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Evolution of Sciences
Before 1600: Empirical Science

» Babylonian mathematics: 4 basis operations done with tablets
and the resolution of practical problems based on words
describing all the steps. = that worked and they manage to
solve 3 degree equations.

» Ancient Egypt: No theorization of algorithms. We give only
examples made empirically, certainly repeated by students and
scribes. Empirical knowledge, transmitted as such, and not a
rational mathematical science.

» Aristotle also produced many biological writings that were
empirical in nature, focusing on biological causation and the
diversity of life. He made countless observations of nature,
especially the habits and attributes of plants and animals in
the world around him, classified more than 540 animal species,
and dissected at least 50.


https://en.wikipedia.org/wiki/History_of_science

1600-1950s: Theoretical Science

Each discipline has grown a theoretical component. Theoretical
models often motivate experiments and generalize our
understanding.

v

Physics: Newton, Max Planck, Albert Einstein, Niels Bohr,
Schrédinger

v

Mathematics: Blaise Pascal, Newton, Leibniz, Laplace,
Cauchy, Galois, Gauss, Riemann

v

Chemistry: R. Boyle, Lavoisier, Dalton, Mendeleev,

v

Biology, Medecine, Genetics: Darwin, Mendel, Pasteur




1950s-1990s, Computational Science

» Over the last 50 years, most disciplines have grown a third,
computational branch (e.g. empirical, theoretical, and
computational ecology, or physics, or linguistics.)

» Computational Science traditionally meant simulation. It grew

out of our inability to find closed form solutions for complex
mathematical models.




The Data Science Era
1990's-now, Data Science

» The flood of data from new scientific instruments and
simulations

» The ability to economically store and manage petabytes of
data online

> The Internet and computing Grid that makes all these
archives universally accessible

» Scientific info. management, acquisition, organization, query,
and visualization tasks scale almost linearly with data volumes.

The Fourth Paradigm: Data-Intensive Scientific Discovery
Data mining is a major new challenge!

[4 The Fourth Paradigm. Tony Hey, Stewart Tansley, and Kristin
Tolle. Microsoft Research, 2009.


http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf
http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf

Evolution of Database Technology

» 1960s: Data collection, database creation, IMS and network
DBMS

» 1970s : Relational data model, relational DBMS
implementation

» 1980s: RDBMS, advanced data models (extended-relational,
0O, deductive, etc.), application-oriented DBMS (spatial,
scientific, engineering, etc.)

» 1990s: Data mining, data warehousing, multimedia databases,
and Web databases

» 2000s: Stream data management and mining, Data mining
and its applications, Web technology (XML, data integration)
and global information systems, NoSQL, NewSQL.



Why Data Mining?

» The Explosive Growth of Data: from terabytes to petabytes
» Data collection and data availability
» Automated data collection tools, database systems, Web,
computerized society

» Major sources of abundant data
» Business: Web, e-commerce, transactions, stocks, ...
» Science: Remote sensing, bioinformatics, scientific

simulation,. ..
» Society and everyone: news, digital cameras, social network,

» “We are drowning in data, but starving for knowledge!" — John
Naisbitt, 1982 —
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Human mobility (ANR VEL'INNOV 2012-2016)

Social media (GRAISearch - FP7-PEOPLE-2013-IAPP, Labex IMU
project RESALI 2015-2018)

Soil erosion (ANR Foster 2011-2015)
Neuroscience (olfaction)

Chemoinformatics

Fact checking (ANR ContentCheck 2016 — 2019)

Industry (new generation of product, failure detection)



What is Data Mining

» Data mining (knowledge discovery from data)

» Extraction of interesting (non-trivial, implicit, previously
unknown and potentially useful) patterns or knowledge from
huge amount of data

» Alternative names:

» KDD, knowledge extraction, data/pattern analysis, data
archeology, data dredging, information harvesting, business
intelligence, etc.

» Watch out: Is everything “data mining"?

» simple search or query processing
> (Deductive) expert systems



KDD Process

Data Mining
» Core of KDD

» Search for knowledge in
data

EQL Focusing

Pre-

3 on application  Processing Transfor Data
h = mation Mining Evaluation _
—_> % [— ~ fr—r> '

Patterns/Model Knowledge
Databases

Iterative and Interactive Process

[ Fayad et al., 1996

Functionalities

» Descriptive data
mining vs Predictive
data mining

» Pattern mining,
classification, clustering,
regression

» Characterization,
discrimination,
association,
classification, clustering,
outlier and trend
analysis, etc.



Major Issues In Data Mining

» Mining methodology

» Mining different kinds of knowledge from diverse data types,
e.g., bio, stream, Web.
Performance: efficiency, effectiveness, and scalability
Pattern evaluation: the interestingness problem
Incorporation of background knowledge.
Handling noise and incomplete data
Parallel, distributed and incremental mining methods.
Integration of the discovered knowledge with existing one:
knowledge fusion.

» Completeness or not.
» User interaction

» Data mining query languages and ad-hoc mining.

» Expression and visualization of data mining results.

> Interactive mining of knowledge at multiple levels of

abstraction

» Applications and social impacts

» Domain-specific data mining & invisible data mining

» Protection of data security, integrity, and privacy.

vV Yy Y VY VY



Where to Find References? DBLP, Google Scholar

» Data Mining and KDD
» Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD,

PAKDD, etc.
» Journals: Data Mining and Knowledge Discovery, ACM TKDD

» Database Systems
» Conferences: : ACM-SIGMOD, ACM-PODS, (P)VLDB,
IEEE-ICDE, EDBT, ICDT, DASFAA
» Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM,
VLDB J., Info. Sys., etc.

» Al & Machine Learning
» Conferences: Int. Conf. on Machine learning (ICML), AAAI,
[JCAI, COLT (Learning Theory), CVPR, NIPS, etc
» Journals: Machine Learning, Artificial Intelligence, Knowledge
and Information Systems, IEEE-PAMI, etc.

» Web and IR
» Conferences: SIGIR, WWW, CIKM, etc
» Journals: WWW: Internet and Web Information Systems,



Recommended Books
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U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.
Uthurusamy. Advances in Knowledge Discovery and Data
Mining. AAAI/MIT Press, 1996

J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2nd ed., 2006

D. J. Hand, H. Mannila, and P. Smyth, Principles of Data
Mining, MIT Press, 2001

P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data
Mining, Wiley, 2005

Charu C. Aggarwal, Data Mining, Springer, 2015.

Mohammed J. Zaki, Wagner Meira, Jr. Data Mining and
Analysis Fundamental Concepts and Algorithms. Cambridge
University Press, 2014.



ML versus DM

Predictive (global) modeling

» Turn the data into an as
accurate as possible
prediction machine.

» Ultimate purpose is
automatization.

» E.g., autonomously driving a
car based on sensor inputs

y
= e“

iii M. Boley www.realkd.org

Exploratory data analysis.

» Automatically discover

novel insights about the
domain in which the data
was measured.

Use machine discoveries
to synergistically boost
human expertise.

E.g., understanding
commonalities and
differences among PET
scans of Alzheimers
patients.


www.realkd.org

ML versus DM

“A good prediction machine does not necessarily provide explicit
insights into the data domains"

¥ = Ljes okl 2(5))

Global linear regression model Gaussian process model.



ML versus DM

“A complex theory of everything might be of less value than a
simple observation about a specific part of the data space"
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Identifying inferesting subspace and the power of saying “I don’t

know for other points"



ML versus DM

“Subgroups look similar to decision trees but good tree learners are

forced to brush over some local structure in favor of the global
picture"




ML versus DM

“Going one step further, we can find local trends that are opposed

to the global trend

w




Roadmap

We will focus on descriptive data mining especially on
Constraint-based Pattern Mining with an inductive database
vision.

Th(L,D,C) = {¢ € L|C(y), D) is true}

» Pattern domain: (itemset, sequences, graphs, dynamic graphs,
etc.)

» Constraints: How to efficiently push them?

[4 Imielinski and Mannila: Communications of the ACM (1996).



Roadmap

Frequentpatter  Condensed Pattern sets Optimal pattern mining ~ Pattern sampling
mining representations  Top-k pattern mining  Dominance programming  Active learning
1995 2000 2005 2010 Now

Constraint-based pattern mining ~ Pattern mining as an optimization problem Interactive pattern mining

How have we moved from (only) frequent pattern discovery to
interactive pattern mining?

How have we moved from the retrieval era to the exploratory
analysis era?



Roadmap

» A short view on the constraint-based pattern mining toolbox
and its limitation

» Claim #1: this is not a tutorial on constraint-based pattern
mining!
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» A short view on the constraint-based pattern mining toolbox
and its limitation
» Claim #1: this is not a tutorial on constraint-based pattern
mining!
» Pattern mining as an optimization problem based on user’s
preferences:
» From all solutions to the optimal ones (top k, skyline, pattern
set, etc.).
» Claim #2: this is not a tutorial on preference learning!



Roadmap

» A short view on the constraint-based pattern mining toolbox
and its limitation

» Claim #1: this is not a tutorial on constraint-based pattern
mining!

» Pattern mining as an optimization problem based on user’s
preferences:

» From all solutions to the optimal ones (top k, skyline, pattern
set, etc.).
» Claim #2: this is not a tutorial on preference learning!

