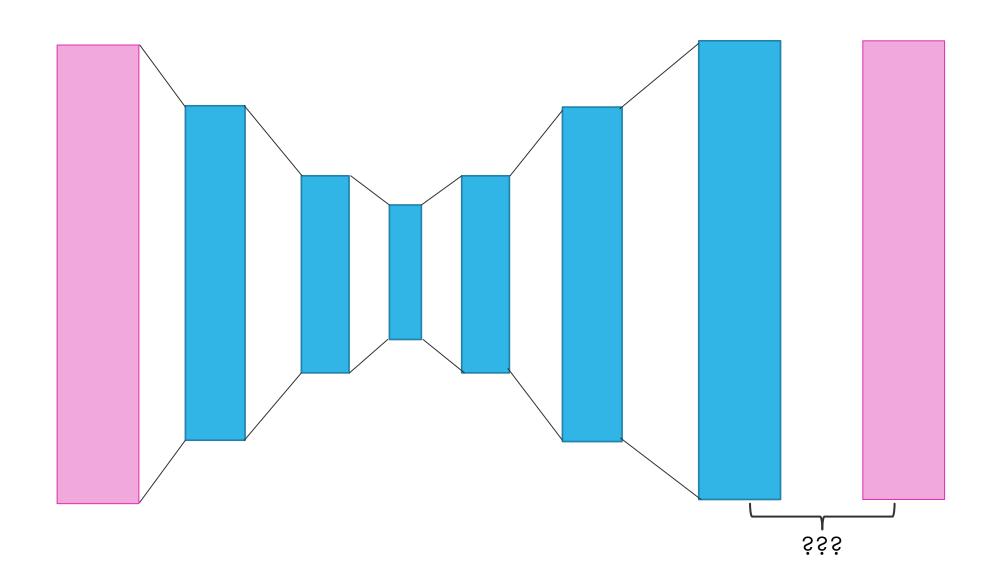
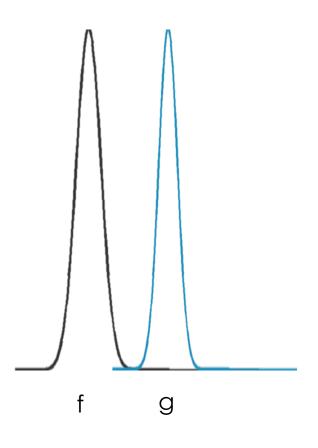
Optimal Transport Principles for Computer Graphics and Machine Learning

Nicolas Bonneel

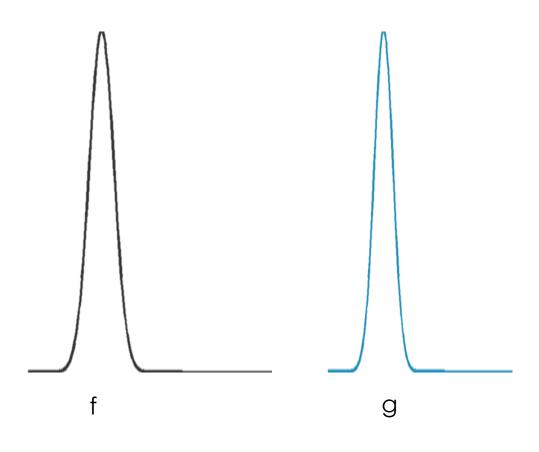
Motivation in neural networks



How to compare functions?



How to compare functions?



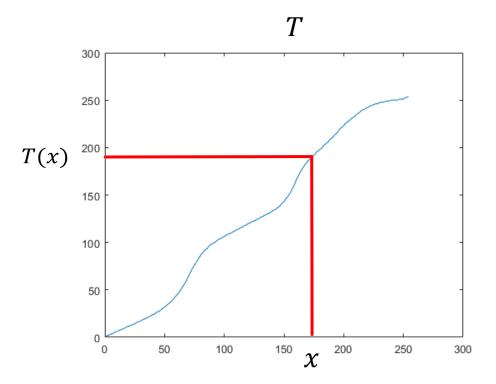
Monge formulation

$$W(f,g) = \min_{T} \int_{X} c(x,T(x)) f(x) dx$$

s.t.
$$f(x) = g(T(x)) |\det J_T(x)|$$

To a second seco

Monge used c(x, y) = |x - y|



Same total mass

"find a good warping between f and g with the change of variable formula"

Kantorovich formulation

Cost min m

 $m_{i \rightarrow j}$ particles will move from i to j

such that:

 $m_{i \to j} \ge 0$

Nb of particles is positive!

$$\sum_{i} m_{i \to j} = g_j$$

 $\sum m_{i o j} = g_j$ Reconstruct target function

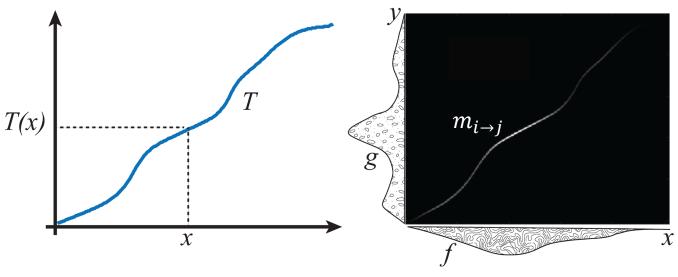
Work for transforming finto g

Reconstruct source function

 $m_{i o j}$

Discretization of the Kantorovich problem Earth Mover's Distance

Intuition: comparison



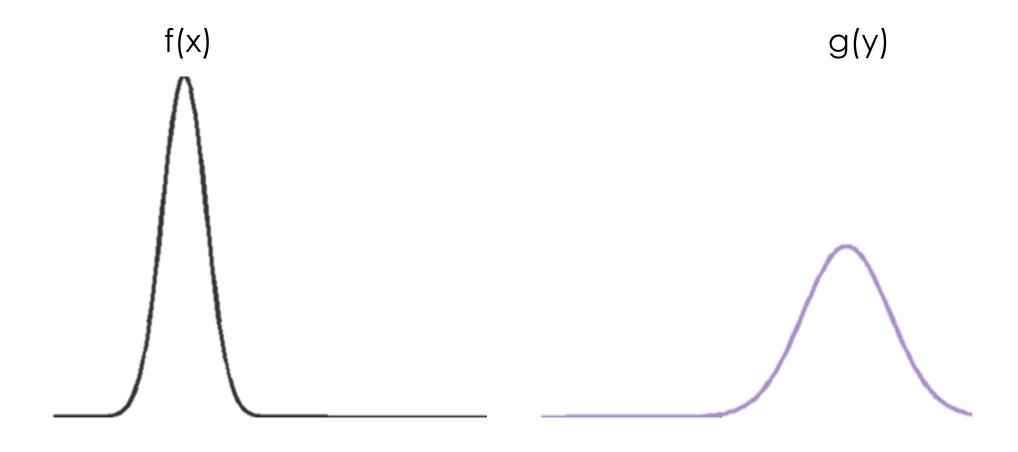
- Finds a "transport map"
- Difficult non-linear problem
- May have no solution (e.g., a Dirac splitting in two)
- Leads to PDEs

