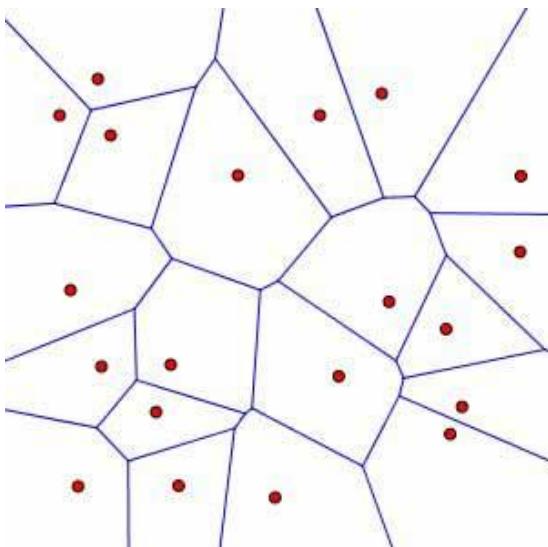
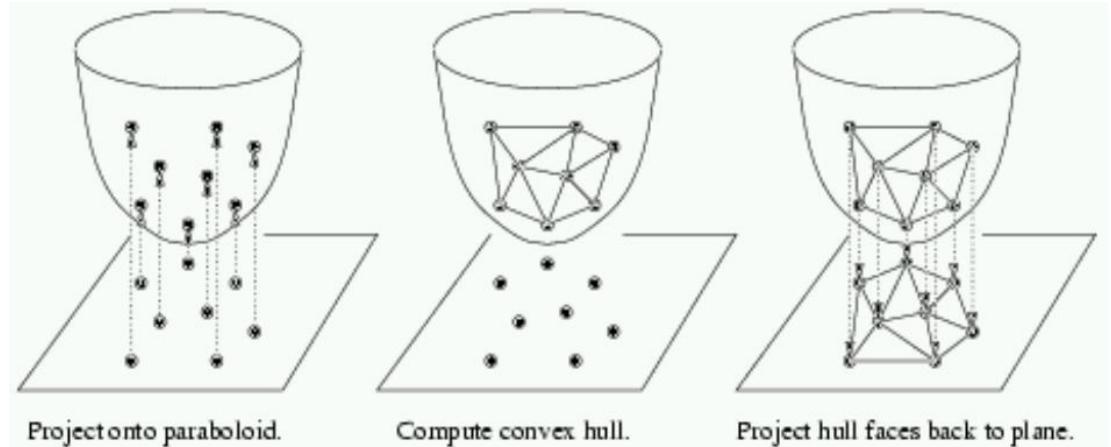


Semi-discrete optimal transport

Voronoi diagram

- A partition such that each point x is assigned to its closest site x_i
$$\|x - x_i\|^2 \leq \|x - x_j\|^2 \quad \forall j$$
- The dual of a Delaunay triangulation: a triangulation of the sites such that no other site is encompassed by the circumcircle of a triangle
 - Also: convex hull of a parabolic lifting



Project onto paraboloid.

Compute convex hull.

Project hull faces back to plane.

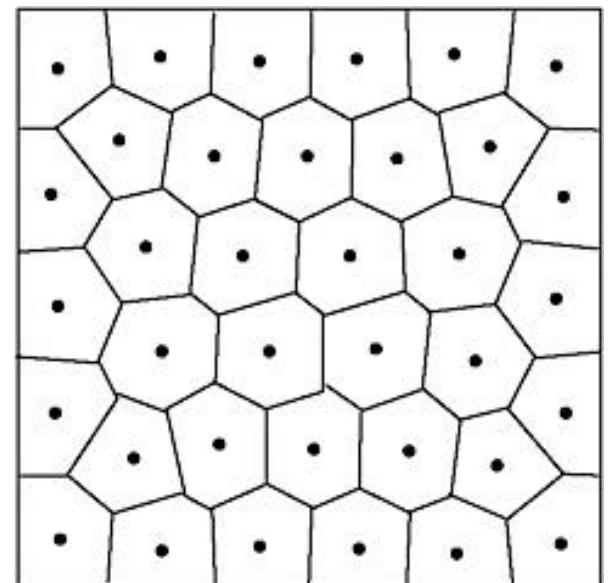
Centroidal Voronoi Diagram

- ▶ Can be defined as the solution to a least-square problem

$$\min \int_{Vor_i} \sum_i \|x - x_i\|^2 dx$$

Also says that the centroid of Vor_i is the site x_i

- ▶ Can be computed by:
 - ▶ A Lloyd clustering algorithm
 - ▶ A descent approach on the above energy

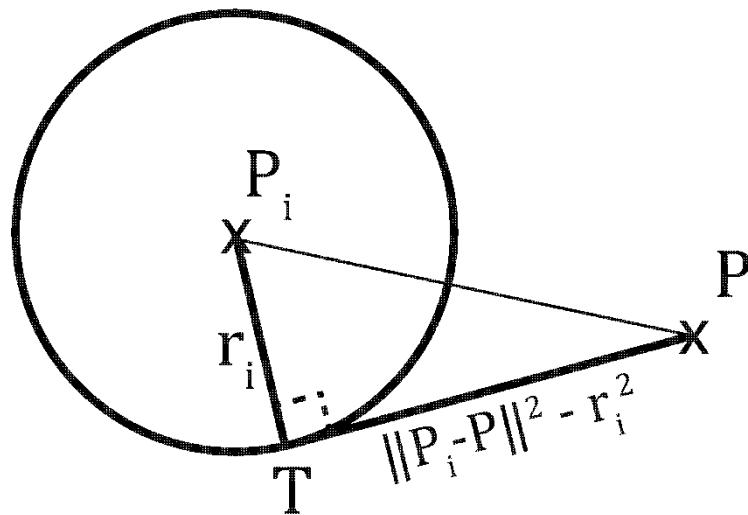
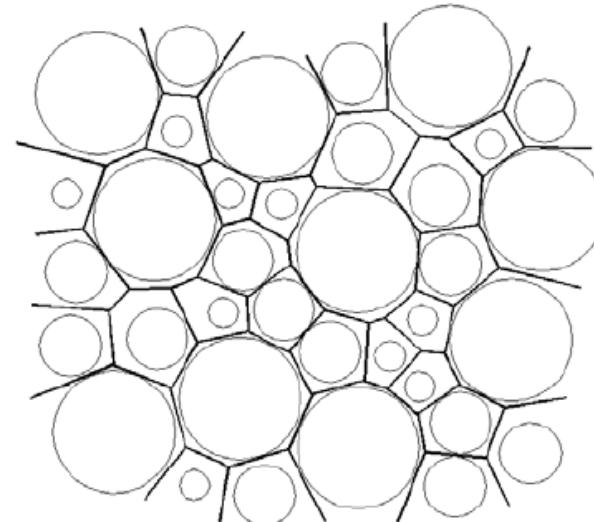
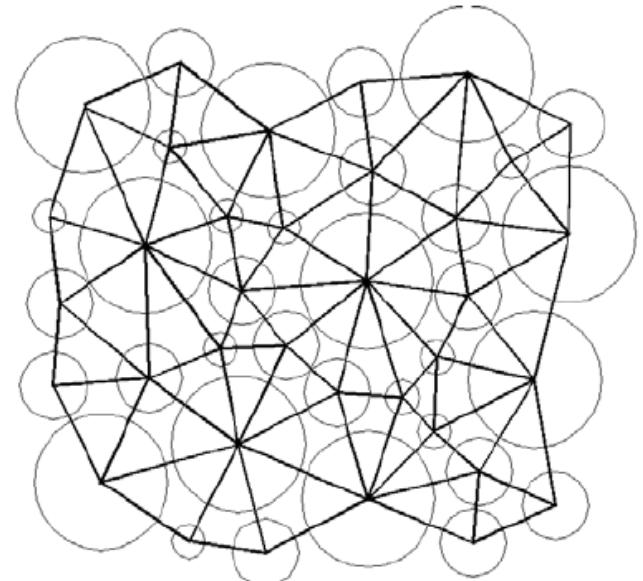