> Interactive pattern mining:
> Dealing with implicit user's preferences.
» How to ensure interactivity (instant mining, pattern space
sampling)
» Forgetting the completeness of the extraction.
» Claim #3: this is not a tutorial on preference learning either!



v

v
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We have done some enlightenment choices.

lli-

» Linearisation of the pattern mining research history.

We are not exhaustive !
> Feel free to mention us some important papers that are
missing.
Most of the examples will consider the itemsets as pattern
language.
> It is the simplest to convey the main ideas and intuitions.

Feel free to interrupt us at any time if you have some
questions.



Frequent pattern ~ Condensed
mining representations
1995 2000 2005 2010 Now

Constraint-based pattern mining  Pattern mining as an optimization problem Interactive pattern mining

Constraint-based pattern mining:
the toolbox and its limits

w the need of preferences in pattern mining



[temset: definition

Definition
Given a set of attributes A, an itemset X is a subset of attributes,
i.e., X CA.
Input:
ai an . dn

op | di1 dip ... din

0| d1 dop ... do, Question

: : : , : How many itemsets are there?
Om dm,l dm,2 cee dm n

where d; ; € {true,false}



[temset: definition

Definition
Given a set of attributes A, an itemset X is a subset of attributes,
i.e., X CA.
Input:
ai an . dn

01 C/171 d172 . d17n

0| d1 dop ... do, Question

: : : , : How many itemsets are there?

Al
Om dm,l dm,2 cee dm n 2.

where d; ; € {true,false}



Transactional representation of the data

Relational representation: Transactional representation: D
DCOxA is an array of subsets of A
dai an ce dn t
op | i1 dip ... din t

0 | d1 dp ... dap
tm
Om dm,l dm’z N dmy,,
where t; C A
where d; ; € {true,false}
Example
a1 a a3
o1 | X X X
0| X X
03 X

04 X



Frequency: definition

Definition (absolute frequency)

Given the objects in O described with the Boolean attributes in A,
the absolute frequency of an itemset X C A in the dataset
DCOxAis|[{oe O|{o} x X CD}|.

Definition (relative frequency)

Given the objects in O described with the Boolean attributes in A,
the relative frequency of an itemset X C A in the dataset
DCOxAis 10 {|‘(§|XX@}'.

The relative frequency is a joint probability.




Frequent itemset mining

Problem Definition

Given the objects in O described with the Boolean attributes in A,
listing every itemset having a frequency above a given threshold

© e N.

Input:
dai an e dn
01 d171 d172 . d17n
0 | d1 dop ... dap .
_ _ and a minimal frequency p € N.
Om dm,l dm’2 e dm,,,

where d;; € {true,false}

[4 R. Agrawal; T. Imielinski; A. Swami: Mining Association Rules
Between Sets of Items in Large Databases, SIGMOD, 1993.



Frequent itemset mining

Problem Definition

Given the objects in O described with the Boolean attributes in A,
listing every itemset having a frequency above a given threshold
weN.

Output: every X C A such that there are at least i objects having
all attributes in X.

[4 R. Agrawal; T. Imielinski; A. Swami: Mining Association Rules
Between Sets of Items in Large Databases, SIGMOD, 1993.



Frequent itemset mining: illustration

Specifying a minimal absolute frequency p = 2 objects (or,
equivalently, a minimal relative frequency of 50%).

ay a2 as
o1 | X X X
O | X X
03 X

04 X



Frequent itemset mining: illustration

Specifying a minimal absolute frequency p = 2 objects (or,
equivalently, a minimal relative frequency of 50%).

dy do as
o1 | X X X
oy | X X
03 X
04 X

The frequent itemsets are: 0 (4), {a1} (2),
{az2} (3), {a3} (2) and {a1, 22} (2).



Completeness

Both the clustering and the classification schemes globally model
the data: every object influences the output. That is the
fundamental reason for these tasks to be solved in an approximate
way.

In contrast, local patterns, such as itemsets, describe “anomalies”
in the data and all such anomalies usually can be completely listed.




Inductive database vision

Querying data:
{d€Dlq(d, D)}
where:
» D is a dataset (tuples),

> @ is a query.



Inductive database vision

Querying patterns:

{XeP|Q(X,D)}
where:
» D is the dataset,
> P is the pattern space,

» @ is an inductive query.



Inductive database vision

Querying the frequent itemsets:

{XeP|Q(X,D)}
where:
» D is the dataset,
> P is the pattern space,

» @ is an inductive query.



Inductive database vision

Querying the frequent itemsets:

{XeP|Q(X,D)}
where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

» P is the pattern space,

» Q is an inductive query.



Inductive database vision

Querying the frequent itemsets:

{XeP|Q(X,D)}
where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

> Pis 24,

» Q is an inductive query.



Inductive database vision

Querying the frequent itemsets:

{XeP|Q(X,D)}
where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

> Pis 24,
» Qis (X,D)— [{o€ O|{o} x X CD}| > p.



Inductive database vision

Querying the frequent itemsets:

{XeP|Q(X,D)}
where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

> Pis 24,
> Qis (X, D)= F(X,D) > p.



Inductive database vision

Querying the frequent itemsets:

{XeP|Q(X,D)}
where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

> Pis 24,
> Qis (X, D)= F(X, D) > p.

Listing the frequent itemsets is NP-hard.



Naive algorithm

Input: O, ADCOx A, ueN
Output: {X C A|f(X,D) > pu}
for all X C A do
if £(X.D) > u then
output(X)
end if
end for

Question
How many itemsets are enumerated?

2Al



Prefix-based enumeration
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Complexity of the naive approach

Question
How many itemsets are enumerated? 2M!

Question
What is the worst-case complexity of computing (X, D)?
O(|O x AJ) (items are ordered within the transactions).

Question

What is the worst-case complexity of the naive approach?
0(2M10 x Al).



How to efficiently mine frequent itemsets?

Taking advantage of an important
property

» Anti-monotonicity of the frequency

> in a levelwise enumeration (e.g.
Apriori)
@ R. Agrawal; T. Imielinski; A.
Swami: Mining Association Rules

Between Sets of Items in Large
Databases, SIGMOD, 1993.

» in a depthfirst enumeration (e.g.
Eclat)

[d Mohammed J. Zaki, Scalable
Algorithms for Association
Mining. IEEE TKDE, 2000.




Anti-monotonicity of the frequency

Theorem
Given a dataset D of objects described with Boolean attributes in

A:

V(X,Y)e24 x 24 X C Y = f(X,D) > f(Y,D) .

ay a as f(0,D) = 4
o1 | X x X f({ai},D) = 2
0| X X f({a1,a2},D) = 2
03 X f({a1,a2,a3},D) = 1

04 X



Anti-monotonicity of the frequency

Theorem
Given a dataset D of objects described with Boolean attributes in

A:

V(X,Y)e24 x 24 X C Y = f(X,D) > f(Y,D) .

ay a as f(0,D) = 4
o1 | X x X f({as},D) = 2
0| X X f({a1,a3},D) = 1
03 X f({a1,a2,a3},D) = 1

04 X



Anti-monotonicity of the frequency

Corollary

Given a dataset D of objects described with Boolean attributes in
A and a minimal frequency pu € N:

VIX,Y)e2AX2A X CY = (F(Y,D)>u= f(X,D) > pu) .
I I

a a a3 f(0,D) = 4
or [ X% f({sh,D) = 2
02 | X X f({a1,a3},D) = 1
03 X ({31,32,33} D) =1

04 X



Anti-monotonicity of the frequency

Corollary

Given a dataset D of objects described with Boolean attributes in
A and a minimal frequency pu € N:

WX, Y) €24 x2A X C Y = (F(X,D) < p= F(V,D) < p) .

ap a a3 f(0,D) = 4
01| X X X f({as},D) = 2
0| X X f({a1,a3},D) = 1
03 X ({81,32,33} D) =1

04 X



Pruning the enumeration tree (1 = 3)

.m%
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Pruning the enumeration tree (u = 3)




APriori enumeration

To check the frequency of every parent, the enumeration tree must
be traversed breadth-first.



APriori enumeration

To check the frequency of every parent, the enumeration tree must
be traversed breadth-first.

The two first parents (in the lexicographic order <) are close to
each other in the prefix-based tree. Indeed, they only differ by the
last attribute. Instead of considering all possible children of a
parent, APriori searches this second parent and, if found,
enumerate, by union, their child.



Level-wise enumeration of the itemsets




Example

minsup =2

TID |ltems

100|134
200(235

4002 5

300(1235

itemset| s|

=

{13}
{23}
{25}
{35}

N WwN NS

C [itemsef
235

Scan D

Scan D

itemset|

S|

{1}
{2}
{3}
{4}
{5}

=
w-wwm.p

itemset|

S|

[T

{12}
{13}
{15}
{23}
{25}

{35}

NWN=aN=C

Lk

[sup]
235} 2 |

itemset|s

{1}
{2y
{3}
{5}

c
wmmw.p

Scan D

itemset|
{12}
{13}
{15}
{23}
{25}
{35}




Depth-first enumeration of the itemsets




Fail-first principle

Observation
An itemset has a greater probability to be infrequent if the
frequencies of its attributes, taken individually, are low.



