Numerical Optimal Transport,
sliced, semi-discrete and regularized
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Sliced and Radon
Wasserstein



Optimal transport is simple in 1D

In the following, we assume c(x,y) = f(x — y) with f non-negative
and convex (e.g. quadratic cost). Then transport map T preserves order.

* Discrete case, 4 = Yj=1 Ox,, V = k=10,

NN 22z

Implementation: sort {x; } and {y, }, T assigns in order.

YT(k)



Optimal transport is simple in 1D

* Continuous case with density, u = f dx, v = g dy (or similarly without)

e [F Fwdu = [ g(w)du

e =>T=G"1oF with F(x) = ffoof(u)du and G(x) = ffoog(u)du

e Generalize G™1: G71(y) = mxin{y = G(x)}

[

X T(x)

* OT cost: fol c(F71(t) — G71(t))dt

Quantile function:
e.g.: “what salary
corresponds to the
first percentile”



Wasserstein barycenters are simple in 1D

* Discrete case, 4 = Yj=1 0y, V = Xk=1 0y, : advect partway

J’T(k)

L / Similar approach for more than 2
measure (take a reference

measure, and advect it by Y a;T; )

e Continuous case: Fl;alry(x) =Y. a; F7 (%)
Proof: Given {(u;, 4;)}; and a reference measure u, bary = (X; 4;T,-,,,) # u
With u Lebesgues, Tu—w = F_



Projecting optimal transport on lines

* In higher dimension d, consider energy:

2
Wproj(.u;v)z :f W(ﬂg;vg) ao

Sd—l
,uesuch that, Vf continuous, tending to 0 at

f(t,H)du(t,0)=f (j f(t,H)dug(t))dH
0d sA-1 \ /R

With Q4 = R x §%-1 and U, v probability measures on Qd



Radon transform




Radon transform

distance

angle



Radon transform

* Formally

Rf(t,0) = fto + Ugy)dy

Rd—l

Can be extended to measures by duality /

For functions, R: L*(R) — L'(Q%)
Similarly for probability measures (not surjective).




Radon transform

* Back-Projection

R/ ( >=f g((x, 0, )d

gd-1
Can be extended to measures by duality.
We have R*Rf = h x f, with h low pass filter

* Inverse Radon transform:
R*g = h* x (R"g)

y




Radon transform

* Numerically, can be efficiently inverted with inverse FFTs

* Fourier Slice Theorem:

* the Fourier transform of the projection of an N-dimensional function f(r)
% onto an m-dimensional linear submanifold is equal to an m-dimensional
B fi) slice of the N-dimensional Fourier transform of that function consisting
= of an m-dimensional linear submanifold through the origin in the
Fourier space which is parallel to the projection submanifold

yA ky #
projection p(x) ,

slice s(ky)

Fourier
—_—

Transform

X

s fn) FTHE)



Radon Wasserstein barycenter

é
Mass transportation
per slice

—

Radon
Transform
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Radon
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Sliced Wasserstein energy

* For discrete measures, consider instead the projections

. [
v
* Waiicea (U, V)¢ = de—1 W(Py# :PQ#V)Zd

* Can be estimated via Monte Carlo: fQ f(x)dx = %Zk f(xy) with x5, ~ U(Q)



Sliced Wasserstein Barycenter

* Defined similarly to Wasserstein barycenters as
argmin 4 Whigea(bary, up) = argmin E(bary, {2, 1)})
i

* Can be obtained by gradient descent
* Start from bary® = y, (or anything else)

. bary"“ = bary™ — e VE (bary", {(,11.’ :ui)}) Discrete 1d: just 1d vectors !

* VE(bClT'yn,{(Ai, .ul)}) = Zi )Li de—l VW(PQ# 'PQ#V)Zd



Sliced Wasserstein flow

* Transport u towards v

* Not interested in their distance, but by the gradient flow:
u'(t) = —ViWgiceq(u(t), v)

* In practice, similar approach as Sliced Wasserstein barycenter
 Consider the barycenter of {(u, 0), (v, 1)} and start the gradient descent from u

Lab : THAT’S WHAT YOU WILL IMPLEMENT
(see next slide for details)



Sliced Wasserstein flow

* Take one (or many) random direction(s) d
* Project samples of uandvond: u’ =Proj(u) and v’ = Proj(v)
* Sort v’ and v’

e Updateubyu=u+ (v’-u’).d

Wasserstein Barycenter and its Application to Texture Mixing. [Rabin et al. 2011]



Sliced Wasserstein flow







1-d Linear Assignment Problem is trivial”

LTINS

*assuming the cost c is a convex function of |x-y|



Partial optimal assignment ?