Power Diagram (Laguerre diagram)

- A partition s.t. each point x is assigned to its closest site x_i with weight r_i

$$\|x - x_i\|^2 - w_i \leq \|x - x_j\|^2 - w_j \quad \forall j$$

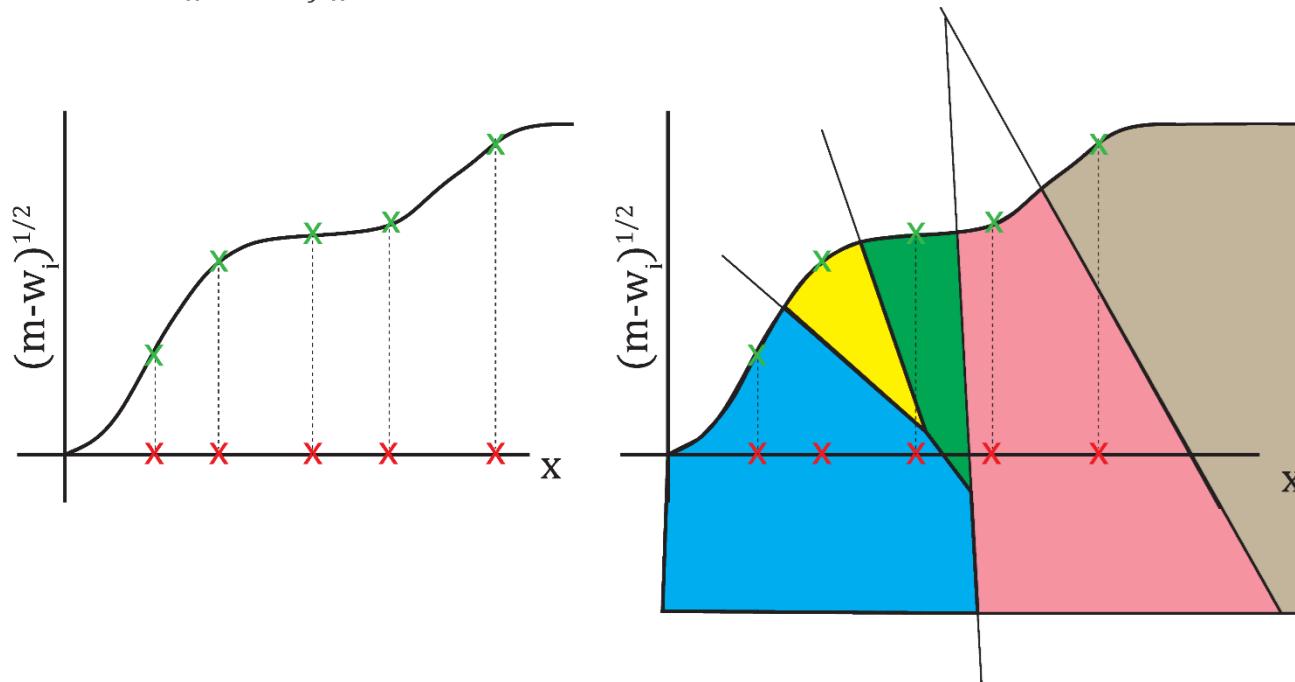
Replaces distance to closest site with distance to closest tangential point to a circle of radius $r_i = \sqrt{w_i}$



Any partition into convex polyhedral cells is a power diagram of some sites

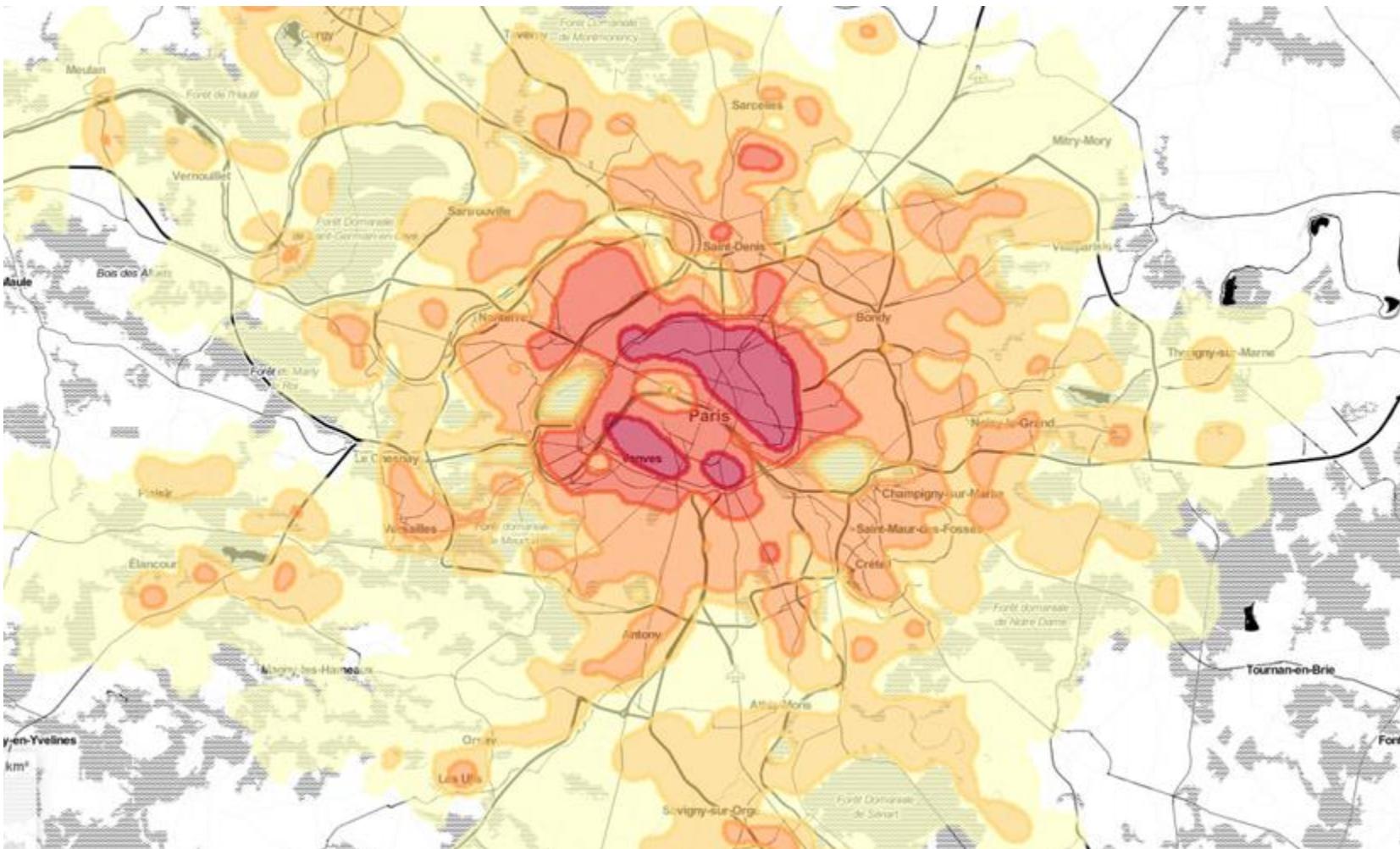
Power Diagram (Laguerre diagram)

- Can be computed by lifting a Voronoi diagram
 - Consider site coordinates $x'_i = (x_i ; \sqrt{m - w_i})$ for large constant m ; $x' = (x ; 0)$
 - Then $\|x' - x'_i\|^2 \leq \|x' - x'_j\|^2 \forall j$



Some cells can be empty (e.g., yellow and green) and some sites can be outside of their cell (e.g., pink and brown).