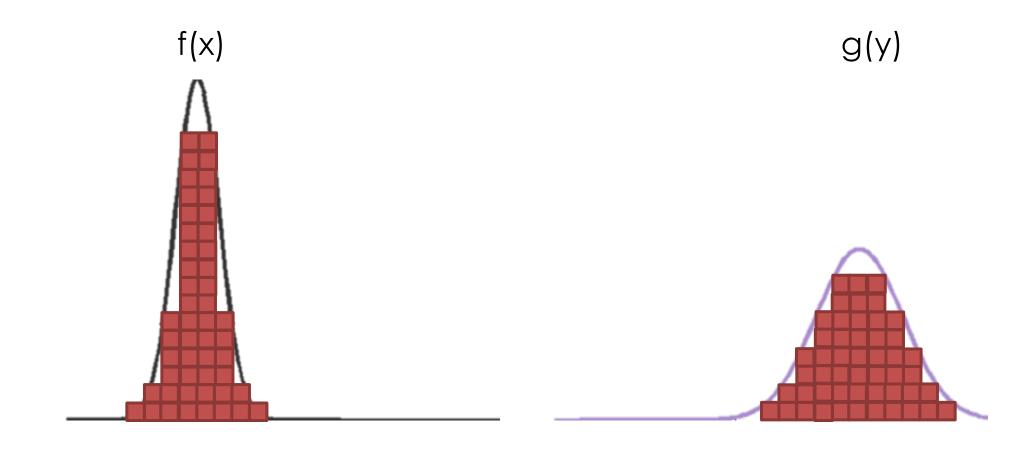
- Finds a "transport plan"
- Linear program
- "Always" has solution (i.e., under reasonable assumptions)
- Also has dual formulation

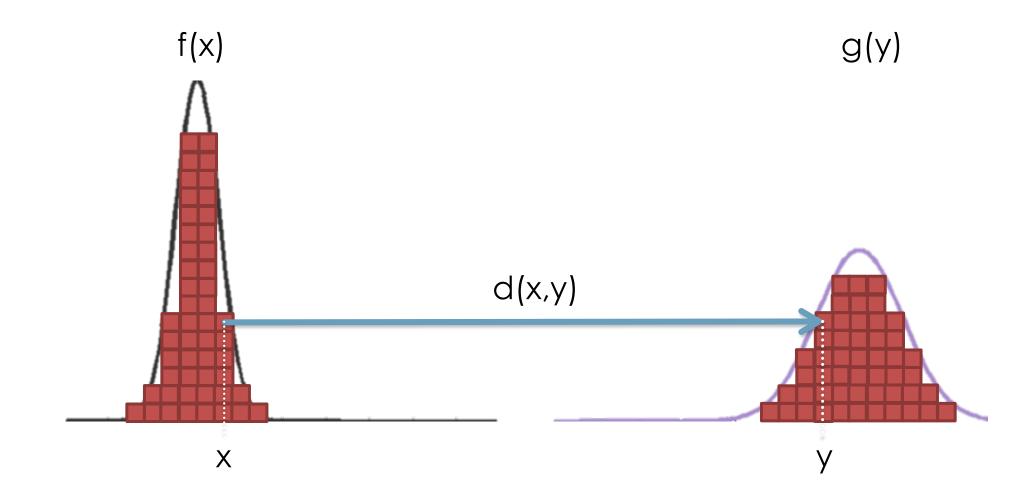
When it exists, the solution is the same.

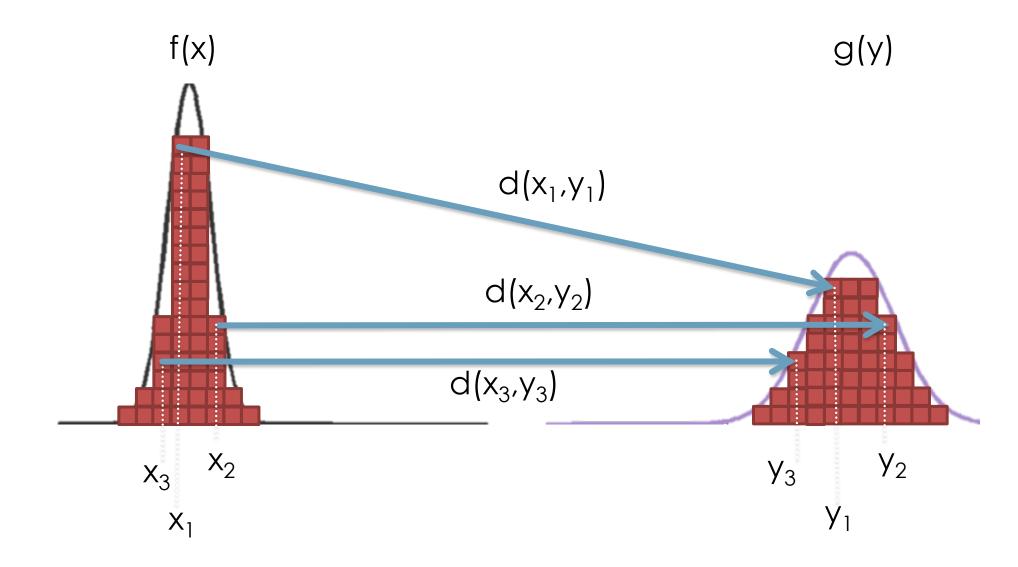
Often,
$$c(x, y) = ||x - y||_p^p \Rightarrow W_p^p$$

