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Poisson Image Editing

“Poisson Image Editing”, Perez et al. 2003
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Poisson Image Editing
• How it works ?

o The eye is more sensitive to color differences than absolute color values

o We thus try to preserve color differences: min 𝛻𝑢 − 𝛻𝑔 2𝑑𝑥

o This leads to the equation :

Δ𝑢 = Δg in Ω
𝑢 = 𝑓 on 𝜕Ω

f g Ω
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Poisson Image Editing
• How it works ?

o The eye is more sensitive to color differences than absolute color values

o We thus try to preserve color differences: min 𝛻𝑢 − 𝛻𝑔 2𝑑𝑥

o This leads to the equation :

4𝑣𝑥,𝑦 − 𝑣𝑥+1,𝑦 − 𝑣𝑥,𝑦+1 − 𝑣𝑥−1,𝑦 − 𝑣𝑥,𝑦−1 = 0 in Ω

𝑣𝑥,𝑦 = 𝑓𝑥,𝑦 − 𝑔𝑥,𝑦 on 𝜕Ω
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o The eye is more sensitive to color differences than absolute color values

o We thus try to preserve color differences: min 𝛻𝑢 − 𝛻𝑔 2𝑑𝑥

o This leads to the equation :

𝑣𝑥,𝑦 =
1

4
(𝑣𝑥+1,𝑦 + 𝑣𝑥,𝑦+1 + 𝑣𝑥−1,𝑦 + 𝑣𝑥,𝑦−1) in Ω
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Poisson Image Editing
• How it works ?

o The eye is more sensitive to color differences than absolute color values

o We thus try to preserve color differences: min 𝛻𝑢 − 𝛻𝑔 2𝑑𝑥

o This leads to the equation :

𝑣′𝑥,𝑦 = "𝑏𝑙𝑢𝑟" in Ω

𝑣′𝑥,𝑦 = 𝑓𝑥,𝑦 − 𝑔𝑥,𝑦 on 𝜕Ω

f g Ω

+ +

+

+

𝑣′𝑥,𝑦



Poisson Image Editing
• Blur result :



__global__ void relax(float4 *out, int w, int h) {

int x = blockIdx.x*blockDim.x + threadIdx.x;

int y = blockIdx.y*blockDim.y + threadIdx.y;

if (x >= w || y >= h) { return; }

float4 mask_up = tex2D(mask, x, y-1), ;

float4 mask_dwn = tex2D(mask, x, y+1);

float4 mask_left = tex2D(mask x-1, y);

float4 mask_rght = tex2D(mask, x+1, y);

float4 baby_up = tex2D(baby, x, y-1);

float4 baby_dwn = tex2D(baby, x, y+1);

float4 baby_left = tex2D(baby, x-1, y);

float4 baby_rght = tex2D(baby, x+1, y);

float4 u_up = (tex2D(statue, x, y-1) - baby_up)     * (1.- mask_up) +  tex2D(prev_iter, x, y-1) * mask_up;

float4 u_dwn = (tex2D(statue, x, y+1)- baby_dwn) *  (1.- mask_dwn) + tex2D(prev_iter, x, y+1) * mask_dwn;

float4 u_left = (tex2D(statue, x-1, y) - baby_left)   *  (1.- mask_left) + tex2D(prev_iter, x-1, y) * mask_left;

float4 u_rght = (tex2D(statue, x+1, y) - baby_rght) *  (1.- mask_rght) + tex2D(prev_iter, x+1, y)  * mask_rght;

float4 val = (u_up + u_dwn + u_left + u_rght)/4.;

float4 mask_center = tex2D(mask, x, y);

out[y * w + x] = val*mask_center + (1,-mask_center)*tex2D(statue, x, y);

}



Poisson Image Editing
• How it works ?

o The eye is more sensitive to color differences than absolute color values

o We thus try to preserve color differences

o Once 𝑣 is known, 
𝑢 = 𝑔 + 𝑣

Quality highly depends on boundary (→ boundary optimization techniques)

f g Ω

+ +

+

+

𝑣′𝑥,𝑦



Poisson Image Editing



Poisson Image Editing
• Problem : Slow to converge + numerical precision issues

• Solution : Multigrid



Extended to meshes

“Mesh Editing with Poisson-Based Gradient Field Manipulation”, Yu et al. 2004



Generalizations
• L1 reconstruction

o Use min 𝛻𝑢 − 𝛻𝑔 1𝑑𝑥 instead of min 𝛻𝑢 − 𝛻𝑔 2𝑑𝑥

o Yields local formulation: div
𝛻𝑢−𝛻𝑔

|𝛻𝑢−𝛻𝑔|
= 0

o More complex to minimize (nonlinear)