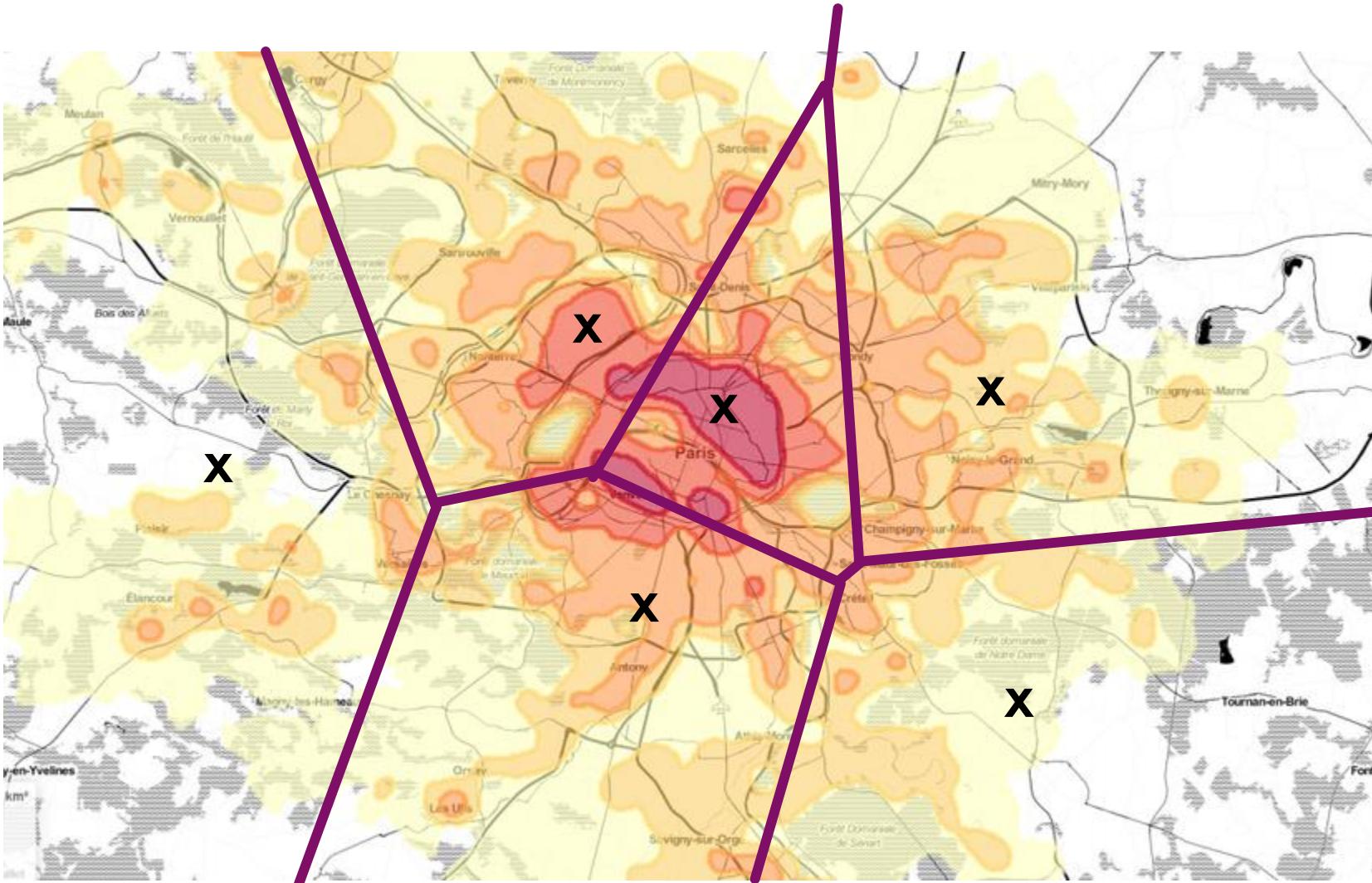
Semi-discrete Optimal Transport



Semi-discrete Optimal Transport

Set of bakeries, factories, ...?

Semi-discrete Optimal Transport



No constraint on production: population go to their nearest bakery/factory/... regardless of population

Semi-discrete Optimal Transport

Limited production: population go to the nearest bakery/factory **with sufficient production!**

Semi-discrete Optimal Transport

(needs for)
population here

=

quantity produced here



Limited production: population go to the nearest bakery/factory **with sufficient production!**

Back to optimal transport

- Optimal transport (Monge version) :

$$\min \int \|x - T(x)\|^2 d\mu(x)$$

Considering μ is continuous with density ρ

$$\min \int \|x - T(x)\|^2 \rho(x) dx$$

Considering ν (the target measure) discrete: $\nu = \sum \lambda_p \delta_p$

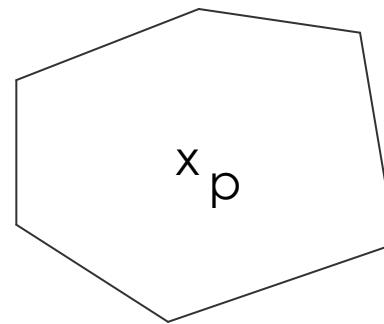
The mass preservation constraint is:

$$\lambda_p = \int_{T^{-1}(\{p\})} \rho(x) dx$$

Back to optimal transport

- ▶ In this case : $T^{-1}(\{p\}) = Vor^W(p)$

a power cell for some weight w_p



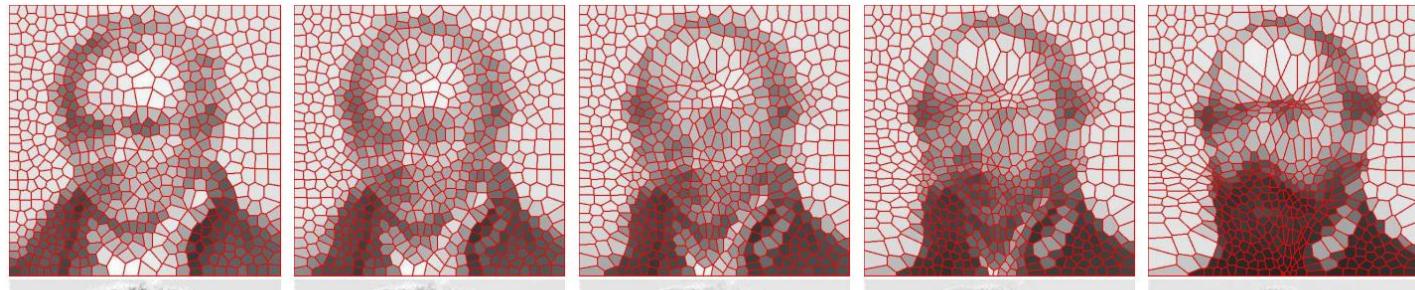
- ▶ This determines a partition, so Monge problem is:

