Optimal Transport Principles for Computer Graphics and Machine Learning

Motivation in neural networks

How to compare functions?

How to compare functions?

Lonsqu'on doit tranfporter des terres d'un lieu dans un autre, on a coutume de donner le nom de Déblai au volume des terres que lion doit tranfporter, \& le nom de Remblai à l'efpace qu'elles doivent occuper après le tranfport.

Le prix du tranlport d'une molécule étant, toutes choles d'ailleurs égales, proportionnel à fon poids \& à l'efpaceetu'on Jui fait parcourir, \& par conféquent le prix du traplport total devant être proportionnel à la fomme des produits des molécules multipliées chacune par l'efpace parcouru, il s'enfuit que le déblai \& le remblai étant donnés de figure \& de pofition, ii n'eft pas indifférent que telle molécule du déblai foit tranfportée dans tel ou tel autre endroit du remblai, mais qu'il y a une certaine diftribution à faire des molécules dú premier dans le fecond, d'après laquelle la fomme de ces produits fera la moindre poffible, \& le prix du tranfport total fera un minimum.

Leonid Kantorovich

- Nobel prize in economy in 1975, for his
"contribution to the theory of resources allocation"

Monge formulation

$$
W(f, g)=\min _{T} \int_{X} c(x, T(x)) f(x) \mathrm{dx}
$$

$$
\text { s.t. } \quad f(x)=g(T(x))\left|\operatorname{det} J_{T}(x)\right|
$$

Same total mass
"find a good warping between f and g with the change of variable formula"

Kantorovich formulation

Work for transforming finto g

Discretization of the Kantorovich problem Earth Mover's Distance

Intuition: comparison

- Finds a "transport map"
- Difficult non-linear problem
- May have no solution (e.g., a Dirac splitting in two)
- Leads to PDEs

- Finds a "transport plan"
- Linear program
- "Always" has solution (i.e., under reasonable assumptions)
- Also has dual formulation

When it exists, the solution is the same.

$$
\begin{aligned}
& \text { Often, } c(x, y)=\|x-y\|_{p}^{p} \Rightarrow W_{p}^{p} \\
& W_{p} \text { is a distance }
\end{aligned}
$$

$g(y)$

$g(y)$

Application: BRDF

Function A

Linear interpolation

Displacement interpolation

Displacement Interpolation using Lagrangian Mass Transport

Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, Wolfgang Heidrich SIGGRAPH Asia 2011

Example: BRDF

- "Bidirectional Reflectance Distribution Function"

Example: BRDF

Function A
?

Interpolation

Function B

Example: BRDF

Function A

Function B

Example: BRDF

Function A

Linear interpolation

Function B

Example: BRDF

Function A

Function B

Example: BRDF

Function A

Linear interpolation

Function B

Example: BRDF

Function A

Displacement interpolation

Function B

Example: BRDF

Function A

Displacement interpolation

Function B

Example: BRDF

Function A

Displacement interpolation

Function B

Example: BRDF

Function A

Displacement interpolation

Function B

Four steps

- Decompose PDFs into non-negative radial basis functions
- Optimal transport computation
- Partial advection
- Reconstruct interpolated PDF
- (+optional multiscale approach)

Radial Basis Function decomposition

$\min \sum_{i, j} c_{i, j} m_{i, j}$
 Transport computation
 $$
\begin{aligned} & \sum_{j} m_{i, j}=f_{i} \\ & \sum_{i} m_{i, j}=g_{j} \end{aligned}
$$

- Transport RBF weights
- Network simplex > Transportation simplex

Auction algorithm for assignment

- Consider instead: max $\sum a_{i j}$ over complete assignments $(i, j) \in S$ and $j \in A(i)$
- $a_{i j}$: how much person i is ready to pay for object j p_{j} : Price person j will actually pay

$$
\text { Solve dual: } \quad \min _{p, \pi} \sum \pi_{i}+\sum p_{j} \quad \text { s.t. } \quad \pi_{i}+p_{j} \geq a_{i j} \forall i, j \in A(i)
$$