• Adding a spatial weighting term
o min 𝑤 𝑥 𝛻𝑢 − 𝛻𝑔 2𝑑𝑥

o Yields local formulation: div 𝑤 𝑥 𝛻𝑢 − 𝛻g = 0

• General form:
o min 𝑤(|𝛻𝑢 − 𝛻𝑔|)𝑑𝑥

o Yields local formulation: div
𝑤′ 𝛻𝑢−𝛻𝑔

𝛻𝑢−𝛻𝑔
𝛻𝑢 − 𝛻𝑔 = 0

o Most often non linear ; recovers linear isotropic diffusion with 𝑤 𝑢 = 𝑢2



Application to stitching

“Seamless Image Stitching 
in the Gradient Domain”
Levin et al. 2002



Intrinsic decompositions

“User-Assisted Intrinsic Images”, Bousseau et al. 2009



Intrinsic decompositions
𝐼 = 𝑆. 𝑅

Image      Shading   Reflectance

• The Retinex assumption:
o Shading layer smoother than reflectance layer

o So, shading gradients are smaller

o Color Retinex: if a gradient is colored, most likely comes from reflectance

• Ideas:
o Work in log-domain : log 𝐼 = log 𝑆 + log𝑅

o Work with gradients : 𝛻 log 𝐼 = 𝛻 log 𝑆 + 𝛻 log𝑅

o Now, identify gradients belonging to either (log) S or R

“Ground truth dataset and baseline evaluations for intrinsic image algorithms”, Grosse et al. 09



Intrinsic decompositions
• Denote 𝑟𝑥 the horizontal gradient of log 𝑅 (same for 𝑦, I 

and S)

• Color Retinex algorithm:
o If  𝑖𝑥

𝑏𝑟 > 𝑇𝑏𝑟 𝑎𝑛𝑑 𝑖𝑥
𝑐ℎ𝑟 > 𝑇𝑐ℎ𝑟, 𝑟𝑥 = 𝑖𝑥

𝑏𝑟 𝑒𝑙𝑠𝑒 𝑟𝑥 = 0

o Reconstruct R by solving a Poisson equation    Δ log 𝑅 = Δ𝑟

• Can alternatively use an L1 reconstruction min 𝛻 log 𝑅 − 𝛻𝑟 𝑑𝑥

o Obtain shading:  𝑆 = 𝐼/𝑅



Intrinsic decompositions
• Extensions:

o Add non-local constraints on reflectance

o Constrain reflectance colors to be sparse

o Add reflectance constraints in time (for videos)

o Add user constraints

• Applications:
o Re-texturing ; re-lighting

o Image compositing

o Better optical flows

o Image segmentation

o Scene understanding...



Intrinsic decompositions
• Other approaches:

o Based on machine learning: Neural networks, Conditional Random Fields ... 

• Difficulty: finding ground truth decompositions to learn from

o Approaches estimating jointly shape, environment map and intrinsic decomposition

o Algorithms based on other assumptions

• Line model: Under skylight, pixels of same reflectance on same log-RGB line

• Locally linear reflectance model



Intrinsic decomposition
• Ground truth images

o Realistic scenes difficult to obtain

o No good definition for specular scenes



Blind Video Temporal Consistency

1CNRS / LIRIS
3Adobe Research

2

Nicolas Bonneel1 James Tompkin2 Kalyan Sunkavalli3

Deqing Sun2 Sylvain Paris3 Hanspeter Pfister2

26



Observation

Image processing algorithms are often temporally unstable

HDR Tone Mapping Spatial White Balance Intrinsic Decomposition
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Observation

Image processing algorithms are often temporally unstable

HDR Tone Mapping Spatial White Balance Intrinsic Decomposition
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each frame processed independently



Goal
Input video

=

29

Image processing per frame

+

Stable video 
processing
(our result)



Method

30
[Bonneel et al. - Blind Video 

Temporal Consistency]



Variational formulation

min  𝛻𝑂𝑛 − 𝛻𝑃𝑛
2

High frequency 
scene dynamics

31

Input video (V) Processed video (P) Output video (O)



Variational formulation

min  𝛻𝑂𝑛 − 𝛻𝑃𝑛
2 + 𝑂𝑛 −𝑤𝑎𝑟𝑝 𝑂𝑛−1

2

High frequency 
scene dynamics

Temporal consistency

32

Input video (V) Processed video (P) Output video (O)



Variational formulation

min  𝛻𝑂𝑛 − 𝛻𝑃𝑛
2 +𝑤 𝑥 𝑂𝑛 −𝑤𝑎𝑟𝑝 𝑂𝑛−1

2

High frequency 
scene dynamics

Temporal consistency

𝑤 = λ exp(− 𝑉𝑛 − 𝑤𝑎𝑟𝑝 𝑉𝑛−1 )

33

Input video (V) Processed video (P) Output video (O)



• Temporal consistency strength
o Scalar factor λ in w(x)

• “warp” operator
o Optical flow methods

[Sun et al. 2014] or [Wulff and Black 2015]

o Nearest neighbor fields
[PatchMatch, Barnes et al. 2009]

