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ABSTRACT

Time-of-flight point cloud acquisition systems have grown in preci-
sion and robustness over the past few years. However, even subtle
motion can induce significant distortions due to the long acquisition
time. In contrast, there exists sensors that produce depth maps at a
higher frame rate, but they suffer from low resolution and accuracy.
In this paper, we correct distortions produced by small motions in
time-of-flight acquisitions and even output a corrected animated
sequence by combining a slow but high-resolution time-of-flight
LiDAR system and a fast but low-resolution consumer depth sensor.
We cast the problem as a curve-to-volume registration, by seeing a
LiDAR point cloud as a curve in a 4-dimensional spacetime and the
captured low-resolution depth video as a 4-dimensional spacetime
volume. Our approach starts by registering both captured sequences
in 4D, in a coarse-to-fine approach. It then computes an optical
flow between the low-resolution frames and finally transfers high-
resolution details by advecting along the flow. We demonstrate the
efficiency of our approach on both synthetic data, on which we can
compute registration errors, and real data.
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1 INTRODUCTION

Capturing accurate 3D geometries is a powerful way for artists
to design sceneries, for historians to reconstruct old monuments,
for real-estate agents to communicate their products or for nav-
igation systems to provide context. It has become a widespread
need, and, when it comes to static environments, is now mostly
sucessfully performed using laser technologies such as LiDaR, that
capture environments at sub-millimeter accuracy. When it comes
to slightly moving, let alone fully animated scenes, this technology
breaks. In fact, capturing a single frame can take tens of seconds,
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Figure 1: A consumer depth sensor acquires dense low-
resolution scans at a high rate (top row) while a LiDaR scan-
ner acquires sparse high resolution scans containing time
distorsions (bottom left). We recover details by undistorting
the LiDaR scan (bottom right).

which makes any motion problematic. Even small motions manifest
as distortions (Fig. 1) altering the reconstructed point cloud. For
dynamic scenes, one often resorts to much less accurate systems
such as infrared sensors (Microsoft Kinect or Creative Senz3D), or
structure-from-motion using multiple video cameras. These sys-
tems allow for capturing rough depth of an entire field of view at
30-60 frames per second, albeit at low resolution, with an accu-
racy of centimeters and numerous outliers. These setups gained
popularity with interactive console 3D games for which neither
precision nor accuracy is crucial. For accurate dynamic scene recon-
struction, no satisfactory solutions exist and one often resorts to
high-resolution templates deformed to match rough motions. This
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is particularly the case for facial animation, but does not generalize
well to different geometries.

In this paper, we provide the insight that using both laser and
infrared technologies at the same time, one can undistort and partly
recover a more accurate geometry in the presence of moderate
motions. We design a method that registers an accurate LiDaR
point cloud captured at a low temporal framerate to a coarse spatio-
temporal depth-sensor point cloud captured at interactive framerate,
without any preliminary device cross-calibration. We formulate this
problem as a spacetime curve-to-volume rigid correspondence prob-
lem efficiently solved using a Hough transform and Iterative Closest
Point algorithm. Our intuition is that, due to the capture time, a
LiDAR point cloud can be seen as a curve in a 4-dimensional space-
time, in which points are each identified by a single (x, y, z, t) value,
while a real-time depth video camera produces (x, y, z) dense slices
for individual timestamps at a high frame-rate, resulting in a sliced
4-dimensional spacetime volume. We then transfer details from the
LiDaR to the Kinect point cloud and advect them across frames,
leading to a detailed animated model. We validate our method on
synthetic data, and demonstrate it by recovering high-resolution
dynamic geometries under moderate motion.

2 RELATED WORK

Acquisition of high resolution dynamic shapes. has been tackled
using stereo and active light projection systems [19], such as fringe
projection and time shifting [30]. In the special case of facial motion
capture, Zhang et al. [29] propose to use synchronized video cam-
eras and structured light projector and fit a highly detailed template
to the resulting geometry to get a high resolution facial animation.
Bradley et al. [6] avoids templates by using a high-resolution multi-
camera setup to reconstruct detailed facial geometry. Weise et al.
[26] use a consumer depth sensor to animate a face template. A com-
bination of active light and stereo was also proposed for capturing
scenes in real time with motion compensation [27]. More generally,
high spacetime resolution capture can be performed using multi-
view stereo techniques [10, 28]. Yet the resolution is often limited,
depending on the number of views and size of captured objects.
Sensors also need synchronization and often, heavy calibration,
which can make them difficult to use in practice.

