
Semi-discrete optimal transport



Voronoi diagram

 A partition such that each point 𝑥 is assigned to its closest site 𝑥𝑖

𝑥 − 𝑥𝑖
2 ≤ 𝑥 − 𝑥𝑗

2
∀𝑗

 The dual of a Delaunay triangulation: a triangulation of the sites such that 

no other site is encompassed by the circumcircle of a triangle

 Also: convex hull of a parabolic lifting



Centroidal Voronoi Diagram

 Can be defined as the solution to a least-square problem

min න
𝑉𝑜𝑟𝑖

෍

𝑖

𝑥 − 𝑥𝑖
2𝑑𝑥

Also says that the centroid of 𝑉𝑜𝑟𝑖 is the site 𝑥𝑖

 Can be computed by:

 A Lloyd clustering algorithm

 A descent approach on the above energy



Power Diagram (Laguerre diagram)

 A partition s.t. each point 𝑥 is assigned to its closest site 𝑥𝑖 with weight 𝑟𝑖

𝑥 − 𝑥𝑖
2 − 𝑤𝑖 ≤ 𝑥 − 𝑥𝑗

2
− 𝑤𝑗 ∀𝑗

Replaces distance to closest site with distance to closest tangential point to a circle of radius 𝑟𝑖 = 𝑤𝑖

Any partition into convex polyhedral cells is a power diagram of some sites



Power Diagram (Laguerre diagram)

 Can be computed by lifting a Voronoi diagram

 Consider site coordinates 𝑥𝑖
′ =  𝑥𝑖  ; 𝑚 − 𝑤𝑖  for large constant m ; 𝑥′ = 𝑥 ; 0

 Then 𝑥′ − 𝑥𝑖
′ 2 ≤ 𝑥′ − 𝑥𝑗

′ 2
 ∀𝑗

Some cells can be empty (e.g., yellow and green) and some sites can be outside of their cell (e.g., gray)



Semi-discrete Optimal Transport

Population density 𝑓



Semi-discrete Optimal Transport
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Set of bakeries, factories, …?



Semi-discrete Optimal Transport
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No constraint on production: population go to their nearest bakery/factory/… regardless of population density



Semi-discrete Optimal Transport
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Limited production: population go to the nearest bakery/factory with sufficient production!



Semi-discrete Optimal Transport
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Limited production: population go to the nearest bakery/factory with sufficient production!

(needs for)

population here

=

quantity produced here



Back to optimal transport

 Optimal transport (Monge version) :

min න 𝑥 − 𝑇 𝑥 2 𝑑𝜇(𝑥)

Considering 𝜇 is continuous with density 𝜌

min න 𝑥 − 𝑇 𝑥 2 𝜌 𝑥 𝑑𝑥

Considering 𝜈 (the target measure) discrete: 𝜈 = ∑𝜆𝑝𝛿𝑝

The mass preservation constraint is:

𝜆𝑝 = න
𝑇−1( 𝑝 )

𝜌 𝑥 𝑑𝑥

A Multiscale Approach to Optimal Transport [Mérigot 2011]

Minkowski-Type Theorems and Least-Squares Clustering [Aurenhammer et al. 98]



Back to optimal transport

 In this case :  𝑇−1 𝑝 = 𝑉𝑜𝑟𝑊(𝑝)

a power cell for some weight 𝑤𝑝 

 This determines a partition, so Monge problem is:

min ෍

𝑝

න
𝑉𝑜𝑟𝑊(𝑝)

𝑥 − 𝑝 2 𝜌 𝑥  𝑑𝑥

 Idea: optimize weights 𝑤 for each site to grow/shrink

power cells until   𝜆𝑝 = )𝑇−1׬ 𝑝 )
𝜌 𝑥 𝑑𝑥

 Gradient of appropriate functional given by 
𝜕𝜙

𝜕𝑤 𝑝
𝑤 = 𝜆𝑝 − 𝑉𝑜𝑟𝑊(𝑝)׬

 𝜌 𝑥  𝑑𝑥

x
p



Back to optimal transport

A Multiscale Approach to Optimal Transport [Mérigot 2011]

