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This class will cover several aspects of computer graphics, and is geared towards rendering. You will
need to implement labs, a path tracer, mostly from scratch in C++. Little code will be provided:
the course will need to be fully understood. I do consider that nothing is fully understood if you
cannot implement it from scratch, and conversely, once understood, coding is merely a matter of
touch typing. In return, you will get the satisfaction of having implemented your own tools producing
beautiful computer graphics results.
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Chapter 1

Preamble

This chapter gives an overview of what is considered common knowledge (although you may not have
formally learnt it), and prerequisite for the rest of the course. As labs will be implemented in C++,
typical C++ prototypes are given.

1.1 Preamble of the preamble

This class will require you to code. It is largely advised that you do not write any line of code
before you are 100% sure the line is correct. The most time consuming aspect of programming is often
debugging, and you should strive to minimize this amount of time.

" In a program, random lines of code have close to 0% chances of working, but near 100% chances
of you needing to spend time trying to find them and fix them. You’ll be better off not writing them
in the first place.

This is particularly true for what we will implement: when implementing a path-tracer, code
errors such as mistakes in probability density functions (or even basic vector math operators) can go
unnoticed for some time before producing noticeable artifacts and they will thus become hard to track
down.

However, bugs happen. Make sure you master a real debugger, with an IDE and ways to quickly
step through the code execution (setting break points, stepping inside/over lines of code, inspecting
variable values including arrays, structure members, array of structures etc.). I will use Visual Studio
for that purpose, but other debuggers exist (and I would not recommend small tools such as gdb if
used directly in the command line – the goal is to be efficient).

While our code will not result in state-of-the-art performances, we will still try to avoid large per-
formance bottlenecks and maintain good code practices regarding performance when this only results
in minor efforts in code writing. For instance, this involves avoiding unneeded square root compu-
tations, passing const reference parameters instead of entire objects, or using simple parallelization
instructions. I will most often give running times (obtained on a good desktop computer) and code
length for your to check if you have done anything stupid in the code (e.g., if you get a 100x slow down
or a code 3x as long), to see the impact of design choices on running times and to compare different
approaches (e.g., realtime OpenGL vs. slow path tracing). I also believe that code length is a good
metric to see if an algorithm is worthwhile. Note that highly tuned code with clever algorithmic tricks
would be orders of magnitude faster.
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" I occasionally see students compiling without optimization flags and complaining about speed.
Do not forget to turn on optimization ! In GCC, use -O3 ; on Visual Studio, use the Release mode.

Regarding libraries, from an educational perspective I will strive to minimize the number of libraries
used in this course. Of course, in a professional setting, you would probably use a library such
as Embree to compute intersections quickly rather than the code you developed during this course.
However, a few functionalities are much less interesting to code, and I will thus recommend libraries or
give pieces of codes for a few functionalities. Notably, I will recommend the C++ header only stb image
and stb image write libraries (https://github.com/nothings/stb) to read and write images, and I
will provide code to read .obj mesh files. Unless you want to go further (e.g., adding a GUI), you will
not need other codes.

1.2 Image Representation

For this course, we will consider that an image is a 2d array of pixels, each pixel being a triplet of
red (R), green (G) and blue (B) values. For implementation purpose, we will consider all rows of the
image stored consecutively (row major ordering), interleaving R, G and B values. A typical C/C++
implementation with 0-based array indexing would access coordinate (x, y) in the image using:

1 image [ y*W*3 + x*3 + 0 ] = red_value ;
2 image [ y*W*3 + x*3 + 1 ] = green_value ;
3 image [ y*W*3 + x*3 + 2 ] = blue_value ;

with red value, green value, blue value between 0 and 255.

Note that other representations are commonly encountered. For instance, a camera sensor stores a
file where pixels are interleaved in a Bayer pattern. Certain applications require multispectral images
consisting of multiple (>3) sampled wavelengths (e.g., additional infra-red channels) or including
transparency (an additional alpha channel).

A template code to write an image is provided at https://pastebin.com/dSCKUD9B.

1.3 Vector Image Representation

A vector image is an image defined by parametric shapes: lines, circles, squares etc., with parametric
rendering types (e.g., gradients). Vector images can support animation. The .svg file format is a
simple text file format that describes vector graphics.

The idea of the .svg file format is to describe shapes using shape commands in an xml-like fashion.
A rectangle can be obtained using:

<rect width="10" height="10" x="0" y="0" fill="blue" />

a line is represented by:

<line x1="0" y1="0" x2="1" y2="1" stroke="red" />

while a general (closed) polygon is described by pairs of coordinates for each vertex:

<polygon points="0,0 10,0 7,10 3,10" />

Objects can be grouped using the <g> ... </g> pair. All parameters can be animated.

https://github.com/nothings/stb
https://pastebin.com/dSCKUD9B
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1.4 A Vector Class

While it is a bad practice in software engineering, we will consider everything that has 3 floating point
coordinates as a Vector. It is considered a bad practice since it violates several software design rules
(e.g., allowing cross products between mathematical vectors is ok, but not between colors, points, etc.
; similarly, adding two vectors or a point and a vector is fine but not two points). Still, in practice,
it has become widespread in computer graphics to consider a single Vector class, to the point that it
is the standard for programming langages designed for graphics cards such as GLSL or HLSL. Theses
langages implement classes such as vec3 or float3 that contain 3 floating point values that can be
accessed either via .x, .y, and .z, or via .r, .g and .b (or even .s, .t and .p when refering to texture
coordinates). In general, this course will take shortcuts to quickly implement prototypes and will not
be a reference for software design !

A typical (partial) example of such a Vector class is provided below. You will need to fully
implement it, including operations such as dot products, cross products, vector normalization and
norm, multiplication by a scalar etc.

1 c l a s s Vector {
2 pub l i c :
3 e x p l i c i t Vector ( double x = 0 . , double y = 0 . , double z = 0 . ) {
4 coords [ 0 ] = x ;
5 coords [ 1 ] = y ;
6 coords [ 2 ] = z ;
7 } ;
8 Vector& operator+=(const Vector& b ) {
9 coords [ 0 ] += b [ 0 ] ;

10 coords [ 1 ] += b [ 1 ] ;
11 coords [ 2 ] += b [ 2 ] ;
12 re turn * t h i s ;
13 }
14 const double& operator [ ] ( i n t i ) const { re turn coords [ i ] ; }
15 double& operator [ ] ( i n t i ) { re turn coords [ i ] ; }
16

17 pr i va t e :
18 double coords [ 3 ] ;
19 } ;
20 Vector operator+(const Vector& a , const Vector &b ) {
21 re turn Vector (a [ 0 ] + b [ 0 ] , a [ 1 ] + b [ 1 ] , a [ 2 ] + b [ 2 ] ) ;
22 }
23 double dot ( const Vector& a , const Vector& b ) {
24 re turn a [ 0 ] * b [ 0 ] + a [ 1 ] * b [ 1 ] + a [ 2 ] * b [ 2 ] ;
25 }

The explicit keyword indicates the Vector’s constructor cannot be called from implicit conver-
sions. For instance, the code :

1 Vector myVector1 ( 1 . , 2 . , 3 . ) ;
2 Vector result = myVector1 + 1 . ;

would otherwise produce the Vector result = (2., 2., 3), resulting from the implicit conversion of the
real value 1. to a Vector by an implicit call to Vector(1.). This is prone to bugs, and explicit

prevents that from happening.



8 CHAPTER 1. PREAMBLE

1.5 A Triangle Mesh Class

This course will mostly manipulate triangle meshes, as they are widely used and efficient (for instance,
they are natively supported by your graphics card!). These meshes consist of a set of vertices, and
triplets of vertices are connected together for form triangles. The most common structure to store
meshes consist in an array of vertices, and an array of triangle faces referencing these vertices. Often,
additional informations are stored per vertex (e.g., a color, UV coordinates, normals etc. as we shall
see later).

The most common implementation of a triangle mesh consists of an array of Vector, and an array
of triplets of indices refering to the previous array. As in most cases other geometric informations are
stored as well (typically, at least a normal vector per vertex, but also UV coordinates that we will
discuss later), we will consider multiple arrays as in the example below:

1 s t r u c t TriangleIndices {
2 i n t vtxindices [ 3 ] ; // r e f e r s to 3 i n d i c e s in the v e r t i c e s array o f the c l a s s ←↩

Mesh
3 i n t normalindices [ 3 ] ; // r e f e r s to 3 i n d i c e s in the normal array o f the c l a s s Mesh
4 i n t uvindices [ 3 ] ; // r e f e r s to 3 i n d i c e s in the uv array o f the c l a s s Mesh
5 } ;
6 c l a s s Mesh {
7 pub l i c :
8 // . . .
9 pr i va t e :

10 std : : vector<Vector> vertices ;
11 std : : vector<Vector> normals ;
12 std : : vector<Vector> uvs ;
13 std : : vector<TriangleIndices> triangles ;
14 } ;

The .obj file format implements this structure. It is a file in text mode. Each line starting with
a v defines a vertex coordinate (e.g., v 1.0 3.14 0.00, and each line starting with an f defines a
face (most often a triangle, but it also supports more general polygonal faces – e.g., f 1 2 3 defines a
triangle consisting of the first 3 vertices, as indexing starts at 1). Negative indices correspond to offsets
relative to the end of the vertex list. Normal vectors start with a vn, and uv coordinates with vt. The
general syntax to define a triangle that has normal and uv coordinates is f v1/vt1/vn1 v2/vt2/vn2

v3/vt3/vn3. I uploaded a (poorly coded) obj file reader at https://pastebin.com/CAgp9r15.

https://pastebin.com/CAgp9r15


Chapter 2

Rendering

Two main approaches to rendering have been adopted, focusing either on producing images at fast
framerate for realtime applications (video games, simulators, fast previews of complex scenes, visu-
alization, augmented reality etc.) or on producing images that are realistic (mostly for the movies
industry) or even physically accurate (lighting simulation for architecture, car paint and light design
etc.). We will briefly discuss real-time rendering (Sec. 2.1), and cover physically-based rendering in
more depth (Sec. 2.2). From an implementation point of view, realtime rendering systems based on
OpenGL or DirectX are often more time-consuming to produce results of similar quality as methods
tailored for physically correct results ; however, they allow to framerates that are difficult to achieve
with physically correct methods (Fig. 2.1). To remediate implementation issues, most realtime 3d
applications are based on complex rendering engines, such as Unity, Unreal Engine, or Amazon Lum-
beryard (or CryEngine), that make development much faster.

2.1 Real-Time Rendering

Modern real-time rendering systems rely on the rasterization of triangle meshes and the use of Graphics
Processing Units (GPUs). These triangles are thus projected on the screen, and shaded according to
their materials and the various light sources in the scene. This section briefly describes the process,
and will be skimmed over in class.

2.1.1 Projection and homogeneous coordinates

Given 3d coordinates of the vertices of a triangle, these coordinates are first projected on the 2d screen
using:

p′ = PVMp

where M is the model matrix that represents the 3d transformation applied to the 3d mesh itself,
V the view matrix that represents the inverse of the camera transformation (typically, if the camera
translates to the right, it is equivalent to translating the point to the left!), and P is a projection
matrix that mainly depends on the field of view.