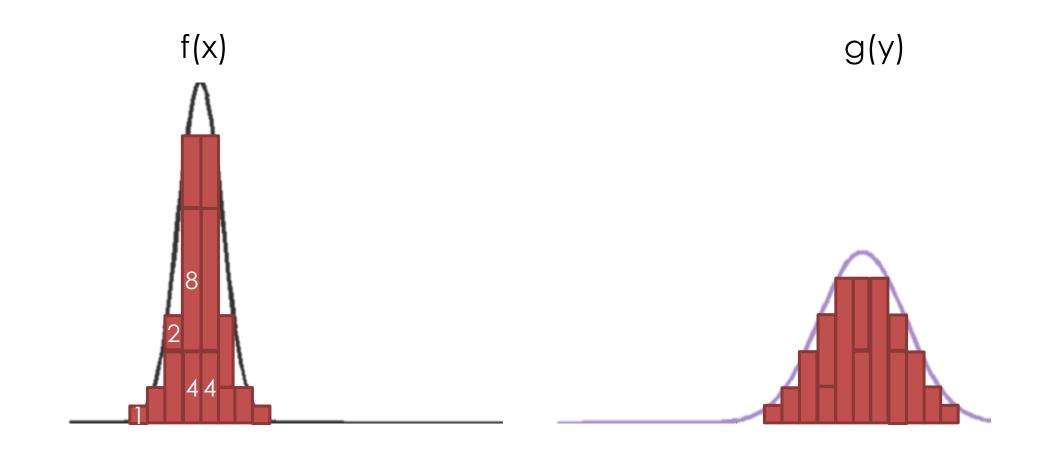
 W_p is a distance

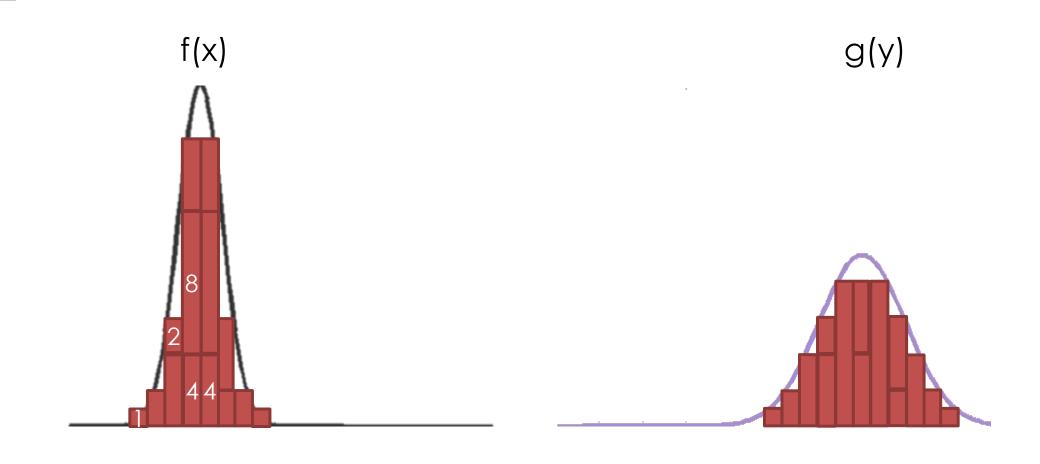


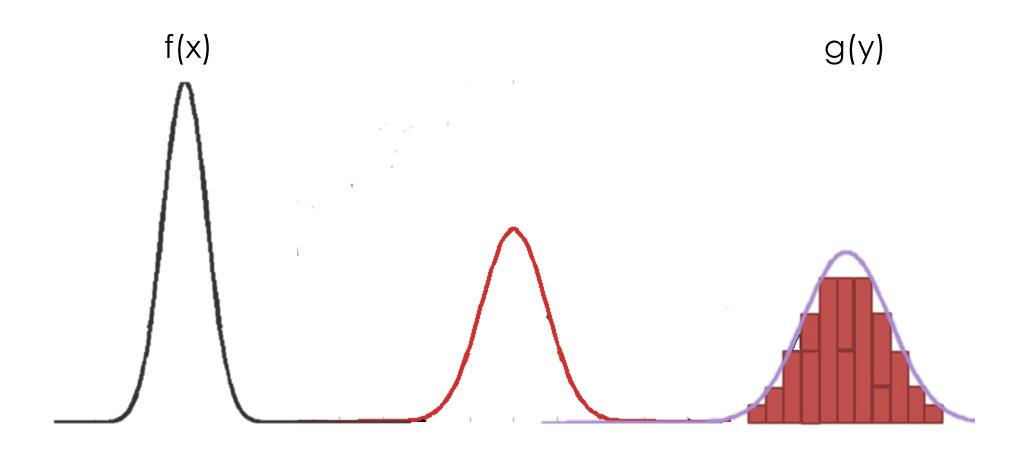




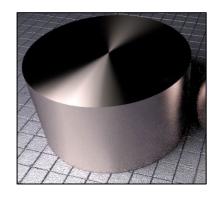




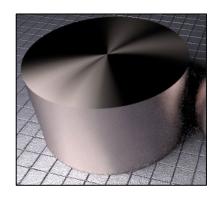




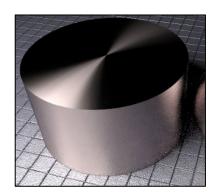
Application: BRDF



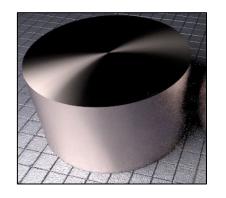
Function A



Linear interpolation

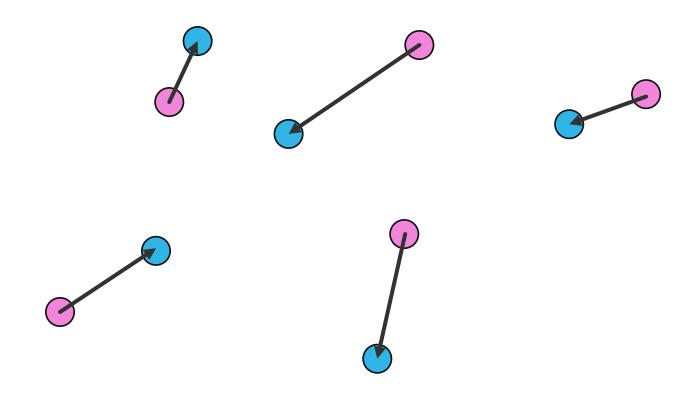


Displacement interpolation



Function B

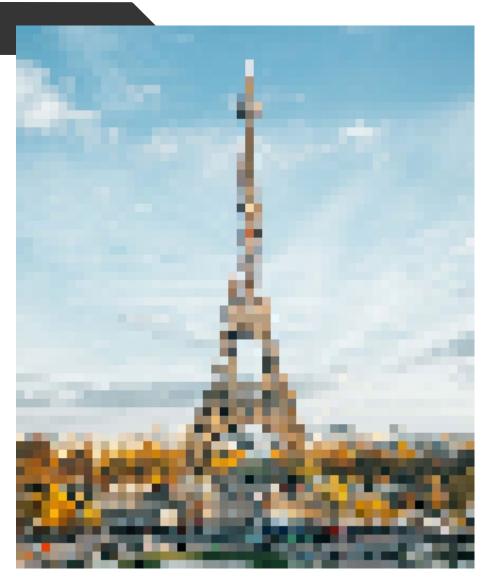
The assignment problem



Applications to Color Grading

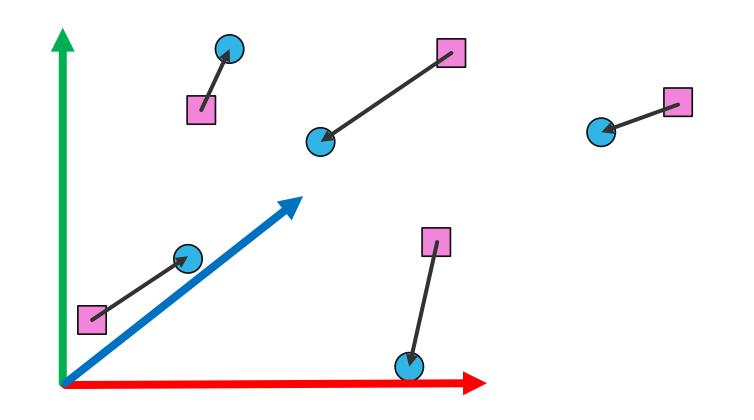


Input photo Target style



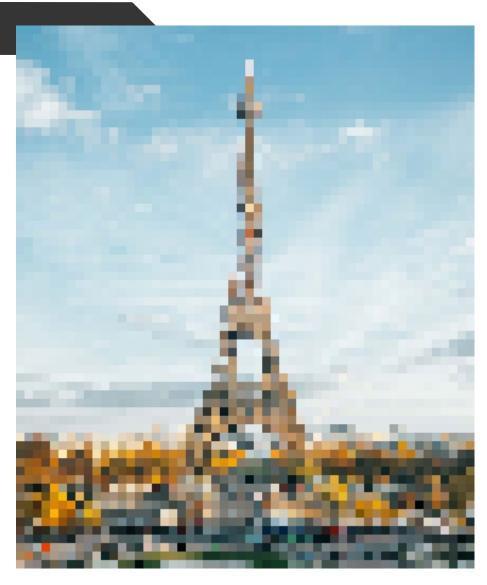
Input photo Target style

The assignment problem

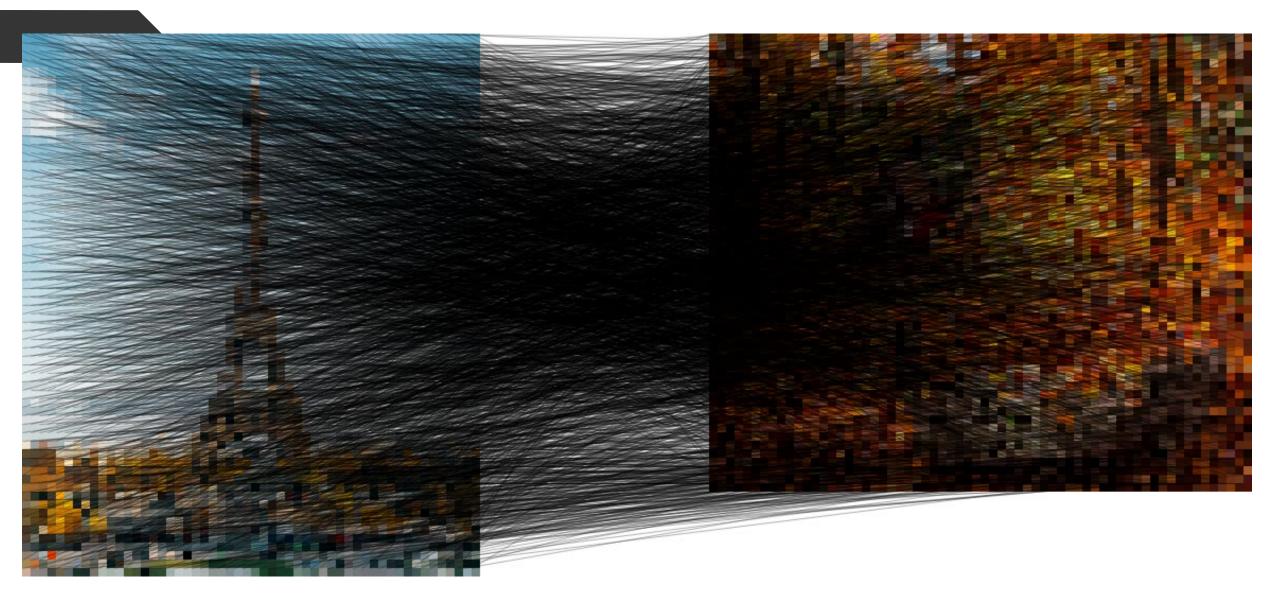


Pixels

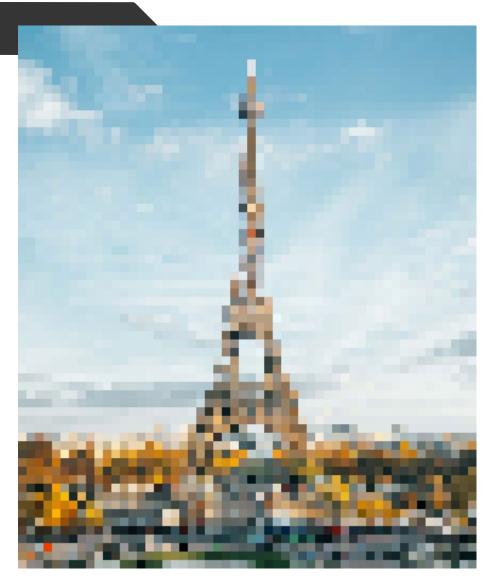




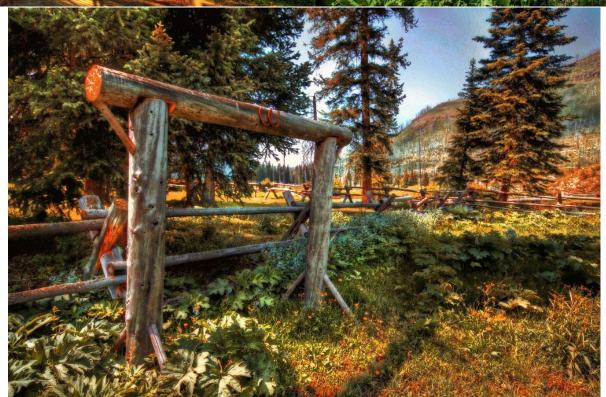
Input photo Target style



Input photo Target style



Input photo Target style



Sliced and Radon Wasserstein Barycenters of Measures

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, Hanspeter Pfister Journal of Mathematical Imaging and Vision (2014)

Simple cases

- Transport 1 Gaussian ↔ 1 Gaussian