User parameters

34

min  𝛻𝑂𝑛 − 𝛻𝑃𝑛
2 + 𝑤 𝑥 𝑂𝑛 − 𝑤𝑎𝑟𝑝 𝑂𝑛−1

2



Screened Poisson Equation

• Energy can be minimized locally

−Δ𝑂𝑛 +𝑤 𝑥 𝑂𝑛 = −Δ𝑃𝑛 +𝑤 𝑥 𝑤𝑎𝑟𝑝 𝑂𝑛−1

• Standard linear equation
o Details in the paper

35

Input video (V) Processed video (P) Output video (O)



Fourier analysis (const. w)

ℱ 𝑂𝑛 𝜉 = 1 − 𝛼 ℱ 𝑃𝑛 + 𝛼 ℱ(𝑤𝑎𝑟𝑝 𝑂𝑛−1 )

with 𝛼 =
𝑤

4𝜋2𝜉2+𝑤
depends on spatial frequency  𝜉

• Low and high spatial frequencies treated 
differently
o Low frequencies more regularized

o Unlike previous work that treats them uniformly

36
[Bonneel et al. - Blind Video 

Temporal Consistency]

Processed
(current frame)

Output 
(previous frame)

Output
(current frame)



Synthetic test

High frequency
noise

(except first frame)

Our result
(not suitable for 

denoising)
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Synthetic test

Low frequency 
noise

(except first frame)

Our result
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Results
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Color grading 

Input video Per-frame processing
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Color grading 

Our result
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Spatial White Balance 
[Hsu et al. 2008]

Input video Per-frame processing
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Input video Our result
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Spatial White Balance 
[Hsu et al. 2008]



Intrinsic Images 
[Bell et al. 2014]

Input video Per-frame processing
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Intrinsic Images 
[Bell et al. 2014]

Input video Our result
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Dehazing
[Tang et al. 2014]

46

Input video Per-frame processing



Dehazing
[Tang et al. 2014]

47

Input video Our result



Limitations

Processing creating edges Matting

48
[Bonneel et al. - Blind Video 

Temporal Consistency]



Conclusion

• “Blind” approach to temporal consistency
o Supported by Fourier analysis

• Wide range of image processing ported to 
videos
o Can be applied as is to current and future algorithms

• C++ code 
http://liris.cnrs.fr/~nbonneel/consistency/

49
[Bonneel et al. - Blind Video 

Temporal Consistency]



“Remove occupant…”
Texture synthesis

(also works with ex-gf/bf)

“Parallel Controllable Texture Synthesis”, Lefebvre and Hoppe 2005



Texture synthesis
• Idea : copy pixels from the image that are coherent with an 

initial guess



Texture synthesis
• Idea : copy pixels from the image that are coherent with an 

initial guess

Initial guess
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• Idea : copy pixels from the image that are coherent with an 
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Refinement
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Texture synthesis
• Idea : copy pixels from the image that are coherent with an 
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Texture synthesis
• Idea : copy pixels from the image that are coherent with an 

initial guess

Refinement



Texture synthesis
• Multi-resolution && initialization

Initialization here



Texture synthesis
• ok – but artifacts



Texture synthesis
• Idea : use a guide

“Image Analogies”, Hertzmann et al. 2001    (image-by-number approach)



Texture synthesis
• Idea : use a guide



Texture synthesis
• Extension: 

o copy pixel gradients instead of pixels

o Reconstruct an image with Poisson equation



Proxy-Guided Texture Synthesis

“Proxy-Guided Texture Synthesis for Rendering Natural Scenes”, Bonneel et al. 2010



Proxy-Guided Texture Synthesis

“Proxy-Guided Texture Synthesis for Rendering Natural Scenes”, Bonneel et al. 2010



Texture synthesis
• That’s the dinosaur version of Neural style transfer:

“A Neural Algorithm of Artistic Style”, Gatys et al. 2015



Gradient Shop
• Demoes filters achievable in the gradient domain

• Keeps a screened Poisson formulation
∇. 𝑤 𝑥 ∇𝑢 − 𝐹 ∇𝐼 + 𝑤′ 𝑥 𝑢 − 𝐺 𝐼 = 0

o Sharpening: 𝐹 𝛻𝐼 = 𝑐. ∇𝐼 𝐺 𝐼 = 𝐼 𝑤 = 1 𝑤′ = 𝑑

• More robust with spatially varying w

o NPR:  𝐹𝑥 ∇𝐼 = cos2 𝑒 .
𝜕𝐼

𝜕𝑥
𝑛 𝐹𝑦 𝛻𝐼 = sin2 𝑒 .

𝜕𝐼

𝜕𝑦
𝑛

𝐺 𝐼 = 𝐼 𝑤′ = 𝑑

With e an edge detector, and n another weighting term

o etc. etc.

“GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering”, Bhat et al. 2008



Depth of Field
• Circle of confusion: 𝑐 =

𝐹2

𝑛 (𝑍𝑓−𝐹)

𝑍−𝑍𝑓

𝑍
= 𝛼

𝑍−𝑍𝑓

𝑍

o Z: depth ; 𝑍𝑓: focal distance ; F: focal length ; 𝑛: aperture

• Consider anisotropic diffusion:

o
𝜕𝐼

𝜕𝑡
= ∇. (𝑔 ∇𝐼) where 𝑔 is the diffusivity

o Take 𝑔 =  𝛼
𝑍−𝑍𝑓

2

𝑍2

“Real-time, Accurate Depth of Field using Anisotropic Diffusion and Programmable Graphics Cards”, Bertalmio et al. 2004



Diffusion curves

• Two Poisson equations:
o Δ𝐼 = 𝑑𝑖𝑣 𝑤 for colors (+  user constraints to I)

o Δ𝐵 = 0 for blur  (+ 𝐵 = 𝜎 on curve)

• Then blur I using B with anisotropic diffusion

“Diffusion Curves: A Vector Representation for Smooth-Shaded Images”, Orzan et al. 2008



In rendering



Poisson in Rendering
• Image derivatives of Metropolis light transport

o Augment path space with vertical and horizontal image offsets

o Estimate 𝐼𝑗+1 =  ℎ𝑗+1 𝑥 𝑓 𝑥 𝑑𝜇(𝑥)

• 𝑥 in path space

• ℎ image filter

• 𝑓 image contribution

o Use both 𝐼𝑗+1 − 𝐼𝑗 (gradient) and 𝐼𝑗 (actual value)

o Drive sampler with a linear combination of both gradient norm and value

o Solve the Screened Poisson equation (L1 works better)

“Gradient-Domain Metropolis Light Transport”, Lehtinen et al. 2013



Poisson in Rendering



Poisson in Rendering
• Simpler formulation with path tracing:

“Gradient-Domain Path Tracing”, Kettunen et al. 2015 – reading list.



Solvers



Solving the Poisson Equation
• The Poisson equation Δ𝑢 = 𝑓 can be discretized in 2d:

o 4𝑣𝑥,𝑦 − 𝑣𝑥+1,𝑦 − 𝑣𝑥,𝑦+1 − 𝑣𝑥−1,𝑦 − 𝑣𝑥,𝑦−1 = fx,y (2nd order centered laplacian)

o In matrix form : 𝑀 𝑣 = 𝑓 with

𝑀 =

⋱
−1 … −1 4 −1 … −1

−1 … −1 4 −1 …
−1 … −1 4 −1

−1 … −1 4

• We have seen one method so far
o 𝑣′𝑥,𝑦 =

1

4
𝑣𝑥+1,𝑦 + 𝑣𝑥,𝑦+1 + 𝑣𝑥−1,𝑦 + 𝑣𝑥,𝑦−1 + f𝑥,𝑦

o This is the Jacobi method: 𝑀 = 𝐷 − 𝐿 − 𝑈 with 𝐷 = 𝑑𝑖𝑎𝑔(𝑀)

o 𝑀 𝑣 = 𝑓 ⇔ 𝐷 − 𝐿 − 𝑈 𝑣 = 𝑓 ⇔ 𝐷𝑣 = 𝐿 + 𝑈 𝑣 + 𝑓

o Build a converging sequence 𝐷𝑣(𝑘+1) = 𝐿 + 𝑈 𝑣(𝑘) + 𝑓

(in practice, this is –Laplacian)

Note: The solvers we’ll see here also apply to other linear systems like the Radiosity linear system we saw in week 2.



Solving the Poisson Equation
• Jacobi is easy to parallelize but

o Converges iif 𝐷−1(𝐿 + 𝑈) has max abs. eigenvalue < 1  

• Gershgorin argument just not enough here 

• Depends on BC (e.g., periodic BC has max eig = 1)

o Converges if strictly diagonal dominant : not the case here

o In practice, converges super slowly (or even not at all due to numerical precision)

• Gauss-Seidel:
o Instead: 𝐷 − 𝐿 − 𝑈 𝑣 = 𝑓 ⇔ 𝐷 − 𝐿 𝑣 = 𝑈𝑣 + 𝑓

o This corresponds to solving a triangular system via backsubstitution:

o 𝑣𝑖
𝑘+1

=
1

𝑀𝑖𝑖
𝑓𝑖 −  𝑗=1

𝑖−1𝑀𝑖𝑗𝑣𝑗
𝑘+1

−  𝑗=𝑖+1
𝑛 𝑀𝑖𝑗𝑣𝑗

𝑘

o For Poisson : 𝑣′𝑥,𝑦 =
1

4
𝑣𝑥+1,𝑦 + 𝑣𝑥,𝑦+1 + 𝑣′𝑥−1,𝑦 + 𝑣′𝑥,𝑦−1 + f𝑥,𝑦



Solving the Poisson Equation
• Gauss-Seidel:

o Converges faster

o Converges if SPD matrix 

• Not necessarily: also depends on BC (in many cases, one degree of freedom) ; 
fixing them (Dirichlet) makes it ok