=> Sliced Partial Optimal Transport, [Bonneel and Coeurjolly 2019]

X

?

Y o

W(f,g) = minz Ci jT0; j S.t. E”i,j =

— J
i,j 2

D 2 c(Xi, Y1)



Semi-discrete optimal transport



Semi-discrete Optimal Transport




Semi-discrete Optimal Transport

Set of bakeries, factorles, " ?



Semi-discrete Optimal Transport

No constraint on production: population go to their nearest bakery/factory/... regardless of population density



Semi-discrete Optimal Transport

YA .h;'

Limited production: population go to the nearest bakery/factory with sufficient production!



Semi-discrete Optimal Transport

(needs for)
population here

quantity producec

Limited production: population go to the nearest bakery/factory with sufficient production!



Voronoi diagram

* A partition such that each point x is assigned to its closest site x;
2 .
lx — x;]|? < ||x—xj|| V)

* The dual of a Delaunay triangulation: a triangulation of the sites such
that no other site is encompassed by the circumcircle of a triangle

* Also: convex hull of a parabolic lifting

/ e t-f / | sl
g 1Y N\ 7/ V\/
- . s Pip & i
" e =t Py
e " » . i 4

Projectonto paraboloid. Compute convex hall. Project hull faces back to plane.



Power diagram (Laguerre diagram)

* A partition s.t. each point x is assigned to its closest site x; with weight w;

12

2 .
lx — x; —WiS”X—x]-” —wj Vj

* Can be computed by lifting a Voronoi diagram
* Consider site coordinates x; = (xl- i \[C — Wl-) for large constantc; x' = (x;0)
/ 12 / M2 -
* Then ||x" — x;||* < ||x —xj” V]

* Any partition into convex polyhedral cells is a power diagram of some sites




Recall

* Primal:

inf f c(x,y)dy(x,y) s.t. y € II(u,v), transport plan
Y Jxxy

 Dual:
max f W) du(x) + f bOIAVG) st Y + () < c(x,y)



C-Conjugate

* Replacing Y by the c-conjugate of ¢ improves the cost:

Y= p(x) = ig}lfC(x, y) =)

=

max [ (infeCoy) = 90N () + [ $0IDVG)
X y Y



Back to optimal transport

* Continuous: max J, (nfc(x,y) —dp(y)du (x) + [, ¢(y)dv(y)
y

* Replacing ¢ by discrete {¢;} and v = }; 4;6,,

max (minc(x,y;) — ¢;)du (x) + Z Ai;
it Jx i) i

Partitioning X:

X I{T}Ifg(z Lece”.(C(X; Vi) — ¢;) du (x) + Z Aip;




Back to optimal transport

e Particular case: c(x,y) = ||x — y||*
* Cells are polygonal = Power diagram

e Goal: maximize:

f{;ﬁ‘i‘z f o Qe =00 du G + 2 Xigs = max E((9)

OE

Derivative w.r.t. ¢;: Fryiaie du (x) + A
j

l.e. « the population in cell j minus how many croissants bakery j can
make »

xECellj



Back to optimal transport

e Easy way: gradient ascent:
* Compute power diagram of {y;} with weights {¢;}

* (pi < d)i T €. (Al _ fxECelll- d:u (X))
* |terate

* Intuition: “bakery i increases its selling price ¢; until sufficiently many
clients leave, or decreases its selling price until sufficiently many
clients come”

* Again, if everybody increase its price by same amount: no change.