As you notice, these are linear transforms, and you may wonder how this could ever produce a
perspective projection or even a translation (which is an affine transform, not purely linear)... In fact,
we work with homogeneous coordinates that handle projective geometry ! In this context, our point
p typically consists of coordinates (x, y, z, w = 1). The model and view matrices are 4 × 4 matrices

9
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Figure 2.1: Basic OpenGL rendering can be obtained in a few lines of deprecated OpenGL
(reference implementation in about 60 useful lines of code here: https://www.opengl.org/

archives/resources/code/samples/redbook/colormat.c using glutSolidSphere) or thousands of
non-deprecated lines of code (e.g., see here for a typical implementation using shaders: http://www.
songho.ca/opengl/gl_sphere.html). Intermediate OpenGL rendering that features soft shadows
can be performed in about 600 lines of code with deprecated features http://fabiensanglard.net/
shadowmappingPCF/. Advanced OpenGL rendering with indirect lighting quickly becomes difficult
to implement (example implementation in 18k lines of c++ code: https://github.com/djbozkosz/
Light-Propagation-Volumes ). Note that OpenGL 3.1 (March, 2009) has removed many features
that have been deprecated in OpenGL 3.0 (August, 2008), making codes significantly longer and also
explaining variations in the above code lengths. The images shown for path-tracing are those obtained
from the code developed in this class, and even includes indirect lighting and participating media (ad-
vanced rendering). Also, sacrificing readability can always shorten code. A small path tracer that
produces something along the Intermediate result in term of complexity but Advanced in term of light-
ing simulation can be achieved in 99 lines of code here https://www.kevinbeason.com/smallpt/.

that now allow for translating the geometry via their fourth column. Similarly, the fourth component
w gets transformed to w′ via the fourth row of the 4 × 4 matrix P . The projection on the screen is

performed by simply considering the projected point p′′ = [ p
′
x

p′w
,
p′y
p′w

] and its corresponding depth p′z
p′w

is
used to determine which parts are visible or occluded.

2.1.2 Rasterization

Once 2d screen projections are known for the three vertices of a triangle, it remains to fill pixels
inside this 2d triangle. This is often performed by computing an axis-aligned bounding box around
the triangle, and testing the center of all pixels within this box if they belong to this triangle (we will
implement such as test in 3d for raytracing 3d meshes in Sec. 2.2.1 using barycentric coordinates).
This also allows to interpolate quantities stored at the vertices of the triangle such as normals, colors
or the depth value that will be used next.

https://www.opengl.org/archives/resources/code/samples/redbook/colormat.c
https://www.opengl.org/archives/resources/code/samples/redbook/colormat.c
http://www.songho.ca/opengl/gl_sphere.html
http://www.songho.ca/opengl/gl_sphere.html
http://fabiensanglard.net/shadowmappingPCF/
http://fabiensanglard.net/shadowmappingPCF/
https://github.com/djbozkosz/Light-Propagation-Volumes
https://github.com/djbozkosz/Light-Propagation-Volumes
https://www.kevinbeason.com/smallpt/
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2.1.3 The Z-Buffer

When two 2d triangles overlap, their depth should be used to determine which one is in front of the
other. An approximate solution is to use what is known as the painter’s algorithm : 3d triangles are
simply sorted by the distance between their center and the camera before being rasterized. However,
this technique can be costly for large scenes, and cannot handle all cases (triangle A partly in front
of triangle B, which is partly in front of triangle C, which is partly in front of triangle A). For this
reason, Wolfgang Straßer, Ivan Sutherland (Turing award) and Ed Catmull (founder of Pixar and
former president of Disney Animation Studios) independently described in 1974 a technique called
the Z-Buffer. This technique simply stores the depth of each pixel being rasterized in a buffer called
z-buffer. If the depth of the current pixel being rasterized is further than the depth already stored in
the z-buffer for this pixel, the pixel is simply ignored.

2.1.4 Coloring pixels

A relevant color should be assigned to the pixel being rasterized. This color depends on the material
of the object, the orientation of the surface (its normal), and the various light sources. The precise
illumination model that is routinely used will be described later in the course in the context of
raytracing, and consists in the Blinn-Phong BRDF (Sec. 2.2.1).

2.1.5 OpenGL and DirectX

The operations described previously are automatically performed by graphics libraries such as OpenGL
or DirectX. These libraries take as input triangle meshes seen as arrays of vertices and polygons as
well as transformation matrices (camera transformation, model transformation, projection matrix),
and perform rasterization on the GPU.

Typical OpenGL < 3.0 code to display a triangle looks like:

1 glBegin ( GL_TRIANGLES ) ;
2 glNormal3f ( 0 . f , 0 . f , =1.f ) ;
3 glColor4f ( 1 . f , 0 . f , 0 . f , 1 . f ) ;
4 glVertex3f ( 0 . f , 1 . f , 0 . f ) ;
5 glColor4f ( 0 . f , 1 . f , 0 . f , 1 . f ) ;
6 glVertex3f (=1.f , 0 . f , 0 . f ) ;
7 glColor4f ( 0 . f , 0 . f , 1 . f , 1 . f ) ;
8 glVertex3f ( 1 . f , 0 . f , 0 . f ) ;
9 glEnd ( ) ;

while in OpenGL ≥ 3.0, a similar triangle would look like:

1 // de f i n e geometry
2 GLfloat positions [ 3 * 3 ] = {0 . f , 1 . f , 0 . f , =1.f , 0 . f , 0 . f , 1 . f , 0 . f , 0 . f } ;
3 GLfloat normals [ 3 * 3 ] = {0 . f , 0 . f , =1.f , 0 . f , 0 . f , =1.f , 0 . f , 0 . f , =1.f } ;
4 GLfloat colors [ 4 * 3 ] = {1 . f , 0 . f , 0 . f , 1 . f , 0 . f , 1 . f , 0 . f , 1 . f , 0 . f , 0 . f , 1 . f , 1 . f } ;
5 GLuint indices [ 3 ] = {0 , 1 , 2} ;
6

7 // gene ra t e s a ver tex array with 3 bu f f e r s f o r po s i t i on , normals and c o l o r s
8 GLuint vertexArray , vertexBufferObject [ 3 ] ;
9 glGenVertexArrays (1 , &vertexArray ) ;

10 glBindVertexArray ( vertexArray ) ;
11 glGenBuffers (3 , vertexBufferObject ) ;
12

13 // a s s o c i a t e the ar rays on the CPU to a t t r i b u t e s s to r ed on the GPU
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14 // g lBuf fe rData uploads the array to the GPU
15 glBindBuffer ( GL_ARRAY_BUFFER , vertexBufferObject [ 0 ] ) ;
16 glBufferData ( GL_ARRAY_BUFFER , 9* s i z e o f ( GLfloat ) , positions , GL_STATIC_DRAW ) ;
17 glVertexAttribPointer ( ( GLuint ) 0 , 3 , GL_FLOAT , GL_FALSE , 0 , 0) ;
18 glEnableVertexAttribArray (0 ) ;
19

20 glBindBuffer ( GL_ARRAY_BUFFER , vertexBufferObject [ 1 ] ) ;
21 glBufferData ( GL_ARRAY_BUFFER , 9* s i z e o f ( GLfloat ) , normals , GL_STATIC_DRAW ) ;
22 glVertexAttribPointer ( ( GLuint ) 1 , 3 , GL_FLOAT , GL_FALSE , 0 , 0) ;
23 glEnableVertexAttribArray (1 ) ;
24

25 glBindBuffer ( GL_ARRAY_BUFFER , vertexBufferObject [ 2 ] ) ;
26 glBufferData ( GL_ARRAY_BUFFER , 12* s i z e o f ( GLfloat ) , colors , GL_STATIC_DRAW ) ;
27 glVertexAttribPointer ( ( GLuint ) 2 , 4 , GL_FLOAT , GL_FALSE , 0 , 0) ;
28 glEnableVertexAttribArray (2 ) ;
29

30 // de f i n e a t r i a n g l e as 3 ver tex i n d i c e s
31 GLuint elementbuffer ;
32 glGenBuffers (1 , &elementbuffer ) ;
33 glBindBuffer ( GL_ELEMENT_ARRAY_BUFFER , elementbuffer ) ;
34 glBufferData ( GL_ELEMENT_ARRAY_BUFFER , 3 * s i z e o f ( unsigned i n t ) , &indices [ 0 ] , ←↩

GL_STATIC_DRAW ) ;
35

36 // draw th i s t r i a n g l e
37 glDrawElements ( GL_TRIANGLES , 3 , GL_UNSIGNED_INT , ( void *) 0) ;

Note that an entire mesh would be handled by creating a larger array of triangles (and not by
repeating this routine for all triangles!). In both examples, large parts would be missing to see
something, including definition of lights, cameras and materials. However, an important missing
routine in the second example is the definition of shaders that actually perform the computations
(projecting the vertices on screen in a vertex shader or vertex program, and computing the pixel color
based on the lighting in the scene in a pixel shader or fragment program) – by default, OpenGL < 3.0
has these things already handled.

These functions remain extremely simple and limited: they merely allow you to draw triangles on
screen, very efficiently. But most of the job remains to be done: making these triangles look realistic.
This is most often accomplished via a number of tricks, which we will give a few examples below.

2.1.6 Advanced effects

Hard shadows from a spot light. The first thing that is obviously missing when displaying triangles
on screen is cast shadows. The most common way to cast shadows in a rasterizer is to compute a
shadow map. A shadow map is a view of the scene from the light point of view, and only storing depth
information (you do not need to keep or even compute color values). This depth image is precomputed
for each light source (Fig. 2.2). Then, when computing the color value of a given pixel, it becomes
easy to reproject this pixel on the shadow map via transformation matrices, and check whether the
light arriving from the light source is obstructed by comparing the distance between the shaded point
and the light source, and the value stored in the shadow map.

Indirect lighting. A simple solution to obtain indirect lighting1 consists of the Instant Radiosity
technique. This technique, despite its name, has nothing to do with the usual radiosity algorithm (see
Sec. 2.2.4): it consists in rendering (both colors and z-buffer) the scene from the light sources, and
then placing new secondary light sources (often called Virtual Point Lights) in the scene whose color
match the rendered image. Clustering can be performed in realtime to group all nearby pixels of the
same color in the image rendered from the light source to construct a single secondary light source for
each cluster of pixels.

1see Sec. 2.2.1 for more details on indirect lighting in the context of raytracing
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Figure 2.2: Realtime rendering with shadows (left) obtained by a shadowmap (right) that corresponds
to the z-buffer of the scene as seen from the light source.

2.2 Physically-Based Rendering

This section covers basics of physically-based rendering to the point that you should be able to im-
plement a path tracer (while it will not work at the speed of production engines, it would give close
to production level quality), and have minimal knowledge of other techniques.

2.2.1 Raytracing / Path-Tracing

Path-tracing works by launching rays of light from a virtual camera throughout the scene, computing
ray/scene intersections, evaluating light contributions from light sources and making these light rays
bounce off the objects. While this approach works counter-intuitively to real-world physics (in which
light rays are emitted from light sources rather than the camera!), it can be shown to be strictly
equivalent due to Helmoltz reciprocity principle: what only counts is the set of light paths joining the
camera sensor and light sources. In fact, an approach called bidirectional path tracing benefits both
from rays emitted from the camera and rays emitted from light sources to construct these light paths.

Rendering basic spheres

We will first write a small program that renders and shade a few spheres with direct lighting. First,
“launching rays” from the camera to the scene corresponds to generating half-lines (rays) which
originate at the camera location and towards each pixel of the camera sensor, and computing the
point of intersection of these half-lines with the scene (i.e., the spheres).