Static point set super-resolution. has been tackled by Kil et al. [18]
where several nearby scans are registered and merged together to
obtain a high resolution point cloud. More recently, Hamdi-Cherif
et al. [15] nonlocally merge self similar patches of a LiDaR scan
to improve its resolution. In a quite different setting, Haefner et
al. [14] proposed to perform single frame super-resolution from
a kinect scan by using shape from shading to solve this ill-posed
problem.

Texture synthesis and transfer. High resolution and detailed ani-
mations synthesis is a hot topic in computer generated animation
research. Rohmer et al. [24] generate detailed wrinkles on an ani-
mated mesh to make it look more realistic, Bertiken et al. [3] propose
a way to transfer details from similar areas of one shape to another,
using metric learning.

Enhancing Videos with stills. Our method share similarities with
the problem of enhancing a low-quality video with high resolution
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stills. The main difference is that no motion-induced geometric
distorsions appear in still photography whereas rolling-shutter-
like distorsions are accounted for in our LiDaR point cloud. The
video enhancement problem bas been tackled by considering a
spacetime volume of (x, y, t) pixel coordinates. In that space, a video
is a subvolume, while a still photography is a plane. By aligning
videos and stills in that volume [8], Shechtman et al. [25] merge
the information from these two sources and increase spacetime
resolution. Liu et al. [20] improve the spacetime resolution using a
sparse decomposition on a pre-learned dictionary. When the scene
is static, Bhat et al. [5] use structure-from-motion to reconstruct
a 3D proxy from the video. Then for each frame, the best still
photograph is selected and used to improve the video using image-
based rendering and Markov Random Fields. Similarly Gupta et
al. [13] enhance a video by selecting pixels from neighboring high-
resolution stills using a graph-cut formulation. Ancuti et al. [1]
proposed a Maximum a Posteriori-based modeling of this problem
that is also limited to static scenes.

3 OVERVIEW

As input, our method takes two 3D point clouds of the same dynamic
scene, under small to moderate motion: a set of low-resolution point
clouds obtained at 30fps from a structured-light infrared depth sen-
sor (such as Kinect) during the motion, and a single accurate but
distorted time-of-flight laser LiDaR point cloud taken during the
same period of time. While the former provides a low-resolution
point set at regular time intervals, the latter provides a highly accu-
rate point set but at a single time stamp t for each point. We will
refer to the structured-light frames as LR frames, and similarly, to
the time-of-flight data as HR data. In practice, both setups capture
depth values of the scene with respect to the device. Due to motion
in the captured scene, the HR point cloud appears distorted (Figure
1) but each point is precisely captured. The LR frames do not suf-
fer from such time-distortion but exhibit a poor quality: spatially
inaccurate and quantized depth values with large noise at a low
0.3 mega-pixel resolution. Our core idea is thus to un-distort the
HR data that is accurate in space based on the motion captured by
the LR data that is accurate in time. The process if summarized in
Figure 2.

Our goal is to resample HR points in time to obtain a high-
resolution point set for each time frame. This is achieved through
three steps. First, we estimate a motion field between the depth
sensor LR frames using an off-the-shelf RGB-D optical flow tech-
nique. Second, we observe that, up to missing data and noise, the
HR point cloud can be exactly registered to the LR data via a rigid
transform. In the 4D spacetime continuum, we see the LR frames
as a set of 3D spatial “slices” taken at regular time intervals, while
the HR point cloud is seen as a time-parameterized curve in the 4D
volume as each captured 3D point corresponds to a unique time
stamp (Figure 2). This registration step hence amounts to finding a
curve pattern within a 4D volume. We robustly perform this step
using a global Iterative Closest Point algorithm initialized via an
adaptation of a coarse generalized Hough transform. Finally, we
use the motion field to advect details from the registered HR data
across depth sensor frames.
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Figure 2: Overview of our high resolution dynamic point set acquisition and processing algorithm

4 SCENE FLOW ESTIMATION

To be able to transfer details from the time-of-flight HR acquisition
to the LR depth video frames, it is necessary to track 3D points of
the LR depth frames through time. A solution to this problem would
be to work solely on the depth information and use an algorithm to
register Dynamic Point Sets without computing point to point cor-
respondences [21]. However, in our case, the depth sensor provides
color information which, if properly registered to the depth frames,
gives valuable information. The flow obtained from RGBD images
is called scene flow. It is a variant of the more common optical flow
between color images (e.g. [12]), with the additional challenge that
the flow should also account for depth information, and not only
the color. In recent years, several approaches have been proposed
to solve this problem (e.g. [16, 17, 23]). We use the approach of
Quiroga et al. [23] that extends variational optical flow estimation
from color image sequences to RGBD videos. This method favors a
piecewise smooth scene flow by modeling motions as twists and
introducing a total variation regularization.