A Numerical Algorithm for L2 Semi-discrete 

Optimal Transport in 3D [Lévy 2015]



Application

 Also optimizes for the locations 𝑝

Blue Noise through Optimal Transport [de Goes et al. 2012]



Application to fluid 

simulation



Fluids with Optimal Transport

 Lagrangian scheme

 Add forces as usual (gravity, viscosity, surface tension…)

 Recover incompressibility throught OT [Gallouët & Mérigot 2016]

 Computes OT from particles to uniform density

 Add force from particle towards power cell centroid

 Enforces particles to spread uniformly => incompressibility



Fluids with Optimal Transport

 Algorithm for 1 time step, at time step t : Explicit Euler

 W = OT(Particles, Uniform Density)

 For each particle:

 𝐹𝑠𝑝𝑟𝑖𝑛𝑔
𝑖 =

1

𝜖2 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐿𝑎𝑔𝑢𝑒𝑟𝑟𝑒𝑖) − 𝑋𝑖
𝑡

 𝐹𝑖 = 𝐹𝑠𝑝𝑟𝑖𝑛𝑔
𝑖 + 𝑚𝑖 Ԧ𝑔

 𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑛 +
𝑑𝑡

𝑚𝑖
𝐹𝑡

 𝑋𝑖
𝑡+1 = 𝑋𝑖 + 𝑑𝑡 𝑣𝑖

𝑡+1 

 Bounce particles back into the domain

[Gallouët & Mérigot 

2016]

My implem: 𝜖 = 0.004, dt = 0.002 and 𝑚𝑖 = 200.



Fluids with Optimal Transport

 For free-surface fluids, use partial optimal transport

 Keep air particles and fluid particles

 Can perform Lloyd iterations on air particles

 Instead of enforcing that each particle has mass 1/N

 Enforce each fluid particles to have mass volume_fluid/Nfluid

 Enforce the sum of all air particles to have total mass volume_air

⇒ only 1 unknown 𝑤𝑎𝑖𝑟 for all air particles

⇒ all air power cells have the same weight 𝑤𝑎𝑖𝑟. 

“Partial Optimal Transport for a Constant-Volume Lagrangian Mesh with Free Boundaries” [Levy 2022]



Fluids with Optimal Transport

 Inside fluid 𝑤𝑖 > 𝑤𝑎𝑖𝑟

 Fluid cells erode air cells

 In total, 𝑁𝑓𝑙𝑢𝑖𝑑 + 1 unknown power cell weights to determine

 Warm restart at each time step.

 Then, only move fluid particles



Fluids with Optimal Transport

 In practice, now:

𝑔 𝑊 = ෍

𝑖=1

𝑁𝑓𝑙𝑢𝑖𝑑

න
𝑃𝑜𝑤𝑊(𝑦𝑖)

𝑥 − 𝑦𝑖
2 − 𝑤𝑖 d𝑥 + ෍

𝑖=𝑁𝑓𝑙𝑢𝑖𝑑+1

𝑁𝑓𝑙𝑢𝑖𝑑+𝑁𝑎𝑖𝑟+1

න
𝑃𝑜𝑤𝑊(𝑦𝑖)

𝑥 − 𝑦𝑖
2 − 𝑤𝑎𝑖𝑟 d𝑥 + ෍

𝑖=1

𝑁𝑓𝑙𝑢𝑖𝑑
𝑣𝑜𝑙𝑓𝑙𝑢𝑖𝑑

𝑁𝑓𝑙𝑢𝑖𝑑
𝑤𝑖 + 𝑣𝑜𝑙𝑎𝑖𝑟𝑤𝑎𝑖𝑟

𝜕𝑔

𝜕𝑤 𝑦𝑖
𝑊 =

𝑣𝑜𝑙𝑓𝑙𝑢𝑖𝑑

𝑁𝑓𝑙𝑢𝑖𝑑
− 𝐴𝑟𝑒𝑎 𝑃𝑜𝑤𝑖  for 1 ≤ i ≤ Nfluid

𝜕𝑔

𝜕𝑤 𝑦𝑎𝑖𝑟
𝑊 = 𝑣𝑜𝑙𝑎𝑖𝑟 − ෍

𝑗=𝑁𝑓𝑙𝑢𝑖𝑑𝑠+1

𝑁𝑓𝑙𝑢𝑖𝑑𝑠+𝑁𝑎𝑖𝑟+1

𝐴𝑟𝑒𝑎(𝑃𝑜𝑤𝑖)  for i = Nfluid + 1



Fluids with Optimal Transport

𝑁𝑓𝑙𝑢𝑖𝑑 = 700, 𝑁𝑎𝑖𝑟 = 2500,   1 sec/frame at beginning, 30 sec/frame at the end, with