The ingredients thus are:

1. Defining classes and operators for handling geometric computations

2. Defining a scene

3. Computing the direction of rays

4. Computing the intersection between a ray and a sphere

5. Computing the intersection between a ray and the scene

6. Computing the color

1 Classes Regarding operators, we will define classes for Vector (see Sec. 1.4), Sphere (a center
Vector C and a double radius R ; we will also add a color, called albedo, stored in a Vector as
an RGB triple ∈ [0, 1]3), Ray (an origin Vector O and a unit direction Vector u ), and Scene (an
array/std::vector of Spheres). A Sphere will further posess a function intersect that computes
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the point of intersection between a Ray and the sphere, if any (at this stage, we can either return
a bool indicating whether an intersection occured and pass the relevant intersection information as
parameters passed by reference ; or we can return an Intersection structure that contains all the
relevant information including a bool flag). A Scene will also posess a similar function.

2 Scene For reproducibility purpose, we can define a standard scene as in Fig. 2.3, that we will
use throughout this course. To simplify the introduction, we will first focus on the center sphere. Also
for simplicity, we consider the camera if standing upright and looking at the −z direction.

+y

+z C = (0,0,0)

R = 10

Q = (0,0, 55)

Center = (0, 1000, 0), Radius = 1000-60 = 940. 

Center = (0, -1000, 0), Radius = 1000-10 = 990. 

Center= (0, 0, -1000), Radius = 1000-60 = 940. 

Center = (0, 0, 1000), Radius = 1000-60 = 940. 

S = (-10, 20, 40)

camera

pixe
l g

rid

60
°

Figure 2.3: We define a standard scene that consists in walls, a ground and a ceiling, all consisting of
gigantic spheres approximating planes. We also add a center sphere, which we will focus on as a first
step.

3 Computing the direction of rays Our camera consists of a center Q and a virtual plane that
makes the screen (or similarly the sensor, if you see our camera as a pinhole, see Sec 2.2.1), see Fig. 2.4.
Assuming the screen is at a distance f from the camera center Q = (Qx, Qy, Qz), we will consider that,
in our configuration, pixel (x, y) is located at coordinate (Qx+x+0.5−W/2, Qy+y+0.5−H/2, Qz−f).
However, one usually only knows α, the visual angle covering the W pixels in width (called horizontal
field of view, or fov), not f . Simple calculus shows that tan (α/2) = (W/2)/f such that pixels are
located at coordinates (Qx + x+ 0.5−W/2, Qy + y + 0.5−H/2, Qz −W/(2 tan(α/2))). Note that in
our pixel grid, we will index pixels by their row and column number (i, j). Since image rows are most
often stored from top to bottom, this corresponds to using (x, y) = (j,H − i− 1), with i ∈ {0..H − 1}
and j ∈ {0..W −1}. From the coordinate of each pixel and the camera center, we can simply compute
a normalized ray direction.

4 Ray-Sphere intersection A parametric equation of a ray of origin O and direction u is X(t) =
O + t u, with t > 0. A implicit equation of a sphere centered at C and radius R is ∥X − C∥2 = R2.
A point of intersection P , if any, would satisfy both equations. Plugging the first equation into the
second yields ∥O+ t u−C∥2 = R2. Expanding the squared norm and using scalar product bilinearity
yields t2∥u∥2+2 t ⟨u,O−C⟩+∥O−C∥2 = R2. Assuming unit norm for u leads to the simple quadratic
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Figure 2.4: Notations for a virtual camera.

equation:
t2 + 2 t ⟨u,O − C⟩+ ∥O − C∥2 −R2 = 0

A quadratic equation has 0, 1 or 2 real solutions depending on the discriminant, which has geo-
metric interpretations here (see Fig. 2.5). Denoting ∆ = ⟨u,O − C⟩2 − (∥O − C∥2 −R2) the reduced
discriminant, no intersection between the line (not the ray) is found if ∆ < 0, one (double) intersection
is found if ∆ = 0 and two are found if ∆ > 0. However, one needs to further check that the solu-
tion parameter t is non-negative, since otherwise the intersection would occur behind the ray origin.
Further, in the context of ray-tracing, only the first non-negative intersection is of interest, i.e., the
(positive) intersection closest to the ray origin. If ∆ ≥ 0, the two possible intersection parameters are
t1 = ⟨u,C − O⟩ −

√
∆ and t2 = ⟨u,C − O⟩ +

√
∆. If t2 < 0, the ray does not intersect the sphere.

Otherwise, if t1 ≥ 0, t = t1 else t = t2. The intersection point P is located at P = O+ t u. For further
lighting computation, we will also need to retrieve the unit normal N at P . It can be simply obtained
using N = P−C

∥P−C∥ . We are now ready to produce a first image, by scanning all pixels in the pixel grid,
throwing rays, and testing if there is any intersection. If any intersection is found, just setting the
pixel white results in Fig. 2.6 (considering only the central sphere of our standard scene in Fig. 2.3).

Δ<0

Δ>0

Δ=0

t1>0

t2>0X

X
X

X

t1<0

t2>0

X t2<0

t1<0

Ray A

Ray B

Ray C

Ray D

Ray E

Figure 2.5: Ray-Sphere intersections lead to solving a quadratic equation. Depending on the sign of
the discriminant, this leads to either 0, 1 or 2 points of intersection. Here, ray B leads to one (double)
intersection, ray C produces a first intersection of interest at t1, and ray D produces the intersection
of interest at t2 (the other intersection being behind).

5 Ray-Scene intersection Our scene is composed of multiple spheres (for now). The intersection
we are interested in, between a ray and the scene, is the ray-sphere intersection that is closest to the
ray origin among all (if any). It can also be useful to return the specific sphere or object ID that has
been hit to retrieve object-specific properties, such as material parameters.
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Figure 2.6: Computing the ray-sphere intersection at each pixel leads to our first image. Ok, that’s
just a plain white disk, don’t be too excited.

6 Shading and shadows computation For now, we will use a simple material model: the
Lambertian model. This model assumes that materials scatter light equally in all directions, regardless
of incoming light direction. This well represents diffuse materials such as plaster, but will not handle
shiny materials such as metals or plastics. Under this model, the intensity reflected off a surface at
point P with albedo ρ and normal N , illuminated by an omnidirectional light source of intensity I at
position S is given by

L =
I

4πd2
ρ

π
VP (S) ⟨N,ωi⟩

with ωi =
S−P

∥S−P∥ , d = ∥S − P∥. The visibility term VP (S) is such that VP (S) = 1 if S is “visible”

from P and 0 otherwise. “Visible” means that launching a ray from P with direction ωi (towards S)
will either encounter no intersection, or that an intersection exists but further than the light source2,
that is, t > d. The term in I

4πd2
merely says that a light intensity of I Watt will be spread over a

sphere surface of 4πd2, and the amount reaching point P is thus I
4πd2

Watt.sr−1.m−1 (sr stands for
steradian, a unit of solid angle). The term in ρ

π is essentially a convention: with albedo values ρ ranging
in [0..1], the material respects energy conservation (see Sec. 2.2.1) if

∫
S+ c.⟨N,ωi⟩dωi ≤ 1 for some

normalization constant c, where S+ is the hemisphere above the surface. Since
∫
S+⟨N,ωi⟩dωi = 4π,

c = 1/(4π).

" Due to numerical precision issues, you will certainly observe extreme noise levels (see Fig. 2.7).
This is due to the fact that when launching a ray from point P towards the light source S, the first
point of intersection that may be found is P itself since precision is limited. The solution to this issue
is to lauch the ray not from P , but from a point slightly above the surface, P + εN . Since we are
launching rays from a slightly elevated position, it could be that ⟨N,ωi⟩ < 0 at grazing angles. For
safety, we will use instead max(⟨N,ωi⟩, 0).

Gamma correction. Computer screens do not react linearly with the pixel intensities they
are fed with. For instance, a linear ramp from pure black to pure white results in a midpoint that
seems too dark (Fig. 2.8). To compensate for this effect, we apply gamma correction to the images
produced by our path tracer. This consists in elevating RGB values (in a normalized range [0, 1]) at
the power 1./γ, with typically γ = 2.2. One reason for the need to gamma-correct images is a more
perceptually uniform image encoding. Indeed, noise, compression artifacts or quantization artifacts are
often more visible on dark pixels than on bright pixels. To allow for more accuracy on darker values,
the quantization is made non-uniform by storing gamma-corrected images. Additionally, (integer)
pixels values should be clamped in the range {0..255} to avoid overflowing unsigned char that would

2These visibility or shadow rays often benefit from faster intersection routines as the exact point of intersection is not
required but merely the presence of an intersection within an interval ; feel free to do that.
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Figure 2.7: Due to numerical precision issues in shadow computations the image appears noisy (left).
Launching rays from an offseted origin solves this issue (right).

result in wraparound. You can see the result of gamma correction on our test scene in Fig. 2.9.

Figure 2.8: A linear ramp (top) and gamma-corrected linear ramp (bottom, with γ = 2.2). The linear
ramp’s midpoint appears too dark. Note that perceived results may vary depending on specific screen
settings.

Figure 2.9: Without gamma correction, the scene appears too contrasted (here, I = 2.107). With
gamma correction (and I = 2.1010), the scene appears more natural. At this stage, we have roughly
170 lines of (verbose) code which runs in 50ms without parallelization (see end of Sec. 2.2.1) for a
512x512 image.
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" A common bug is to gamma-correct or clamp intensity values for all bounces of the light, which
is not correct. This typically results in lack of contrasts. These operations compensate for specific
image formats. For instance, High Dynamic Range (HDR) formats such as .exr, .pfm or .hdr do not
need gamma correction, as this step is usually performed by the image viewer. As such, these should
be the very last steps to be performed only once, right before saving the image to disk, and should
not be involved in the light simulation process.

Adding reflections and refractions

Reflections. Contrary to Lambertian surfaces that scatter light in all directions, (purely) reflec-
tive/specular surfaces only reflect light in a single direction. It is easy to see that the direction
ωr reflected from an incident direction ωi off a surface with normal N is ωr = ωi − 2⟨ωi, N⟩N (see
Fig. 2.10). A perfect mirror thus only transfers light energy from the incident direction to the reflected
direction.

θi 

N

θr 

ωi ωr

-<ωi,N>

2

1

n

nθi 

θt 

sin θi 

sin θt 

N
ωi

ωt

Figure 2.10: The reflected direction is ωr = ωi − 2⟨ωi, N⟩N (left) and refracted direction (right).

" A common bug is to compute a visibility term (or shadows) on top of the reflected light. You
should not do it. Visibility is a shadowing term that refers to specific light sources. A reflective surface
will not see our point light sources (they are infinitesimally small) and light sources will not play any
role here. Mirrors reflect light coming from all directions, not just that of our point light sources.

In term of implementation, handling reflections will add one of the most important brick of our
path tracer. Reflective surfaces lead to recursive code: to compute the light arriving towards the
camera sensor, you need to know the amount of light arriving at P from the reflected direction ωr.
But the light coming from this reflected direction could be the result of another mirror reflecting light
from elsewhere (and so on). As such, you will now build your first path throughout the scene. A
typical recursive implementation/pseudo-code would look like:

1

2 Vector Scene : : getColor ( const Ray& ray , i n t ray_depth ) {
3 i f ( ray_depth < 0) re turn Vector ( 0 . , 0 . , 0 . ) ; // te rminates r e cu r s i on at some ←↩

point
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4

5 i f ( intersect ( ray , P , N , sphere_id ) ) {
6 i f ( spheres [ sphere_id ] . mirror ) {
7 Ray reflected_ray = . . . . ;
8 re turn getColor ( reflected_ray , ray_depth=1) ;
9 } e l s e {

10 // handle d i f f u s e s u r f a c e s
11 }
12 }
13

14 }
15

16 i n t main ( ) {
17 // f i r s t d e f i n e the scene , va r i ab l e s , . . .
18 // then scan a l l p i x e l s
19 f o r ( i n t i=0; i<H ; i++) {
20 f o r ( i n t j=0; j<W ; j++) {
21 Ray ray ( . . . ) ; // ca s t a ray from the camera cente r to p i x e l i , j
22 Vector color = scene . getColor ( ray , max_path_length ) ;
23 pixel [ i*W*3+j*3 + 0 ] = std : : min (255 , std : : pow ( color [ 0 ] , 1 . / 2 . 2 ) ) ; // s t o r e s R ←↩

channel
24 // same f o r green and blue
25 }
26 }
27 // save image and return 0
28 }

Note that similarly to cast shadows, you need to offset the starting point of the reflected ray off
the surface to avoid numerical issues. This will also be the case later for transparent surfaces, indirect
lighting etc. and will not be repeated any further.