The computed scene flow provides a way to track a point across
all frames until the end of the sequence or until it becomes occluded.
It will later be used to advect details from the HR dataset.

5 REGISTRATION IN THE 4D SPACE

In the 4-dimensional spacetime volume, the LR data provides a
set of regularly spaced 3D hyperplanes while HR data provides a
single curve parameterized by the time ¢ (see Section 3). We adopt
a two-step procedure to align the curve to the 3D hyperplanes. We
see this operation as the problem of searching for a pattern within
a point cloud. We initialize this search using a coarse, discretized,
Hough transform, which we fine-tune in a second step using an
ICP. Because of efficiency concerns, we first register the data in
the 3D space only, disregarding the time component completely,
where we interpret the two point clouds as their projections along
the time axis to the 3D space. Then, we perform both the coarse
and fine registration steps again, this time on 4-dimensional point
sets. This section describes these steps in more details.

5.1 Problem formulation

If both the LR and HR sensors are located at the same place, share
the exact same field of view and the capture starts at the same time
to, then all captured points are completely aligned in spacetime and

share the same spacetime coordinate frame. However, this is never
the case as both cameras capture different portions of the scene and
are hard to synchronize. In addition, the raw HR data do not directly
include a time-stamp for each captured 3D point, instead we roughly
estimate the time-stamp using the total acquisition time and the
scanline pattern of the acquisition. The first operation we perform
is thus a registration procedure that brings both datasets to the
same space. This amounts to estimating a rotation and translation
in space, together with some translation and possible scale in time,
to match one dataset to the other. Moreover, due to the inaccuracy
of the LR frames, adjusting a scale in space is also necessary for a
good alignment. The whole registration thus corresponds to the
search for a single global 3D spatial rotation R = (6, Gy, 0,), a
4D spacetime translation T = (T, t;) and a 4D spacetime scale
s = (ss,5¢).

We parameterize R by three Euler angles, the translation Ts by
three coordinates, and t;, ss and s; are three scalars. This registra-
tion procedure amounts to estimating 9 parameters. We will denote
the entire 9-d transformation T. Denoting H the HR point set (resp.
L the low-resolution structured light data) in 4D, we formulate the
registration problem as the minimization:

. _2
min } [ Tp - qlI°.
p
where p € H and q € L is the closest LR point to p.

5.2 Coarse initialization

Rough estimates of these parameters can be obtained using a vot-
ing scheme akin to the generalized Hough transform traditionally
used for detecting shapes in images, by discretizing a well-chosen
parameter space, and computing the scores of each set of param-
eters. Historically, the Hough transform was first introduced to
detect straight lines on images by discretizing line parameters and
scoring them [11]. It was later extended to more general shapes by
discretizing a space of shape template transforms [2].

In our case, we detect our HR curve on the LR volume by dis-
cretizing the 9-dimensional space of transformation parameters
described in Sec. 5.1. However, given the sheer amount of data and
the curse of dimensionality affecting our 9-dimensional space, some
adaptations are needed.
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First, it’s easy to see that by placing both the consumer depth
sensor and the LiDaR system in an upright position facing the scene
0x and 6, become negligibly small for the purpose of the coarse
registration step, so they can be safely omitted. Then, scaling in
space is only included to make up for the inaccuracy of the LR data
and thus it should be close enough to 1 not to alter the results of
the Hough Transform applied at such a low resolution. Considering
these observations the 9-dimensional parameter space P is first
safely reduced to a 6-dimensional space P’.

As mentioned previously, the registration procedure is divided
into an initial phase computing only the transformation T, in space
and a final one computing the translation #; and scale s; in time.
In the context of the Hough Transform this means that P’ can be
further divided into two separate parameter spaces Ps(0y, tx, ty, tz)
and P;(t, s;) which are discretized at a given resolution.