Nanoflann



Fluids with Optimal Transport

 Asymptotically, as 𝑁𝑎𝑖𝑟 → ∞

 Still 1 unknown

 Now, power cell of a fluid cell expressed as:

 𝑥 − 𝑥𝑖
2 − 𝑤𝑖 ≤ 𝑥 − 𝑥𝑗

2
− 𝑤𝑗  for all fluid index j

𝑥 − 𝑥𝑖
2 − 𝑤𝑖 ≤ 0 − 𝑤𝑎𝑖𝑟  

 ⇒ Boundary of fluid = arc of a circle of radius 𝑤𝑖 − 𝑤𝑎𝑖𝑟

(recall 𝑤𝑖 ≥ 𝑤𝑎𝑖𝑟 in fluid and on its boundary)

 So, fluid cells are intersections of Laguerre cells and disks

 Can approximate disks with polygons and use Sutherland-Hodgman again!

There are air “particles” everywhere : min squared 

distance = 0



Fluids with Optimal Transport

 In practice, now:

𝑔 𝑊 = ෍

𝑖=1

𝑁𝑓𝑙𝑢𝑖𝑑

න
𝑃𝑜𝑤𝑊(𝑦𝑖)

𝑥 − 𝑦𝑖
2 − 𝑤𝑖 d𝑥 + ෍

𝑖=1

𝑁𝑓𝑙𝑢𝑖𝑑
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑜𝑙𝑓𝑙𝑢𝑖𝑑

𝑁𝑓𝑙𝑢𝑖𝑑
𝑤𝑖 + 𝑤𝑎𝑖𝑟 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑜𝑙𝑎𝑖𝑟 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑜𝑙𝑎𝑖𝑟

𝜕𝑔

𝜕𝑤𝑖
𝑊 =

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑜𝑙𝑓𝑙𝑢𝑖𝑑

𝑁𝑓𝑙𝑢𝑖𝑑
− 𝐴𝑟𝑒𝑎 𝑃𝑜𝑤𝑖  for 1 ≤ i ≤ Nfluid

𝜕𝑔

𝜕𝑤 𝑎𝑖𝑟
𝑊 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑜𝑙𝑎𝑖𝑟 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑜𝑙𝑎𝑖𝑟

With 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑜𝑙𝑎𝑖𝑟 = 1 − ∑𝑖 𝐴𝑟𝑒𝑎 𝑃𝑜𝑤𝑖



Fluids with Optimal Transport

𝑁𝑓𝑙𝑢𝑖𝑑 = 700, 𝑁𝑎𝑖𝑟 = 1,   1 sec/frame



Fluids with Optimal Transport



Fluids with Optimal Transport

 Corresponds to transporting optimally volume_fluid among volume_total

 Partial optimal transport

x
x

x

x

x

x

x
x

x

x

x

x

𝑢𝑛𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 𝑎𝑟𝑒𝑎 𝑢𝑛𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ≤ 𝑎𝑟𝑒𝑎



Regularized optimal transport



The Sinkhorn algorithm

 Kantorovich optimal transport: min
𝑚

∑𝑖 ∑𝑗 𝑐𝑖,𝑗 𝑚𝑖→𝑗 with constraints

 Rewritten as : 
min

𝑀∈𝒰(𝑟,𝑐)
𝐶, 𝑀

with  𝒰(𝑟, 𝑐) matrices whose rows sum to 𝑟 and columns to 𝑐

 Idea: consider instead 
min

𝑀∈𝒰(𝑟,𝑐)
𝐶, 𝑀 − 𝜖𝐸 𝑀

where 𝐸 𝑀 = −∑𝑀𝑖𝑗(log 𝑀𝑖𝑗 − 1) is the entropy, 𝜖 a small constant

Sinkhorn Distances: Lightspeed Computation of Optimal Transport [Cuturi 2013]

