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Motivation in neural networks
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How to compare functions ?
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Mémoire sur la théorie des déblais et des remblais (1781)



 Nobel prize in economy in 1975, for his
“contribution to the theory of resources allocation”

Leonid Kantorovich



Monge formulation7

� �, � =min
�

 
�

�  �,  � �   � �  dx

s.t. � � = � � �    det �� �  

“find a good warping between � and � with the change of variable formula”

Same total mass

Monge used � �, � =  � − � 



Kantorovich formulation
        particles will 
move from i to j

Work for transforming
f into g

Cost

Discretization of the Kantorovich problem
Earth Mover’s Distance
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Nb of particles is positive !

Reconstruct target function

Reconstruct source function

� → �

��

��

��→�



Intuition: comparison9

- Finds a "transport map"
- Difficult non-linear problem
- May have no solution

(e.g., a Dirac splitting in two)
- Leads to PDEs

- Finds a "transport plan"
- Linear program
- "Always" has solution

(i.e., under reasonable 
assumptions)

- Also has dual formulation

When it exists, the solution is the same.

��→�



f(x) g(y)



f(x) g(y)



d(x,y)

x y

f(x) g(y)



d(x2,y2)

x2 y2

d(x3,y3)

x3 y3

d(x1,y1)

x1 y1

f(x) g(y)
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f(x) g(y)



g(y)f(x)



Application: BRDF

Function A

Displacement interpolation

Function B

Linear interpolation

[Bonneel et al. 2011] Displacement Interpolation using Lagrangian Mass Transport, Siggraph Asia



Displacement Interpolation 
using Lagrangian Mass 
Transport
Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, Wolfgang Heidrich

SIGGRAPH Asia 2011



 “Bidirectional Reflectance Distribution Function”

Example: BRDF
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Example: BRDF
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Function A Function BInterpolation

?



Example: BRDF
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Function A Function BLinear 
interpolation



Example: BRDF
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Function A Function BLinear 
interpolation



Example: BRDF
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Function A Function BLinear 
interpolation



Example: BRDF
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Function A Function BLinear 
interpolation



Example: BRDF
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Function A Displacement 
interpolation

Function B



Example: BRDF
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Function A Displacement 
interpolation

Function B



Example: BRDF
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Function A Displacement 
interpolation

Function B



Example: BRDF
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Function A Displacement 
interpolation

Function B



Four steps

 Decompose PDFs into non-negative radial basis functions

 Optimal transport computation

 Partial advection

 Reconstruct interpolated PDF

 (+optional multiscale approach)



f(x) g(y)

Radial Basis Function decomposition



Transport computation

 Transport RBF weights

 Network simplex > Transportation simplex
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��,� = ��

min  
�,�

��,���,�

s.t

 
�

��,� = ��



Auction algorithm for assignment

 Consider instead: max ∑���  over complete assignments  �, � ∈ � and � ∈ � � 
 ��� : how much person i is ready to pay for object j

�� : Price person j will actually pay

Solve dual:     min
�,  �

∑�� + ∑��    s.t.   �� + �� ≥ ���  ∀�,  � ∈ � � 

 At optimality �� = max
�∈� � 

��� − �� = ��� � − �� �   (saturates constraint)

 Profit of person i:                    �� = max
�∈� � 

���

with benefit for object � ∈ � � :    ��� = ��� − ��

 Add some slack: �� −  �  = max
�∈� � 

��� − �� −  � ≤ ��� � − �� �   optimal if � < 1
�

“The auction algorithm”, Bertsekas and Castanon



Auction algorithm for assignment

 Start with some assignment S

 For each unassigned person �, find object �∗ maximizing benefit, and 
the benefit �� of the second best. 
Compute bid : ���∗ = ���∗ − �� + �

 For each object � : � �  is the set of persons who bid for �. 
 If � � ≠ ∅  : �� ← max

�∈� � 
���   ; remove  �, �  from S, and add  �∗, �  (�∗ best 

bidder)

 If � � = ∅ , �� unchanged



Auction algorithm for optimal transport 
(1989)
 In O(N A log(N C))

 Idea: convert problem to assignment with duplicated sources/sinks

 Works on similarity classes

 In the previous algo, replace “second best” by “second best among other 
classes”



Interpolation
 Divide Gaussian function w.r.t to transported weights

 We advect.