$$\min \sum_p \int_{Vor^W(p)} \|x - p\|^2 \rho(x) dx$$

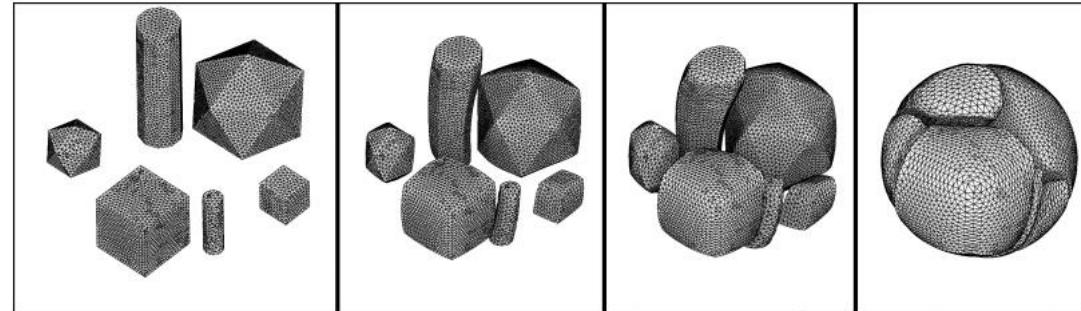
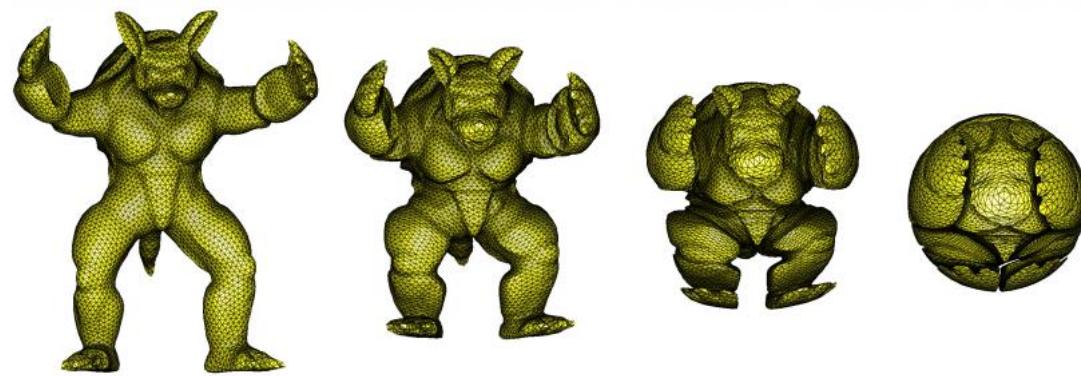
- ▶ Idea: optimize weights w for each site to grow/shrink power cells until $\lambda_p = \int_{T^{-1}(\{p\})} \rho(x) dx$

- ▶ Gradient of appropriate functional given by $\frac{\partial \phi}{\partial w(p)}(w) = \lambda_p - \int_{Vor^W(p)} \rho(x) dx$

Back to optimal transport



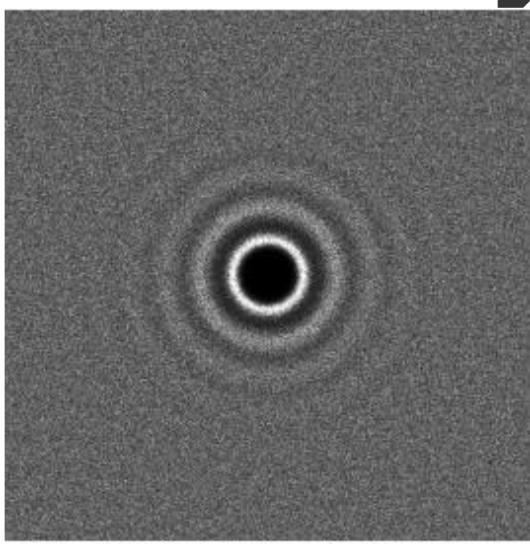
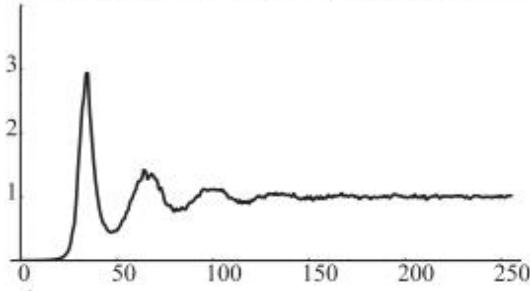
A Multiscale Approach to Optimal Transport [Mérigot 2011]



A Numerical Algorithm for L2 Semi-discrete
Optimal Transport in 3D [Lévy 2015]

Application

- Also optimizes for the locations p



Blue Noise through Optimal Transport [de Goes et al. 2012]

Application to fluid
simulation

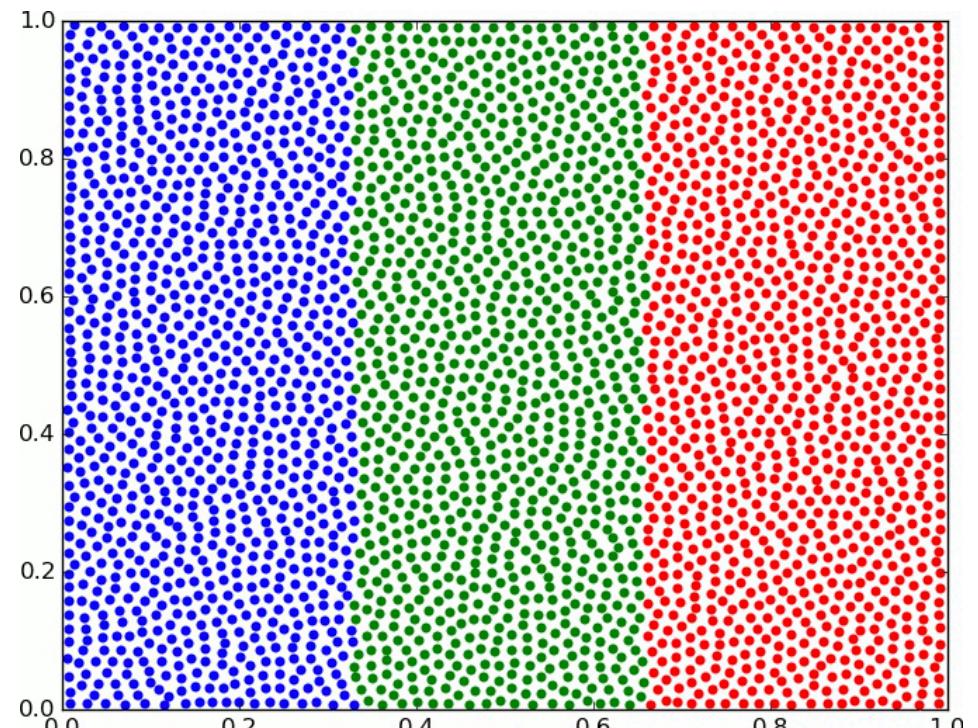
Fluids with Optimal Transport

- ▶ Lagrangian scheme
 - ▶ Add forces as usual (gravity, viscosity, surface tension...)
- ▶ Recover incompressibility through OT [Gallouët & Mérigot 2016]
 - ▶ Computes OT from particles to uniform density
 - ▶ Add force from particle towards power cell centroid
 - ▶ Enforces particles to spread uniformly => incompressibility