• for the case of Radiosity, granted by energy conservation and reciprocity

o Converges if strictly diagonal dominant

• Still nope

o In practice, converges a bit faster

o Not parallelizable (easily) : depends on previously solved values



Solving the Poisson Equation
• Successive Over-Relaxation (SOR)

o Use a weighted combination of previous and current iteration with Gauss-Seidel

o 𝐷 − 𝐿 − 𝑈 𝑣 = 𝑓 ⇔ 𝜔 𝐷 − 𝐿 𝑣 = 𝜔𝑈𝑣 + 𝜔𝑓
⇔ 𝐷 − 𝜔𝐿 𝑣 = 1 − 𝜔 𝐷 + 𝜔𝑈 + 𝜔𝑓

o Leads to 𝑣𝑖
(𝑘+1)

= 1 − 𝜔 𝑣𝑖
𝑘
+

𝜔

𝑀𝑖𝑖
𝑓𝑖 −  𝑗=1

𝑖−1𝑀𝑖𝑗𝑣𝑗
𝑘+1

−  𝑗=𝑖+1
𝑛 𝑀𝑖𝑗𝑣𝑗

𝑘

o For Poisson : 𝑣′𝑥,𝑦 = 1 − 𝜔 𝑣𝑥,𝑦 +
𝜔

4
𝑣𝑥+1,𝑦 + 𝑣𝑥,𝑦+1 + 𝑣′𝑥−1,𝑦 + 𝑣′𝑥,𝑦−1 + f𝑥,𝑦

• Convergence
o If SPD matrix, converges for 0 < 𝜔 < 2

o Expect to converge fast with 𝜔 > 1 (goes further than GS)

o For tridiagonal matrices (e.g., 1D Poisson): 𝜔𝑜𝑝𝑡 =
2

1+ 1−𝜌( 𝐷−𝐿 −1𝑈)

o For 2D Poisson on an 𝑛 × 𝑛 grid: 𝜔𝑜𝑝𝑡 =
2

1+sin(
𝜋

𝑛
)



Solving the Poisson Equation
• Geometric Multigrid

o Last time we saw a multiscale approach. Good if we can build the rhs at any scale 
(e.g., Poisson Image Editing).

o Otherwise:

• Approximately solve 𝑀ℎ𝑣ℎ = 𝑓ℎ
• Take residual 𝑟ℎ = 𝑓ℎ −𝑀ℎ𝑣ℎ and downsample it to 𝑟2ℎ
• Approximately solve 𝑀2ℎ𝑟′2ℎ = 𝑟2ℎ
• ... continue...

• Upsample 𝑟2ℎ
′ to 𝑟ℎ

′ by interpolation

• Continue solving 𝑀ℎ𝑣′ℎ = 𝑓ℎ with 𝑣ℎ + 𝑟ℎ
′ as starting point

o Converges *much* faster: solves a linear system in 𝑂(𝑛)

o Still requires the matrix 𝑀ℎ at any scale ℎ

• If not, see “Algebraic multigrid”



Solving the Poisson Equation
• Conjugate Gradient

o Example: 𝑣 𝑘+1 = 𝑣(𝑘) + 𝑓 +𝑀𝑣(𝑘) (gradient descent for F 𝑣 =
1

2
𝑣𝑇𝑀𝑣 − 𝑓𝑣)