Results



Results

Naive EMD
(minimize kinetic energy)



Results
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Linear interpolation
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Results

Displacement interpolation
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Results
80 %

Linear interpolation Displacement interpolation



Input photo Target style

Applications to Color Grading



Input photo Target style



Input photo Target style



Input photo Target style





Results47

Model

Input



Sliced and Radon 
Wasserstein Barycenters of 
Measures
Nicolas Bonneel, Julien Rabin, Gabriel Peyré, Hanspeter Pfister

Journal of Mathematical Imaging and Vision (2014)



 Two ways transportation :

min   
�

 
�

��,���→�

��→� ≥ 0
∑� ��→� = ��
∑� ��→� = ��

Multi-marginal transport

Number of non-zeros among M*N variables :  
M+N-1



 Three ways transportation :

min   
�

 
�

 
�

��,�,���,�,�

��,�,� ≥ 0
∑� ∑� ��,�,� = ℎ�

∑� ∑� ��,�,� = ��
∑� ∑� ��,�,� = ��

Multi-marginal transport

Number of non-zeros among M*N*P variables :  
M*N*P-(M*N+N*P+M*P)+(M+N+P-1)



Simple cases

 Transport 1 Gaussian ↔ 1 Gaussian 
 Transport 1 Gaussian ↔ 1 Gaussian ↔ 1 Gaussian […]
 Transport = translation + scaling
 Transport 1D function ↔ 1D function (↔ 1D function  […])



Optimal transport is simple for Gaussians52



Optimal transport is simple in 1D

 Continuous case with density, convex cost, � = � ��, � = � ��

 Need:  −∞
� � � �� =  −∞

� � � � ��

� = �−1 ∘ �   

with  � � =  −∞
� � � ��  and G � =  −∞

� � � ��

Generalize �−1 :   �−1 � =min
�

 � = � �  

� �

� � � 

���� � ���� � �  

Quantile 
function: e.g.: 
“what salary 
corresponds to 
the first 
percentile”



1D Case

OT Map:       � = �−1 ∘ �

OT cost:      0
1 � �−1 � − �−1 �  ��

Interpolation:    �������
−1  � = ∑� �� ��

−1 �   



Radon transform



Radon transform
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Method





1D Case, discrete

 Discrete case, � = ∑�=1
� ���, � = ∑�=1

� ���  (same for interpolating between more than 2 measures)

 Optimal transport for convex cost = pairing sorted samples

x x x x x x x ooo o o oo
�� �� � 



Sliced Wasserstein Distance

 For discrete high-dimensional distributions � = ∑�=1
� ���  and � = ∑�=1

� ��� 

Consider energy

�� �, � =  
�
�2

2 proj �,  � ,  proj �,  �   d�

Where proj �,  �  is the 1-d distribution :  proj �,  � = ∑� � ��, �   (same for �)

And �2
2 computes the 1-d squared Wasserstein distance



Sliced Wasserstein Distance

 Take a uniform random direction �
 � ←  � 0,1 , � 0,1 , � 0,1   and normalize

 Project samples of � and � on � : �’ = Proj(�)  and �’ = Proj(�)
 Sort �’ and �’, i.e, find permutations �� and �� 

 To compute the Sliced Wasserstein Distance:

�2 ← �2 +  
�

  ��� � ,  � −  ��� � ,  �  
2

 or, to advect � towards � (“gradient flow”)
 Update � by ��� � ← ��� � +   ��,  � −  ��,  �   �

Wasserstein Barycenter and its Application to Texture Mixing. [Rabin et al. 2011]



Sliced Wasserstein Distance

f

g





�

�

1-d Linear Assignment Problem is trivial*

*assuming the cost c is a convex function of |x-y|



�

�

Partial optimal assignment ?

� �, � =min  
�,�

��,���,� s.t.  
�

��,� = 1

 
�

��,� ≤ 1

��,� ≥ 0

min
T  injective

    
�

� ��,  �� �  

?