Fail-first principle

Observation
An itemset has a greater probability to be infrequent if the
frequencies of its attributes, taken individually, are low.

Fail-first principle
Taking advantage of the anti-monotonicity of the frequency, it is
better to enumerate the infrequent itemsets first.



The unbalanced enumeration tree




Heuristic choice of a lexicographic order

Input: A, D as an array of subsets of A,y € N
Output: {X C A|f(X,D) > u}
P« {{a}|ac A}
while P # () do
P < output_frequent(P, D, p)
P < children(P)
end while

Whatever the order on A, the frequent itemsets are correctly and
completely listed...



Heuristic choice of a lexicographic order

Input: A, D as an array of subsets of A,y € N
Output: {X C A|f(X,D) > pu}
P + {{a}| a € A} ordered by increasing f({a}, D)
while P # () do

P < output_frequent(P, D, p)

P < children(P)
end while

Whatever the order on A, the frequent itemsets are correctly and
completely listed... but this heuristic choice usually leads to the
enumeration of much less infrequent itemsets.



lterative computation of the supports

Theorem

Given the objects in O described with the Boolean attributes in A,
i.e., the dataset D C O x A and k € N itemsets
(P)iz1.x € (2%

{foeO|{o} x U P,CD} =k {ocO|{o} xP;

ai

a

as

[o;} X
(o} X
03

04

X

C D} .

< {ocO[{o} x{m} D} = {o0}
focO[{o} x {2} CD} = {on, 0,03}
{ocO[{o}x{m} D} = {o,ai)

5 o€ O[{o} x{ar,aa} CD} = {o}



lterative computation of the supports

Theorem

Given the objects in O described with the Boolean attributes in A,
i.e., the dataset D C O x A and k € N itemsets

(P))iz1.k € (2%

{oeO|{o} x U P,CD} =Nk {ocO|{o} x P, CD} .

aa a a

o | x x ><3 {o0€O|{o} x{a, &} CD} = {o1,0}
0| X X {0€O|{o} x{a3} CD} = {o1,04}
03 X {o€O|{o} x{a1,a,a} CD} = {oa}

O4 X



lterative computation of the supports

Theorem

Given the objects in O described with the Boolean attributes in A,
i.e., the dataset D C O x A and k € N itemsets

(P))iz1.k € (2%

{oeO|{o} x U P,CD} =Nk {ocO|{o} x P, CD} .

a a a

o | x x ><3 {o0€O|{o} x{a, &} CD} = {o1,0}
0| X X {0€O|{o} x{a,a3} CD} = {o}

03 X {o€O|{o} x{a1,a,a} CD} = {oa}

O4 X



Vertical representation of the data

Relational representation: Vertical representation: D is an
DCOxA array of subsets of O
dal an c. dn
01 d171 d172 e dl?,,
0 | d1 dop ... doy it ... p
: : : : where j; C O
Om dm,l dm,2 oo dm n

where d;; € {true false}



Vertical representation of the data

Relational representation: Vertical representation: D is an
DCOxA array of subsets of O
dai an e dn
01 C/171 d172 e d17n
0| do1 dop ... do, T T
; ; : ; where i; C O
Om dm,l C/m’z e dm n

)

where d; ; € {true false}

For a linear time intersection of the j;, they are sorted (arbitrary

order on Q) in a pre-processing step and the support of any
enumerated itemset X will respect this order.



Vertical representation of the data

Relational representation: Vertical representation: D is an
DCOxA array of subsets of O
dl an . dn
01 d171 d172 c. dl’,,
0| d1 dop ... doy it ... p
: : e ; where i; C O
Om dm71 dm72 e dm,n

where d; ; € {true,false}

Unless the minimal relative frequency is very low, storing the
support on bitsets provide the best space and time performances.



Eclat enumeration

Like APriori:

» The anti-monotonicity of the frequency prunes the
enumeration tree;
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» Ordering the attributes by increasing frequency heuristically
leads to the enumeration of much less infrequent itemsets.



Eclat enumeration
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» The anti-monotonicity of the frequency prunes the
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» the two first parents (in the lexicographic order <) are
searched to generate by union their child;

» Ordering the attributes by increasing frequency heuristically
leads to the enumeration of much less infrequent itemsets.

However:

> the frequency of the other parents is not checked;



Eclat enumeration

Like APriori:

» The anti-monotonicity of the frequency prunes the
enumeration tree;

» the two first parents (in the lexicographic order <) are
searched to generate by union their child;

» Ordering the attributes by increasing frequency heuristically
leads to the enumeration of much less infrequent itemsets.

However:
> the frequency of the other parents is not checked;

» thanks to that, the enumeration tree is traversed in a less
memory-hungry way (but, contrary to APriori, the supports of
the frequent itemsets are stored too).



Pruning the enumeration tree (u = 3)

A B C D E
1345 123456 2456 1356 12345
AB AC AD AE BC BD BE CD CE DE
1345 45 135 1345 2456 1356 12345 56 245 135
ABD ABE ADE BCD BCE BDE
135 1345 135 56 245 135

ABDE
135




Pattern flooding

=2

Ola a a a a a a7 ag a ap a1 a2 a;3 a4 ais
0| X X x X X

ol X X X X X

03| X X x X X

04 X X X X X

05 X X X X X

06 X X X X X

o7 X X X X X
og X X X X X

» How many frequent patterns?




Pattern flooding
w=2

o1 | x X x x X

04 X X X X X
o5 X X X X X
06 X X X X X
o7 X X X X X
og X X X X

» How many frequent patterns? 1+ (2° — 1) x 3 — 94 patterns



Pattern flooding
w=2

o1 | x X x x X

X
X
X
X
X

gI&8&ELENS
X
X
X
X
X

» How many frequent patterns? 1+ (2° — 1) x 3 — 94 patterns
but actually 4 interesting ones:

{},{a1, a2, a3, as, a5}, { a6, a7, as, a9, a10}, { a11, a12, a13, a14, a1s }.



Pattern flooding
w=2

o] | X x X

X
X

04 X X X X X
o5 X X X X X
06 X X X X X
o7 X X X X X
og X X X X X

» How many frequent patterns?
but actually 4 interesting ones:

{}.{a1, a2, a3, a4, a5}, { a6, a7, as, a9, a10}, { a11, a12, a13, a14, a1}

1= the need to focus on a condensed representation of frequent
patterns.

@ Toon Calders, Christophe Rigotti, Jean-Francois Boulicaut: A Survey on
Condensed Representations for Frequent Sets. Constraint-Based Mining and
Inductive Databases 2004: 64-80.



Closed and Free Patterns

Equivalence classes based on support.

O|A B C
o1 X X X
Oy | X X X
o3 X X
O4 X X
O5 X

({20,,0,,03,0,4.05



Closed and Free Patterns

Equivalence classes based on support.

O|A B C
o[ x x x pEIN
0| X X X 01‘0”05‘?‘3\
03 X X > <t :

'61.02803.0/, - fr}z‘oyo,“o 4
04 X X § ‘ 4

/

%5 X o 01.0503:04.%5 //

» Closed patterns are maximal element of each equivalence
class: ABC, BC, and C.

» Generators or Free patterns are minimal elements (not
necessary unique) of each equivalent class: {}, A and B

@ Y. Bastide, et al. Mining frequent patterns with counting inference.
SIGKDD Expl., 2000.



Few researchers (in DM) are aware about this strong
intersection.

A strong intersection with Formal Concept Analysis (Ganter and
Wille, 1999).

» transactional DB = formal context is a triple K = (G, M, /),
where G is a set of objects, M is a set of attributes, and
| C G x M is a binary relation called incidence that expresses
which objects have which attributes.

> closed itemset = concept intent

» FCA gives the mathematical background about closed
patterns.

» Algorithms: LCM is an efficient implementation of Close By
One. (Sergei O. Kuznetsov, 1993).



) o

(FIMI Workshop@ICDM, 2003 and 2004)

The FIM Era: during more than a decade, only ms were worth it!
Even if the complete collection of frequent itemsets is known
useless, the main objective of many algorithms is to earn ms
according to their competitors!!

What about the end-user (and the pattern interestingness)?

= partially answered with constraints.



Pattern constraints

Constraints are needed for:

» only retrieving patterns that describe an interesting subgroup
of the data

» making the extraction feasible



Pattern constraints

Constraints are needed for:

> only retrieving patterns that describe an interesting subgroup
of the data

» making the extraction feasible

Constraint properties are used to infer constraint values on (many)
patterns without having to evaluate them individually.



Pattern constraints

Constraints are needed for:

> only retrieving patterns that describe an interesting subgroup
of the data

» making the extraction feasible

Constraint properties are used to infer constraint values on (many)
patterns without having to evaluate them individually.