Fluids with Optimal Transport

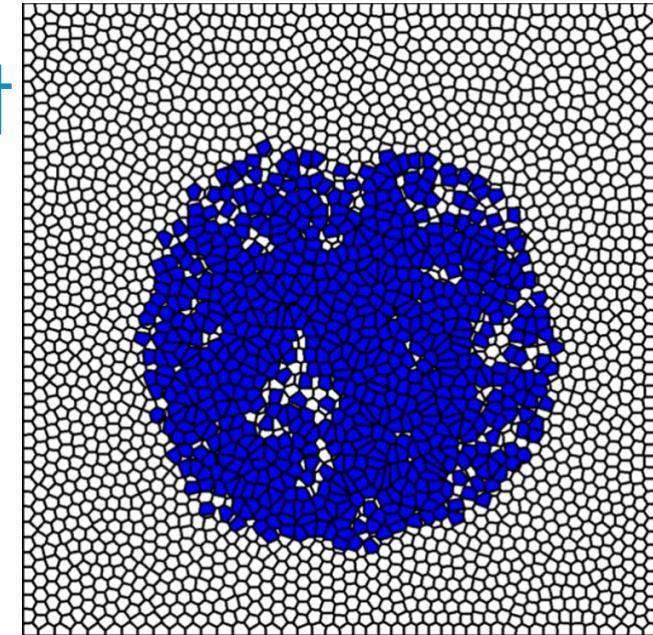
- ▶ Algorithm for 1 time step, at time step t : Explicit Euler
 - ▶ $W = OT(\text{Particles}, \text{Uniform Density})$
 - ▶ For each particle:
 - ▶ $F_{spring}^i = \frac{1}{\epsilon^2} (Centroid(Laguerre_i) - X_i^t)$
 - ▶ $F^i = F_{spring}^i + m_i \vec{g}$
 - ▶ $v_i^{t+1} = v_i^n + \frac{dt}{m_i} F^t$
 - ▶ $X_i^{t+1} = X_i + dt v_i^{t+1}$
 - ▶ Bounce particles back into the domain

My implem: $\epsilon = 0.004$, $dt = 0.002$ and $m_i = 200$.



Fluids with Optimal Transport

- For free-surface fluids, use partial optimal transport
- Keep air particles and fluid particles
 - Can perform Lloyd iterations on air particles
- Instead of enforcing that each particle has mass $1/N$
 - Enforce each fluid particles to have mass $\text{volume_fluid}/N_{\text{fluid}}$
 - Enforce **the sum** of all air particles to have total mass volume_air
 - ⇒ only 1 unknown w_{air} for all air particles
 - ⇒ all air power cells have the same weight w_{air} .



Fluids with Optimal Transport

- Inside fluid $w_i > w_{air}$
 - Fluid cells erode air cells
- In total, $N_{fluid} + 1$ unknown power cell weights to determine
- Warm restart at each time step.
- Then, only move fluid particles

Fluids with Optimal Transport

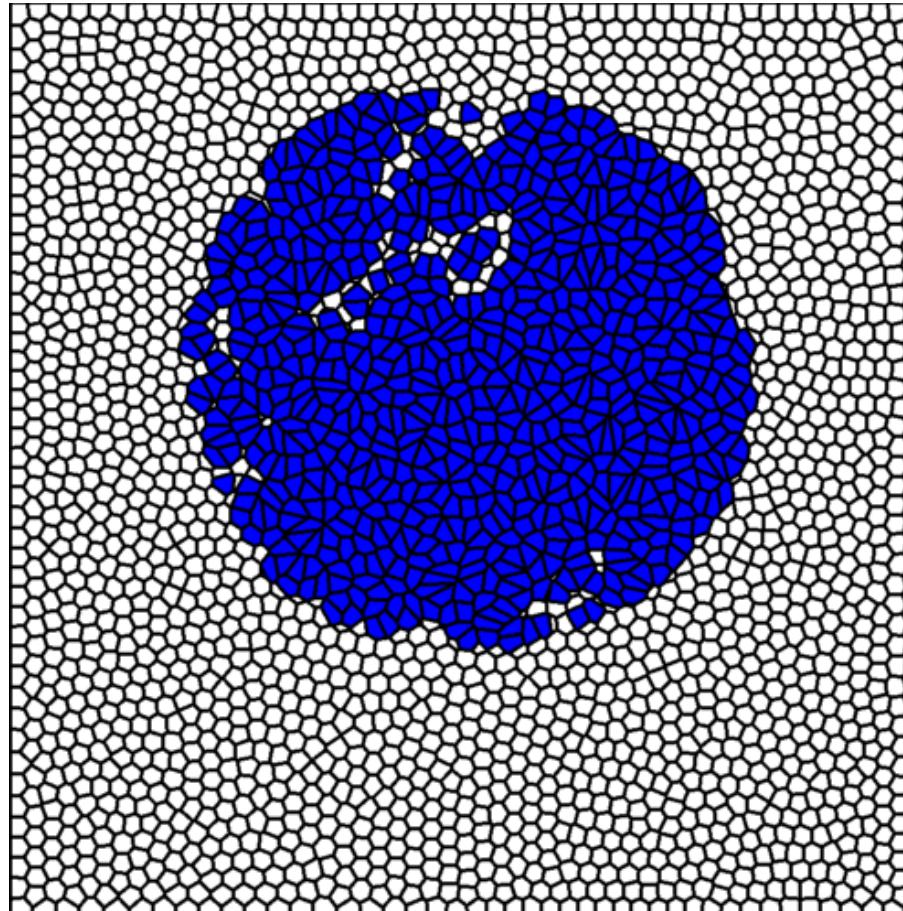
► In practice, now:

$$g(W) = \sum_{i=1}^{N_{fluid}} \int_{Pow_W(y_i)} (\|x - y_i\|^2 - w_i) dx + \boxed{\sum_{i=N_{fluid}+1}^{N_{fluid}+N_{air}+1} \int_{Pow_W(y_i)} (\|x - y_i\|^2 - w_{air}) dx} + \sum_{i=1}^{N_{fluid}} \frac{vol_{fluid}}{N_{fluid}} w_i + \boxed{vol_{air} w_{air}}$$

$$\frac{\partial g}{\partial w(y_i)}(W) = \frac{vol_{fluid}}{N_{fluid}} - Area(Pow_i) \quad \text{for } 1 \leq i \leq N_{fluid}$$

$$\frac{\partial g}{\partial w(y_{air})}(W) = vol_{air} - \sum_{j=N_{fluids}+1}^{N_{fluids}+N_{air}+1} Area(Pow_i) \quad \text{for } i = N_{fluid} + 1$$

Fluids with Optimal Transport



$N_{fluid} = 700$, $N_{air} = 2500$, 1 sec/frame at beginning, 30 sec/frame at the end, with Nanoflann

Fluids with Optimal Transport

- Asymptotically, as $N_{air} \rightarrow \infty$

- Still 1 unknown
- Now, power cell of a fluid cell expressed as:

$$\|x - x_i\|^2 - w_i \leq \|x - x_j\|^2 - w_j \quad \text{for all fluid index } j$$
$$\|x - x_i\|^2 - w_i \leq \boxed{0} - w_{air}$$

There are air “particles” everywhere : min squared distance = 0

- ⇒ Boundary of fluid = arc of a circle of radius $\sqrt{w_i - w_{air}}$

(recall $w_i \geq w_{air}$ in fluid and on its boundary)

- So, fluid cells are intersections of Laguerre cells and disks

- Can approximate disks with polygons and use Sutherland-Hodgman again!