Back to optimal transport

 Harder but faster

* Newton ; second order, requires Hessian H = [acp 0 ; ]
0@
,_O0%E ! du (x) ifi #
00, — Jeel; NCell; 2||Yi—YJ|| H ]
. 0%E . _Z 0°E
a¢lz J#I 0¢; a(l)]

* Newton algorithm (¢;) < (¢p;) + € . H™ (aaflf)



Back to optimal transport

A Numerical Algorithm for L2 Semi-discrete Optimal
Transport in 3D [Lévy 2015]

Optimal Transport Reconstruction of Biased Tracers in
Redshift Space [Nikakhtar et al. 2023]




Application

* Also optimizes for the locations p

0 Sl 100 150 200 250

Blue Noise through Optimal Transport [de Goes et al. 2012]



Entropy-regularized optimal
transport



The Sinkhorn algorithm

* Kantorovich optimal transport: min ZiZ]- Ci j M;j With constraints
m

e Rewritten as:

min (C, M)
MeU(r,c)

with U(r, ¢) matrices whose rows sum to r and columns to ¢

e |dea: consider instead

Mer%l(gﬂl,c)(C, M) — eE(M)

where E(M) = —ZMij(log(Ml-j) — 1) is the entropy, € a small constant

Iterative Bregman Projections for Regularized Transportation Problems [Benamou et al. 2014]

Sinkhorn Distances: Lightspeed Computation of Optimal Transport [Cuturi 2013]



The Sinkhorn algorithm

min (C,M) — eE(M)

MeU(r,c)
* Can be rewritten as a projection:
min KL(M,¢)
MeU(r,c)
C Mi;j
where & = exp (— E) and KL(M, &) = YM;; (log ) 1) the
ij

Kullback-Leibler divergence



The Sinkhorn algorithm

wZl ey KLM.)

* This is a projection on the intersection of two affine constraints, due
to U(r, c)

* We can thus apply Bregman projections: we iteratively project on

each constraint :




The Sinkhorn algorithm

* Projecting on constraints:
* Constraints: ,; M;; =17 and X; M;; = ¢;

o Nl o Mo y _ My S :
M;; = ZiMij'rJ and M;; = 5 Mij'C‘ corresponds to projection with KL

* Row/column scaling
» Corresponds to left/right multiplying M by diagonal matrix




The Sinkhorn algorithm

* We obtain the algorithm:

ou(n): f D /J\ /\/\

gv(n) 1als p and
(n+1) g - arginals p and ¢
fT N,
M = dlag(u("))€ diag(v™)
=1 {=4 =10 £ =40 £ =100 £ = 1000

e=3/N e=6/N £=10/N £=20/N e=40/N =60/N



The Sinkhorn algorithm

* We realize that ¢ v(™ can be computed efficiently

2
_ i )

€

« Eg.,ifc(x,y) = lIx=yll% & = eXp(
 Then & v™) is just a Gaussian convolution
* So, it is a separable operator, and efficiently done in high-dimension

AR YYY Y T

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains
[Solomon et al. 2015]




Implementation

* Should converge to OT whene = 0

* Not numerically stable — can be computed in log-domain (not convolutional
anymore)
* Note: M = diag(u("))E diag(v(")) - elogM;; = ¢; —¢;j +;
* Scalings u, v are exponentials of [dual variables divided by €]
* Replace }; exp (— J) u; by (logX;exp(——2+ % +-)) =

€ €

* Requires more iterations = multiscale approaches, GPU
* Regularization can be important in ML

* Do not truncate gaussians
Cij
* $ij = exp (——

- ) = 0 = ¢;j = o0 : may prevent solutions



Regularized Wasserstein Barycenters

* Finds barycenter p of input measures {p;} such that
p = argminz AsWe (p, ps)
S

* Rewritten as the problem of finding transport plans {M,}.

minz AKL(M, &)
S

With constraints VS,ZL-MS’U = ps,j and dp, Zj M ;i = p;



Regularized Wasserstein Barycenters

* How to project on the set {{M.}. | Ip, Vs Z Mg ;i =pi}?

e ViuKL(M,¢&) = log? (division component-wise)

« Add Lagrange multipliers {l, € R"}

z (ASKL(MS' ) + z s ; (2 Mg ;; — Pi))
S i J

 Differentiate wrt M, p;, [ and setto O

S,ij

Vmg;t Vs, ij A log

P ZIS=

+l5,i — 0

V



Regularized Wasserstein Barycenters

S,lj
+1,;=0
&ij

V,: zl5=0

S

VMS,U.: Vs, i,j Aslog

e Denote a. = exp(—I.):
s p(—Ls) M.