- They are defined up to the partial order < used for listing the
patterns



Constraint properties - 1

Anti-monotone constraint

Vo1 = @2, C(p2,

Monotone constraint

D) = C(¢1,D)

D) = C(¢2,D)

Vo1 = 2, Ce1,

agdpoNcgop

C(e, D)

bepVceyp

C(y. D)



Constraint properties - 2

Convertible constraints
= is extended to the prefix order < so  |oose AM constraints

that Vo1 < 2, C(p2,D) = C(91, D) ¢(p,D) = Je € v : C(p\ {e}, D)

specialization

[ab ]

Lallb el d]le]
L]
generalzaton Clp, w) = avg(w(p)) > o Clo,w) =var(w(p)) <o

w(a) > w(b) > w(c) > w(d) > w(e)

@ Pei and Han — 2000 @ Bonchi and Lucchese — 2007



Examples

veP M
P25 M
PCS AM
min(P) < o AM
min(P) > o M
max(P) <o M
max(P) <o AM
range(P) < o AM
range(P) > o M
avg(P)bo,0 € {<,=,>} | Convertible
var(w(p)) <o LAM




Outline

Introduction
Frequent Itemset Mining

Constraint-based Pattern Mining

Algorithmic principles



Enumeration strategy

Binary partition: the element 'a’ is enumerated




Enumeration strategy

Binary partition: the element 'a’ is enumerated

RV

RMNU{a}

aeRV\R/\
RY\ {a}




Constraint evaluation

Monotone constraint

Y
R C(RY,D) is false



Constraint evaluation

Monotone constraint

RV

C(

RY,D) is false




Constraint evaluation

Anti-monotone constraint

'R\/

R/\C(RA, D) is false



Constraint evaluation

Anti-monotone constraint

R\/

R/\C(R/\, D) is false



A new class of constraints

Piecewise monotone and anti-monotone constraints!

1. C involves p times the pattern ¢: C(p, D) = f(p1,- - ¢p, D)
2. ﬁ',@(X) = (‘701, Qi1 X, Qi1 a(ppap)
3. Vi=1...p, fi, is either monotone or anti-monotone:

W x < fio(x) = fio(y) iff f; , is monotone
=77\ fiply) = fio(x) iff fi , is anti-monotone

@ L. Cerf, J. Besson, C. Robardet, J-F. Boulicaut: Closed patterns meet n-ary
relations. TKDD 3(1) (2009)

@ A. Buzmakov, S. O. Kuznetsov, A.Napoli: Fast Generation of Best Interval
Patterns for Nonmonotonic Constraints. ECML/PKDD (2) 2015: 157-172

1A k.a. primitive-based constraints

@ A.Soulet, B. Crémilleux: Mining constraint-based patterns using automatic
relaxation. Intell. Data Anal. 13(1): 109-133 (2009)



An example

> Ve, w(e) >0

> Clo,w) = avg(w(p) > 0 = 2D 5

C(p, D) is piecewise monotone and anti-monotone with

2ecpr W(e)
f((Pl, ©2, D) =
02|
Vx 2y,
> f1,, is monotone:
— ZeEx W(e) Zee W(e)
fx,02, D) = == > 0= = r— >0
» fo, is anti-monotone:

f((p17y7’D)ZW>J:>%>U



Piecewise constraint exploitation

R\/

Evaluation

ecRV w(e)
If F(RY, RN, D) = e )

R/\
Propagation

» Je e RY \ R”" such that f(RY \ {e},R",D) < o, then e is
moved in R

» Je € RY \ R" such that f(RY,R" U {e}, D) < o, then e is
removed from RY



Piecewise constraint exploitation

Evaluation
If f(RY,R", D) = % <o
then R is empty.

R/\

Propagation
» Jde € RY \ R”" such that f(RY \ {e}, R",D) < o, then eis
moved in R

» Je € RY \ R" such that f(RY,R" U {e}, D) < o, then e is
removed from RY



Algorithmic principles

Function Generic_CBPM_enumeration(R", R")

if Check_constraints(R",R") then
(R, RY)+ Constraint_Propagation(R",R")
if R" =R then
output R"
else
for all e e RV \ R" do
Generic_CBPM_Enumeration(R" U {e}, RY)
Generic_CBPM_Enumeration(R”",R"Y \ {e})
end for
end if
. end if

© o Na RN

e
= O



Tight Upper-bound computation

» Convex measures can be taken into
account by computing some upper
bounds with R and RV.

» Branch and bound enumeration

(n, n)
Yy

. (m)

(i u) L &, )
[4 Shinichi Morishita, Jun Sese:
Traversing ltemset Lattice with
Statistical Metric Pruning. PODS 2000:
226—236 (0,0)  (x(I)-y), 0) x

Studying constraints = looking for efficient and effective upper
bound in a branch and bound algorithm !



Case Studies
Mining of

>

Multidimensional and multi-level sequences [ACM TKDD
2010]

» Maximal homogeneous clique set [KAIS 2014]

v

vV v vV VY

Rules in Boolean tensors/dynamic graphs [SDM 11, IDA J.
2013]

Topological patterns in static attributed graphs [TKDE 2013]
Temporal dependencies in streams [KDD'13, IDA J. 2016]
Trend dynamic sub-graphs [DS 12, PKDD 13, IDA 14]

J-free sequential patterns [ICDM'14]

Triggering patterns [ASONAM 14, Social Network Analysis J.
2015]

» Events in geo-localized social medias [ECMLPKDD'15]
» Pairwise change behavior [ECMLPKDD'17]

Exceptional attributed Graphs [Machine Learning 2017,
ICDM'16, ComplexNetwork17]



Toward declarativity

Why declarative approaches?
» for each problem, do not write a solution from scratch

Declarative approaches:

» CP approaches (Khiari et al., CP10, Guns et al., TKDE 2013)

» SAT approaches (Boudane et al., IJCAI16, Jabbour et al., CIKM13)

» |ILP approaches (Mueller et al, DS10, Babaki et al., CPAIOR14, Ouali
et al. 1JCAI16)

> ASP approaches (Gebser et al., IJCAI16)



Thresholding problem

number of patterns

threshold

v

A too stringent threshold: trivial patterns

v

A too weak threshold: too many patterns, unmanageable and
diversity not necessary ensured.

v

Some attempts to tackle this issue:

» Interestingness is not a dichotomy! [BB05]
» Taking benefit from hierarchical relationships [HF99, DPRB14]

v

But setting thresholds remains an issue in pattern mining.



Constraint-based pattern mining:

concluding remarks

» how to fix thresholds?

» how to handle numerous patterns including non-informative
patterns? how to get a global picture of the set of patterns?

» how to design the proper constraints/preferences?



Pattern sets Optimal pattern mining

Top-k pattern mining  Dominance programming
1995 2000 2005 2010 Now

Constraint-hased pattern mining  Pattern mining as an optimization problem Interactive pattern mining

Pattern mining as an optimization problem



Pattern mining

as an optimization problem

Pattern sets Optimal pattern mining

Top-k pattern mining  Dominance programming
1935 2000 2005 2010 Now

Constraint-based pattern mining  Pattern mining as an optimization problem Interactive pattern mining

» performance issue > quality issue
» the more, the better > the less, the better
» data-driven » user-driven

In this part:

> preferences to express user's interests

» focusing on the best patterns:
dominance relation, optimal pattern sets, subjective interest



Addressing pattern mining tasks

with user preferences

Idea: a preference expresses a user's interest
(no required threshold)
Examples based on measures/dominance relation:

> “the higher the frequency, growth rate and aromaticity are,
the better the patterns”

» “| prefer pattern X1 to pattern X, if X1 is not dominated by
X> according to a set of measures”

w measures/preferences: a natural criterion for ranking patterns
and presenting the “best” patterns



Preference-based approaches

in this tutorial

» in this part: preferences are explicit (typically given by the
user depending on his/her interest/subjectivity)

in the last part: preferences are implicit

» quantitative/qualitative preferences:

> quantitative:

constraint-based data mining: frequency, size, . ..

measures {  background knowledge: price, weight, aromaticity, . . .

statistics: entropy, pvalue, . ..

» qualitative: “| prefer pattern Xj to pattern X" (pairwise
comparison between patterns).

With qualitative preferences: two patterns can be
incomparable.



Measures

Many works on:

> interestingness measures (Geng et al. ACM Computing Surveys06)
» utility functions (Yao and Hamilton DKE06)

> statistically significant rules (Hamalsinen and Nykinen ICDMO08)
Examples:
» area(X) = frequency(X) x size(X) (tiling: surface)

. o Dx frequency (X1.X2)
> /Ift(Xl - X2) — frequency(X2) x frequency (X1)

» utility functions: utility of the mined patterns (e.g. weighted
items, weighted transactions).
An example: No of Product x Product profit



Putting the pattern mining task to

an optimization problem

The

v

most interesting patterns according to measures/preferences:

free/closed patterns (Boulicaut et al. DAMIO3, Bastide et al.
SIGKDD Explorations00)

= given an equivalent class, | prefer the shortest/longest patterns

one measure: top-k patterns (Fu et al. Ismis00, Jabbour et al.
ECML/PKDD13)

several measures: how to find a trade-off between several criteria?
w skyline patterns (Cho et al. IJIDWMO5, Soulet et al. ICDM’11, van
Leeuwen and Ukkonen ECML/PKDD13)

dominance programming (Negrevergne et al. ICDM13), optimal
patterns (Ugarte et al. ICTAIL5)

subjective interest/interest according to a background
knowledge (De Bie DAMI2011)



top-k pattern mining: an example

Goal: finding the k patterns maximizing an interestingness

measure.
Tid Items
t B E F > the 3 most frequent patterns:
tr B C D B E BE?
ts | A E F P
ts A B C D E = easy due to the anti-monotone
ts B C D E roperty of frequenc
to B C D E F property aueney
t7 A B C D E F