- Transport = translation + scaling
- Transport 1D function

 1D function

Optimal transport is simple for Gaussians

- Optimal transport and barycenters trivially solved for
 - Gaussian distributions with $c(x, y) = ||x y||^2$

•
$$W_2^2(\mathcal{N}_0, \mathcal{N}_1) = \text{tr}(\Sigma_0 + \Sigma_1 - 2\Sigma_{0,1}) + \|\mu_0 - \mu_1\| \text{ with } \Sigma_{0,1} = \left(\Sigma_0^{\frac{1}{2}} \Sigma_1 \Sigma_0^{\frac{1}{2}}\right)^{1/2}$$

- $T(x) = \Sigma_{0.1}x$
- Barycenter: $\mathcal{N}(\mu, \Sigma)$ with $\mu = \sum_k \lambda_k \mu_k$ and iterations

$$\Sigma^{(n+1)} = \sum_{k} \lambda_k \left(\sqrt{\Sigma^{(n+1)}} \Sigma_k \sqrt{\Sigma^{(n+1)}} \right)^{1/2}$$

Optimal transport is simple in 1D

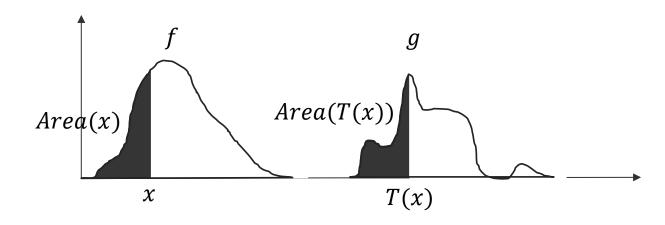
- Continuous case with density, convex cost, $\mu = f dx$, $\nu = g dy$
 - Need: $\int_{-\infty}^{x} f(x)dx = \int_{-\infty}^{T(x)} g(x)dx$

$$T = G^{-1} \circ F$$

with
$$F(x) = \int_{-\infty}^{x} f(x)dx$$
 and $G(x) = \int_{-\infty}^{x} g(x)dx$

Generalize
$$G^{-1}$$
: $G^{-1}(y) = \min_{x} \{ y = G(x) \}$ ______

Quantile function: e.g.: "what salary corresponds to the first percentile"