- At optimality $\pi_{i}=\max _{k \in A(i)} a_{i k}-p_{k}=a_{i j(i)}-p_{j(i)} \quad$ (saturates constraint)
- Profit of person i: $\quad \pi_{i}=\max _{j \in A(i)} v_{i j}$
with benefit for object $j \in A(i): \quad v_{i j}=a_{i j}-p_{j}$
- Add some slack: $\pi_{i}-\epsilon=\max _{k \in A(i)} a_{i k}-p_{k}-\epsilon \leq a_{i j(i)}-p_{j(i)}$ optimal if $\epsilon<\frac{1}{N}$

Auction algorithm for assignment

- Start with some assignment S
- For each unassigned person i, find object j^{*} maximizing benefit, and the benefit w_{i} of the second best.
Compute bid : $b_{i j^{*}}=a_{i j^{*}}-w_{i}+\epsilon$
- For each object $j: P(j)$ is the set of persons who bid for j.
- If $P(j) \neq \emptyset: p_{j} \leftarrow \max _{i \in P(j)} b_{i j}$; remove (i, j) from S , and $\operatorname{add}\left(i^{*}, j\right)\left(i^{*}\right.$ bes \dagger bidder)
- If $P(j)=\varnothing, p_{j}$ unchanged

Auction algorithm for optimal transport (1989)

- In O(N A log(N C))
- Idea: convert problem to assignment with duplicated sources/sinks
- Works on similarity classes
- In the previous algo, replace "second best" by "second best among other classes"

Interpolation

- Divide Gaussian function w.r.t to transported weights
- We advect.

Results

Results

Naive
EMD
(minimize kinetic energy)

Results

Results

Linear interpolation

Results

Displacement interpolation

Results

Linear interpolation

Displacement interpolation

Applications to Color Grading

Input photo

Input photo

Target style

Input photo

Target style

Results

Model

Input

Sliced and Radon Wasserstein Barycenters of Measures

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, Hanspeter Pfister Journal of Mathematical Imaging and Vision (2014)

Multi-marginal transport

- Two ways transportation :

$$
\begin{array}{ll}
& \min \sum_{i} \sum_{j} c_{i, j} m_{i \rightarrow j} \\
m_{i \rightarrow j} \geq 0 \\
\sum_{i} m_{i \rightarrow j}=g_{j} \\
\sum_{j} m_{i \rightarrow j}=f_{i}
\end{array}
$$

Number of non-zeros among $\mathrm{M}^{*} \mathrm{~N}$ variables :
$\mathrm{M}+\mathrm{N}-1$

Multi-marginal transport

- Three ways transportation :

$$
\min \sum_{i} \sum_{j} \sum_{k} c_{i, j, k} m_{i, j, k}
$$

$$
\begin{aligned}
& m_{i, j, k} \geq 0 \\
& \sum_{i} \sum_{j} m_{i, j, k}=h_{k} \\
& \sum_{i} \sum_{k} m_{i, j, k}=g_{j} \\
& \sum_{j} \sum_{k} m_{i, j, k}=f_{i}
\end{aligned}
$$

Number of non-zeros among $\mathrm{M}^{*} \mathrm{~N}^{*} \mathrm{P}$ variables :

$$
M^{*} N * P-\left(M^{*} N+N * P+M^{*} P\right)+(M+N+P-1)
$$

Simple cases

- Transport 1 Gaussian $\leftrightarrow 1$ Gaussian
- Transport 1 Gaussian $\leftrightarrow 1$ Gaussian $\leftrightarrow 1$ Gaussian [...]
- Transport = translation + scaling
- Transport 1D function \leftrightarrow 1D function (\leftrightarrow 1D function [...])