Iterative Bregman Projections for Regularized Transportation Problems [Benamou et al. 2014]



The Sinkhorn algorithm

min
𝑀∈𝒰(𝑟,𝑐)

𝐶, 𝑀 − 𝜖𝐸 𝑀

 Can be rewritten as a projection: 
min

𝑀∈𝒰(𝑟,𝑐)
𝐾𝐿(𝑀, 𝜉)

where 𝜉 = exp −
𝐶

𝜖
  and 𝐾𝐿 𝑀, 𝜉 = ∑𝑀𝑖𝑗 log

𝑀𝑖𝑗

𝜉𝑖𝑗
− 1  the Kullback-Leibler 

divergence



The Sinkhorn algorithm

min
𝑀∈𝒰(𝑟,𝑐)

𝐾𝐿(𝑀, 𝜉)

 This is a projection on the intersection of two affine constraints, due to 

𝒰(𝑟, 𝑐)

 We can thus apply Bregman projections: we iteratively project on each 

constraint

x  𝜉



The Sinkhorn algorithm

 Projecting on constraints:

 Constraints: ∑𝑖 𝑀𝑖𝑗 = 𝑟𝑗 and  ∑𝑗 𝑀𝑖𝑗 = 𝑐𝑖

 𝑀𝑖𝑗
′ =

𝑀𝑖𝑗

∑𝑖 𝑀𝑖𝑗
. 𝑟𝑗  and   𝑀𝑖𝑗

′ =
𝑀𝑖𝑗

∑𝑗 𝑀𝑖𝑗
. 𝑐𝑖 corresponds to projection with KL

 Row/column scaling

 Corresponds to left/right multiplying M by diagonal matrix



The Sinkhorn algorithm

 We can thus apply Bregman projections: we iteratively project on each 

constraint

 We obtain the algorithm:

 𝑢(𝑛) =
𝑓

𝜉 𝑣(𝑛)

 𝑣(𝑛+1) =
𝑔

𝜉𝑇 𝑢(𝑛)

 𝑀 = 𝑑𝑖𝑎𝑔 𝑢 𝑛 𝜉 𝑑𝑖𝑎𝑔(𝑣(𝑛))



The Sinkhorn algorithm

 We realize that 𝜉 𝑣(𝑛) can be computed efficiently

 E.g., if 𝑐 𝑥, 𝑦 = 𝑥 − 𝑦 2, 𝜉𝑖𝑗 = exp −
𝑥𝑖−𝑥𝑗

2

𝜖

 Then 𝜉 𝑣(𝑛) is just a Gaussian convolution

 So, it is a separable operator, and efficiently done in high-dimension

Convolutional Wasserstein Distances: Efficient Optimal Transportation on 

Geometric Domains [Solomon et al. 2015]



The Sinkhorn algorithm

 Generalized to compute displacement interpolation and barycenters

𝑏𝑠
(0)

= 1 ∀𝑠

for ℓ = 0 … 𝐿

𝑎𝑠
(ℓ)

=
𝑝𝑠

𝐾 𝑏𝑠
(𝑙−1)  ∀𝑠 

𝑝 𝜆 =  ς𝑠 𝐾𝑇𝑎𝑠
ℓ

𝜆𝑠
 

𝑏𝑠
(ℓ)

=
𝑝(𝜆)

𝐾𝑇 𝑎𝑠
(ℓ)  ∀𝑠



The Sinkhorn algorithm

 Issues

 Unstable as regularization decreases

 Computations in log-domain

 Number of iterations should increase as regularization decreases

 Multiscale computations

 𝑊𝜖(𝑓, 𝑓) ≠ 0

 ෩𝑊𝜖 𝑓, 𝑔 = 𝑊𝜖 𝑓, 𝑔 −
1

2
(𝑊𝜖 𝑓, 𝑓 + 𝑊𝜖(𝑔, 𝑔))
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