• Take 𝑣(1) = 𝑓

• Shows 𝑣(𝑘) in 𝒦𝑘 = 𝑆𝑝𝑎𝑛(𝑓,𝑀𝑓,𝑀2𝑓,… ,𝑀𝑘−1𝑓) : Krylov subspace

• Can build orthogonal basis for 𝒦𝑘 with Gram-Schmidt

o We want residual r k = 𝑓 −𝑀𝑣(𝑘) (which is in 𝒦𝑘+1) to be orthogonal to 𝒦𝑘

• Squeezes the residual to smaller and smaller subspaces

• So, r k orthogonal to 𝑟(𝑙) ∀𝑙 < 𝑘

o r k ⊥ 𝒦𝑘 and r k−1 ⊥ 𝒦𝑘−1 so     r k − 𝑟(𝑘−1) ⊥ 𝒦𝑘−1

o and 𝑣(𝑙) − 𝑣 𝑙−1 ∈ 𝒦𝑘

o So:  𝑣 𝑙 − 𝑣 𝑙−1 𝑇
r k − 𝑟 𝑘−1 = 0 for  𝑙 < 𝑘

o We have r k − r k−1 = −𝑀 𝑣 𝑘 − 𝑣 𝑘−1

o So:  𝑣 𝑙 − 𝑣 𝑙−1 𝑇
𝑀 𝑣 𝑘 − 𝑣 𝑘−1 = 0 for  𝑙 < 𝑘

• The difference between iterates is M-conjugate



Solving the Poisson Equation
• Conjugate Gradient

o 𝛼(𝑘) =
𝑟 𝑘−1 𝑇 𝑟 𝑘−1

𝑑 𝑘−1 𝑇𝑀 𝑑 𝑘−1 // such that 𝑟 𝑘 ⊥ 𝑟 𝑘−1

o 𝑣 𝑘 = 𝑣 𝑘−1 + 𝛼 𝑘 𝑑 𝑘−1

o 𝑟 𝑘 = 𝑟 𝑘−1 − 𝛼 𝑘 𝑀𝑑 𝑘−1 // r k − r k−1 = −𝑀 𝑣 𝑘 − 𝑣 𝑘−1

o 𝛽 𝑘 =
𝑟 𝑘 𝑇 𝑟 𝑘

𝑟 𝑘−1 𝑇 𝑟 𝑘−1 // such that 𝑑 𝑘 conjugate with 𝑑 𝑘−1

o 𝑑 𝑘 = 𝑟 𝑘 + 𝛽 𝑘 𝑑 𝑘−1

• Works for SPD matrices 
o Again, beware of BC for Poisson problems

• Convergence: 𝑥 − 𝑥𝑘 𝑀 ≤ 2
𝜆𝑚𝑎𝑥− 𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥+ 𝜆𝑚𝑖𝑛

𝑘

𝑥 − 𝑥0 𝑀



Solving the Poisson Equation
• These methods don’t require building the matrix M

o Only need applying matrix M to vector v

o That’s fortunate: even if matrices are sparse, direct solver can eat much memory

• In many cases (not Poisson), need preconditioners
o Solver converge better when eigenvalues not too spread

o Instead solve : 𝑃 𝑀𝑣 = 𝑃𝑓 with 𝑃 ≈ 𝑀−1

• Jacobi preconditioner: 𝑃 = 𝑑𝑖𝑎𝑔 𝑀 −1

• ICP: Incomplete Cholesky (e.g., a band of Cholesky)

• Or any iterations we’ve seen so far (e.g., solve with CG, use multigrid 
preconditioner)



Solving the Poisson Equation
• Fourier-based approach

o Δ𝑣 = 𝑓 ⟺ ℱ Δ𝑣 = ℱ 𝑓
⟺ 4𝜋2|𝜉|2ℱ 𝑣 = ℱ 𝑓

o Numerically:

• When periodic BC, use FFT (and then inverse FFT) :  𝑣 =
ℎ2  𝑓

2 cos
𝜋𝑚

𝑀
+ cos

𝜋𝑛

𝑁
−2

• When Dirichlet BC ( 𝑣 = 0 ), use DST :  𝑣 =
ℎ2  𝑓

2 cos
𝜋𝑚

𝑀
+cos

𝜋𝑛

𝑁
−2

• When Neumann BC (∇𝑣 = 0), use DCT :  𝑣 =
ℎ2  𝑓

2 cos
𝜋𝑚

𝑀
+cos

𝜋𝑛

𝑁
−2



Solving the Poisson Equation
• Green’s kernel approach

o Given solution of  Δ𝐺 = 𝛿 with 𝐺 = 0 on 𝜕Ω, 

• Solution of Δ𝑣 = 0 with 𝑣 = 0 on 𝜕Ω is     𝑣 = 𝐺 ∗ 𝑓

• Proof: Δ𝑣 = Δ 𝐺 ∗ 𝑓 = Δ𝐺 ∗ 𝑓 = 𝛿 ∗ 𝑓 = 𝑓

o Green’s kernel for Δ (in 2D) : 𝐺 𝜌 =
1

2𝜋
ln 𝜌

o Green’s kernel for 2d diffusion: 
𝜕

𝜕𝑡
− 𝑘Δ :   𝐺 𝑡, 𝜌 = 𝐻 𝑡

1

4𝜋 k t
exp −

𝜌2

4 𝑘 𝑡

• Gaussian convolutions



Application
• Geodesic computation

o Varadhan’s formula: 𝑑 𝑥, 𝑦 = lim𝑡→0 −4𝑡 log 𝑘𝑡,𝑥 𝑦

• 𝑘𝑡,𝑥(𝑦) heat kernel: heat transferred from 𝑥 to 𝑦 after time 𝑡

• Too sensitive to errors

o We know that ∇𝑑 = 1 (Eikonal equation)

o Instead only consider ∇𝑣 of correct direction

• 𝑣 − 𝑡 Δ𝑣 = 0 on 𝑀 \ 𝛾

• 𝑣 0, 𝑥 = 1 on 𝛾

• Take just one Euler step to obtain 𝑣(𝜖, 𝑥)

• Consider vector field 𝑋 =
∇𝑣

∇𝑣

• Solve Poisson eq. Δ𝑑 = ∇. 𝑋

“Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow”, [Crane et al. 2013]



Application
• Discretization of Δ on meshes – see with Julie next time

• Solver:
o Iterative ?

o Advocate for Cholesky factorization: eats memory and slow but can be reused

• Only depends on mesh (no BC!)