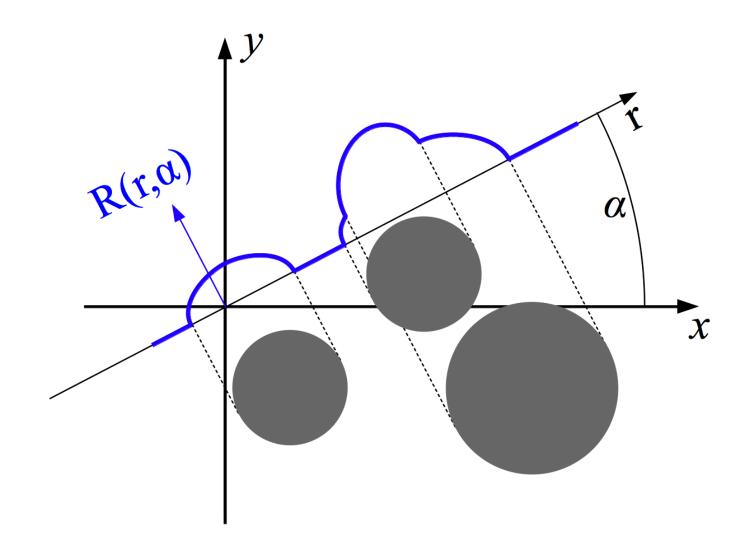
1D Case

OT Map:
$$T = G^{-1} \circ F$$

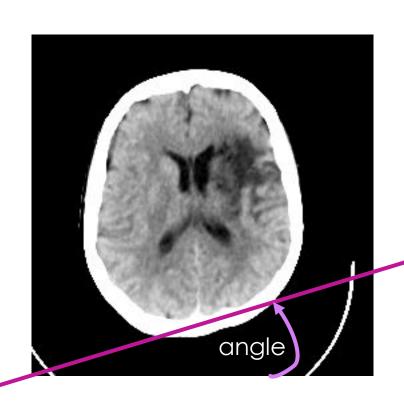
OT cost:
$$\int_0^1 c(F^{-1}(t) - G^{-1}(t))dt$$

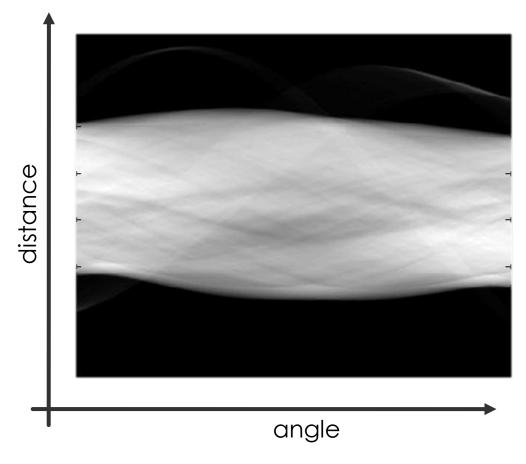
Interpolation: $F_{interp}^{-1}(x) = \sum_{i} \alpha_{i} F_{i}^{-1}(x)$