Refractions. The case of transparent surfaces is very similar to that of mirrors. For transparent
objects, rays also continue their lives by bouncing off the surface, but this time, passing through it.
The computation of the reflected direction is however slightly more involved. For that, we assume the
Snell-Descartes law, written here as n1 sin θi = n2 sin θt. This law essentially says that the tangential
component of the transmitted ray (sin θt) is stretched from that of the incoming ray (sin θi) by a factor
n1/n2. Decomposing the transmitted direction ωt in tangential and normal components ωt = ωT

t +ωN
t ,

it is easy to deduct that

ωT
t =

n1

n2
(ωi − ⟨ωi, N⟩N)

where we have used the fact that the tangential component of ωi is ωi minus its normal component
(its projection on N).

Regarding the normal component, we have ωN
t = −N cos θt (considering the normal N is pointing

towards the incoming ray). This amounts to ωN
t = −N

√
1− sin2 θt. And since we have the Snell-

Descartes law, this equals: ωN
t = −N

√
1−

(
n1
n2

)2
sin2 θi = −N

√
1−

(
n1
n2

)2
(1− cos2 θi). The cosine

can be computed by projecting on the normal N , so:

ωN
t = −N

√
1−

(
n1

n2

)2

(1− ⟨ωi, N⟩2)

From this equation, one can see that if 1−
(
n1
n2

)2 (
1− ⟨ωi, N⟩2

)
becomes negative, the square root

would lead to imaginary results... This can only occur if n1 > n2. This corresponds to a total internal
reflection, and occurs if sin θi >

n2
n1
.
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" During the computations, we made sure the normal N was pointing towards the incoming ray.
This is typically the case when the ray enters a sphere. However, when the ray exits the sphere, the
geometric normal returned by our intersection test has the wrong sign. Make sure to use the correct
refraction indices and normal sign in this case ! You can detect the case of a ray exiting the transparent
sphere when ⟨ωi, N⟩ > 0. Also, make sure to offset the starting point of your refracted ray... on the
correct side! In general, for refraction, beware of signs.

A trick to simulate hollow spheres is to make two spheres of the same center and slightly different
radii, and then inverting the normals of the inside sphere. A result showing reflection and refraction
on a full and hollow sphere is shown in Fig. 2.11. Also, ideally, the index of refraction should depend
on the wavelength. To achieve dispersion, we would throw rays of a single wavelength, combining
them on the sensor ; we will not do that here.

Figure 2.11: A sphere with reflection, a full sphere with refraction, and an hollow sphere with refrac-
tion. Notice how the full sphere inverts the scene behind as it acts as a lens. The refraction index used
is 1.5, corresponding to glass. The image is computed in 75ms (without parallelization) with about
230 lines of code.

Fresnel law. Both the coefficient of reflection and transmission are fully determined by the
refraction indices n1 and n2, via Fresnel equations. In practice, these equations are relatively costly
to evaluate, and one often rely on Schlick’s approximation of Fresnel coefficients. For dielectrics, this
reads:

k0 = (n1 − n2)
2/(n1 + n2)

2

R = k0 + (1− k0)(1− |⟨N,ωi⟩|)5

T = 1−R

where k0 is the reflection coefficient at normal incidence, R is the reflection coefficient for incidence
ωi, and T the transmission coefficient. An option could be to call our function Scene::getColor

twice, once for the reflected ray and once for the refracted ray, and modulate the two resulting colors
with the reflection and transmission coefficients, and summing them. However, this would double the
number of rays in the scene for each light bounce. Instead, we will randomly launch either a reflection
ray, or a refraction ray. For that, we find a (uniform) random number u between 0 and 1, and launch
a reflection ray if u < R and a refraction ray otherwise. We then do not need to rescale the resulting
value. Of course, this would result in an extremely noise image since adjacent pixels will get assigned
different random numbers. As such, we will launch multiple rays for each pixel, resulting in multiple



2.2. PHYSICALLY-BASED RENDERING 21

paths, and average the resulting color. This scheme will be further discussed along with Monte Carlo
integration next, in Sec. 2.2.1.

" To avoid noisy images, you need to average the result of multiple paths. It is extremely important
that for each light bounce in the scene, a single call to Scene::getColor is performed. To make it
clearer: you launch K rays from the camera center C to the same pixel (i, j), then for each light bounce
of these rays you send (at most) one secondary ray (for reflection, transmission, or indirect lighting as
we will see next). This results in K paths throughout the scene, resulting in K different colors. You
then average these K colors to obtain the pixel value. Never recursively call Scene::getColor more
than once: this would result in impractically too many secondary rays.

Note: you can similarly handle multiple point light sources by adding the contribution of just one
randomly chosen light source and averaging different realizations, rather than adding all contributions.
This becomes interesting when one can weigh this randomness by the intensity or distance of light
sources. We will see a similar approach next, to handle indirect lighting.

Figure 2.12: Same as Fig. 2.11 but with Fresnel reflection taken into account on transparent surfaces.
For this image, I took 1000 rays per pixel, which resulted in a rendering that took about 1 minute
(without parallelization, and about 260 lines of code).

Adding indirect lighting

Indirect lighting is an extremely important factor to realism. To my knowledge, it has first been
introduced in a physically correct manner (at least via Virtual Point Lights, as opposed to artists
manually tuning light sources) in Pirates of the Caribbean 2 (2006) with the Renderman renderer.
Indirect lighting is the reason why the ceiling in your classroom does not appear black, although no
(direct) light sources are illuminating it (Fig. 2.13). Simulating indirect lighting is probably one of
the most difficult aspect of rendering, and will require several ingredients: understanding the render-
ing equation, understanding Monte Carlo integration, and implementing good importance sampling
strategies.

The Rendering Equation. The equation that gives the outgoing spectral radiance (i.e., the
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Figure 2.13: Classroom illuminated only via direct lighting (left), and direct+indirect lighting (right).
Notice the overly dark ceiling on the left. Model from https://www.blendswap.com/blend/15639.

result of Scene::getColor) is:

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t) +

∫
Ω
f(x, ωi, ωo, λ, t)Li(x, ωi, λ, t)⟨ωi, N⟩dωi (2.1)

This equation simply says that your Scene::getColor function depends on the point x in the scene
(in our case, it is evaluated at intersection points P ), the (opposite of the) ray direction −ωo, the light
wavelength λ (in our case, we merely render R, G and B channels) and a time parameter t. It results
in the sum of the emitted light Le at x in the direction ωo (and wavelength λ and time t) and the
contribution of all light reflected at point x. The light reflected at x is simply the sum of all incoming
light contributions Li from the hemisphere Ω falling on x, modulated by a function f that is called
Bidirectional Reflectance Distribution Function or BRDF, which describes the appearance or shininess
of materials, and a dot product/cosine function that accounts for light sources projected area (a small
area light at grazing angle will see its contribution smeared over a large area). Notations can be see
in Fig. 2.14.

x

Lo Li
N

θi

-ωi

ωo

Ω
Le

x’
N’

Figure 2.14: Notations for the Rendering Equation. Note that from now on, we denote by convention
ωi a vector that points outwards the surface, like ωo. Since this mostly influence dot product signs,
this is usually understood from context.

https://www.blendswap.com/blend/15639
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It is interesting to see that the incoming light at point x from direction ωi is exactly the outgoing
light at a point x′ from direction −ωi, assuming a vacuum medium (we will see in Sec. 2.2.1 how to
handle participating media). As such, using the rendering equation at point x′ (and ignoring spectral
and temporal variables for conciseness ; we will also occasionally ignore position variables when the
context is clear enough in the future), we could rewrite Eq. 2.1 at point x as

Lo(x, ωo) = Le(x, ωo) +

∫
Ω
f(x, ωi, ωo)

(
Le(x, ωo) +

∫
Ω′

f(x′, ω′
i,−ωi)Li(x

′, ω′
i)⟨ω′

i, N
′⟩dω′

i

)
⟨ωi, N⟩dωi

and recursively, the lighting reaching point x′ comes from other locations in the scene and so on.
This type of recursive integral equation is called a Fredholm integral of the second kind, as, in
fact, there is a single unknown radiance function L to be determined, that is both outside and inside
the integral.

This results in an integration over an infinite dimensional domain, called Path Space that represents
a sum of light paths with 0, 1, 2..∞ bounces, that needs to be performed numerically.

Bidirection Reflectance Distribution Functions (BRDFs). An important function in the
rendering equation above is the term f , the BRDF. This term describes the amount of light being
reflected off a surface towards a direction ωo if it arrives from a direction ωi (Fig. 2.15). Condi-
tions for their physical meaningfulness are that they are positive (f ≥ 0), they respect Helmoltz
reciprocity principle, that is, they are symmetric (f(ωi, ωo) = f(ωo, ωi))

3 and preserve energy, that is∫
ω f(ωi, ωo)⟨ωi, N⟩dωi ≤ 1, ∀ωo

4

ωi

x

Di�use surface

ωi

x

Specular surface

x

     Glossy surface

ωo ωo

ωo
ωi

Figure 2.15: Typical BRDFs.

These BRDFs can be provided as tabulated functions, for instance coming from gonioreflectometers
that are physical devices that measure reflected light off surfaces at different angular values. Notable
databases of BRDFs include MERL 100 isotropic BRDF dataset5 (see Fig. 2.16 ; note that isotropic
BRDFs can be reparameterized using only 3 dimensions, θi, θr, ϕd instead of 4 angular values θi, ϕi,
θr, ϕr – a parameterization called Rusinkiewicz parameterization), Ngan’s 4 anisotropic BRDFs6, and
UTIA 150 anisotropic BRDFs7. These tabulated values can be heavy to store and manipulate, and
can further be compressed, for instance by projecting them on spherical harmonics. Applications of
these spherical harmonic projected BRDFs will be discussed in the context of Precomputed Radiance
Transfer in Sec. 2.2.3.

BRDFs can also be described via closed-form expressions, that can either be ad-hoc (also coined
as “phenomenological” for political correctness, but they are all more or less Gaussian lobes around
the purely specular direction – we will see the Blinn-Phong BRDF model in Sec. 2.2.1) – or derived
from microgeometry analysis assuming microfacet models (e.g., Cook-Torrance, Oren-Nayar, Torrance-
Sparrow, Ashikhmin-Shirley, He et al., ...).

For now, we have seen and will focus on three particular cases: fr(ωi, ωo) = δωr(ωo) with ωr the
reflection of ωi around the normal N as we have seen in Sec. 2.2.1, ft(ωi, ωo) = δωt(ωo) with ωt the

3This is not always the case, though most often. Notably, for transparent surface, f(ωi, ωo) =
(

n2
n1

)2

f(ωo, ωi)
4This can be derived from the fact that

∫
ω

∫
ω
Li(ωi)f(ωi, ωo)⟨ωi, N⟩dωidωo ≤ 1, ∀Li.