=> Sliced Partial Optimal Transport, [Bonneel and Coeurjolly 2019]



Similar problems

 DNA sequence alignment

 Text alignment

 Music synchronization

 …



Quadratic time complexity algorithm (linear space)

Euclidean Nearest Neighbor assignment



Euclidean Nearest Neighbor assignment

Optimal Transport assignment

Intervals of  bijective assignments 

Quadratic time complexity algorithm (linear space)



Semi-discrete optimal transport



Voronoi diagram

 A partition such that each point � is assigned to its closest site ��
 � − �� 2 ≤   � − �� 

2  ∀�

 The dual of a Delaunay triangulation: a triangulation of the sites such that 
no other site is encompassed by the circumcircle of a triangle
 Also: convex hull of a parabolic lifting



Centroidal Voronoi Diagram

 Can be defined as the solution to a least-square problem

min  
����

 
�

 � − �� 2��

Also says that the centroid of ���� is the site ��

 Can be computed by:
 A Lloyd clustering algorithm

 A descent approach on the above energy



Power diagram (Laguerre diagram)

 A partition s.t. each point � is assigned to its closest site �� with weight ��
 � − �� 2 − �� ≤   � − �� 

2  − ��      ∀�

 Can be computed by lifting a Voronoi diagram

 Consider site coordinates ��
′ =   �� ;   � − ��  for large constant c ; �′ =  � ; 0 

 Then  �′ − ��
′ 2 ≤   �′ − ��

′ 2  ∀�

 Any partition into convex polyhedral cells is a power diagram of some sites



Semi-discrete Optimal Transport

Population density �



Semi-discrete Optimal Transport

x
x

x

x
x

x

Set of bakeries, factories, …?



Semi-discrete Optimal Transport

x
x

x

x
x

x

No constraint on production: population go to their nearest bakery/factory/… regardless of population density



Semi-discrete Optimal Transport

x
x

x

x
x

x

Limited production: population go to the nearest bakery/factory with sufficient production!



Semi-discrete Optimal Transport

x
x

x

x
x

x

Limited production: population go to the nearest bakery/factory with sufficient production!

(needs for)
population here

=

quantity produced here



Back to optimal transport

 Optimal transport (Monge version) :

min   � − � �  2 �� � 

Considering � is continuous with density �

min   � − � �  2 � � ��

Considering � (the target measure) discrete: � = ∑����

The mass preservation constraint is:

�� =  
�−1  �  

� � ��

A Multiscale Approach to Optimal Transport [Mérigot 2011]
Minkowski-Type Theorems and Least-Squares Clustering [Aurenhammer et al. 98]



Back to optimal transport

 In this case :  �−1  �  = ���� � 
a power cell for some weight �� 

 This determines a partition, so Monge problem is:

min  
�

 
���� � 

 � − � 2 � �  ��

 Idea: optimize weights � for each site to grow/shrink
power cells until   �� =  �−1  �  � � ��

 Gradient of appropriate functional given by ��
�� � 

 � = �� −  ���� �  � �  ��

x p



Back to optimal transport

A Multiscale Approach to Optimal Transport [Mérigot 2011]

A Numerical Algorithm for L2 Semi-discrete 
Optimal Transport in 3D [Lévy 2015]



Application

 Also optimizes for the locations �

Blue Noise through Optimal Transport [de Goes et al. 2012]



Regularized optimal transport



The Sinkhorn algorithm

 Kantorovich optimal transport: min
�

∑� ∑� ��,� ��→� with constraints

 Rewritten as : 
min

�∈� �,� 
 �,  � 

with  � �, �  matrices whose rows sum to � and columns to �

 Idea: consider instead 
min

�∈� �,� 
 �,  � − �� � 

where � � =− ∑��� log  ��� − 1  is the entropy, � a small constant

Sinkhorn Distances: Lightspeed Computation of Optimal Transport [Cuturi 2013]
Iterative Bregman Projections for Regularized Transportation Problems [Benamou et al. 2014]



The Sinkhorn algorithm

min
�∈� �,� 

 �,  � − �� � 

 Can be rewritten as a projection: 
min

�∈� �,� 
�� �,  � 

where � =exp  − �
�
   and �� �,  � = ∑���  log  ���

���
 − 1  the Kullback-Leibler 

divergence



The Sinkhorn algorithm

min
�∈� �,� 

�� �,  � 

 This is a projection on the intersection of two affine constraints, due to 
� �, � 

 We can thus apply Bregman projections: we iteratively project on each 
constraint

x  �



The Sinkhorn algorithm

 Projecting on constraints:
 Constraints: ∑� ��� = ��  and  ∑� ��� = ��

 ���
′ = ���

∑� ���
. ��   and   ���

′ = ���

∑� ���
. ��  corresponds to projection with KL

 Row/column scaling

 Corresponds to left/right multiplying M by diagonal matrix



The Sinkhorn algorithm

 We can thus apply Bregman projections: we iteratively project on each 
constraint