Radon transform

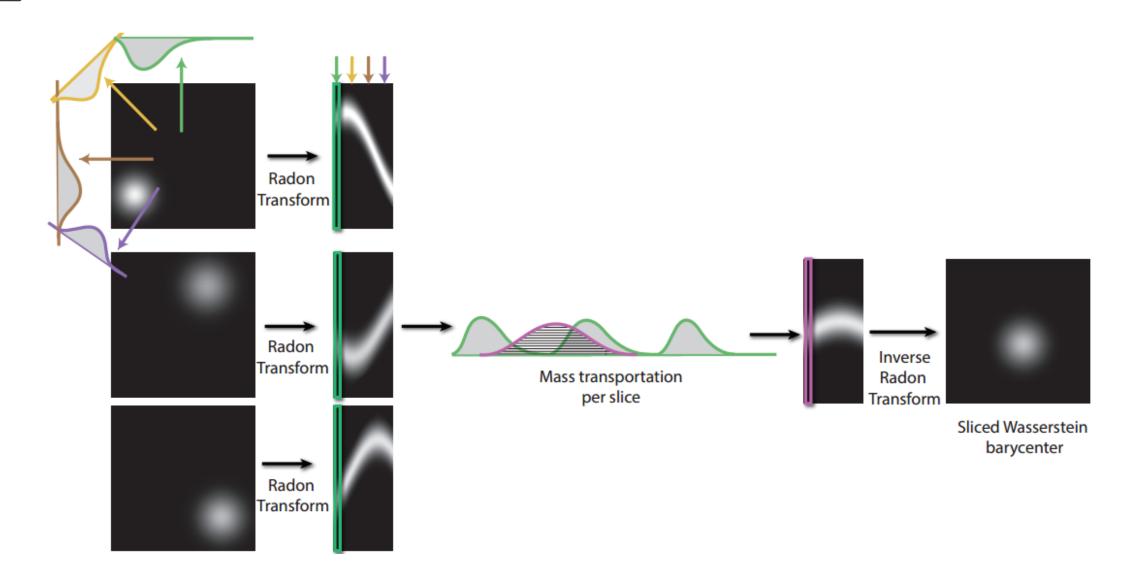


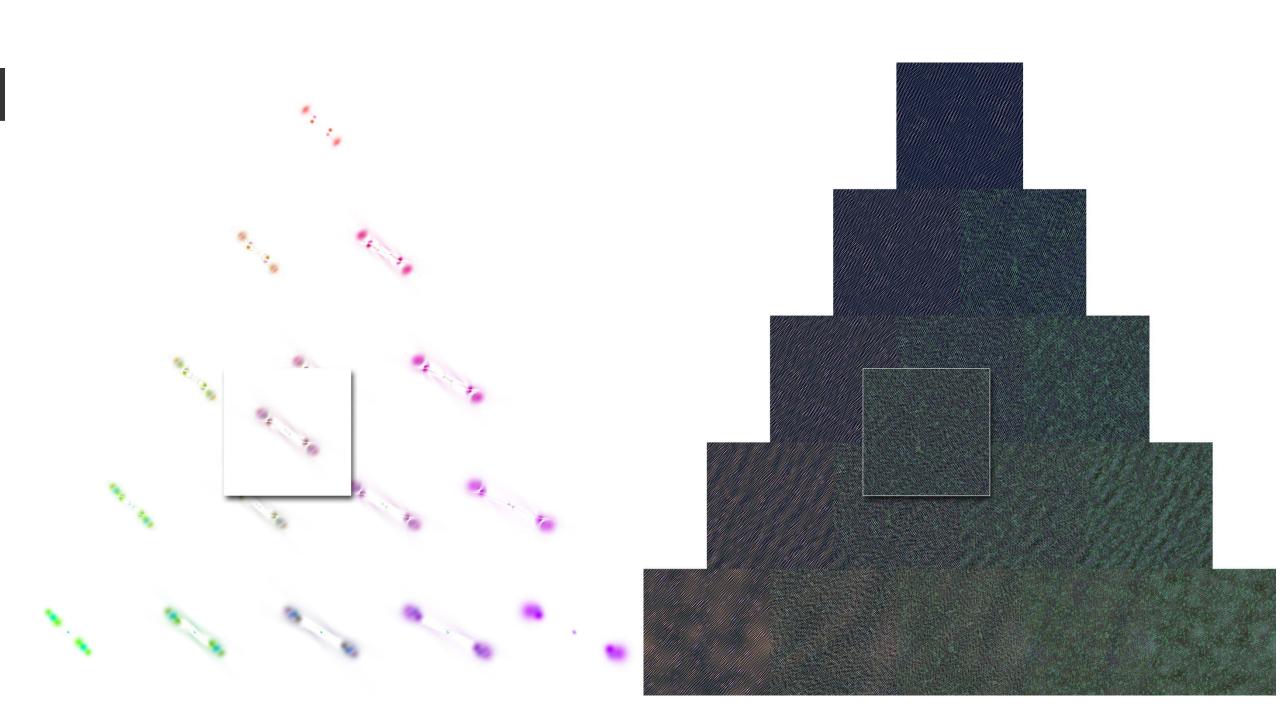
Radon transform





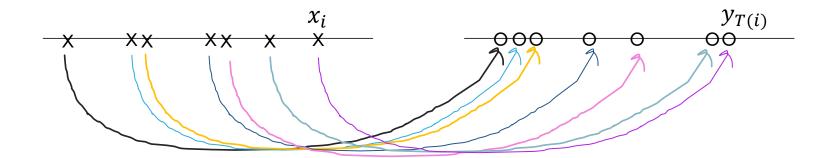
Method





1D Case, discrete

- lacktriangle Discrete case, $\mu = \sum_{i=1}^n \delta_{x_i}$, $\nu = \sum_{i=1}^n \delta_{y_i}$ (same for interpolating between more than 2 measures)
- Optimal transport for convex cost = pairing sorted samples

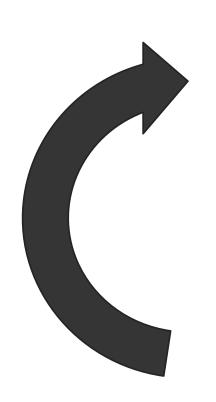


Sliced Wasserstein Distance

For discrete high-dimensional distributions $\mu=\sum_{i=1}^n \delta_{x_i}$ and $\nu=\sum_{i=1}^n \delta_{y_i}$ Consider energy

$$SW(\mu, \nu) = \int_{S} W_2^2(\text{proj}(\mu, \omega), \text{proj}(\nu, \omega)) d\omega$$

Where $\operatorname{proj}(\mu, \omega)$ is the 1-d distribution: $\operatorname{proj}(\mu, \omega) = \sum_i \delta_{\langle x_i, \omega \rangle}$ (same for ν) And W_2^2 computes the 1-d squared Wasserstein distance

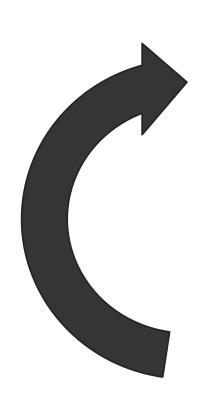


- lacktriangle Take a uniform random direction ω
 - \bullet $\omega \leftarrow (\mathcal{N}(0,1), \mathcal{N}(0,1), \mathcal{N}(0,1))$ and normalize
- Project samples of μ and ν on ω : μ ' = Proj(μ) and ν ' = Proj(ν)
- lacktriangle Sort μ ' and ν ', i.e, find permutations σ_{μ} and σ_{ν}
- To compute the Sliced Wasserstein Distance:

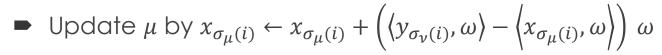
$$d^{2} \leftarrow d^{2} + \sum_{i} \left| \left\langle x_{\sigma_{\mu}(i)}, \omega \right\rangle - \left\langle y_{\sigma_{\nu}(i)}, \omega \right\rangle \right|^{2}$$

Gradient flow

- Given an energy (e.g., the Sliced Wasserstein Distance), you may try to minimize it with gradient descent
- Each step of such a gradient descent is a "gradient flow"
- This "moves" the input distribution towards the target (the target is such that the energy is 0)



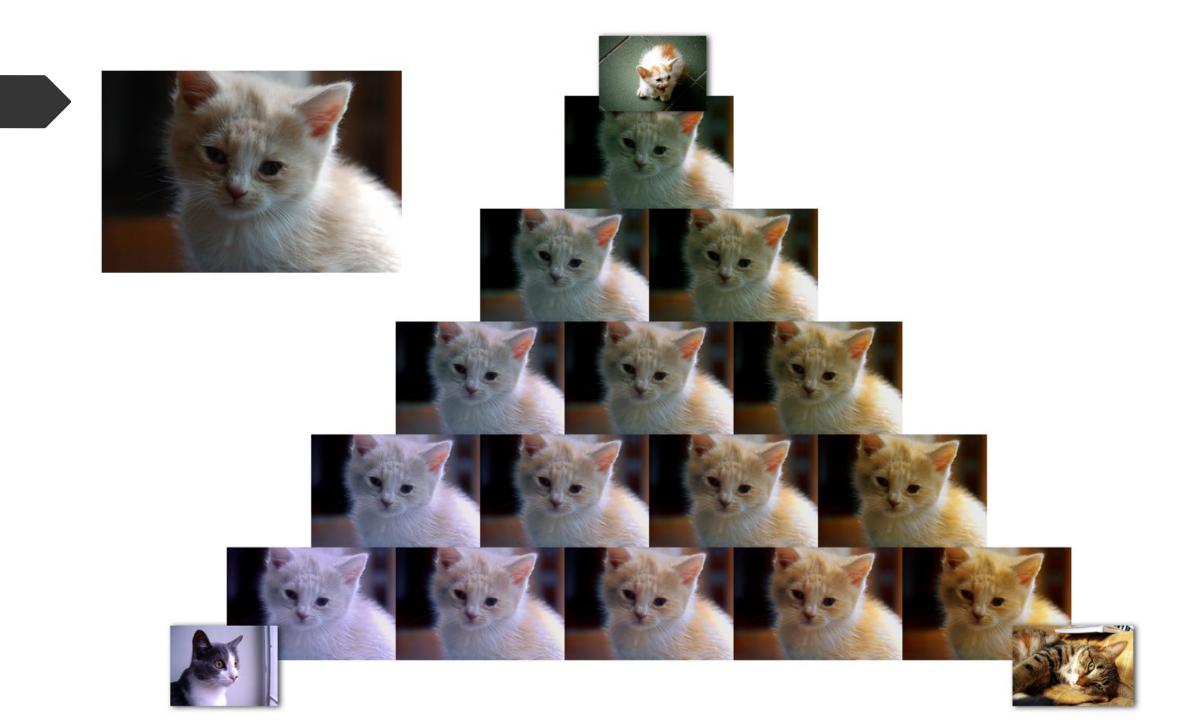
- lacktriangle Take a uniform random direction ω
 - \bullet $\omega \leftarrow (\mathcal{N}(0,1), \mathcal{N}(0,1), \mathcal{N}(0,1))$ and normalize
- Project samples of μ and ν on ω : μ' = Proj(μ) and ν' = Proj(ν)
- lacktriangle Sort μ ' and ν ', i.e, find permutations σ_{μ} and σ_{ν}