5https://www.merl.com/brdf/
6https://people.csail.mit.edu/addy/research/brdf/
7http://btf.utia.cas.cz/?brdf_dat_dwn

https://www.merl.com/brdf/
https://people.csail.mit.edu/addy/research/brdf/
http://btf.utia.cas.cz/?brdf_dat_dwn
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Figure 2.16: BRDFs from the MERL dataset.

transmission of ωi inside the surface of normal N as we have seen in Sec. 2.2.1, and fd(ωi, ωo) = c
π

the diffuse BRDF as in Sec. 2.2.1. Note that fr and ft involve Dirac distributions, and Eq. 2.1 should
thus be (re-)interpreted in the sense of distributions. We will see later in Sec. 2.2.1 how to implement
the Blinn-Phong BRDF.

Monte Carlo integration. We need to perform numerical integration to evaluate Eq. 2.1. You
have probably seen during your curriculum various ways to numerically integrate functions, such as
the rectangle method (midpoint rule), trapezoidal rule, or even higher order methods such as Newton
Cotes. These methods divide the integration domain in regular intervals, and consider the function
is piecewise-something within these intervals. The major drawback is that regularly dividing an
integration domain of dimension d (let alone an infinite dimensional space!) produces exponentially
many intervals, such that even dividing in 10 intervals each dimension of a 4-d domain would result
in 104 intervals (remember that this integration needs to be performed for possibly millions of pixels,
that in practice, we often need more than 4 dimensions, and that 10 intervals per dimension would
likely miss important high frequency features).

To alleviate this issue, Monte Carlo integration has been proposed as a way to stochastically evalu-
ate integrals. This technique has been historically developped in the context of the Manhattan project
for nuclear simulation and is now widely used in computer graphics, but also mainly in economics,
nuclear physics and medical imaging. It is simply expressed in general term as:∫

Ω
f(x)dx ≈ 1

N

N∑
i=1

f(xi)

p(xi)

where xi are random samples following the probability density function p. This converges to the true
integral assuming p > 0 wherever f ̸= 0. The intuition is that if you can give a sample half the
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probability of occurring, but then you need to compensate and count it twice. However, this process
converges slowly: the integration error decreases in O(1/N0.5)8.

A major tool to improve the integration error is importance sampling. Importance sampling will
try to find a probability density function p that is near proportional to f . In fact, if p is exactly
proportional to f , that is, p = αf , then

∫
Ω
f(x)dx ≈ 1

N

N∑
i=1

f(xi)

αp(xi)
(2.2)

=
1

N

N∑
i=1

1

α
(2.3)

=
1

α
(2.4)

that is, the estimator would converge without any sample, in O(1) ! This is due to the definition of
probability distributions: they should integrate to 1, so if they integrate to 1 and are proportional
to f , then the constant of proportionality is the (inverse of the) integral. In short, if you are able
to build an exactly proportional probability density function (pdf), then you do not need numerical
integration in the first place ! However, this method is interesting if you know that your p is a good
approximation of f , up to a constant (unknown) scaling factor.

Exercise. To test your understanding of Monte Carlo integration, please write a program that
estimates

F =

∫
[−π/2,π/2]3

cos(x y z)dx dy dz

using an isotropic Gaussian probability density function f of standard deviation σ = 1 (f does not
really look like a Gaussian, but gives at least more priority on values near (0, 0, 0) and is sufficient for
the sake of exercise – a better proxy would gives higher values around each axis).
For that, we will use the <random> header from the STL which provides reasonably good random
numbers (at least, as opposed to the rand() function), and we will consider the Box-Muller transform,
that produces 2 Gaussian samples given 2 uniform random values:

1 #inc lude <random>
2 s t a t i c std : : default_random_engine engine (10) ; // random seed = 10
3 s t a t i c std : : uniform_real_distribution<double> uniform (0 , 1) ;
4

5 void boxMuller ( double stdev , double &x , double &y ) {
6 double r1 = uniform ( engine ) ;
7 double r2 = uniform ( engine ) ;
8 x = sqrt(=2 * log ( r1 ) ) *cos (2 * M_PI*r2 ) *stdev ;
9 y = sqrt(=2 * log ( r1 ) ) *sin (2 * M_PI*r2 ) *stdev ;

10 }

Note that this 3-dimensional Gaussian has a pdf given by p(x, y, z) =

(
1

σ
√

(2π)

)3

exp(−(x2 + y2 +

z2)/(2σ2)), as a joint density of 3 independent 1-dimensional Gaussian functions. The exact value is
close to 24.3367. With 10000 samples, you should at least get the 24 part correct...

8This can be somewhat improved to O( (logN)d

N
) by using well-chosen deterministic samples that uniformly cover the

integration domain such as the commonly used Sobol sequence or other low-discrepancy sequences – a technique called
quasi-Monte Carlo. See Variance Analysis for Monte Carlo Integration https://dl.acm.org/doi/pdf/10.1145/2766930

https://dl.acm.org/doi/pdf/10.1145/2766930
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" The resulting code should only have 1 for loop, and not 3 nested loops, looping over x,
y and z (like for the midpoint rule for example) ! This would otherwise entirely miss the point of
Monte Carlo integration: having a code whose complexity does not depend on the dimensionality of
the integrand. This remark is akin to that of Fresnel refraction: in fact, when we randomly chose
between reflecting or refracting rays, we actually did Monte Carlo integration, with p being a discrete
probability distribution!

Implementing indirect lighting. We are now ready to add indirect lighting to our path tracer.
Realizing that we actually did implement indirect lighting already for mirror and transparent surfaces,
we will consider for now that our surfaces are either purely diffuse of albedo ρ (and Le = 0), or
emissive (with f = 0). We aim a building a path sampling the path space where the light contribution
is reasonably high, and at each light bounce over a diffuse surface at point x we locally evaluate the
interaction and use it recursively :

Lo(x, ωo) =
ρ

π

∫
Ω
Li(x, ωi)⟨ωi, N⟩dωi (2.5)

To importance sample a diffuse surface, we would ideally sample the integrand Li(x, ωi)⟨ωi, N⟩. But
as noted before, it is simply impossible (otherwise the problem would be already solved). A simple
option is to only sample according to the second term ⟨ωi, N⟩. Assuming N = (0., 0., 1.), this can be
achieved by using a formula similar to Box-Muller formula:

r1, r2 ∼ U(0, 1) (2.6)

x = cos(2πr1)
√
1− r2 (2.7)

y = sin(2πr1)
√
1− r2 (2.8)

z =
√
r2 (2.9)

(2.10)

It is easy to see that this formula directly gives a vector of unit norm, and the pdf of these samples
is p((x, y, z)) = z/π. Using a frame change formula, one can easily bring it to a frame such that
the z coordinate above is aligned with our actual normal vector N . Producing a local frame around
N can be achieved by first generating two orthogonal tangent vectors T1 and T2. To generate T1,
we could directly use a normalized version of the vector (Nz, 0,−Nx) for example, since it is easy to
see that ⟨N,T1⟩ = 0 by construction. This would often work, until numerical issues arise near the
normal vector N = (0, 1, 0), which would produce a tangent vector near T1 = (0., 0., 0.). To avoid
that, we detect the smallest component of N (in absolute value!), force it to be zero, swap the two
other components and negate one of them to produce T1, which we normalize. Then T2 is obtained by
taking the cross product between N and T1. And given N , T1 and T2, we obtain the random Vector

in the correct frame by using V = xT1 + y T2 + z N , where (x, y, z) were generated by the formula
above. We will call this function random cos(const Vector &N).

With the method above to generate random vectors, and the known pdf p, it becomes easy to
perform Monte Carlo integration. You will realize that cosine terms cancel out, as well as the factor
π (the term π in ρ

π is cancelled by π from the pdf: p = ⟨N,ωi⟩
π when dividing by the pdf).

Other importance sampling formulas can be found in the Global Illumination Compendium by
Philip Dutré9.

Now, you may realize that working only with point light sources (for now) will result in strictly no
rays arriving by chance on these infinitesimally small lights. To address this issue, we directly sample
our point light source using the formulas we used until now resulting in the direct lighting contribution,
and add it to the random contribution we are generating (call the indirect lighting contribution).

9https://people.cs.kuleuven.be/ philip.dutre/GI/TotalCompendium.pdf
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Similarly to Fresnel, if you sample one ray per pixel the resulting image will be extremely noisy due
to all that randomness, but shooting many rays per pixel will make it converge to a nice and smooth
image. If you have already implemented this strategy for Fresnel materials, you do not need to change
anything.

Also, realize that the code you just wrote for handling indirect lighting on diffuse surfaces just
looks like the code for mirror surfaces – just the reflected ray goes in a random direction instead of a
deterministic mirror direction. The code should look like:

1 Vector Scene : : getColor ( const Ray& ray , i n t ray_depth ) {
2 i f ( ray_depth < 0) re turn Vector ( 0 . , 0 . , 0 . ) ; // te rminates r e cu r s i on at some ←↩

point
3

4 i f ( intersect ( ray , P , N , sphere_id ) ) {
5 i f ( spheres [ sphere_id ] . mirror ) {
6 // handle mirror s u r f a c e s . . .
7 } e l s e {
8 // handle d i f f u s e s u r f a c e s
9 Vector Lo ( 0 . , 0 . , 0 . ) ;

10 // add d i r e c t l i g h t i n g
11 double visibility = . . . ; // computes the v i s i b i l i t y term by launching a ray ←↩

towards the l i g h t source
12 Lo = light_intensity /(4* M_PI*squared_distance_light ) * albedo/M_PI * ←↩

visibility * std : : max ( dot (N , light_direction ) , 0 . ) ;
13

14 // add i n d i r e c t l i g h t i n g
15 Ray randomRay = . . . ; // randomly sample ray us ing random cos
16 Lo += albedo * getColor ( randomRay , ray_depth=1) ;
17

18 re turn Lo ;
19 }
20 }
21 }

and should produce results similar to those of Fig. 2.17.

Russian Roulette. Until now, we have truncated light paths to a maximum number of bounces
controlled by the initial value of ray depth. This leads to a biased rendering: one can construct a
scene that requires an arbitrarily high number of light bounces (for instance, take an arbitrary number
of mirrors redirecting one light source to a room). We thus did not integrate over the entire infinite
dimensional space of light paths, but over a truncated version of it. It is however possible to integrate
over this infinite-dimensional space. Instead of killing rays after a certain number of bounces, you only
kill them with some probability, and divide the light contribution by this probability. You can fine
tune this probability to be proportional to the current path intensity (if the first 5 encountered albedos
are very dark, it is unlikely that any future light source will be sufficiently bright to compensate light
absorption, so we make a 6th bounce unlikely – but if it occurs, then we compensate this low probability
by putting a large weight), but in any case, this results in an unbias rendering. Unfortunately, this
also tends to introduce significant noise (there is always a tradeoff between bias and noise), so we will
not implement it here.

Parallelization. Our code starts to be relatively slow, due to the number of paths that need to
be generated. An easy parallelization instruction is:

1 #pragma omp p a r a l l e l f o r
2 f o r ( i n t i=0; i<H ; i++) {
3 // . . .
4 }
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Figure 2.17: Rendering with indirect lighting (290 lines of code). First row, the renderings with
either a diffuse or transparent central spheres take about 35 seconds in parallel (or 7 minutes without
parallelization) using 1000 paths per pixel, and a maximum ray depth (max path length in the code
below) of 5. Second row, the rendering takes 1.2 seconds (in parallel) for 32 paths per pixel.