Optimal transport is simple for Gaussians

- Optimal transport and barycenters trivially solved for
- Gaussian distributions with $c(x, y)=\|x-y\|^{2}$
- $W_{2}^{2}\left(\mathcal{N}_{0}, \mathcal{N}_{1}\right)=\operatorname{tr}\left(\Sigma_{0}+\Sigma_{1}-2 \Sigma_{0,1}\right)+\left\|\mu_{0}-\mu_{1}\right\|$ with $\Sigma_{0,1}=\left(\Sigma_{0}^{\frac{1}{2}} \Sigma_{1} \Sigma_{0}^{\frac{1}{2}}\right)^{1 / 2}$
- $T(x)=\Sigma_{0,1} x$
- Barycenter: $\mathcal{N}(\mu, \Sigma)$ with $\mu=\sum_{k} \lambda_{k} \mu_{k}$ and iterations

$$
\Sigma^{(n+1)}=\sum_{k} \lambda_{k}\left(\sqrt{\Sigma^{(n+1)}} \Sigma_{k} \sqrt{\Sigma^{(n+1)}}\right)^{1 / 2}
$$

Optimal transport is simple in 1D

- Continuous case with density, convex cost, $\mu=f d x, v=g d y$
- Need: $\int_{-\infty}^{x} f(x) d x=\int_{-\infty}^{T(x)} g(x) d x$

$$
T=G^{-1} \circ F
$$

with $F(x)=\int_{-\infty}^{x} f(x) d x$ and $\mathrm{G}(x)=\int_{-\infty}^{x} g(x) d x$
Generalize $G^{-1}: G^{-1}(y)=\min _{x}\{y=G(x)\}$ \qquad
Quantile function: e.g.:
"what salary corresponds to

the first percentile"

1D Case

OT Map: $\quad T=G^{-1} \circ F$

$$
\text { OT cost: } \quad \int_{0}^{1} c\left(F^{-1}(t)-G^{-1}(t)\right) d t
$$

Interpolation: $\quad F_{\text {interp }}^{-1}(x)=\sum_{i} \alpha_{i} F_{i}^{-1}(x)$

Radon transform

Radon transform

Method

1D Case, discrete

- Discrete case, $\mu=\sum_{i=1}^{n} \delta_{x_{i}}, v=\sum_{i=1}^{n} \delta_{y_{i}}$ (same for interpolating between more than 2 measures)
- Optimal transport for convex cost = pairing sorted samples

Sliced Wasserstein Distance

- For discrete high-dimensional distributions $\mu=\sum_{i=1}^{n} \delta_{x_{i}}$ and $v=\sum_{i=1}^{n} \delta_{y_{i}}$ Consider energy

$$
S W(\mu, v)=\int_{S} W_{2}^{2}(\operatorname{proj}(\mu, \omega), \operatorname{proj}(v, \omega)) \mathrm{d} \omega
$$

Where $\operatorname{proj}(\mu, \omega)$ is the $1-$ d distribution : $\operatorname{proj}(\mu, \omega)=\sum_{i} \delta_{\left\langle x_{i}, \omega\right\rangle}$ (same for v) And W_{2}^{2} computes the 1-d squared Wasserstein distance

Sliced Wasserstein Distance

- Take a uniform random direction ω
- $\omega \leftarrow(\mathcal{N}(0,1), \mathcal{N}(0,1), \mathcal{N}(0,1))$ and normalize
- Project samples of μ and v on $\omega: \mu^{\prime}=\operatorname{Proj}(\mu)$ and $v^{\prime}=\operatorname{Proj}(v)$
- Sort μ^{\prime} and v^{\prime}, i.e, find permutations σ_{μ} and σ_{v}
- To compute the Sliced Wasserstein Distance:

$$
d^{2} \leftarrow d^{2}+\sum_{i}\left|\left\langle x_{\sigma_{\mu}(i)}, \omega\right\rangle-\left\langle y_{\sigma_{v}(i)}, \omega\right\rangle\right|^{2}
$$

- or, to advect μ towards v ("gradient flow")
- Update μ by $x_{\sigma_{\mu}(i)} \leftarrow x_{\sigma_{\mu}(i)}+\left(\left\langle x_{i}, \omega\right\rangle-\left\langle y_{i}, \omega\right\rangle\right) \omega$

Sliced Wasserstein Distance

1-d Linear Assignment Problem is trivial*

*assuming the cost c is a convex function of $|x-y|$

Partial optimal assignment?