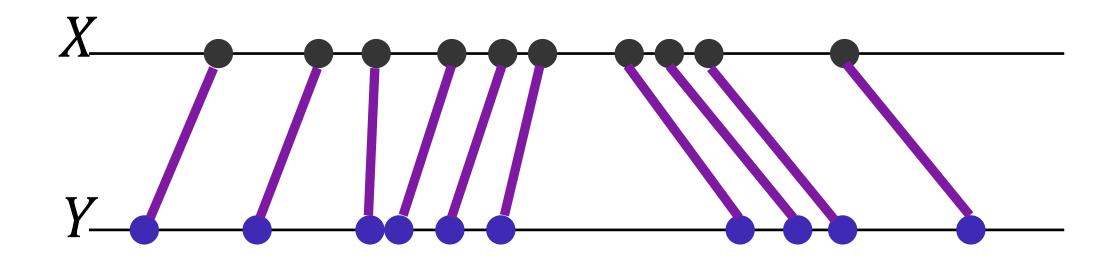
lacktriangle Corresponds to moving particles in the direction ω

Sliced Wasserstein Distance

ı

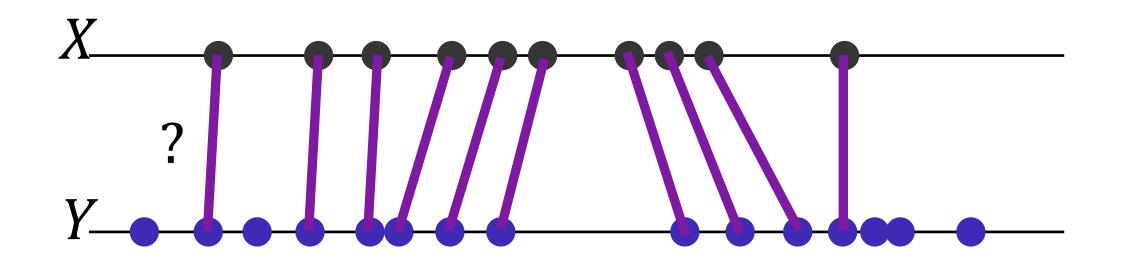


1-d Linear Assignment Problem is trivial*



Partial optimal assignment?

=> Sliced Partial Optimal Transport, [Bonneel and Coeurjolly 2019]



$$W(f,g) = \min \sum_{i,j} c_{i,j} \pi_{i,j} \qquad \text{s.t.} \qquad \sum_{j} \pi_{i,j} = 1$$

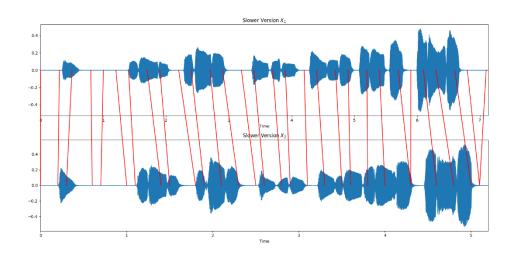
$$\sum_{i} \pi_{i,j} \leq 1$$

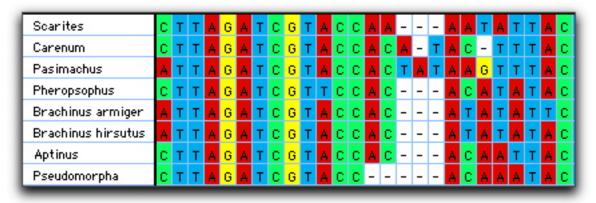
$$\pi_{i,j} \geq 0$$

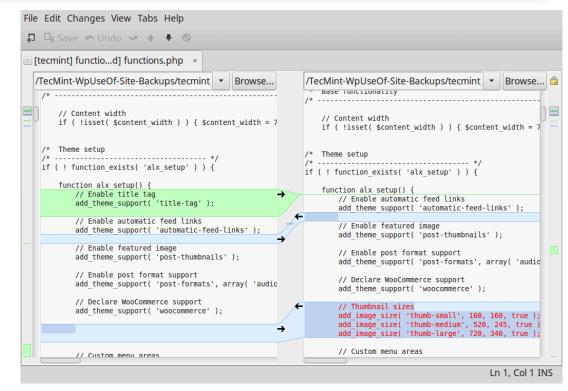
$$\min_{\text{Tinjective}} \sum_{i} c(x_i, y_{T(i)})$$

Similar problems

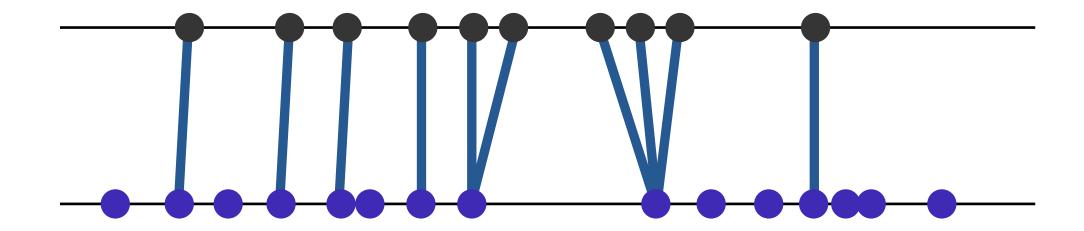
- DNA sequence alignment
- Text alignment
- Music synchronization
- **...**





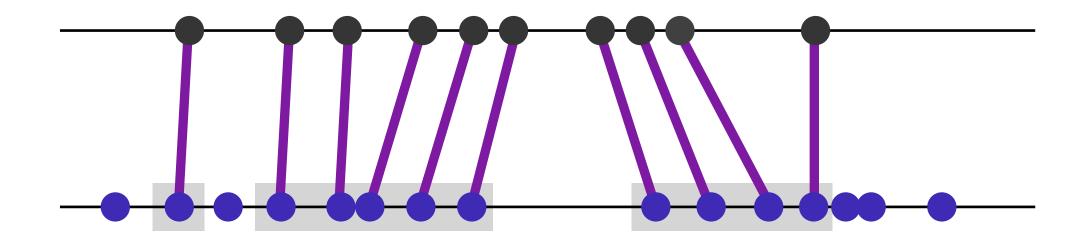


Quadratic time complexity algorithm (linear space)



Euclidean Nearest Neighbor assignment

Quadratic time complexity algorithm (linear space)



Euclidean Nearest Neighbor assignment

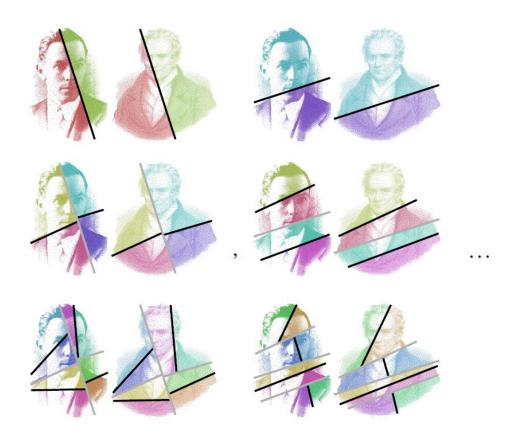
Intervals of bijective assignments

Optimal Transport assignment

BSP OT

=> BSP-OT: Sparse transport plans between discrete measures in loglinear time, [Genest et al. 2025]

- Replaces the sorting step by a variant of QuickSort
- Each partition step of QuickSort splits the two input measures in two parts along one random direction
 - Each side of both point clouds has the same number of points
 - Results in a BSP tree



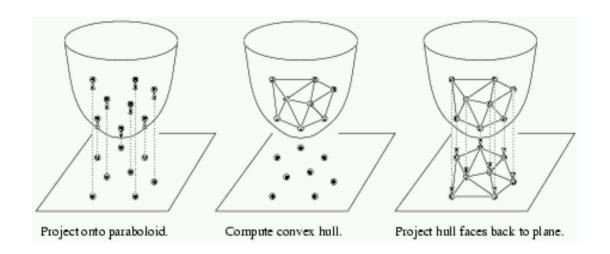
...