 We obtain the algorithm:

 � � = �
� � � 

 � �+1 = �
�� � � 

 � = ���� � �  � ���� � �  



The Sinkhorn algorithm

 We realize that � � �  can be computed efficiently

 E.g., if � �, � =   � − � 2, ��� =exp  −  �� − �� 
2

�
 

 Then � � �  is just a Gaussian convolution

 So, it is a separable operator, and efficiently done in high-dimension

Convolutional Wasserstein Distances: Efficient Optimal Transportation on 
Geometric Domains [Solomon et al. 2015]



The Sinkhorn algorithm

 Generalized to compute displacement interpolation and barycenters

��
 0 = 1  ∀�

for ℓ = 0 …�
��

 ℓ = ��

� ��
 �−1     ∀� 

� � =    �   ����
 ℓ  

��
  

��
 ℓ =   � � 

�� ��
 ℓ           ∀�



SIGGRAPH 2016



Barycentric coordinates



Barycentric coordinates



Barycentric coordinates



Barycentric coordinates



Barycentric coordinates

[Rolet et al. 2016]



Optimal Transport

� = 0 � = 1



Optimal Transport

� = 0 � = 1

W �, � =min ∑∑ �� − �� 
2���

s.t.       ��� ≥ 0  ;   ∑� ��� = � ��    ;    ∑� ��� = � �� 



Optimal Transport



Optimal Transport



Optimal transport 
barycentric coordinates



Formally:
min

�
  ℒ � � ,  � 

��.  ∑�� = 1,  �� ≥ 0

with � �  a Wasserstein barycenter:
� � = argmin�   

�
���2 ��,  � 

and     ℒ �,  �   a cost function : 
ℒ �,  � = � �, �  ,   � − � 2

2 ,  � − � 1 ,   �� �,  �  

ℒ �, � =   � − � 2 
ℒ �, � =  � �,  � 2 

�
�0

�1 �2

� � 



Method

min
�

  ℰ � =  ℒ � � ,  � 
 We minimize using L-BFGS 

 We use    �ℰ � =   �� �  �  �ℒ � � ,  �  

EasyHard



Idea

   �� �  �  by deriving the Sinkhorn algorithm [Solomon et al. 2015]

 To compute  � �  given �, Sinkhorn iterations read:

��
 0 = 1  ∀�

for ℓ = 0 …�
��

 ℓ = ��

� ��
 �−1     ∀� 

� � =    �   ����
 ℓ  

��
  

��
 ℓ =   � � 

�� ��
 ℓ           ∀�



Idea

 Automatic differentiation: given an iterative algorithm, apply the chain rule:
If

� ℓ+1  �   = � � ℓ  � ,  � 
Then

�� ℓ+1 

��
=

��
�� ℓ 

�� ℓ 

��
+

��
��

 We similarly compute the adjoint
 ...formulas in the paper � ℓ+1 � ℓ 



Gradient computation

 We obtain:

qs = 0 ; �� = 0  ∀�
�  ⟵ �ℒ � � ,  �    � � 

for ℓ = � …1

��  ⟵ �� +    log ����
 ℓ ,  �        ∀�    

�� ⟵− ��  �  ��� −��

����
 ℓ   ��

 ���
 ℓ−1  

2  ��
 ℓ−1       ∀�  

�  ⟵ ∑� ��

�ℰ �  



Applications
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Input

Projection



Euclidean Wasserstein



Database

Input Projection



Applications

6E-6
3E-6

0.23 0.77

Database InputProjection



Database InputProjection



Flickr results for “Autumn” InputProjection



Applications
Reference 25% (projection)

10% (projection) 5% (projection)

UTIA database



 Projection Input



Database

 Projection Input



Conclusion

 Notion of barycentric coordinates useful for computer graphics

 Tractable computations
 Barycenter gradient requires 2x convolutions w.r.t to barycenter alone

 Relatively large memory footprint

 Takes between seconds to minutes

 Easy to implement
 Code available: http://liris.cnrs.fr/~nbonneel/WassersteinBarycentricCoordinates/ 

http://liris.cnrs.fr/~nbonneel/WassersteinBarycentricCoordinates/