=> Sliced Partial Optimal Transport, [Bonneel and Coeurjolly 2019]

$$
W(f, g)=\min \sum_{i, j} c_{i, j} \pi_{i, j} \quad \sum_{j . \dagger .} \pi_{i, j}=1
$$

$$
\min _{\mathrm{T} \text { injective }} \sum_{i} c\left(x_{i}, y_{T(i)}\right)
$$

Similar problems

- DNA sequence alignment
- Text alignment
- Music synchronization

Scarites	c		T	4 G		T		0	T		C	c		-	-				T		T	T		c
Carenum	c	T	T	A 0		T		C	T	c	C	c	c		-	T		c	-	T	T	T	T	c
Pasimachus		T	T	A 0		T		C	T	A	Co	c	c	T		T			6	T	T	T		c
Pheropsophus	C	T	T	0		T		C	T	T 0	Co	c	c	-	-	-		c		T		T	-	c
Brachinus armiger		T	T	40		T		co	T		C	c	c	-	-	-		T		T		T	T	c
Brachinus hirsutus		T	T	G		T		C 6	T	C	Co	c	c	-	-	-		T		T		T	A	c
Aptinus	c		T	A ${ }^{\text {G }}$		T		0	T		C	c	c	-	-	-		c			T			C
Pseudomorpha	c	T	T	6			C	0	T		C	C-	-	-	-	-		c						C

Quadratic time complexity algorithm (linear space)

Euclidean Nearest Neighbor assignment

Quadratic time complexity algorithm (linear space)

Euclidean Nearest Neighbor assignment
Intervals of bijective assignments
Optimal Transport assignment

Semi-discrete optimal transport

Voronoi diagram

- A partition such that each point x is assigned to its closest site x_{i}

$$
\left\|x-x_{i}\right\|^{2} \leq\left\|x-x_{j}\right\|^{2} \forall j
$$

- The dual of a Delaunay triangulation: a triangulation of the sites such that no other site is encompassed by the circumcircle of a triangle
- Also: convex hull of a parabolic lifting

Projectonto paraboloid.

Compute convex hull.

Project hull faces back to plane.

Centroidal Voronoi Diagram

- Can be defined as the solution to a least-square problem

$$
\min \int_{V_{0 o r_{i}}} \sum_{i}\left\|x-x_{i}\right\|^{2} d x
$$

Also says that the centroid of Vor $_{i}$ is the site x_{i}

- Can be computed by:
- A Lloyd clustering algorithm
- A descent approach on the above energy

Power diagram (Laguerre diagram)

- A partition s.t. each point x is assigned to its closest site x_{i} with weight w_{i}

$$
\left\|x-x_{i}\right\|^{2}-w_{i} \leq\left\|x-x_{j}\right\|^{2}-w_{j} \quad \forall j
$$

- Can be computed by lifting a Voronoi diagram
- Consider site coordinates $x_{i}^{\prime}=\left(x_{i} ; \sqrt{c-w_{i}}\right)$ for large constant c $; x^{\prime}=(x ; 0)$
- Then $\left\|x^{\prime}-x_{i}^{\prime}\right\|^{2} \leq\left\|x^{\prime}-x_{j}^{\prime}\right\|^{2} \forall j$
- Any partition into convex polyhedral cells is a power diagram of some sites

Semi-discrete Optimal Transport

Semi-discrete Optimal Transport

Semi-discrete Optimal Transport

No constraint on production: population go to their nearest bakery/factory/... regardless of populat

Semi-discrete Optimal Transport

Limited production: population go to the nearest bakery/factory with sufficient production!

Semi-discrete Optimal Transport

Limited production: population go to the nearest bakery/factory with sufficient production!

Back to optimal transport

- Optimal transport (Monge version) :

$$
\min \int\|x-T(x)\|^{2} d \mu(x)
$$

Considering μ is continuous with density ρ

$$
\min \int\|x-T(x)\|^{2} \rho(x) d x
$$

Considering v (the target measure) discrete: $v=\sum \lambda_{p} \delta_{p}$
The mass preservation constraint is:

$$
\lambda_{p}=\int_{T^{-1}(\{p\})} \rho(x) d x
$$

Back to optimal transport

- In this case : $T^{-1}(\{p\})=\operatorname{Vor}^{W}(p)$
a power cell for some weight w_{p}
- This determines a partition, so Monge problem is:

$$
\min \sum_{p} \int_{V^{W}{ }^{W}(p)}\|x-p\|^{2} \rho(x) d x
$$

- Idea: optimize weights w for each site to grow/shrink power cells until $\lambda_{p}=\int_{T^{-1}(\{p\})} \rho(x) d x$
- Gradient of appropriate functional given by $\frac{\partial \phi}{\partial w(p)}(w)=\lambda_{p}-\int_{V o r{ }^{W}(p)} \rho(x) d x$