For each set of parameters of the form Ts = (0y, tx, t, t;) and
T; = (t1,s¢), corresponding to a bin in P and P; respectively,
we compute a score which represents how well the transformed
point cloud TsH in space and T;H in 4D spacetime are registered
to L and seek to maximize it. When working on Ps, the LR data
is converted, at a given rough resolution £, to a voxel grid V 7
with each voxel v storing the number of points lying in it. Then
the HR data is transformed using T and discretized into a grid
(VTFJ~H using the same resolution as L. The score of Ty is computed
as ZV min(V £~(V), (Vﬁ[(v)) The final solution is found as the
transformation T with the highest score.

In the case of time registration, 4-dimensional voxels would not
allow a high enough resolution neither in the parameter space P;
nor for the voxel box. Our alternative solution is to search for a
transformation T; that minimizes the point-wise distance between

T;H and L.

5.3 Fine registration

The solution of the coarse registration step is only known up to
the precision of the parameter space discretization. This is insuffi-
cient as we aim at transferring millimeter-scale details. Hence, in a
second step, we refine the rough estimate both in the 3D case first
and then in the 4D spacetime. As the coarse solution is assumed
to be close to the optimal solution, we can now resort to a local
optimization, namely an ICP [4], to refine T. Let H’ = TH, the new
transformation T’ is found by iterating the classical two steps: 1)
assign to each point p; € H’ its closest point g; € L (if no point is
found closer to a given threshold then the point is simply omitted).
2) Find the transform T’ minimizing:

DT i = qill?,
i

which is solved using Kabsch algorithm for the translation in
4D and rotation in space. The scale in time is solved by computing
the standard deviation of the time stamps of the matched points o

and og of H’ and L and deriving the scale as sg = Z—Z. Conversely,

the scale in space is computed by averaging the ratios of the 3D Eu-
clidean distances between HR point pairs and their LR counterparts

as follows:
1 llpi — pjll
Sg = .
R IZ;‘ llgi — gl
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Figure 3: Registration result. For 5 different time values t, we
select LR and HR points that lie in a small temporal neigh-
borhood after the spacetime registration. The LR points are
oriented and displayed in grayscale values while the HR
points are shown in red. The LiDAR scanline acquisition pro-
cess results in vertical lines.

At the end of the iterations the HR points p; with no sufficiently
close LR counterpart g; are considered occluded from the point of
view of the LR sensor and are discarded.

The result of the spacetime registration can be seen in Figure
3: for different time values ¢, we display the LR and HR points
that lie in a small temporal neighborhood around ¢, showing that
our spacetime registration matches well the datasets despite the
difference in resolution.

6 DETAIL TRANSFER

Now that both the high and low resolution point clouds share the
same spacetime coordinate frame, the last step of our algorithm
advects the HR point cloud to enrich all frames of the LR point
cloud. To do so, we rely on our estimate of the scene flow between
consecutive LR frames (see Section 4), and advect HR points accord-
ingly.

Let us consider a point p € H and F? its closest LR frame in
time. A search in the 3D space finds Q;J C F? as the set of its
nearest neighbors in frame ¢. The motion estimated at each point
qf € Q‘fJ is then interpolated in space and time to bring p to the
exact timestamp ¢ of F?. Next p is advanced by one frame in time
based on the scene flow of the points Qlﬁ. This process is performed
iteratively until no sufficiently close nearest neighbor can be found
which means p is occluded.

7 RESULTS

We validate our approach using two datasets. First, using synthetic
data, we make sure our method allows to transfer details with
sufficient accuracy, and evaluate any reconstruction error. Second,
we showcase our method on real data and show it to be of sufficient
accuracy to be used to undistort small to moderate motions.

7.1 Simulated Data

Our simulated data consists of a single character undergoing a rigid
transformation T = (T, Rs), raytraced from different viewpoints
using parameters similar to LR and HR devices. This synthetic data
allows us to synthesize a distortion-free dynamic point set, serving
as a groundtruth, and compare our result to it.
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Figure 4: Synthetic dataset along with reconstructed frames for validating various steps of our method as described in Table 1

Used methods Distance
GT registration and GT motion field (1)  0.01271
E registration and GT motion field (2) 0.01463
GT registration and E motion field (3) 0.04368
E registration and E motion field (4) 0.04479

Table 1: Average point-wise distances between reconstructed
and generated ground truth point clouds using either
known (GT) registration parameters and motion field or
computing them using our method (E). All errors are below
2% of the shape height (2.5 units)

To simulate the noise introduced by the commercial depth sen-
sor we generated depth-bins increasing in size proportionally to
the distance from the camera mimicking the quantization errors
introduced by the sensor and matched the computed depth values
to the depth-bins. However we do not simulate any depth sensor
calibration error.