• Gives  Δ = 𝐿𝐿𝑇 , solved via backsubstitution



Poisson Equation for Fluid 
simulation



The Navier-Stokes equations
𝜕𝑢

𝜕𝑡
+ 𝑢. ∇𝑢 +

1

𝜌
∇p = g + 𝜈Δ𝑢

∇. 𝑢 = 0

𝐷𝑢

𝐷𝑡

(e.g., consider
𝑑

𝑑𝑡
𝑓  𝑥 𝑡 , 𝑡 and use chain rule)

~ acceleration

𝑚  𝑣 =  𝑓𝑜𝑟𝑐𝑒𝑠
Forces: ∇𝑝 , 𝜌  𝑔, 𝜌𝜈Δ𝑢

Viscosity: 
deviation of 𝑢
from average

“Fluid Simulation for Computer Graphics”, Bridson 2008 (book)

Incompressibility



Simple Fluid Solver
• First 𝑢′ = advect 𝑢 + Δ𝑡  𝑔 based on interpolation 

• Then 𝑢′′ = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑢′

o 𝑢′′ = 𝑢′ − Δ𝑡
1

𝜌
∇𝑝

o Find 𝑝 such that 𝑢′′ incompressible: ∇. 𝑢′′ = ∇. 𝑢′ −
Δ𝑡

𝜌
Δ𝑝 = 0

o i.e., solve the Poisson equation Δ𝑝 =
𝜌

Δ𝑡
∇. 𝑢′

(we dropped viscosity: this actually the inviscid Euler equations ; Though numerical errors will lead to 
some viscosity anyway ; could other add a timestep or implicit solve of viscous term)



Bonus
Cool Image and Video processing without Poisson



Bonus: Seam carving

Resize

(no Poisson here!)



Seam carving

Crop



Seam carving

Seam Carving



Seam Carving

“Seam Carving for Content-Aware Image Resizing”, Avidan and Shamir 2007



Seam Carving



Seam Carving

E(x,y)



Seam Carving

𝑉 𝑥, 𝑦 = min(𝑉 𝑥 − 1, 𝑦 − 1 , 𝑉 𝑥, 𝑦 − 1 , 𝑉 𝑥 + 1, 𝑦 − 1 )+E(x,y)

Dynamic programming:



Seam Carving

Backtracking



Seam Carving



Bonus:
Bilateral Filter

“A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. 2008 
[course]



ie. Blur.
• Blur : Each pixel is a weighted average of its neighbors:

𝐼 𝑥, 𝑦 =  

𝑖=−𝐾

𝐾

 

𝑗=−𝐾

𝐾

𝑤 𝑖, 𝑗 . 𝐼𝑥+𝑖,𝑦+𝑗



ie. (more clever) Blur.
• Bilateral filter : weights account for intensity

𝐼 𝑥, 𝑦 =
1

𝑊𝑥,𝑦
 

𝑖=−𝐾

𝐾

 

𝑗=−𝐾

𝐾

𝑤 𝑖, 𝑗 . 𝑤′(|𝐼𝑥+𝑖,𝑦+𝑗 − 𝐼𝑥,𝑦|). 𝐼𝑥+𝑖,𝑦+𝑗



Bonus:Motion Magnification
Following slides from “Phase-Based Video Motion Processing”, 

[Wadhwa et al. 2013]



Goal
• Magnify motion:

(That’s using a previous approach)



• For illustration, let’s look at a 1D image profile

Fourier Decomposition

FFT
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Amplitude of Basis Function

𝐴1 × +𝐴2 × +⋯

𝑆𝜔
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• Phase controls location of sinusoid

𝑓 𝑥𝑓 𝑥 − 𝛿

Fourier Shift Theorem 

𝐴1 × +𝐴2 × +⋯
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∞
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Local Motions
• Fourier shift theorem only lets us 

handle global motion

• But, videos have many local 
motions

• Need a localized Fourier Series for 
local motion

Mast

Hook

Building



Complex Steerable Pyramid 
[Simoncelli et al. 1992]
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Complex Steerable Pyramid 
Basis Functions