Jij _ _ 1/Ag
As log =0 = Mgy =S5 ag)
65,1']' a;
[lga, =1
| he TN
Using ).; My ;; = p;, wehave ) al™ =p; so ag; = (Z.glsij)
] )

As .
Using [Iga; = 1, we have p; = HS(Z]- &5ij)  orinvector form, p = (1)



Regularized Wasserstein Barycenters

* Generalized to compute displacement interpolation and barycenters

. bs(o) =1 Vs
e for{ =0 ...L
° agf) = —K bpgls_l) VS

cp@ =TI, (k7a?)”

.y PA
by = KT o Vs

(notations changed) (again) -> K =& = exp (_ g)



Sinkhorn divergences

* |ssue:
* We(f,f)#0

* Instead, consider:

. 1 1
M/E(f'g) = M/E(f'g) _EVVE(]C'f) _EVVE(g!g)

« W.(f, f) = 0 by construction
* Better behavior, sharper barycenters
e State of the art GPU implem: GeomLoss



t=5.00

t=1.00

OO+ =3, 01" = 10" = o1 =2
Ng-ol  (gws (0S990

Sinkhorn divergences



Wasserstein Barycentric Coordinates:
Histogram Regression Using Optimal Transport

N. Bonneel, G. Peyré, M.Cuturi
SIGGRAPH 2016

£ Ntr
Oby-r
egU/ar Y
IZa
’ OTis Nicey,
d/'ffe r
€n tig b/
e/



Barycentric coordinates




Barycentric coordinates













Optimal Transport




Optimal Transport

W(f,g) = min 3.3 ||x; — x,-||2ml-j
s.t. m;; =0 ; Zimij = g(x]) ) ijij = f(x;)




Optimal Transport




Optimal Transport




Optimal transport

tes

K

X A
X A

W
x 3%

\

barycentric cof

XX XA




Formally:

min L(p(4), q)
St.Z/li = 1,/11' >0

with p(1) a Wasserstein barycenter:

p(1) = argmin,, z AsW?2(ps, p)

and L(p,q) acost function :
Lp.q) =W, ), llp—ql”.lIlp—ql: , KL(p,q)



Method

min EA) = L(pQL),q)

* We minimize using L-BFGS

* Weuse VEW) = [opWD)]" (VLp), D))

N

Hard Easy



ldea

* [ap(V)]T by deriving the Sinkhorn algorithm [Solomon et al. 2015]

* To compute p(A) given A, Sinkhorn iterations read:

. bgo) =1 Vs
efor{ =0 ...L
. ag)) = Kb%g_l) Vs

0 _ _PA)
by’ = KT o Vs



ldea

* Automatic differentiation: given an iterative algorithm, apply the chain
rule:

e |f
pD) = F(pP ), 1)

optV|  af |ap®| of

02| op@ o T
* We similarly compute the adjch q(f)

q(€+1)

e Then

e ...formulas in the paper



Gradient computation

 \We obtain:

°*qQs =0;7,=0 Vs
— VL(pA),q) ©p)

"9 7E(A)
efor{ =1L ..1
° 7 + (log KTag) ,g> Vs

. _gT Asg —Ts Ps (£-1)
S (K(Kw)Q(Kbgf-”f)@bs "

* g XsTs




Applications



Input

Projection

Database



Euclidean Wasserstein



Database

Projection

Input




Applications

Database

Projjegtion



Database Prdjmatibn



Flickr results for “Autumn” Prdjegtion



Database

Input Projection



Conclusion

* Notion of barycentric coordinates useful for computer graphics

* Tractable computations
* Barycenter gradient requires 2x convolutions w.r.t to barycenter alone

* Relatively large memory footprint
* Takes between seconds to minutes

e Easy to implement

 Code available:
http://liris.cnrs.fr/~nbonneel/WassersteinBarycentricCoordinates/



http://liris.cnrs.fr/%7Enbonneel/WassersteinBarycentricCoordinates/
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