Back to optimal transport

A Multiscale Approach to Optimal Transport [Mérigot 2011]

A Numerical Algorithm for L2 Semi-discrete Optimal Transport in 3D [Lévy 2015]

Application

Blue Noise through Optimal Transport [de Goes et al. 2012]

Regularized optimal transport

The Sinkhorn algorithm

- Kantorovich optimal transport: $\min _{m} \sum_{i} \sum_{j} c_{i, j} m_{i \rightarrow j}$ with constraints
- Rewritten as :

$$
\min _{M \in \mathcal{U}(r, c)}\langle C, M\rangle
$$

with $U(r, c)$ matrices whose rows sum to r and columns to c

- Idea: consider instead

$$
\min _{M \in \mathcal{U}(r, c)}\langle C, M\rangle-\epsilon E(M)
$$

where $E(M)=-\sum M_{i j}\left(\log \left(M_{i j}\right)-1\right)$ is the entropy, ϵ a small constant

Iterative Bregman Projections for Regularized Transportation Problems [Benamou et al. 2014] Sinkhorn Distances: Lightspeed Computation of Optimal Transport [Cuturi 2013]

The Sinkhorn algorithm

$$
\min _{M \in \mathcal{U}(r, c)}\langle C, M\rangle-\epsilon E(M)
$$

- Can be rewritten as a projection:

$$
\min _{M \in \mathcal{U}(r, c)} K L(M, \xi)
$$

where $\xi=\exp \left(-\frac{C}{\epsilon}\right)$ and $K L(M, \xi)=\sum M_{i j}\left(\log \left(\frac{M_{i j}}{\xi_{i j}}\right)-1\right)$ the Kullback-Leibler
divergence

The Sinkhorn algorithm

$$
\min _{M \in \mathcal{U}(r, c)} K L(M, \xi)
$$

- This is a projection on the intersection of two affine constraints, due to $U(r, c)$
- We can thus apply Bregman projections: we iteratively project on each constraint

The Sinkhorn algorithm

- Projecting on constraints:
- Constraints: $\sum_{i} M_{i j}=r_{j}$ and $\sum_{j} M_{i j}=c_{i}$
- $M_{i j}^{\prime}=\frac{M_{i j}}{\sum_{i} M_{i j}} \cdot r_{j}$ and $M_{i j}^{\prime}=\frac{M_{i j}}{\sum_{j} M_{i j}} \cdot c_{i}$ corresponds to projection with KL
- Row/column scaling
- Corresponds to left/right multiplying M by diagonal matrix

The Sinkhorn algorithm

- We can thus apply Bregman projections: we iteratively project on each constraint
- We obtain the algorithm:
- $u^{(n)}=\frac{f}{\xi v^{(n)}}$
- $v^{(n+1)}=\frac{g}{\xi^{T} u^{(n)}}$
- $M=\operatorname{diag}\left(u^{(n)}\right) \xi \operatorname{diag}\left(v^{(n)}\right)$

The Sinkhorn algorithm

- We realize that $\xi v^{(n)}$ can be computed efficiently
- E.g., if $c(x, y)=\|x-y\|^{2}, \xi_{i j}=\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{\epsilon}\right)$
- Then $\xi v^{(n)}$ is just a Gaussian convolution
- So, it is a separable operator, and efficiently done in high-dimension

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains [Solomon et al. 2015]

The Sinkhorn algorithm

- Generalized to compute displacement interpolation and barycenters
- $b_{s}^{(0)}=1 \forall s$
- for $\ell=0 \ldots L$
- $a_{s}^{(\ell)}=\frac{p_{s}}{K b_{s}^{(l-1)}} \quad \forall s$
- $p(\lambda)=\Pi_{s}\left(K^{T} a_{s}^{(\ell)}\right)^{\lambda_{s}}$
$-b_{S}^{(\ell)}=\frac{p(\lambda)}{K^{T} a_{s}^{(\ell)}}$
$\forall s$