This instructs the compiler to perform the for loop in parallel. Make sure to enable OpenMP, using
Projet properties − > Configurations Properties − > C/C++ − > Language − > Open MP Support
with Visual Studio, or -fopenmp on recent GCC or -openmp on old GCC. Old Clang do do support
OpenMP. On MacOS, you may need to link with OpenMP using -L/usr/local/opt/libomp/lib

-I/usr/local/opt/libomp/include -fopenmp -lomp. Parallelization instructions should in general
go on the outermost loop, since starting threads has an inherent non-negligible system cost. By default,
the above instruction would evenly split the H lines of pixels in OMP NUM THREADS blocks (or as many
as the number of cores you have), and run these blocks in parallel. This is equivalent to #pragma omp

parallel for schedule(static, ceil(H/(double)omp get num threads()) and is ideal when all
rows of pixels have the same computational time. However, when this is not the case (which often
occurs), threads end up waiting for other threads to finish, doing nothing. A dynamic schedule can
then be used, as in #pragma omp parallel for schedule(dynamic, 1) which instructs OpenMP
to feed threads one row as soon as it is available. Dynamic scheduling is generally more costly than
static scheduling, though the scheduling cost is here negligible with respect to computation times.
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" The std::default random engine is not thread safe. Also, the thread local directive is not
compatible with OpenMP threads. You may need to instantiate one random number generator per
thread.

Antialiasing

As we are always sampling rays in the middle of each pixels, there is a discontinuity between adjacent
pixels: a ray may hit the sphere for a pixel and miss it in the next pixel. This results in a phenomenon
called aliasing. In fact, camera sensor cells have an area, they are not points. More precisely, actual
camera sensor cells are arranged in a pattern called Bayer pattern (Fig. 2.18). Each sensor cell is
sensitive to either red, green and blue through a colored filter array, and since the eye is more sensitive
to green light than red or blue, there are twice as many “green cells” (or rather grayscale cells covered
with a green filter) than red or blue cells. Once a photograph is taken, the resulting raw image is then
converted to an RGB pixel grid using demosaicing (or debayering) algorithms. We will not simulate
Bayer patterns as we can directly emulate an RGB-sensitive pixel array.

Figure 2.18: Camera sensor cells are arranged in a Bayer pattern, interleaving red, green and blue
filtered sensors.

The idea here is to integrate the radiance that reaches the camera sensor over the surface of each
pixel. For that, we are actually integrating:

Li,j =

∫
Ai,j

Li(x, ωi(x))dx

where {i, j} are the pixel indices, Ai,j represents the surface of pixel (i, j), and Li(x, ωi(x)) represents
the light reaching the camera sensor at point x from a direction that is fully determined by x and the
camera center (ωi(x) = x−C

∥x−C∥). In practice, this would amount to box filtering the input radiance,

which is not spectrally ideal and could still result in some amount of aliasing (notably for high frequency
textures or geometries).

Instead, we would rather filter the signal more smoothly, by integrating:

Li,j =

∫
Ai,j

Li(x, ωi(x))hi,j(x)dx

where h is some nice smooth kernel. While interesting choices include Mitchell-Netravali’s filtering
or windowed Since filters, we will simply use a Gaussian filter centered in the middle of pixel i, j for
our function h. We have now seen Monte Carlo integration, and it is becoming clear that the above
computation is well suited to it: we can efficiently design an importance sampling approach that
produces samples more often in the middle of each pixels according to a Gaussian probability! In fact,
we have already implemented Box-Muller’s technique earlier as an exercise. And while evaluating the
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Monte Carlo estimate, one realize that again, the Gaussian kernel h and the pdf p exactly cancel out
since we have importance sampled the integrand according to h.

Our main function now looks like:

1 i n t main ( ) {
2 // f i r s t d e f i n e the scene , va r i ab l e s , . . .
3 // then scan a l l p i x e l s
4 #pragma omp p a r a l l e l f o r schedu le ( dynamic , 1)
5 f o r ( i n t i=0; i<H ; i++) {
6 f o r ( i n t j=0; j<W ; j++) {
7 Vector pixelColor ( 0 . , 0 . , 0 . ) ;
8 f o r ( i n t k=0; k<NB_PATHS ; k++) {
9 Vector rand_dir = . . . ; // as be f o r e but t a r g e t i n g p i x e l ( i , j )+boxMuller ( ) * spread

10 Ray ray (C , rand_dir ) ; // ca s t a ray from the camera cente r C with rand d i r ←↩
d i r e c t i o n

11 pixelColor += scene . getColor ( ray , max_path_length ) ;
12 }
13 pixel [ i*W*3+j*3 + 0 ] = std : : min (255 , std : : pow ( pixelColor [ 0 ] / NB_PATHS , 1 . / 2 . 2 ) ) ; //←↩

s t o r e s R channel
14 // same f o r green and blue
15 }
16 }
17 // save image and return 0
18 }

and produces the image in Fig. 2.19.

Figure 2.19: Image without (left) and with (right) antialiasing.

Remark. It is now clear that, using a Gaussian importance sampling strategy, samples for pixel (i, j)
have some probability to fall outside of pixel (i, j) (in fact, as soon as the Box-Muller function will
return one value larger than 0.5). Given the cost of retrieving Li(x, ωi(x)), it would be a waste to only
use it for pixel (i, j) and not for all the neighboring pixels (i′, j′) for which hi′,j′ is sufficiently large.
It is indeed interesting to splat Li(x, ωi(x)) over a small pixel neighborhood. However, care must be
taken to avoid concurrency issues while parallelizing code. To simplify the implementation, we will
not implement this technique which correlates samples received by neighboring pixel.
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Spherical / area light sources

Another important factor to realism is the presence of soft shadows (Fig. 2.20). Soft shadows are
the result of light sources having an area and not being points, hence resulting in penumbras. For
simplicity, we will support spherical light sources (since we have primitives for them), but the method
extends to other shapes.

Figure 2.20: Classroom image without (left) and with (right) soft shadows. Notice the shadow of the
blackboard on the wall and tables on the ground.

A naive solution would simply to set a positive value for the emission Le of all spherical light
sources, and wait for our random rays to reach these light sources (and remove our point light source).
This would theoretically work, but also produce very noisy images. In fact, the smaller the light
source, the less likely light paths will randomly reach them, and the noisier the images (Fig. 2.21).

Figure 2.21: Naively handling soft shadows using spherical light sources of radius 1, 2, 10, and 20.
As the radius increases, light paths have more chances to randomly reach light sources, which reduces
noise. Also notice the soft shadows appearing. These renderings still have 1000 (uncorrelated) samples
per pixel, which is very large for typical scenes. The rendering takes about 25 seconds (in parallel) for
280 lines of code.

Recall that for diffuse surfaces, we are looking to numerically evaluate an expression of the form:

Lo(x, ωo) =
ρ

π

∫
Ω
Li(x, ωi)⟨ωi, N⟩dωi

Similarly to point light sources, we will separate direct and indirect contributions. The formalism
will be made clearer here: we split the integration domain Ω in two parts: the part Ωd (d for direct)
that consists in the area of the hemisphere where spherical light sources project and the rest of the
hemisphere, Ωi (i for indirect). Ωd is such that launching rays in a direction ωi ∈ Ωd from x would
reach a spherical light source, unless blocked by some geometry. This is akin to point light sources,
where Ωd what an infinitesimally small domain.

We hence keep our process in which we add indirect and direct lighting together. For indirect
lighting, we will only make a small change to our existing code (since these rays do not directly reach
light sources, they can be importance sampled according to the cosine term as we did before): if we
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launch a random ray for indirect lighting contribution but it still hits a light, then we should count
its contribution as zero (otherwise this value would be counted twice, once in the direct lighting com-
putation, and once in the indirect lighting computation). We are left with implementing importance
sampling for direct lighting, that is, light rays directed towards light sources.

We could use a formula for importance sampling directions within the spherical cap Ωd. But
it is easier and more general to re-parameterize the rendering equation via a change of variable for
which instead of integrating over (part of) an hemisphere, we would integrate over (part of) the scene
directly. This means that we would sum over small area patches in the scene rather than small solid
angles (see Fig. 2.22).

x

Lo Li
N

θi

ωo

Ωi

Le

x’
N’

S
C

R

Ωd

-ωi(x’)

Figure 2.22: Notations for integrating over elements in the scene.

As always, when making a change of variable within an integral, one needs to account for the
determinant of the Jacobian of this change of variable. It appears that this determinant is D =
⟨N ′,−ωi⟩Vx(x′)

∥x−x′∥2 where Vx is still the visibility function, and N ′ the normal of the area patch around

point x′. The rendering equation for purely diffuse surfaces now looks like:

Lo(x, ωo) =
ρ

π

∫
S
Li(x, ωi(x

′))⟨ωi(x
′), N⟩⟨N

′,−ωi(x
′)⟩Vx(x

′)

∥x− x′∥2
dx′

with ωi(x
′) = x′−x

|x′−x| , and S the surface of our light source.

In fact, the coefficient G(x, x′) = ⟨ωi(x
′), N⟩ ⟨N

′,−ωi(x
′)⟩Vx(x′)

∥x−x′∥2 is often called the form factor between

x and x′. We will also use it later in the context of Radiosity (Sec. 2.2.4).

We will now seek to stochastically sample our spherical light sources in the scene (instead of directly
sampling directions towards them). Given the term in ⟨N ′,−ωi(x

′)⟩, it is obvious that we should avoid
sampling points ont the “edge” of the spherical light, as this dot product will be close to zero, and that
we would prefer sampling values for which ⟨N ′,−ωi(x

′)⟩ is large. Also, the visibility term Vx is such
that half our spherical light sources will be occluded by the other half... so we would like to sample
points only on the visible side. Fortunately, we have already written some code, random cos(const
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Vector &N), that takes a Vector N (that used to be our normal vector, but could be anything) and
returns a random Vector which has more chances of being sampled around N than orthogonally to it.
It samples them according to a probability density function p(V ) = ⟨V,N⟩

π .

To generate a point x′ on our spherical light source S of center C and radius R from a point x, we
first build the vector D = x−C

|x−C| that defines the visible hemisphere of S, we call V = random cos(D)

to obtain a unit direction that has more chance of facing D, and finally obtain x′ using x′ = RV +C.
The probability density function at x′ is p(x′) = ⟨V,D⟩

π . 1
R2 , where 1/R2 is due to the samples being

stretched in two dimensions by a factor R.

Regarding Li(x, ωi(x
′)), we now need to spread our I Watts of light power over the surface of a

sphere of radius R, with each of these point radiating in all directions of the hemisphere with a cosine
factor. The number of Watts.m−2.sr−1 is thus I

4π2R2 .