×

Window
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Single Sub-Band (Scale)
• In single scale, image is coefficients times translated copies of 

basis functions

𝐴1 × +𝐴2 × +⋯

Single Sub-band of Image Profile

=



Single Sub-Band (Scale)
• In single scale, image is coefficients times translated copies of 

basis functions

𝐴1 × +𝐴2 × +⋯

Single Sub-band of Image Profile

=



Local Amplitude
• Local amplitude controls strength of basis function

𝐴1 ×

+𝐴2 × +⋯

Single Sub-band of Image Profile

=

Local Amplitude 



Local Phase
• Local phase controls location of sinusoid under window, approximates local 

translation

+𝐴2 × +⋯

Single Sub-band of Image Profile

=

Local Phase

Local Phase Shift ↔ Local Translation

Local Motions

𝐴1 ×



• Phase-based motion synthesis

• Phase-based optical flow

Phase and Motion

[Fleet and Jepson 1990] [Gautama and Van Hulle 2002]

Motion without Movement [Freeman et 
al. 1991]



Time (t)
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Phase over Time

Time (t)

Phase over TimeInput Motion-magnified
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2D Complex Steerable 
Pyramid

Filter Bank
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Complex Steerable Pyramid 
Decomposition

Amplitude

Sub-bands
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Phase over Time
Amplitude
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New Phase-Based Pipeline
Amplitude

Sub-bands

Filter Bank

Complex steerable pyramid
[Simoncelli et al. 1992]
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Linear Pipeline (Wu et al. 
2012)

Laplacian pyramid
[Burt and Adelson 1983] Temporal filtering on intensities 



New Phase-Based Pipeline
Amplitude

Sub-bands

Filter Bank

Complex steerable pyramid
[Simoncelli et al. 1992]
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Improvement #1: Less Noise 

Noise amplified Noise translated

Source (IID Noise, 
std=0.1)

Linear [Wu et al. 2012] 
(x50)

Phase-based 
(x50)



Improvement #2: More 
Amplification

Amplification factor  Motion in the sequence

Range of linear method:

Range of phase-based method:

4 times the
amplification!



Attenuated

• Local phase can move image features, but only within the 
filter window

Limits of Phase Based 
Magnification

Amplification factor 



See Paper For…
• The bound on amplification

• Sub-octave bandwidth pyramid

𝛼𝛿 <
𝜆

2

Amplification Initial motion Spatial wavelength

Compact Overcomplete



Comparison with [Wu et al. 
2012]

Wu et al. 2012 Phase-Based (this paper)



Vibration due to Camera’s 
Mirror

Source (300 FPS) Wu et al. 2012 Phase-based (this paper)



Comparison with [Wu et al. 
2012] and Video Denoising

Wu et al. with VBM3D

Phase-based (this paper)

Wu et al. 

Wu et al. + Liu and Freeman 2010



Talk Overview
• Eulerian Video Magnification [Wu et al. SIGGRAPH’12]

o Hao-yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Frédo Durand, William T. 
Freeman

• Phase-Based Video Motion Processing [this paper]
o Neal Wadhwa, Michael Rubinstein, Frédo Durand, William T. Freeman

• Results, new applications, controlled sequences



Eye Movements

Source (500FPS) Motion magnified x150 (30-50 Hz)



Expressions

Low frequency motions Mid-range frequency motions

Source



Ground Truth Validation

• Induce motion 
(with hammer)

• Record with 
accelerometer

AccelerometerHammer Hit



Ground Truth Validation



Qualitative Comparison

Input
(motion of 0.1 px)

“Ground truth”
(motion of 5 px)

Motion-magnified (x50)

time

space



Motion Attenuation

Source Turbulence Removed

Sequence courtesy Vimeo user Vincent Laforet



Car Engine
Source



Car Engine
22Hz Magnified



Car Engine
Source



Car Engine
22Hz Magnified



Neck Skin Vibrations

Frequency (Hz)
0 500 1000
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Source (2 KHz)

Frequency (Hz)
0 500 1000

Po
w

er

Source (2 KHz) 100 Hz Amplified x100

Fundamental 
frequency: ~100Hz



Source (2 KHz) Amplified (x100)



Conclusions
• New representation for analyzing and 

editing small motions

• Much better than linear EVM [Wu et al. 
2012] 
o Less noise
o More amplification 

• Still “Eulerian” (no optical flow), but more 
explicit representation of motion 
o New capabilities (e.g. attenuating distracting motions)

Linear
SIGGRAPH’12

Phase-based
SIGGRAPH’13

Phase over time



Phase-Based Motion 
Processing: Code and Web App

• Code available soon: 
http://people.csail.mit.edu/nwadhwa/phase-video/

http://videoscope.qrclab.com/

http://people.csail.mit.edu/nwadhwa/phase-video/
http://videoscope.qrclab.com/


Overall Conclusion
• Many problems involve solving for Poisson equations

o For image editing

o For video processing

o For rendering

o For geometry processing (more with Julie)

• Many solvers exist
o Iterative solvers (Krylov or not...)

o Direct solvers (Cholesky)

o Fourier, FFT or Green’s function-based

• We have seen other cool image/video applications
o ... though not with Poisson!