Wasserstein Barycentric Coordinates: Histogram Regression Using Optimal Transport

N. Bonneel, G. Peyré, M.Cuturi

Optimal Transport

$$
t=0
$$

$$
t=1
$$

Optimal Transport

Optimal Transport

$$
\begin{aligned}
& \text { Optimal Transpor } \\
& x \\
& x \times \\
& \text { * }{ }^{*} \times \\
& \text { * 米兴只 } \\
& \text { 十本 } 2 x 8
\end{aligned}
$$

Formally:

$$
\begin{aligned}
& \min _{\lambda}^{\lambda} \\
& \text { st. } \sum \lambda_{i}=1, \lambda_{i} \geq 0
\end{aligned}
$$

with $p(\lambda)$ a Wasserstein barycenter:

$$
p(\lambda)=\operatorname{argmin}_{p} \sum_{s} \lambda_{s} W^{2}\left(p_{s}, p\right)
$$

and $\quad \mathcal{L}(p, q)$ a cost function:
$\mathcal{L}(p, q)=W(p, q),\|p-q\|_{2}{ }^{2},\|p-q\|_{1}, K L(p, q)$

Method

$$
\min _{\lambda} \mathcal{E}(\lambda)=\mathcal{L}(p(\lambda), q)
$$

- We minimize using L-BFGS
- We use $\nabla \mathcal{E}(\lambda)=[\partial p(\lambda)]^{T}(\nabla \mathcal{L}(p(\lambda), q))$

Hard

Idea

- $\quad[\partial p(\lambda)]^{T}$ by deriving the Sinkhorn algorithm [Solomon et al. 2015]
- To compute $p(\lambda)$ given λ, Sinkhorn iterations read:
- $b_{s}^{(0)}=1 \forall s$
- for $\ell=0 \ldots L$
- $a_{s}^{(\ell)}=\frac{p_{s}}{K b_{s}^{(l-1)}} \quad \forall s$
- $p(\lambda)=\prod_{s}\left(K^{T} a_{s}^{(\ell)}\right)^{\lambda_{s}}$
- $b_{s}^{(\ell)}=\frac{p(\lambda)}{K^{T} a_{s}^{(\ell)}} \quad \forall S$

Idea

- Automatic differentiation: given an iterative algorithm, apply the chain rule:
- If

$$
p^{(\ell+1)}(\lambda)=f\left(p^{(\ell)}(\lambda), \lambda\right)
$$

- Then

Gradient computation

- We obtain:
- $\mathrm{q}_{\mathrm{s}}=0 ; r_{s}=0 \forall s$
- $g \leftarrow \nabla \mathcal{L}(p(\lambda), q) \odot p(\lambda)$
- for $\ell=L \ldots 1$

$$
\left.q_{s}=q_{s}+\log K^{T} a_{s}^{(\ell)}, g\right\rangle \quad \forall s
$$

$$
r_{s} \leftarrow-K^{T}\left(K\left(\frac{\lambda_{s} g-r_{s}}{K^{T} a_{s}^{(())}}\right) \odot \frac{p_{s}}{\left(K b_{s}^{(L-1)}\right)^{2}}\right) \odot b_{s}^{(\ell-1)} \quad \forall s
$$

$$
-g \leftarrow \sum_{s} r_{s}
$$

Applications

Euclidean

Wasserstein

Applications

Prdieatton

Database

Projeectton

Flickr results for "Autumn"

Projeectton

Reference

Applic

10\% (projection)

Input

Projection

Conclusion

- Notion of barycentric coordinates useful for computer graphics
- Tractable computations
- Barycenter gradient requires $2 x$ convolutions w.r.t to barycenter alone
- Relatively large memory footprint
- Takes between seconds to minutes
- Easy to implement
- Code available: http:///liris.cnrs.fr/~nbonneel/WassersteinBarycentricCoordinates/