Fluids with Optimal Transport

- In practice, now:

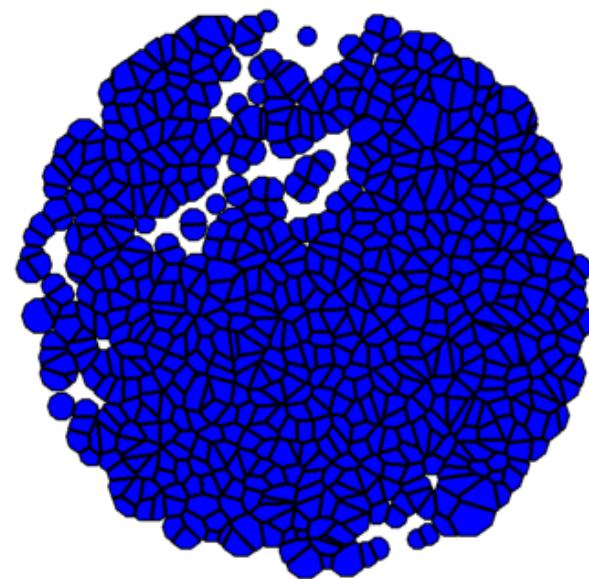
$$g(W) = \sum_{i=1}^{N_{fluid}} \int_{Pow_W(y_i)} (\|x - y_i\|^2 - w_i) dx + \sum_{i=1}^{N_{fluid}} \frac{desired\ vol_{fluid}}{N_{fluid}} w_i + w_{air} (desired\ vol_{air} - estimated\ vol_{air})$$

$$\frac{\partial g}{\partial w_i}(W) = \frac{desired\ vol_{fluid}}{N_{fluid}} - Area(Pow_i) \quad \text{for } 1 \leq i \leq N_{fluid}$$

$$\frac{\partial g}{\partial w(air)}(W) = desired\ vol_{air} - estimated\ vol_{air}$$

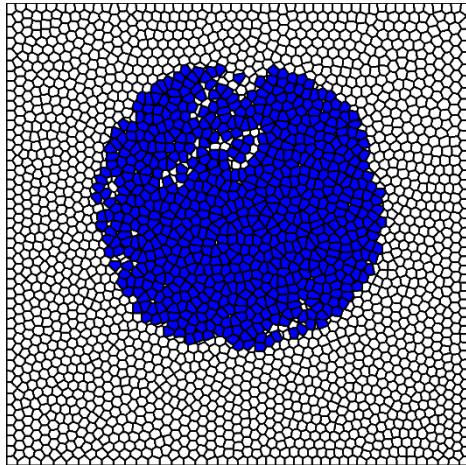
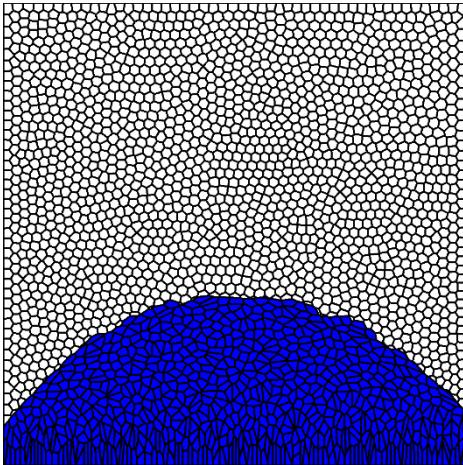
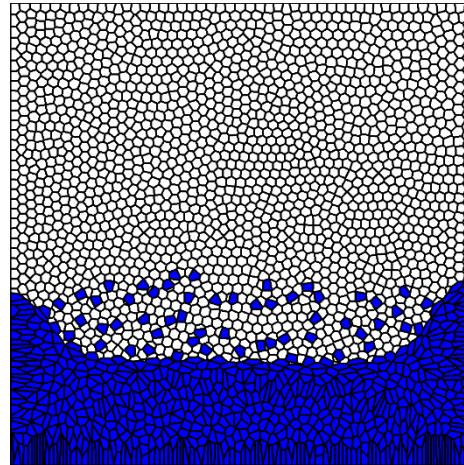
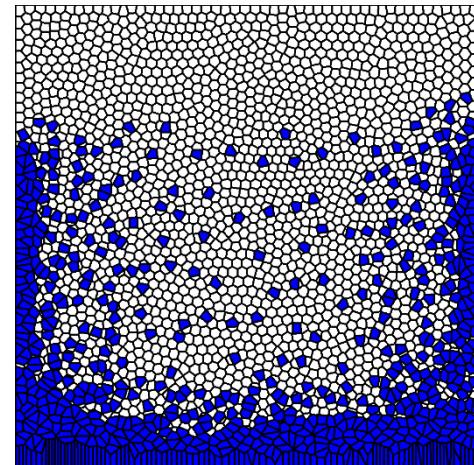
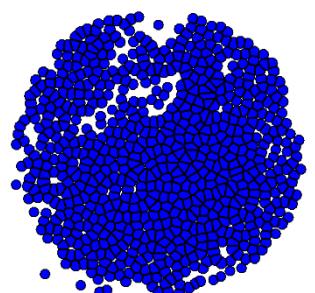
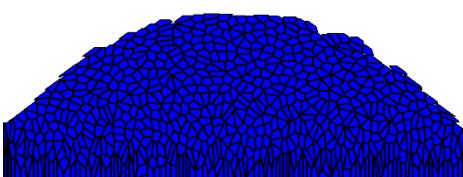
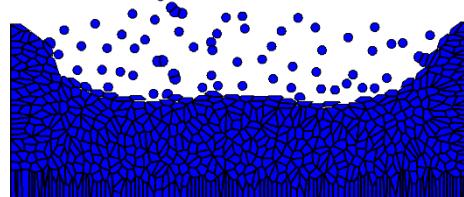
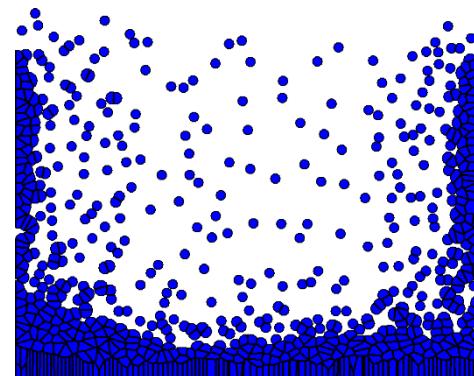
With $estimated\ vol_{air} = 1 - \sum_i Area(Pow_i)$