The code now looks like:

1 Vector Scene : : getColor ( const Ray& ray , i n t ray_depth , bool last_bounce_diffuse ) {
2 i f ( ray_depth < 0) re turn Vector ( 0 . , 0 . , 0 . ) ; // te rminates r e cu r s i on at some ←↩

point
3

4 i f ( intersect ( ray , P , N , sphere_id ) ) {
5 i f ( spheres [ sphere_id ] . is_light ) {
6 i f ( last_bounce_diffuse ) { // i f t h i s i s an i n d i r e c t d i f f u s e bounce
7 // i f we h i t a l i g h t source by chance v ia an i n d i r e c t d i f f u s e bounce , r e turn←↩

0 to avoid count ing i t twice
8 re turn Vector ( 0 . , 0 . , 0 . ) ;
9 } e l s e {

10 re turn Vector ( 1 . , 1 . , 1 . ) *light_intensity /(4* M_PI*M_PI*R*R ) ; // R i s the ←↩
s p h e r i c a l l i g h t rad iu s

11 }
12 }
13 i f ( spheres [ sphere_id ] . is_diffuse ) {
14 // handle d i f f u s e s u r f a c e s
15 Vector Lo ( 0 . , 0 . , 0 . ) ;
16 // add d i r e c t l i g h t i n g
17 Vector xprime = random_point_on_light_sphere ( ) ;
18 Vector Nprime = ( xprime=centerLight ) /( xprime=centerLight ) . norm ( ) ;
19 Vector omega_i = ( xprime=P ) /( xprime=P ) . norm ( ) ;
20 double visibility = . . . ; // computes the v i s i b i l i t y term by launching a ray ←↩

o f d i r e c t i o n omega i
21 double pdf = dot ( Nprime , (x=centerLight ) /(x=centerLight ) . norm ( ) ) /( M_PI*R*R ) ;
22 Lo = light_intensity /(4* M_PI*M_PI*R*R ) * albedo/M_PI * visibility * std : : max (←↩

dot (N , omega_i ) , 0 . ) *std : : max ( dot ( Nprime , =omega_i ) , 0 . ) / ( ( xprime=P ) .←↩
squared_norm ( ) * pdf ) ;

23

24 // add i n d i r e c t l i g h t i n g
25 Ray randomRay = . . . ; // randomly sample ray us ing random cos
26 Lo += albedo * getColor ( randomRay , ray_depth=1) ;
27

28 re turn Lo ;
29 }
30 }
31 }

Note the similarity of this approach to an approach that would consider the scene to have a single
point light whose position is not deterministic but stochastically sampled on the surface of a sphere.
This code can simulate simple caustics (Fig. 2.24).
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" Always replace in your code ⟨x, y⟩ by max(⟨x, y⟩, 0). After millions of rays being launched in
all directions, you will be sure to find numerically small but negative values that could mess with
your simulation. Also, you now test the visibility by launching a ray towards a point sampled on
the light source and testing for intersections. However, your light source is a sphere that is part of
the scene. It is thus possible for our visibility query to return a point on the light source that is
numerically almost the same as the point that has been sampled on the light source (if there is no
shadow, the resulting intersection point and the point sampled on the sphere should be mathematically
the same, but numerical errors will arise). An epsilon should be added in the visibility test to avoid
self shadowing, in a similar way that rays were launched by a slightly offseted point above the surface.

Figure 2.23: Soft shadows by directly sampling the spherical light source (the code is now about 320
lines) of radius 1, 2, 10 and 20. Using 1000 samples per pixel and 5 light bounces (top row), it takes
about 1 minute per image. Using 32 samples per pixel (bottom row), about 2 seconds. Note that
noise could be decreased by taking into account correlations between pixels (see text).

Depth of Field, motion blur and camera models

Our generated images are sharp at all distances. However, photographs tend to be sharp only around a
certain distance, called the focus distance. In fact, our camera model corresponds to what is known as
a pinhole camera (Fig. 2.26): just a dark box of length f (called focal length) pierced with an tiny hole
(in practice, the optimal hole size is d = 2

√
fλ). This kind of setup has been known for a long time.

In fact, it is suspected that it was known since paleolithic times10. In more recent times, pinholes were
used to paint realistic scenes by projecting landscapes on a canvas, a setup called camera obscura,
locus obscurus or camera clausa – for instance this led to early realistic depictions of Venice sceneries
(Fig. 2.25)11.

To implement depth of field (DoF), we will assume a circular aperture. The idea is to realize that
all points at the focus distance describe a plane where points project to points on the sensor and remain
sharp (Fig. 2.27), and that light passes through the aperture before reaching the lens. The result is
exactly as if we made infinitely many renderings from pinhole cameras, where the tiny hole location

10see http://paleo-camera.com/ for discussions on suspected paleolithic and neolithic setups.
11In fact, the Hockney-Falco thesis says that the drastic increase in realism in the 17th century is due to such

technological advances ; other famous artists may have used such devices such as Vermeer (1632-1675) https:

//en.wikipedia.org/wiki/Hockney%E2%80%93Falco_thesis.

http://paleo-camera.com/
https://en.wikipedia.org/wiki/Hockney%E2%80%93Falco_thesis
https://en.wikipedia.org/wiki/Hockney%E2%80%93Falco_thesis
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Figure 2.24: Moving the light a little bit reveals caustics in the transparent scene. Here the light
sphere is at position (−10, 25,−10) and of radius 5. These indirect specular bounces are hard to
capture and thus produce much higher levels of noise (here, 5000 samples per pixel were used). Other
techniques such as bidirectional path tracing or photon mapping better capture caustics.

Figure 2.25: The camera obscura was used for precisely painting scenes. This was used by a number
of artists such as Canaletto (1697-1768, left), or Luca Carlevarijs (1663-1730, right: Venicians arriving
in London in 1707)

f

d

Figure 2.26: A pinhole camera is just a small hole in a dark chamber that lets light come in and
displays a sharp view of the outside world on the screen. The image is flipped: in our path tracer,
we have just put our sensor at a virtual location at a distance f outside the box for a more intuitive
implementation and non-flipped renderings (in our setup, the camera location C is the hole, and the
pixel grid is outside).

varies inside a small disk of the size of the aperture, and then average results. For implementation
purpose, similarly to the pinhole case, we will keep the camera sensor and lens locations swapped. As
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Figure 2.27: Top row. Using a camera lens, an object if placed at the focus distance will appear sharp
(left) as the image of a point of the object is a point on the sensor. However, moving the distance
closer to (or away from) the camera makes the object appear blurry as the image of a point is a small
disk called the circle of confusion. Bottom row. By adding a shutter aperture (setup on the left,
photo on the right), the circle of confusion can be made much smaller resulting in sharper images
away from the focus distance by blocking light (and hence resulting in darker images). If the circle of
confusion is smaller than a pixel, the image appears sharp. Cameras allow for varying the position of
F ′, varying the distance of the lens to the camera sensor, and the size of the aperture (the first two
vary together in parfocal lenses to remain in focus while zooming).

such, we will simply find new starting points for our rays that are slightly tangentially offseted from
the camera location Q, and recompute their directions such that all rays targeting a given pixel cross
at the plane that remains in focus (up to antialiasing).

To achieve that, we first generate a ray from the camera center Q (the pinhole center) as before
(red ray in Fig. 2.27). Then we find the point P that would be in focus. This point is given in our
case by P = Q+ D

|uz |u where D is the distance at which objects appear in focus, u is the (original) ray

direction, and uz its z coordinate (since objects appear sharp on a plane at a distance D from Q in the
optical axis – up to Petzval field curvature)12. Once P is found, you can generate a point inside the
aperture shape (here, a disk, but you can simulate bokeh of various shapes) which will serve as your
new origin Q′ and compute the ray direction as the unit vector u′ towards P (Fig. 2.28). Generating a
point on a disk can be performed in polar coordinate by choosing the square root of a uniform random
number as the radius r, and a uniform random angle θ in [0, 2π]. Results can be see in Fig. 2.29.

Similarly, while the shutter of the camera is open, objects may have moved. This produces another
kinf of blur calledmotion blur. This is easily simulated in our path-tracer: now, rays have an additional
time parameter, and objects have a way of describing their motion (in my simple implementation,
they merely have a single speed vector defaulting to zero, but more complex motion is possible). To
simulate motion blur, we randomly select the time parameter of the generated ray within the time the
shutter is open, and compute the intersection with scene that includes object motion. In my simple
implementation, I merely translate the sphere origin by the sphere’s speed multiplied by the ray time

12You may also simulate tilt-shift photography by changing the orientation of this plane.
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Figure 2.28: Depth of field can be obtained in our path tracer by starting rays from a point on the
aperture shape (instead of the pinhole center) such that rays cross at the focusing distance D.

Figure 2.29: Depth of field result in our path tracer, adding less than 10 lines of code, bringing it to
330 lines. Here, 2000 samples per pixel were used because of specular paths, though depth of field
often necessitate more samples.

parameter in the Ray-Sphere intersection test. By essentially adding two lines of code and modifying
a couple of others, we obtain the result shown in Fig. 2.30.

Meshes

The next big thing in our path tracer is the support of triangle meshes. It is highly uninteresting for
me to make you implement a loader for mesh files, so I provide an ugly one that can be downloaded
at: https://pastebin.com/CAgp9r15
Sure, that adds 200 lines to our path tracer, but let’s start simpler.

Ray-Plane intersection. A plane is defined by a normal vector N and a point A that belongs
to the plane. All points P from the plane thus have the equation ⟨P − A,N⟩ = 0. Substituting P
by the equation of a ray starting at O, of direction u, leads to ⟨O + t u − A,N⟩ = 0, and hence, the
unique solution, if it exists, is:

t =
⟨A−O,N⟩

⟨u,N⟩

https://pastebin.com/CAgp9r15
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Figure 2.30: Motion blur is obtained by adding a time parameter to the rays. The time value is selected
randomly within the interval of time the camera shutter is kept open. The ray-sphere intersection
here considers a linear motion of the sphere. This merely adds 2 lines of code, and modifies a couple
of others.

We are still only interested in positive solution.

Ray-Triangle intersection. A point P is within a triangle defined by vertices A, B and C if
P = αA + β B + γ C, α, β, γ ∈ [0, 1] and α + β + γ = 1. α, β and γ are called the barycentric

coordinates of P , and when P is inside ABC, they represent ratios of areas, e.g., α = area(PBC)
area(ABC) . It

is often impractical to have 3 barycentric coordinates for something intrinsically 2-dimensional, so we
often reparameterize it by saying that P = A + βe1 + γe2 where e1 = B − A and e2 = C − A (also
use the fact that α+ β + γ = 1). Using the ray equation, we obtain a linear equation for the point of
intersection of the form βe1 + γe2 − t u = O −A. In matrix form:e1 e2 −u

β
γ
t

 =

O −A


We note that for a 3x3 matrix

det

A B C

 = ⟨A,B × C⟩

where × denotes the cross product, and that swapping columns change the sign of the determinant
while circular permutation does not. We also note N the non-normalized normal, using N = e1 × e2.
Using Cramer’s formula, we obtain the solution of this linear system by ratios of determinants:

β =
⟨O −A, e2 ×−u⟩
⟨e1, e2 ×−u⟩

=
⟨e2, (A−O)× u⟩

⟨u,N⟩
(2.11)

γ =
⟨e1, (O −A)×−u⟩

⟨e1, e2 ×−u⟩
= −⟨e1, (A−O)× u⟩

⟨u,N⟩
(2.12)

α = 1− β − γ (2.13)

t =
⟨e1, e2 × (O −A)⟩

⟨e1, e2 ×−u⟩
=

⟨A−O,N⟩
⟨u,N⟩

(2.14)

(2.15)
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We obtain the Möller–Trumbore intersection algorithm.

Ray-Mesh intersection. A mesh will be considered as a set of triangles, so, for now, we will
merely traverse all triangles and return the intersection closest to the camera, in exactly the same
way we traverse all objects of the scene to return the closest intersection to the camera. This will be
considerably slow, but we will improve next.

To obtain our first mesh renderings, we will need now to inherit the class Sphere from a more
general Geometry abstract class. An abstract class is a class that has some pure virtual functions
(functions that are not implemented at all, they are tagged virtual and their prototype ends with
= 0 to indicate no implementation is provided), and so, these class cannot be instantiated. Here, our
pure virtual function is the intersect() routine. We will now use the TriangleMesh provided class,
and make it inherit as well from Geometry. Our scene will now consists of an array of pointers to
Geometry rather than (pointers to) Sphere.