Voronoi diagram

A partition such that each point x is assigned to its closest site x_i $||x - x_i||^2 \le ||x - x_j||^2 \, \forall j$

- The dual of a Delaunay triangulation: a triangulation of the sites such that no other site is encompassed by the circumcircle of a triangle
 - Also: convex hull of a parabolic lifting





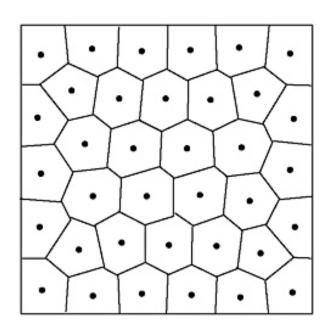
Centroidal Voronoi Diagram

Can be defined as the solution to a least-square problem

$$\min \int_{Vor_i} \sum_i ||x - x_i||^2 dx$$

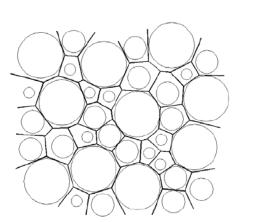
Also says that the centroid of Vor_i is the site x_i

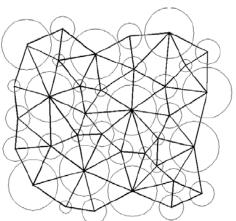
- Can be computed by:
 - A Lloyd clustering algorithm
 - A descent approach on the above energy



Power diagram (Laguerre diagram)

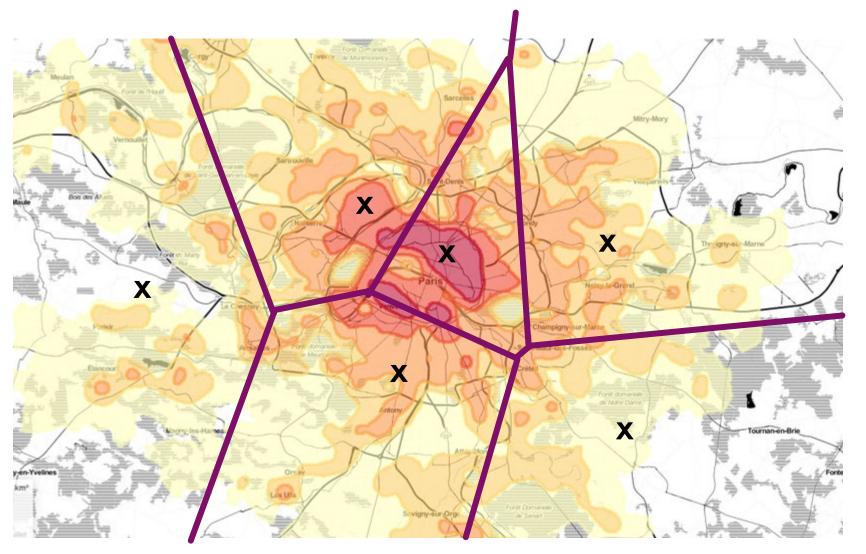
- A partition s.t. each point x is assigned to its closest site x_i with weight w_i $||x x_i||^2 w_i \le ||x x_i||^2 w_i \quad \forall j$
- Can be computed by lifting a Voronoi diagram
 - Consider site coordinates $x_i' = (x_i; \sqrt{c w_i})$ for large constant c; x' = (x; 0)
 - Then $||x' x_i'||^2 \le ||x' x_i'||^2 \forall j$
- Any partition into convex polyhedral cells is a power diagram of some sites





Population density f

Set of bakeries, factories, ...?



No constraint on production: population go to their nearest bakery/factory/... regardless of populat

Limited production: population go to the nearest bakery/factory with sufficient production!

Limited production: population go to the nearest bakery/factory with sufficient production!

Back to optimal transport

Optimal transport (Monge version):

$$\min \int \|x - T(x)\|^2 d\mu(x)$$

Considering μ is continuous with density ρ

$$\min \int \|x - T(x)\|^2 \rho(x) dx$$

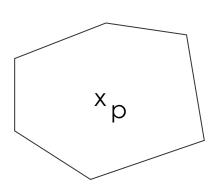
Considering ν (the target measure) discrete: $\nu = \sum \lambda_p \delta_p$

The mass preservation constraint is:

$$\lambda_p = \int_{T^{-1}(\{p\})} \rho(x) dx$$

Back to optimal transport

■ In this case : $T^{-1}(\{p\}) = Vor^W(p)$ a power cell for some weight w_p



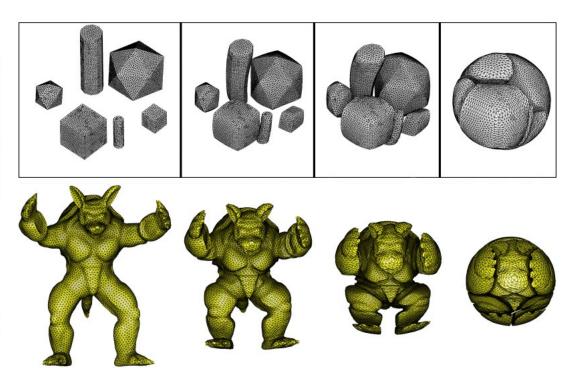
■ This determines a partition, so Monge problem is:

$$\min \sum_{p} \int_{Vor^{W}(p)} ||x - p||^2 \rho(x) dx$$

- Idea: optimize weights w for each site to grow/shrink power cells until $\lambda_p = \int_{T^{-1}(\{p\})} \rho(x) dx$
- Gradient of appropriate functional given by $\frac{\partial \phi}{\partial w(p)}(w) = \lambda_p \int_{Vor^W(p)} \rho(x) dx$

Back to optimal transport

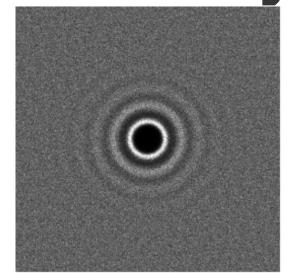
A Multiscale Approach to Optimal Transport [Mérigot 2011]

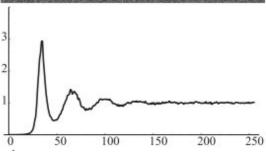


A Numerical Algorithm for L2 Semi-discrete Optimal Transport in 3D [Lévy 2015]

Application

Also optimizes for the locations p





Blue Noise through Optimal Transport [de Goes et al. 2012]