Fluids with Optimal Transport



$N_{fluid} = 700, N_{air} = 1, 1 \text{ sec/frame}$

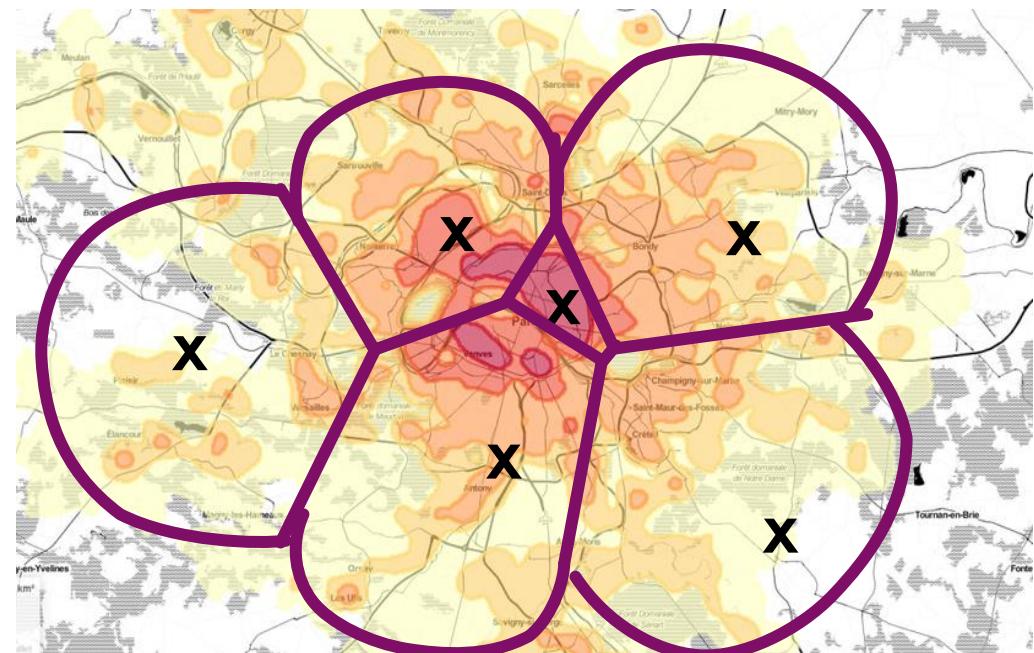
Fluids with Optimal Transport



Fluids with Optimal Transport

- Corresponds to transporting optimally $volume_fluid$ among $volume_total$
 - Partial optimal transport

units produced = area



units produced \leq area

Regularized optimal transport

The Sinkhorn algorithm

- Kantorovich optimal transport: $\min_m \sum_i \sum_j c_{i,j} m_{i \rightarrow j}$ with constraints
- Rewritten as :

$$\min_{M \in \mathcal{U}(r,c)} \langle C, M \rangle$$

with $\mathcal{U}(r,c)$ matrices whose rows sum to r and columns to c

- Idea: consider instead

$$\min_{M \in \mathcal{U}(r,c)} \langle C, M \rangle - \epsilon E(M)$$

where $E(M) = -\sum M_{ij}(\log(M_{ij}) - 1)$ is the entropy, ϵ a small constant

The Sinkhorn algorithm

$$\min_{M \in \mathcal{U}(r,c)} \langle C, M \rangle - \epsilon E(M)$$

- Can be rewritten as a projection:

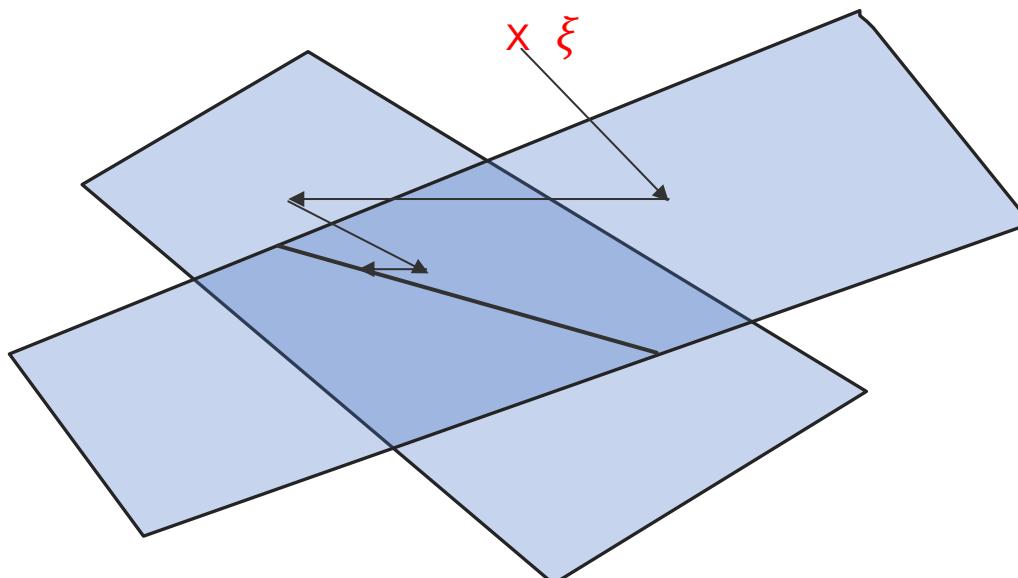
$$\min_{M \in \mathcal{U}(r,c)} KL(M, \xi)$$

where $\xi = \exp\left(-\frac{C}{\epsilon}\right)$ and $KL(M, \xi) = \sum M_{ij} \left(\log\left(\frac{M_{ij}}{\xi_{ij}}\right) - 1 \right)$ the Kullback-Leibler divergence

The Sinkhorn algorithm

$$\min_{M \in \mathcal{U}(r,c)} KL(M, \xi)$$

- ▶ This is a projection on the intersection of two affine constraints, due to $\mathcal{U}(r,c)$
- ▶ We can thus apply Bregman projections: we iteratively project on each constraint



