D Semi-discrete optimal tfransport



> Voronoi diagram

» A partition such that each point x is assigned to its closest site x;
lx — x;l12 < ||x - x]-”2 vj

» The dual of a Delaunay triangulation: a triangulation of the sites such that
no other site is encompassed by the circumcircle of a triangle

» Also: convex hull of a parabolic lifting
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Projectonto paraboloid. Compute convex hull. Project hull faces back to plane.




Centroidal Voronoi Diagram

» Can be defined as the solution to a least-square problem

minj ZHx — x;||?dx

Also says that the centroid of Vor; is the site x;

» Can be computed by:
» A Lloyd clustering algorithm

» A descent approach on the above energy




> Power Diagram (Laguerre diagram)

» A partition s.t. each point x is assigned to its closest site x; with weight r;

12

2 .
lx — x; —WiS”X—x]-” —w; Vj

Replaces distance to closest site with distance to closest fangential point to a circle of radius r; = \yw;

Any partition into convex polyhedral cells is a power diagram of some sites



> Power Diagram (Laguerre diagram)

» Can be computed by lifting a Voronoi diagram
= Consider site coordinates x; = (x; ; ym —w;) for large constant m ; x’ = (x; 0)

» Then ||x' — x{||? < ||x’ — x]f”2 Vj

(m-w)'/?

Some cells can be empty (e.g., yellow and green) and some sites can be outside of their cell (e



> Semi-discrete Optimal Transport




- Semi-discrete Optimal Transport

Set of bakeries, factories, ...°¢



- Semi-discrete Optimal Transport

No constraint on production: population go to their nearest bakery/factory/... regardless of populat



- Semi-discrete Optimal Transport

Limited production: population go to the nearest bakery/factory with sufficient production!



- Semi-discrete Optimal Transport
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Limited production: population go to the nearest bakery/factory with sufficient production!



Back to optimal transport

» Optimal fransport (Monge version)

min f lx = TGN du(x)

Considering u is continuous with density p

min f lx = TGOII2 p(x)dx

Considering v (the target measure) discrete: v = Y1,6,

The mass preservation constraint is:

Ay = J p(x)dx
T=1({p})

A Multiscale Approach to Optimal Transport [Mérigot 2011]
Minkowski-Type Theorems and Least-Squares Clustering [Aurenhammer et al. 98]



Back to optimal transport

» |nthiscase: T 1({p}) = Vor"(p)
a power cell for some weight w;,

» This defermines a partition, so Monge problem is:

min )’ j lx — plI2 p(x) dx
D VorW(p)

» |dea: optimize weights w for each site to grow/shrink
power cells until 4, = [ 1((p })p(x)dx

» Gradient of appropriate functional given by a_()(W) =

fVOTW(p) p(x) dx



Back to optimal transport

b

A Multiscale Approach to Optimal Transport [Mérigot 2011]

A Numerical Algorithm for L2 Semi-discrete
Opftimal Transport in 3D [Lévy 2015]



Application

»  Also optimizes for the locations p

s

1J

0 50 100 150 200 250

Blue Noise through Optimal Transport [de Goes et al. 2012)]



Application to fluid

- simulation




> Fluids with Optimal Transport

= | agrangian scheme
» Add forces as usual (gravity, viscosity, surface tension...)

» Recover incompressibility throught OT [Gallouét & Mérigot 201 6]
» Computes OT from particles to uniform density
» Add force from particle towards power cell centroid

» Enforces particles to spread uniformly => incompressibility
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OT(Particles, Uniform Density)

®» Bounce particles back into the domain

» [l
» !
» X

» [or each particle:

» W
0.002 and m; = 200.
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» Algorithm for 1 fime step, at time step t : Explicit Euler

My implem: € = 0.004, dt




> Fluids with Optimal Transport

» [or free-surface fluids, use partial optimal transport

» Keep air particles and fluid particles

» Can perform Lloyd iterations on air particles

®» |nstead of enforcing that each particle has mass 1/N

» Enforce each fluid particles to have mass volume_fluid/Ngyiq
» Enforce the sum of all air particles to have total mass volume_air
= only 1 unknown wy;, for all air particles

= all air power cells have the same weight w;,.

“Partial Optimal Transport for a Constant-Volume Lagrangian Mesh with Free Boundaries” [Levy 2022]



> Fluids with Optimal Transport

» |nside fluid w; > wy;,

» Fluid cells erode air cells
®» |n fofal, Newiq + 1 unknown power cell weights o determine
» Warm restart at each time step.