?Other patterns have a frequency of 5:
C, D, BC, BD, CD, BCD



top-k pattern mining: an example

Goal: finding the k patterns maximizing an interestingness

measure.
Tid Items
2} B E F > the 3 most frequent patterns:
tr B C D B E BE?
t5 | A E F P 5
4t |A B C D E = easy due to the anti-monotone
:: E g g E . property of frequency
t7 A B C D E F
> the 3 patterns maximizing area:
BCDE, BCD, CDE
@ = branch & bound
@ (Zimmermann and De Raedt MLJ09)
@ ?Other patterns have a frequency of 5:

C, D, BC, BD, CD, BCD



top-k pattern mining

an example of pruning condition

top-k patterns according to area, k = 3

Tid Items
t1
t2
t3 A
ty A
ts
te
t7 A

o ™
(@]
m
m

loviive vy vy)
[aNeNeNg)
o000 O
mmmmm

Principle:
» Cand: the current set of the k
best candidate patterns

» when a candidate pattern is
inserted in Cand, a more efficient
pruning condition is deduced

A: lowest value of area for the patterns in Cand

L: size of the longest transaction in D (here: L = 6)

a pattern X must satisfy frequency(X) > 4
to be inserted in Cand

= pruning condition according to the
frequency (thus anti-monotone)

Example with a depth first search approach:

» initialization: Cand = {B, BE, BEC}
(area(BEC) = 12, area(BE) = 10, area(B) = 0)
= frequency(X) > g

» new candidate BecD: Cand = {BE, BEC, BECD}
(area(BECD) = 16, area(BEC) = 12, area(BE) = 10)
= frequency(X) > 1070 which is more efficient
than

» new candidate BECDF. ..



top-k pattern mining in a nutshell

Advantages: Drawbacks:

» complete resolution is costly,
> compact sometimes heuristic search
(beam search)

(van Leeuwen and Knobbe DAMI12)
> threshold free

» diversity issue: top-k patterns
are often very similar
> best patterns
» several criteria must be aggregated
w skylines patterns: a trade-off
between several criteria



Skypatterns (Pareto dominance)

Notion of skylines (database) in pattern mining (Cho at al. IJDWMO05, Papadopoulos
et al. DAMIO08, Soulet et al. ICDM11, van Leeuwen and Ukkonen ECML/PKDD13)

Tid Items

t1 B E

3 B C D

t3 A E

ta A B C D E

ts B C D E

te B C D E

t7 A B C D E

Patterns | freq | area

2 4
2 6
6 6
4 16
2 8
6 6

BCDE
16 BCD
12 <
8 e
< 8 & o
B
2 E
4 < <&
0
0 1 2 3 4 5 6
Frequency

|£z| = 2°, but only 4 skypatterns
Sky(Lz,{freq, area}) = {BCDE, BCD, B, E}



Skylines vs skypatterns

Problem Skylines Skypatterns
a set of a set of
Mining task | non dominated | non dominated
transactions patterns
Size of the
space search D] £ ]
domain a lot of works | very few works

usually: | D |<<| L |

D set of transactions
L set of patterns



Skypatterns: how to process?

A naive enumeration of all candidate patterns (L) and then
comparing them is not feasible. ..

Two approaches:

1. take benefit from the pattern condensed representation
according to the condensable measures of the given set of
measures M

» skylineability to obtain M’ (M’ C M)
giving a more concise pattern condensed representation

» the pattern condensed representation w.r.t. M’ is a superset of
the representative skypatterns w.r.t. M which is (much
smaller) than Lz.

2. use of the dominance programming framework (together with
skylineability)



Dominance programming

Dominance: a pattern is optimal if it is not dominated by another.
Skypatterns: dominance relation = Pareto dominance

1. Principle:
» starting from an initial pattern s;
> searching for a pattern s, such that s; is not preferred to s,

» searching for a pattern s3 such that s; and s, are not preferred
to s3

> until there is no pattern satisfying the whole set of constraints

2. Solving:

» constraints are dynamically posted during the mining step

Principle: increasingly reduce the dominance area by processing
pairwise comparisons between patterns. Methods using Dynamic
CSP (Negrevergne et al. ICDM13, Ugarte et al. CPAIOR14, AlJ 2017).



Dominance programming:

example of the skypatterns

Trans. Items
t B E F
tr B C D
t3 E F 5
t B C D E T
ts B C D E
te B C D E F
t7 B C D E F

M = {freq, area}

q(X) = closedy (X)

Candidates =

16

12




Dominance programming:

example of the skypatterns

Trans. Items 16
t1 B E F
to B C D 12
ts A E F S BCDEF
t4# |A B C D E & |
ts B C D E
te B C D E F 4
t7 A B C D E F
0 T
0 1 2 3
freq

M = {freq, area}
q(X) = closedy (X)

Candidates = {BCDEF,
~——

S1



Dominance programming:

example of the skypatterns

Trans. Items 16
t1 B E F
to B C D 12
t3 | A E F 3 BCDEF
t4# |A B C D E T e
ts B C D E
t6 B CDEF a
t7 A B C D E F
0 T
0 1 2 3
freq

M = {freq, area}
q(X) = closedp (X) A=(s1 =m X)

Candidates = {BCDEF,
~——

S1



Dominance programming:

example of the skypatterns

Trans.

Items

t
%]
t3
ty
ts
te
t7

W W

W W W w

C

a0 n

16
EF
D 12
E F ]
D E T |
D E
D E F s
D E F
0
0 1

BCDEF
BEF

M = {freq, area}
q(X) = closedy (X) A=(s1 =m X)

Candidates = {BCDEF, BEF,
—_———
s1

2




Dominance programming:

example of the skypatterns

Trans. Items 16
t1 B E F
to B C D 12
Ho| A EF 8 BCDEF
ta A B C D E © 8
ts B C D E
6 B CDEF .
t7 A B C D E F
0
0 1 2 3
freq

M = {freq, area}
q(X) =closedy (X) A=(s1 =m X)A=(s2 =m X)

Candidates = {BCDEF, BEF,
—_———
s1

2



Dominance programming:

example of the skypatterns

Trans. Items 1
t1 B E F
|53 B C D 12 :
ts A E F § . BCDEF‘
ty A B C D E (o] 8 :
ts B C D E
te B C D E F 4
t7 A B C D E F

| L7 |= 2% = 64 patterns
4 skypatterns freq

M = {freq, area}

q(X) = closedw (X) A=(s1 =m X)A=(s2 =m X)A—(s3 = X) A —(ss =
X) A =(ss =m X) A =(s6 =m X) A =(s7=m X)

Candidates = {BCDEF, BEF, EF , BCDE, BCD, B , E }
—— ) T S T
s1 S2 S3 S4 S5 S6 7

Sky(Lz.,M)



Dominance programming: to sum up

The dominance programming framework encompasses many kinds
of patterns:

dominance relation

maximal patterns inclusion
closed patterns | inclusion at same frequency
order induced by
the interestingness measure
skypatterns Pareto dominance

top-k patterns

maximal patterns C closed patterns

top-k patterns C skypatterns



A step further

a preference is defined by any property between two patterns
(i.e., pairwise comparison) and not only the Pareto dominance
relation: measures on a set of patterns, overlapping between
patterns, coverage,. ..

w preference-based optimal patterns

In the following;:

(1) define preference-based optimal patterns,

(2) show how many tasks of local patterns fall into this framework,
(3) deal with optimal pattern sets.



Preference-based optimal patterns

A preference > is a strict partial order relation on a set of patterns
S.

x D> y indicates that x is preferred to y

(Ugarte et al. ICTAI15): a pattern x is optimal (OP) according to >
iff Ayr,...yp €S,V1I<j<p, yj>x

(a single y is enough for many data mining tasks)
Characterisation of a set of OPs:  a set of patterns:
{x€S| /\Eyl,...ypeS,Vlgjgp,yjbx}

x must satisfy a property defined by the user

for example: having a minimal frequency, being closed, ...



Local patterns: examples

Trans. Items

t1 B E F

ty B C D

t3 E F

ts B C D E

ts B C D E

te B C D E F

t7 B C D E F

S=Lz1

(Mannila et al. DAMI97)

Large tiles
c(x) = freq(x) x size(x) > area
Example: freq(BCD) x size(BCD) =5 x 3 =15

Frequent sub-groups
c(x) = freq(x) = Vpeg NAYES:
Ti(y) 2 Ta(x) A Ta(y) € Ta(x)
ANT(y)=T(x)=yCx)
Skypatterns
c(x) = closedum(x)
ANAyeS:y>=mx

Frequent top-k patterns according to m
c(x) = freq(x) > Yfreq
ANBy,...,¥ €S:

A n(y;) > mn(x)

1<j<k



Local (optimal) patterns:

Trans.