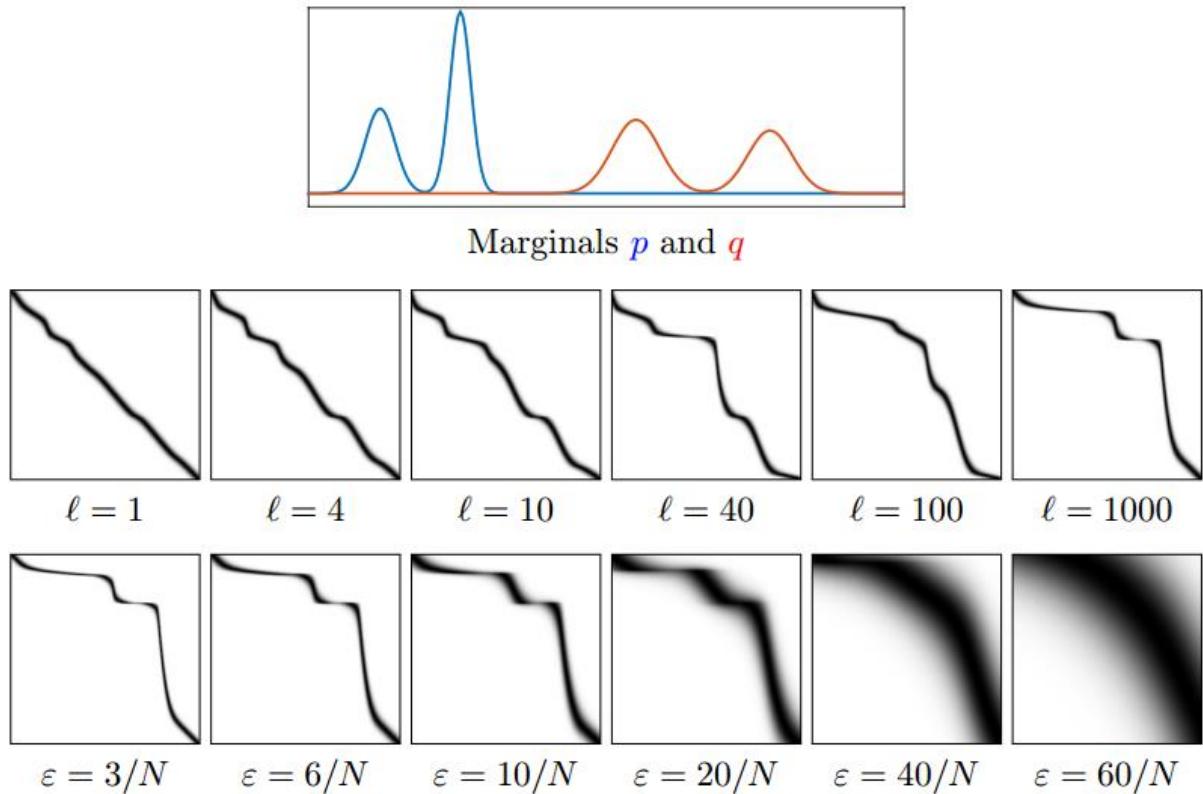
The Sinkhorn algorithm

- ▶ Projecting on constraints:
 - ▶ Constraints: $\sum_i M_{ij} = r_j$ and $\sum_j M_{ij} = c_i$
 - ▶ $M'_{ij} = \frac{M_{ij}}{\sum_i M_{ij}} \cdot r_j$ and $M'_{ij} = \frac{M_{ij}}{\sum_j M_{ij}} \cdot c_i$ corresponds to projection with KL
 - ▶ Row/column scaling
 - ▶ Corresponds to left/right multiplying M by diagonal matrix

The Sinkhorn algorithm

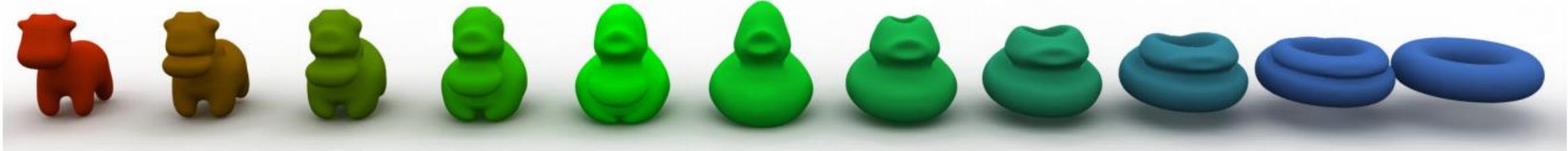
- We can thus apply Bregman projections: we iteratively project on each constraint
- We obtain the algorithm:

- $u^{(n)} = \frac{f}{\xi v^{(n)}}$
- $v^{(n+1)} = \frac{g}{\xi^T u^{(n)}}$
- $M = \text{diag}(u^{(n)})\xi \text{diag}(v^{(n)})$



The Sinkhorn algorithm

- We realize that $\xi v^{(n)}$ can be computed efficiently
 - E.g., if $c(x, y) = \|x - y\|^2$, $\xi_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{\epsilon}\right)$
 - Then $\xi v^{(n)}$ is just a Gaussian convolution
 - So, it is a separable operator, and efficiently done in high-dimension



The Sinkhorn algorithm

- Generalized to compute displacement interpolation and barycenters

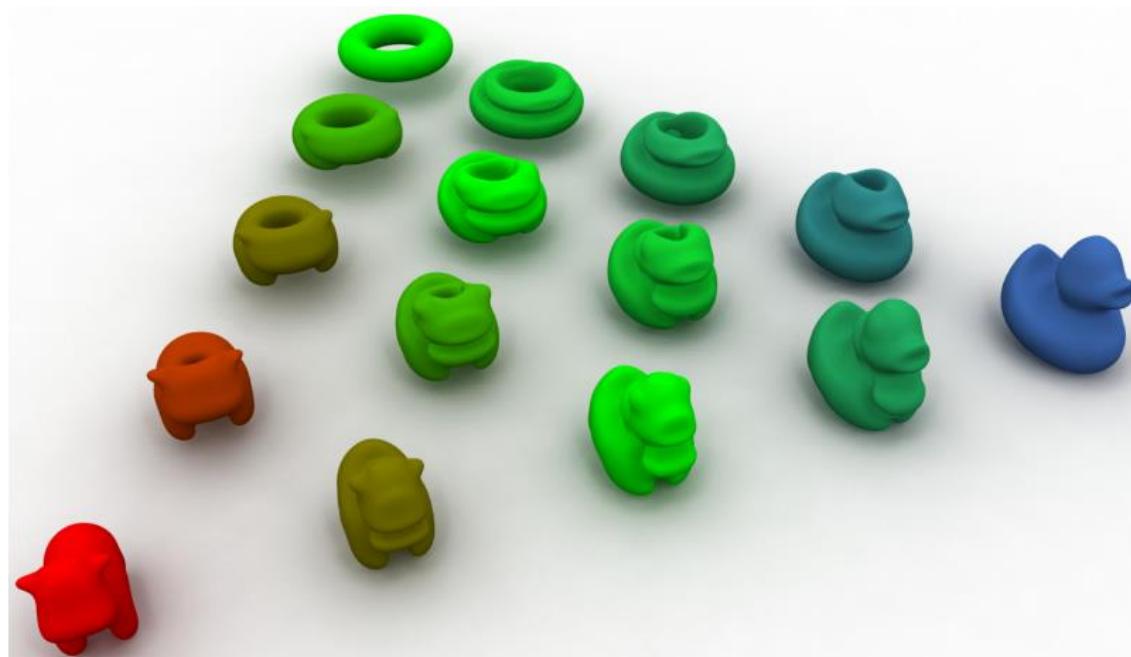
$$\Rightarrow b_s^{(0)} = 1 \quad \forall s$$

► for $\ell = 0 \dots L$

$$\Rightarrow a_s^{(\ell)} = \frac{p_s}{K b_s^{(\ell-1)}} \quad \forall s$$

$$\Rightarrow p(\lambda) = \prod_s \left(K^T a_s^{(\ell)} \right)^{\lambda_s}$$

$$\Rightarrow b_s^{(\ell)} = \frac{p(\lambda)}{K^T a_s^{(\ell)}} \quad \forall s$$



The Sinkhorn algorithm

- ▶ Issues
 - ▶ Unstable as regularization decreases
 - ▶ Computations in log-domain
 - ▶ Number of iterations should increase as regularization decreases
 - ▶ Multiscale computations
 - ▶ $W_\epsilon(f, f) \neq 0$
 - ▶ $\tilde{W}_\epsilon(f, g) = W_\epsilon(f, g) - \frac{1}{2}(W_\epsilon(f, f) + W_\epsilon(g, g))$