Table 1 shows the accuracy of the different steps of our method.
By using the known values of the parameters of the 4D registration
and the precomputed motion field we assess separately the noise
introduced only by the detail transfer. On the contrary, by using
no prior knowledge of the scene the average distances indicate the
accumulated error introduced throughout the steps of our method.

Figure 4 shows the reconstructed frames along with the ground
truth of a dataset.

7.2 Real Data

We now turn to the more difficult case of real data. Our experi-
mental setup is the following. A LiDaR and an ASUS Xtion sensor
acquire the same animated scene yielding respectively a high reso-
lution depth data (corresponding to H) and a low-resolution dense
depth video (corresponding to £). Our system does not require
any manual calibration: both acquisition systems are only roughly
synchronized and we only need them to start roughly at the same
time (in practice, the Asus depth sensor capture often starts several

Figure 5: Our experimental setup: a Kinect and a LiDaR ac-
quire the same scene from different viewpoints. No calibra-
tion is required.

seconds before the LiDaR as the LiDaR performs an automatic self-
calibration procedure at the start of each capture). A picture of the
acquisition system is shown on Figure 5.

The Xtion captor. captures 30 depth frames per second with a
resolution of 640 x 480, the capture is performed using the OpenNi
2 library [22], removing distortion and yielding the final 4D point
cloud in millimeters and seconds. In practice, we observed an accu-
racy of roughly +5cm at 1.5m, which corresponds to our capture
distance. To compensate for noisy depth values in the LR sequence,
we filter depth values using a bilateral filter with standard devia-
tions in space and values : o = 1.16 and o, = 64.

The LiDaR scanner. is a FARO Laser Scanner Focus® X 330. It was
set to capture one point every 50mm at a 2m distance. A laser ray
is emitted and reflected by a mirror that directs the beam towards
the scene and controls the angle of the ray. By rotating around
its axis, this mirror allows for a complete rotation of the laser ray,
however it only measures the time of flight on a given angular range
(set here to 150°). Furthermore the device itself rotates around the
vertical axis. A full scan at this resolution takes around 14s. To
prevent large static objects giving too much weight to the spatial
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Figure 6: Undistorting LiDaR scans (top rows, left) from con-
sumer depth camera sequences (top rows, right). Our re-
sult (bottom rows) show higher spatial accuracy than the
consumer depth camera while respecting the global motion.
Video results can be seen in supplemental materials.
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registration compared to temporal variables, we cropped out the
walls and ground of the HR scan.

Figure 6 shows the results of our method applied on several real
datasets. By comparing the reconstructed frames to the LiDaR scan,
one can see the high frequency details transferred across the frames.
The accuracy of the overall motion of our reconstructed sequence
can be assessed by observing the corresponding LR frames and the
accompanying video.

7.3 Limitations

Our method has some limitations. First it can only handle small
motions. Large motion over a long time will generate too much
distorsion in the LiDAR data and the spacetime registration and
point tracking will fail, creating artefacts illustrated in Figure 7.
Missing regions can appear due to points being occluded or unob-
served in the HR scan during the motion or abnormal time delays
between consecutive LR frames causing whole slices of the HR data
not corresponding to any LR frame to be lost during the ICP. This
produces vertical stripes of missing points in the results (see the
last row of figure 6). In this case, merging the LR and HR data would
allow for filling in holes.

The depth sensor further suffers from heavy distortions. This
issue has been identified and investigated by Clarkson et al. [9]
and Herrera et al. [7], who both propose calibration procedures.
As we wanted to remain calibration-free, we did not investigate
this issue further. However, our reconstructions are of limited ac-
curacy, exhibiting spatially low-frequency artifacts, that can be
attributed to these distortions. Aside from a calibration procedure,
our registration process and hence the final reconstruction could
be improved by swapping out the ICP algorithm for a non-rigid
registration step. We hope even better results could be achieved in
the future using this approach.

8 CONCLUSION

We introduced a way to capture animated scenes and produce
high resolution point sets by combining a consumer depth sensor
and a high precision Time-of-Flight scanner. We showed that by
formulating the problem in spacetime we were able to register the
datasets and advect details across the frames to undistort moderate
motion sequences.
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