Items

t
t
t3
ty
ts
te
t7

@ @

loelve vy avy]

@]
O

[asNaNeNe!
v vivRw]

mmimmm

(Mannila et al. DAMI97)

examples

Large tiles

c(x) = freq(x) x size(x) > Yarea

T

ANAyeS:
(x) A Ta(y) € Ta(x)
T(x) =y Cx)

ANAyeS:y=mux

top-k patterns according to m

sub-groups
c(x) =
Ti(y) 2
A(T(y)
Skypatterns
c(x) =
c(x)

ANByr,-o, ¥ €S
A n(y;) >n(x)
1<j<k



Pattern sets: sets of patterns

Patterns sets (De Raedt and Zimmermann SDMO7): sets of patterns
satisfying a global viewpoint (instead of evaluating and selecting patterns based
on their individual merits)

Search space (S): local patterns versus pattern sets
example: Z = {A, B}

> all local patterns: S = Lz = {0, A, B, AB}
> all pattern sets:
S =27 = {0,{A},{B}, {AB}, {A, B}, {A, AB}, {B, AB}, {A, B, AB}}

Many data mining tasks: classification (Liu et al. KDD98), clustering (Ester
et al. KDD96), database tiling (Geerts et al. DS04), pattern

summarization (Xin et al. KDDO06), pattern teams (Knobbe and Ho
PKDDO6),. ..

Many input (“preferences”) can be given by the user:
coverage, overlapping between patterns, syntactical properties, measures,
number of local patterns,. ..



Coming back on OP (Ugarte et al. ICTAI15)

Pattern sets of length k: examples

Conceptual clustering (without overlapping)

clus(x) = /\ closed(x;) A U T(xi) =TA
i€[1..k] i€[1..k]
N Txi)NT(x) =0

N

‘ Conceptual clustering with optimisation

c(x) = clus(x)
A Ay € 2T min {freq(y;)} > min {freq(x;)}
JE[L..K] i€[1..k]

Pattern teams

S c 2%z c(x) = size(x) = k AZAy€ 28T d(y) > d(x)
(sets of length k)



Coming back on OP (Ugarte et al. ICTAI15)
(Optimal) pattern sets of length k: examples

Conceptual clustering (without overlapping)

clus(x) = N closed(x;) A |J T(x)=TA
i€[l..k] i€lL..k]
A T NT0g) =0
ijEL..K]
A Conceptual clustering with optimisation
c(x) =

AZAy€2fT min {freq(y;)} > min {freq(x)}
JE[1..K] i€[1..k]

Pattern teams

S c 2fz c(x) = ANBy € 28T d(y) > d(x)
(sets of length k)



Relax the dogma “must be optimal:

soft patterns

Stringent aspect of the classical constraint-based pattern mining
framework: what about a pattern which slightly violates a query?

example: introducing softness
in the skypattern mining:
= soft-skypatterns

put the user in the loop to determine the best patterns w.r.t.
his/her preferences

Introducing softness is easy with Constraint Programming:
w same process: it is enough to update the posted constraints



Many other works in this broad field

Example: heuristic approaches
pattern sets based on the Minimum Description Length principle: a
small set of patterns that compress - KRIMP (Siebes et al. SDMO06)

L(D, CT): the total compressed size of the encoded database and the code table:
L(D,CT) = L(D|CT)+ L(CT|D)
Many usages:

» characterizing the differences and the norm between given components in
the data - DIFFNORM (Budhathoki and Vreeken ECML/PKDD15)

> causal discovery (Budhathoki and Vreeken ICDM16)

> missing values (Vreeken and Siebes ICDMO08)

>

handling sequences (Bertens et al. KDD16)
> ...

and many other works on data compression/summarization (e.g. Kiernan and
Terzi KDDO08),. ..

Nice results based on the frequency. How handling other measures?



Subjective interestingness

B IC B Information content

| — —— —
s DL Assimilation cost

The idea: the user as part of the process, he/she states
expectations/beliefs, e.g.: number of items bought by customers,

popularity of items, overall graph density (in dense subgraph mining)

w whatever contrasts with this = subjectively interesting

» producing a set of patterns: the background distribution is
updated according to the patterns previously extracted

> iterative approach: at each step, the best pattern according
the interestingness criterion is extracted (trade off between
information content and descriptional complexity)

(Gallo et al. ECML/PKDDO07, De Bie DAMI11, De Bie IDA13, van Leeuwen et al.
MLJ16)



Pattern mining as an optimization

problem: concluding remarks

In the approaches indicated in this part:

» measures/preferences are explicit and must be given by the
user. .. (but there is no threshold :-)

> diversity issue: top-k patterns are often very similar

» complete approaches (optimal w.r.t the preferences):
w stop completeness

Toon Calders (ECML/PKDD 2012, most influential paper award)

A further step: interactive pattern mining (including the instant
data mining challenge), implicit preferences and learning
preferences



Pattern sampling

Active learning
1995 2000 2005 2010 Now

Constraint-hased pattern mining  Pattern mining as an optimization problem Interactive pattern mining

Interactive pattern mining



Interactive pattern mining

Pattern sampling

Active learning
1995 2000 2005 2010 Now

Constraint-hased pattern mining  Pattern mining as an optimization problem Interactive pattern mining

Idea: “I don't know what | am looking for, but | would definitely
know if | see it.”

w preference acquisition

In this part:

» Easier: no user-specified parameters (constraint, threshold or
measure)!

» Better: learn user preferences from user feedback

> Faster: instant pattern discovery



Addressing pattern mining

with user interactivity

Advanced Information Retrieval-inspired techniques

» Query by Example in information retrieval (QEIR) (Chia et al.
SIGIR08)

> Active feedback with Information Retrieval (Shen et al. SIGIR05)
» SVM Rank (Joachims KDD02)

> ..

Challenge: pattern space L is often much larger than the
dataset D



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van Leeuwen

2014)
Mine

| “

Learn 4 Interact



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van Leeuwen

2014)
Mine
| “
Learn 4 Interact
Mine

» Provide a sample of k patterns to the user (called the query

Q)



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van Leeuwen

2014)
Mine

W “
Learn 4 Interact

Interact

» Like/dislike or rank or rate the patterns



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van Leeuwen

2014)
Mine

W “
Learn 4 Interact

Learn

» Generalize user feedback for building a preference model



Interactive pattern mining: overview

[4 Interactive data exploration using pattern mining. (van Leeuwen

2014)
Mine
W “
Learn 4 Interact
Mine (again!)

» Provide a sample of k patterns benefiting from the
preference model



Interactive pattern mining

Multiple mining algorithms

Bonn Clle Mlnlng
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[1 One Click Mining - Interactive Local Pattern Discovery through
Implicit Preference and Performance Learning. (Boley et al. IDEA13)



Interactive pattern mining

Platform that implements descriptive rule discovery algorithms
suited for neuroscientists

Q  Searchin results P Next with 1 step m

skp 1 ¢ sep
Odors®

@ Descriptor distribution®

DISTRIBUTION OF THE
DESCRIPTOR MW

Subgroups @n e

> 2 o] [ P - |
s ncs e P se P, s smem wedes w preon o Settings ®
s 5 = | [me : sk mk : Cieeial

Max redundancy : 2

[3 h(odor): Interactive Discovery of Hypotheses on the
Structure-Odor Relationship in Neuroscience. (Bosc et al.
ECML/PKDD16 (demo))



Interactive pattern mining: challenges

» MINE

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern quality
» Pattern diversity for completing the preference model

» INTERACT

» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)

» LEARN

» Expressivity of the preference model
» Ease of learning of the preference model



Interactive pattern mining: challenges

» MINE
» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern quality
» Pattern diversity for completing the preference model
» INTERACT
» Simplicity of user feedback (binary feedback > graded
feedback)
» Accuracy of user feedback (binary feedback < graded
feedback)
» LEARN

» Expressivity of the preference model
» Ease of learning of the preference model

w» Optimal mining problem (according to preference model)



Interactive pattern mining: challenges

» MINE
» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern quality
» Pattern diversity for completing the preference model
» INTERACT
» Simplicity of user feedback (binary feedback > graded
feedback)
» Accuracy of user feedback (binary feedback < graded
feedback)
» LEARN

» Expressivity of the preference model
» Ease of learning of the preference model

- Active learning problem



LEARN: Preference model
How user preferences are represented?
Problem

» Expressivity of the preference model

» Ease of learning of the preference model



LEARN: Preference model

How user preferences are represented?
Problem

» Expressivity of the preference model

» Ease of learning of the preference model

Weighted product model
> A weight on items Z
» Score for a pattern X = product of weights of items in X

> (Bhuiyan et al. CIKM12, Dzyuba et al. PAKDD17)
wA wp wc
AB 4 x 1 = 4
BC 1 x 05 = 05



LEARN: Preference model
How user preferences are represented?

Problem

» Expressivity of the preference model

» Ease of learning of the preference model

Feature space model

» Partial order over the mapping feature space
A T~ Fy F) F3 Fy ] ..
pattern language £ (‘> ~Ia T tats
» Mapping between a pattern ANy f_?i i’; i’: tc’:
N ~ ///'
X and a set of features: S - -

pattern space




LEARN: Feature space model

Feature space

feature space

A mapping
e > = assumption about the user
N lg 2 lg Zj preferences
E )

R : » the more, the better

N_—

pattern space

Different feature spaces:
» Attributes of the mined dataset (Rueping ICML09)
» Expected and measured frequency (Xin et al. KDDO06)
» Attributes, coverage, chi-squared, length and so on (Dzyuba et
al. ICTAI13)



INTERACT: User feedback

How user feedback are represented?
Problem

» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)



INTERACT: User feedback

How user feedback are represented?
Problem

» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)

Weighted product model
» Binary feedback (like/dislike) (Bhuiyan et al. CIKM12, Dzyuba et

al. PAKDD17)
pattern feedback
A like
AB like

BC dislike



INTERACT: User feedback
How user feedback are represented?