» Then, only move fluid particles



® |n practice, now:

N fiuid
gw) = z j
i=1 Poww (¥;)

Fluids with Optimal Transport

Nfiuid+n g +1
(llx = y; 11> — wy)dx + (llx = y;1I? — wgir)dx B
i=N fryiq+1 Poww (¥i)
dg W) = volfiyiq _ Area(Pow;) or1<i<N..
aW(yl) Nfluid L —= 1 = Nfluid
dg NfiyidstNairt+1
aw(yair) (W) — vOlair - z Area(POWi) fOri = Nfluid + 1

J=N fluids+1

N fluid

2.

i=1

volspyiq

Nfia

Wi+

UOIair Wair




Fluids with Optimal Transport

Nfpia = 700, Ngi- = 2500, 1 sec/frame af beginning, 30 sec/frame af the end, with
Nanoflann



- Fluids with Optimal Transport

»  Asympftoftically, as Ny — oo
» Still 1 unknown

= Now, power cell of a fluid cell expressed as:

Ix — x;||12 —w; < ||x — ;]| —w;  for all fluid index |

lx = x;l1? = w; SM

There are air “particles” everywhere : min squared

: , _distance =0
» - Boundary of fluid = arc of a circle of radius \\w; — wg;,

(recall w; = wg;, in fluid and on its boundary)

» So, fluid cells are intersections of Laguerre cells and disks

» Can approximate disks with polygons and use Sutherland-Hodgman again!



> Fluids with Optimal Transport

» |n practice, now:
Nfiuid

gw) = Z j

d .
desired volsyiq

Nfiui
(lx = y;II? = wy)dx + 2 w; + wy;-(desired vol,;, — estimated vol ;)
i=1

= JPoww (y) Nfuia
d desired vols;,,;
av!\i- (W) = Nfiyia R~ Area(Pow;) for 1 <i < Nfiq
l ut
ag

w(air) (W) = desired vol,;, — estimated volg;,

With estimated vol,;, = 1 = ).; Area(Pow;)



> Fluids with Optimal Transport

Nfpig = 700, Ngir = 1, 1 sec/frame



Fluids with Optimal Transport




> Fluids with Optimal Transport

» Corresponds to transporting optimally volume_fluid among volume_total

» Partial optimal transport

units produced = area units produced < area



D Reqgularized optimal transport



> The Sinkhorn algorithm

= Kantorovich optimal fransport: min }; 3. ; ¢; j m;_,; with constraints
m

®» Rewriften Qs :
min (C, M)
MEeU(r,c)
with U(r, c) matrices whose rows sum to r and columns to ¢

» |deq: consider instead

Men‘thl(n (C,M) — eE(M)

where E(M) = —=YM;;(log(M;;) — 1) is the entropy, € a small constant

Iterative Bregman Projections for Regularized Transportation Problems [Benamou et al. 2014]
Sinkhorn Distances: Lightspeed Computation of Optimal Transport [Cuturi 2013]



The Sinkhorn algorithm

Mer%l(n (C,M) — eE(M)
» Can be rewritten as a projection:

B KL

where & = exp (—g) and KL(M, §) = Y.M;; (log (M

- ) )’rhe Kullback-Leibler

divergence



The Sinkhorn algorithm

B KL )

® This is a projection on the intersection of two affine constraints, due to
U(r,©)

» We can thus apply Bregman projections: we iteratively project on each
constraint

X $




> The Sinkhorn algorithm

» Projecting on constraints:

» Constraints: ZlMl] = T} and Z] MU = C;

/ Mi' )’ Mi' . . .
» M = ZiM’ij.rj and M;; = Zj_l\;ijlci corresponds to projection with KL

» Row/column scaling

» Corresponds to left/right multiplying M by diagonal matrix



The Sinkhorn algorithm

» We can thus apply Bregman projections: we iteratively project on each
constraint

» We obtain the algorithm:

, PAWLY

Ev(m Marginals p and ¢

» u(n) =

» v(n'l'l) = g
o ST um

» = diag(u("))f diag(v(™)

£=1 £=14 £=10 ¢ =40 ¢ =100 ¢ = 1000

e=3/N e=6/N e=10/N e=20/N e=40/N e=60/N



The Sinkhorn algorithm

» We realize that £ v can be computed efficiently
_ ”xi_xj”Z)

€

» Eg.ifctxy) = llx—yll* &; = eXp(
» Then & v is just a Gaussian convolution

» SO, it is a separable operator, and efficiently done in high-dimension

AR YYYYY T "

Convolutional Wasserstein Distances: Efficient Optimal Transportation on
Geometric Domains [Solomon et al. 2015]



The Sinkhorn algorithm

» Generadlized to compute displacement interpolation and barycenters
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The Sinkhorn algorithm

» |ssues
» Unstable as regularization decreases
» Computations in log-domain
» Number of iterations should increase as regularization decreases

» Multiscale computations

= W.(f,f)#0
= W.(f,9) = We(f, 9) — 5 (W(f . ) + We(g, 9))
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