOP;
END;
4.3.5 Triggers
 CREATE [OR REPLACE ] TRIGGER trigger_name
  {BEFORE | AFTER}
  {INSERT [OR] | UPDATE [OR] | DELETE}
  [OF col_name] ON table_name
  [REFERENCING OLD AS o NEW AS n]
  [FOR EACH ROW]
  WHEN (condition)
 BEGIN
   IF UPDATING('col') THEN
```

CREATE [OR REPLACE] VIEW view_name AS