Problem

» Simplicity of user feedback (binary feedback > graded
feedback)

» Accuracy of user feedback (binary feedback < graded
feedback)

Feature space model

» Ordered feedback (ranking) (Xin et al. KDD06, Dzyuba et al.
ICTAI13)
A= AB > BC

» Graded feedback (rate) (Rueping ICML09)
pattern feedback
A 0.9
AB 0.6
BC 0.2




LEARN: Preference learning method

How user feedback are generalized to a model?

» Weighted product model
» Counting likes and dislikes for each item: w = B(#like - #dislike)
(Bhuiyan et al. ICML12, Dzyuba et al. PAKDD17)

pattern feedback A B C
A like 1
AB like 1 1
BC dislike -1 -1
220=4 21-1=1 20-1—-05

» Feature space model
» = learning to rank (Rueping ICML09, Xin et al. KDD06, Dzyuba
et al. ICTAI13)



LEARN: Learning to rank

How to learn a model from a ranking?

feature space

mapping
S Al R |[FR]|F
NN ENERE]
N o _ by by bs by
C \\B No-7 4 a C2 (o} Cy
N_ -7

pattern space



LEARN: Learning to rank
How to learn a model from a ranking?

i feature space e
mapping
--3 1] training dataset

Ae F,
N 1
(’D ~4 e % En N Flb ng F3b
ay — by Ja—Db2|as— D3
o - b by bs by |- » [y Py p——

N —~
C \\B No-7 4 a C2 (o} Cy
N_ -7

pattern space

1. Calculate the distances between feature vectors for each pair
(training dataset)



LEARN: Learning to rank

How to learn a model from a ranking?

training dataset

N T e B F F, [
ay—bi|a—b|az—bs
[} - b by bs by »

~ - ag—c|a—-—col|a—c
C> M B~ _~- alolala 1—C|a—fla—ca

; feature space
mapping
T~ F1 F2 F3 F4

N_—-—

pattern space

1. Calculate the distances between feature vectors for each pair
(training dataset)

2. Minimize the loss function stemming from this training dataset

Algorithms: SVM Rank (Joachims KDD02), AdaRank (Xu et al.
SIGIR07),. . .



LEARN: Active learning problem

How are selected the set of patterns (query Q)?
Problem

» Mining the most relevant patterns according to Quality

» Querying patterns that provide more information about
preferences
(NP-hard problem for pair-wise preferences (Ailon JMLR12))

» Heuristic criteria:

» Local diversity: diverse patterns among the current query Q
» Global diversity: diverse patterns among the different queries
o

» Density: dense regions are more important



LEARN: Active learning heuristics
(Dzyuba et al. ICTAI13)

What is the interest of the pattern X for the current pattern query
Q?
» Maximal Marginal Relevance: querying diverse patterns in

Q
lity(X 1-— in dist(X,Y
aQuality(X) + (1 — a) min dist(X. Y)
» Global MMR: taking into account previous queries

aQuality(X) + (1 —«) min dist(X,Y)
Yel, Qi

» Relevance, Diversity, and Density: querying patterns from
dense regions provides more information about preferences

aQuality(X) + BDensity(X) + (1 — a — j3) @ég dist(X,Y)



MINE: Mining strategies
What method is used to mine the pattern query Q7
Problem

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern quality

» Pattern diversity for completing the preference model



MINE: Mining strategies
What method is used to mine the pattern query Q7
Problem

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern quality

» Pattern diversity for completing the preference model

Post-processing
> Re-rank the patterns with the updated quality (Rueping ICML09,
Xin et al. KDDO6)

» Clustering as heuristic for improving the local diversity (Xin et
al. KDDO6)



MINE: Mining strategies
What method is used to mine the pattern query Q7
Problem

» Instant discovery for facilitating the iterative process
» Preference model integration for improving the pattern quality

» Pattern diversity for completing the preference model

Optimal pattern mining (Dzyuba et al. ICTAI13)

» Beam search based on reweighing subgroup quality measures
for finding the best patterns

» Previous active learning heuristics (and more)



MINE: Mining strategies
What method is used to mine the pattern query Q7
Problem
» Instant discovery for facilitating the iterative process

» Preference model integration for improving the pattern quality

» Pattern diversity for completing the preference model

Pattern sampling (Bhuiyan et al. CIKM12, Dzyuba et al. PAKDD17)

» Randomly draw pattern with a distribution proportional to
their updated quality

» Sampling as heuristic for diversity and density



Objective evaluation protocol

Methodology = simulate a user

1. Select a subset of data or pattern as user interest

2. Use a metric for simulating user feedback

User interest:
> A set of items (Bhuiyan et al. CIKM12, Dzyuba et al. PAKDD17)
» A sample for modeling the user’s prior knowledge (Xin et al.
KDDO06)
> A class (Rueping ICML09, Dzyuba et al. ICTAI13)



Results

Objective evaluation results

» Dozens of iterations for few dozens of examined patterns
> Important pattern features depends on the user interest

» Randomized selectors ensure high diversity



Results

Objective evaluation results

» Dozens of iterations for few dozens of examined patterns
> Important pattern features depends on the user interest

» Randomized selectors ensure high diversity

Questions?
» How to select the right set of (hidden) features for modeling
user preferences?

» How to subjectively evaluate interactive pattern mining?
m qualitative benchmarks for pattern mining

@ Creedo — Scalable and Repeatable Extrinsic Evaluation for Pattern
Discovery Systems by Online User Studies. (Boley et al. IDEA15)



Instant pattern discovery

The need

“the user should be allowed to pose and refine queries at any

moment in time and the system should respond to these queries
instantly”

El Providing Concise Database Covers Instantly by Recursive Tile
Sampling. (Moens et al. DS14)
m few seconds between the query and the answer

Methods
b S L and .

» Beam search Subgroup Discovery methods
» Monte Carlo tree search (Bosc et al. 2016)

» Pattern sampling



Dataset sampling vs Pattern sampling

Dataset sampling

dataset mined patterns

dataset sample

Finding all patterns from a
transaction sample
w input space sampling

@ Sampling large databases for association rules. (Toivonen et al.
VLDBY6)



Dataset sampling vs Pattern sampling

Dataset sampling Pattern sampling
dataset mined patterns dataset mined patterns
o 3o o Qo
______ - %230 ———-=--=>9°30
o o o o

dataset sample pattern sample

Finding all patterns from a Finding a pattern sample from all
transaction sample transactions
T input space samp“ng > output space sampling

@ Random sampling from databases. (Olken, PhD93)



Pattern sampling: References

B

) W WE =

Output Space Sampling for Graph Patterns. (Al Hasan et al.
VLDBO09)

Direct local pattern sampling by efficient two-step random
procedures. (Boley et al. KDD11)

Interactive Pattern Mining on Hidden Data: A Sampling-based
Solution. (Bhuiyan et al. CIKM12)

Linear space direct pattern sampling using coupling from the past.
(Boley et al. KDD12)

Randomly sampling maximal itemsets. (Moens et Goethals IDEA13)

Instant Exceptional Model Mining Using Weighted Controlled
Pattern Sampling. (Moens et al. IDA14)

Unsupervised Exceptional Attributed Sub-graph Mining in Urban
Data (Bendimerad et al. ICDM16)

Giacometti and Soulet: Dense Neighborhood Pattern Sampling in
Numerical Data. (Giacometti and Soulet SIAMDM18)



Pattern sampling: Problem

Problem
» Inputs: a pattern language £ + a
measure m: L — R

» QOutput: a family of k realizations
of the random set R ~ m(L)

ignored by constraint-based
pattern mining

dataset D pattern language £
+ measure m

k random patterns X ~ m(L)

ignored by optimal
pattern mining

Pattern sampling addresses the full pattern language £

diversity!



Pattern sampling: Problem

Problem dataset D pattern language £
+ measure m
> Inputs: a pattern language £ +a  [~—| _»o‘:%e:
measure m: L — R oo
» QOutput: a family of k realizations
of the random set R ~ m(L) XY

graphs

sequential
patterns

itemsets

L

k random patterns X ~ m(L)

freq.:
(Al Hasan et & VLDBog) (Al Hasan et al. VLDBO09)

area: (Boley et al. KDD11)
(Moens et al. DS14)

freq.: (Boley et al. KDD11)
(Moens et Gathals IDEA13))  (Boley et al. KDD11) (Moens et al. DS14)

regularities contrasts anomalous



Pattern sampling: Challenges

Naive method

1. Mine all the patterns with their
interestingness m

2. Sample this set of patterns
according to m

m Time consuming / infeasible

exhaustive o
mining o°.°:
______ - %59
°o o
! .
| sampling
direct sampling v
° e
)



Pattern sampling: Challenges

Naive method

1. Mine all the patterns with their exhaustive o oo

. . mining _ o 0%
Interestingness m [ | —=—===% > 0

o O

2. Sample this set of patterns | sampling

. 1
accordlng tom direct sampling v

° e
0°

m Time consuming / infeasible

Challenges

» Trade-off between pre-processing computation and processing
time per pattern

> Quality of sampling



Two main families

1. Stochastic techniques

» Metropolis-Hastings algorithm OJ%
» Coupling From The Past

2. Direct techniques

draw a transactlon draw an |temset

» Item/transaction sampling with dataset D from
rejection ;-4

» Two-step random procedure



Two-step procedure: Toy example

[4 Direct local pattern sampling by efficient two-step random procedures.
(Boley et al. KDD11)

Itemset | freq.
A 2
B 3 Pick 14 itemsets
Mine all frequent patterns | € 3 \
AB 2
AC 1
BC 2 Itemsets
Tid ltems ABC 1 A A
tt |A B C B B B
n | A B Cc.C C
o 5 C AB, AB
t c AC
BC, BC
ABC




Two-step procedure: Toy example

@ Direct local pattern sampling by efficient two-step random procedures.
(Boley et al. KDD11)

Itemset | freq.
- . A 2 - -
infeasible B 3 Pick 14 itemsets
Mine-all-frequent-patterns C 3
T AB 2
AC 1
BC 2 Itemsets
Tid Items ABC 1 A A
W A B C B.B B
Direct l ¢ cc
t | A B irect sampling
o B AB, AB
. c > AC
BC, BC
ABC




Two-step procedure: Toy example

[4 Direct local pattern sampling by efficient two-step random procedures.
(Boley et al. KDD11)

Itemset | freq.
. . A 2
infeasible B 3 Pick 14 itemsets
Mine—al-frequentpatterns C 3
/V AB 2
AC 1
BC 2 Itemsets
Tid ltems ABC 1 A A
n |A B C B, B, B
tn | A B ¢ ccC
. B ¢ AB, AB
3
ty C AC
BC, BC
ABC
//
Tid Itemsets _- -
t1 | AL B, C, AB, _-
AC, BC, ABC |~
t | A B, AB Rearrange itemsets
t3 B, C, BC
ty C




Two-step procedure: Toy example

[4 Direct local pattern sampling by efficient two-step random procedures.
(Boley et al. KDD11)

Itemset | freq.
) , A 2
infeasible B 3 Pick 14 itemsets
Mine-alH-requentpatterns C 3
T AB 2
AC 1
BC 2 Itemsets
Tid ltems weight w || ABC 1 A A
t A B C|[2®-1=7 B.B. B
b | A B 22 _1=3 ¢ c c
ts B Cl| 2-1=3 AB, AB
ts Cf2t—1=1 gg BC

ABC
TId | Itemsets /

t A B, C, AB,

1. Pick a t.ransaction AC, BC, ABC
proportionally to w t | A B, AB 2. Pick an itemset
t3 B, C, BC

uniformly

ty C




Two-step procedure: Comparison

Offline processing

slow | Two-step procedure

fast

MH method

fast

slow

Complexity depends on the measure m:

Online processing

Measure m(X)

Preprocessing

k realizations

supp(X, D)
supp(X, D) x | X|
supp+(X, D) x (|D—| — supp— (X, D))
supp(X, D)?

O(|Z] x |D|)
O(|Z] x [D|)
O(|Z]? x |D|?)
O(IZ? x |DJ?)

O(k(|Z] +InDI))
O(k(|Z| + In|DY]))
O(k(|Z| + In%2|D]))
O(k(|Z| + In%|D]))

Preprocessing time may be prohibitive




Two-step procedure: Comparison

Offline processing

slow | Two-step procedure

Two-step procedure
fast with CFTP

MH method

fast

slow

Complexity depends on the measure m:

Online processing

Measure m(X)

Preprocessing

k realizations

supp(X, D)
supp(X, D) x | X|
supp+(X, D) x (|D—| — supp— (X, D))
supp(X, D)?

O(|Z] x |D|)
O(|Z] x [D|)
O(|Z]? x |D|?)
O(IZ? x |DJ?)

O(k(|Z] +InDI))
O(k(|Z| + In|DY]))
O(k(|Z| + In%2|D]))
O(k(|Z| + In%|D]))

Preprocessing time may be prohibitive " hybrid strategy with

stochastic process for the first step:

[4 Linear space direct pattern sampling using coupling from the past.

(Boley et al. KDD12)




Pattern sampling

Summary
Pros

» Compact collection of
patterns

» Threshold free
> Diversity

> Very fast

Cons
» Patterns far from optimality

» Not suitable for all
interestingness measures



Pattern sampling

Summary
Pros Cons
» Compact collection of » Patterns far from optimality
patterns » Not suitable for all
» Threshold free interestingness measures
> Diversity
> Very fast

Interactive pattern sampling

@ Interactive Pattern Mining on Hidden Data: A Sampling-based
Solution. (Bhuiyan et al. CIKM12)

m how to integrate more sophisticated user preference models?



Pattern set and sampling

Pattern-based models with iterative pattern sampling

(4 ORIGAMI: Mining Representative Orthogonal Graph Patterns. (Al
Hasan et al. ICDMO07)

B Randomly sampling maximal itemsets. (Moens et Goethals IDEA13)

El Providing Concise Database Covers Instantly by Recursive Tile
Sampling. (Moens et al. DS14)

 how to sample a set of patterns instead of indivual patterns?

[4 Flexible constrained sampling with guarantees for pattern mining.
(Dzyuba et al. 2016)



Interactive pattern mining:

concluding remarks

> Preferences are not explicitly given by the user. ..
... but, representation of user preferences should be
anticipated in upstream.

> Instant discovery enables a tight coupling between user and

system. ..
... but, most advanced models are not suitable.



Concluding remarks



Preference-based pattern mining

Frequent pattern  Condensed Pattern sets Optimal pattern mining ~ Pattern sampling
mining representations  Top-k patternmining  Dominance programming  Active learning
1995 2000 2005 2010 Now

Constraint-based pattern mining  Pattern mining as an optimization problem Interactive pattern mining

User preferences are more and more prominent. ..

from simple preference models to complex ones

» from frequency to anti-monotone constraints and more
complex ones

» from 1 criterion (top-k) to multi-criteria (skyline)

» from weighted product model to feature space model



Preference-based pattern mining

Frequent pattern  Condensed Pattern sets Optimal pattern mining ~ Pattern sampling
mining representations  Top-k patternmining  Dominance programming  Active learning
1995 2000 2005 2010 Now

Constraint-based pattern mining  Pattern mining as an optimization problem Interactive pattern mining

User preferences are more and more prominent. ..
from preference elicitation to preference acquisition
» user-defined constraint

> no threshold with optimal pattern mining

» no user-specified interestingness



Preference-based pattern mining

Frequent pattern  Condensed Pattern sets Optimal pattern mining ~ Pattern sampling
mining representations  Top-k patternmining  Dominance programming  Active learning
1995 2000 2005 2010 Now

Constraint-based pattern mining  Pattern mining as an optimization problem Interactive pattern mining

User preferences are more and more prominent in the

community. ..
from data-centric methods: to user-centric methods:
» 2003-2004: Frequent Itemset » 2010-2014: Useful Patterns

Mining Implementations » 2015-2017: Interactive Data

» 2002-2007: Knowledge Exploration and Analytics
Discovery in Inductive
Databases



Multi-pattern domain exploration

» The user has to choose its pattern domain of interest.
» What about (interactive) multi-pattern domain exploration?

» Some knowledge nuggets can be depicted with simple pattern
domain (e.g., itemset) while others require more sophisticated
pattern domain (e.g., sequence, graph, dynamic graphs, etc.).

» Examples in Olfaction:

» Odorant molecules.

> unpleasant odors in presence of Sulfur atom in chemicals =
itemset is enough.

» Some chemicals have the same 2-d graph representation and
totally different odor qualities (e.g., isomers) = need to
consider 3-d graph pattern domain.

» How to fix the good level of description?

» Toward pattern sets involving several pattern domains.



Role/acquisition of preferences
through the skypattern cube

\\m1,m2,m3,m4

» equivalence classes on
measures

w highlight the role

of measures



Role/acquisition of preferences
through the skypattern cube

» equivalence classes on m1,mp,M3,M4

measures
m highlight the role

of measures mq,Mo,M3 M4,My,Myg M4,M3,Mg Mo,M3,My
» skypattern cube
compression:

user navigation and M1.My My,M3 Mq,Mg Mo,Ma Mo,My Ma,My

recommendation
> preference acquisition W
m1 m2 m3 m4



Pattern mining in the Al field

> cross-fertilization between data mining and constraint
programming /SAT /ILP (De Raedt et al. KDDO08):
designing generic and declarative approaches
= make easier the exploratory data mining process
» avoiding writing solutions from scratch
> easier to model new problems

> open issues:

how go further to integrate preferences?
how to define/learn constraints/preference?
how to visualize results and interact with the end user?

vV vy vYyy

Many other directions associated to the Al field:
integrating background knowledge, knowledge representation,. . .
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