" A common bug is to duplicate properties such as materials/albedo/transparency... in the parent
(Geometry) and children (Sphere and TriangleMesh) classes, which results in the wrong variables
being used. Be sure to have all common properties only in the parent class. You may want to debug
your code using a mesh consisting of a single manually constructed triangle.

For a simple demo object, we will be using a low poly cat mesh, available at http://www.cadnav.
com/3d-models/model-47556.html (Edit: as of 2021, cadnav is down. I have put this model at :
https://perso.liris.cnrs.fr/nbonneel/cat.rar). It has 3954 polygons to test.

" Unless you made a fancy GUI, normalized your models upon loading, or know or made your 3d
model, it is a good habit to check the obj file as a text file or display the bounding box to make sure
sizes are reasonable and the orientation looks correct. 3D modelers can use different units so you could
end up with a kilometer-sized cat or millimeter-sized cat that will not be visible, and the orientation
is not standardized either so that the up vector can be arbitrarily the +Y or +Z coordinate (most
often). Here, our cat model is roughly in the range (−35..30, 0..45,−8..8) which means our cat is a
pretty big boi (given our spheres are of radius 10), and given our ground is at a Y coordinate of −10,
our cat is floating in the air. I will first scale it by a factor 0.6 and translate it by (0,−10, 0) to obtain
Fig. 2.31.

" For visual studio users, it is unfortunate that temporary files for compiling your project have
an .obj extension. Concretely, this means that if you place your .obj mesh in your binary folder and
perform a project “Clean up”, it will remove all temporary .obj files and your mesh. Either put your
meshes in a subfolder, or save it somewhere else just in case you mistakenly clean your project.

Acceleration structures – Bounding Box. Right now, the rendering is pretty slow due to the
linear time spent in checking all triangles of the mesh – more than 6 minutes for 32 samples per pixel
and 5 light bounces – though only adding about 40 lines of code (excluding the 200 lines obj loader).
A simple optimization is to test whether the axis aligned bounding box of the object is intersected by
the ray, and then only checking all triangles if the ray intersects the bounding box.

We have seen the equation for a ray-plane intersection. A bounding box is defined by the intersec-
tion between the volumes enclosed by pairs of planes. As such, as simple algorithm consists considering
the pairs of intersections between the ray and pairs of planes. Theses pairs of intersections define 3

http://www.cadnav.com/3d-models/model-47556.html
http://www.cadnav.com/3d-models/model-47556.html
https://perso.liris.cnrs.fr/nbonneel/cat.rar
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Figure 2.31: Our cat model, just scaled by a factor 0.6 and translated by the vector (0,−10, 0).
At 32 samples per pixel (spp) and 5 light bounces, it took 6 min and 20 seconds (in parallel) by
naively testing all triangles using the Möller–Trumbore intersection algorithm. By adding a simple
ray-bounding box test (and 30 lines of code) this falls to 1 min and 10 seconds. Using a simple BVH
(and about 50 additional lines), the rendering time even falls down to less than 3 seconds, with a close
to 150x speedup compared to the naive approach !

intervals, one for the two planes of constant X, one for the two planes of constant Y and one for the
two planes of constant Z. If theses intervals have a non-null intersection, this means a ray-bounding
box intersection exists, and the ray-triangles intersection can be performed. An interval intersection
test hence corresponds to testing whether min(tx1 , t

y
1, t

z
1) > max(tx0 , t

y
0, t

z
0) (where if this is true, the

actual intersection is max(tx0 , t
y
0, t

z
0)), denoting tx0 the intersection along the ray with the first plane of

constant x (similarly for subscript 1 and superscripts y and z – see Fig. 2.32 for notations in 2-D).
It is also interesting to see that a ray-plane intersection with axis-aligned planes take a particularly
simpler form.

We can now write a BoundingBox class containing the two extremas of our bounding box (Bmin and
Bmax), compute the bounding box of the mesh, and write a function for ray-bounding box intersection.
This makes the routine 6 times faster.

" Beware of computing the bounding box after having translated and scaled your model !

Acceleration structures – Bounding Volume Hierarchies (BVH). The previous idea can be
implemented recursively: if the ray hits the bounding box of the mesh, we can further test if it hits the
two bounding boxes containing each just half of the mesh (and so on with a quarter of the mesh etc.).
The idea is to build a binary tree, with the root being the entire mesh’s bounding box. We then take
the longest axis of the bounding box. Then for each triangle, we determine if its barycenter is within
the first half or the second half of this axis. This determines two sets of triangles, for which we can
compute their bounding boxes and that can be set as the two children of the root node. This process
is recursively performed for these two children nodes, until some criteria is met (for instance, until the
number of triangles in a leaf node is smaller than some threshold). Beware that this procedure does
not produce a space partition: bounding boxes can overlap, since the decision to put a triangle on one
side or the other is only based on its barycenter, while bounding boxes are computed using the
triangle’s 3 vertices (see Fig. 2.33).
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Figure 2.32: A ray-bounding box intersection can be performed by testing the overlap between intervals
defined by pairs of ray-planes intersections.
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Figure 2.33: A BVH recursively computes bounding boxes. The overall bounding box (black) is split
into 2 categories (blue and red) based a vertical split in the middle of the black box. Triangles are
assigned to either the blue or red categories based on their centroid. The bounding boxes of these two
sets of triangles are computed (and they may overlap), and then each subdivided into 2 new categories
(cyan and green, and orange and grey). The process can go further. Here, the 4 leaves of the tree
contain consecutive indices of triangles refering to a permutation of the original set of triangles.

In practice, building this tree can be performed using a method akin to Quick Sort : triangles are
simply reordered in a way that consecutive triangles are in the same bounding box. This can be done
by keeping track of a pivot and performing swaps such that elements before the pivot are smaller,
while elements after it are always larger. This looks like:

1 node=>bbox = compute_bbox ( starting_triangle , ending_triangle ) ; //BBox from ←↩
s t a r t i n g t r i a n g l e inc luded to end i n g t r i a n g l e excluded

2 node=>starting_triangle = starting_triangle ;
3 node=>ending_triangle = ending_triangle ;
4 Vector diag = compute_diag ( node=>bbox ) ;
5 Vector middle_diag = node=>bbox . Bmin + diag * 0 . 5 ;
6 i n t longest_axis = get_longest ( diag ) ;
7 i n t pivot_index = starting_triangle ;
8 f o r ( i n t i=starting_triangle ; i<ending_triangle ; i++) {
9 Vector barycenter = compute_barycenter ( indices [ i ] ) ;

10 // the swap below guarantees t r i a n g l e s whose barycenter are sma l l e r than ←↩
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middle d iag are be f o r e ” p ivo t index ”
11 i f ( barycenter [ longest_axis ] < middle_diag [ longest_axis ] ) {
12 std : : swap ( indices [ i ] , indices [ pivot_index ] ) ;
13 pivot_index++;
14 }
15 }
16 // stopping c r i t e r i o n
17 i f ( pivot_index<=starting_triangle | | pivot_index>=ending_triangle=1 | | ←↩

ending_triangle=starting_triangle<5 ) re turn ;
18 recursive_call ( node=>child_left , starting_triangle , pivot_index ) ;
19 recursive_call ( node=>child_right , pivot_index , ending_triangle ) ;

Remark: We used the middle of the axis as a criterion for separating triangles. In unbalanced scenes
(with many more triangles on one side than the other) this may not be optimal. A heuristic consists
in minimizing the Surface Area Heuristic (SAH)13 to find a better place to cut.

Once the tree is built, the ray-BVH intersection can be performed by recursively visiting boxes
that are intersected. An interesting option is to perform a depth-first traversal until a triangle is
intersected (if any), and to avoid visiting bounding boxes that are further than the best triangle found
so far14:

1 i f ( ! root . bbox . intersect ( ray ) ) re turn f a l s e ;
2 std : : list<Node*> nodes_to_visit ;
3 nodes_to_visit . push_front ( root ) ;
4 double best_inter_distance = std : : numeric_limits<double > : : max ( ) ;
5 whi le ( ! nodes_to_visit . empty ( ) ) {
6 Node* curNode = nodes_to_visit . back ( ) ;
7 nodes_to_visit . pop_back ( ) ;
8 // i f the re i s one ch i ld , then i t i s not a l e a f , so t e s t the bounding box
9 i f ( curNode=>child_left ) {

10 i f ( curNode=>child_left=>bbox . intersect ( ray , inter_distance ) ) {
11 i f ( inter_distance < best_inter_distance ) {
12 nodes_to_visit . push_back ( curNode=>child_left ) ;
13 }
14 }
15 i f ( curNode=>child_right=>bbox . intersect ( ray , inter_distance ) ) {
16 i f ( inter_distance < best_inter_distance ) {
17 nodes_to_visit . push_back ( curNode=>child_right ) ;
18 }
19 }
20 } e l s e {
21 // t e s t a l l t r i a n g l e s between curNode=>s t a r t i n g t r i a n g l e
22 // and curNode=>e nd i n g t r i a n g l e as be f o r e .
23 // i f an i n t e r s e c t i o n i s found , update b e s t i n t e r d i s t a n c e i f needed
24 }
25 }

Doing so drastically improves the render time: now less than 3 seconds for 32 spp! The traversal
order can also be optimized: since we perform a depth first traversal, it can be useful to first traverse
boxes that are closer to the ray origin. Feel free to add this to your pathtracer !

14A similar remark holds between objects of the scene: it is not useful testing the triangles of a mesh whose bounding
box is further than the best triangle found so far.
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Normals and Textures

Now that we have computed geometric intersections with triangles, we can use barycentric coordinates
to interpolate values on the mesh. The first thing we will do is interpolating normals. In fact, 3d mod-
els are often provided with per-vertex normals (or even per-vertex-per-triangle: one vertex can have
different normals depending on which triangle it is considered to belong to). These artist-defined nor-
mals control the perceived smoothness of the shape, without changing the geometry itself, by allowing
each shaded point to receive a normal that is interpolated from the normals of the vertices of the inter-
sected triangle. Specifically, we can compute the shading normal as N̂(P ) = α(P )NA+β(P )NB+γ(P )NC

∥α(P )NA+β(P )NB+γ(P )NC∥
where α(P ), β(P ) and γ(P ) are the barycentric coordinates of P within the triangle ABC whose artist
defined normals at A, B and C are respectively NA, NB, and NC . This shading normal can be used
in all lighting computations15. This process is called Phong interpolation (and has nothing to do with
the Phong BRDF except this is the same inventor...). The result can be see in Fig. 2.34.

Figure 2.34: Cat model without (left) and with (right) interpolation of normals.

Similarly, vertices are associated with “per-vertex-per-triangle” UV coordinates. These coordinates
correspond to a parameterization of the mesh, which is non-trivial to obtain in the general case. UV
coordinates associate to each vertex of each triangle a 2D point within a texture map. The texture
domain is normalized in the range [0, 1]2. Interpolated UV coordinates are often interpreted modulo
1, that is, only the fractional part of the texture coordinates are used (if values are positive – consider
the texture is a flat torus), which can be useful for tiling textures (a wall made ob bricks can be
geometrically modeled by a single quad, with UV coordinates (0, 0) and (N,N) at its extremities: a
texture of a single brick can be then used, and will produce a tiling of N ×N bricks). UV coordinates
interpolation is similarly performed: ÛV (P ) = α(P )UVA + β(P )UVB + γ(P )UVC . The interpolated
UV coordinates are then scaled by the width and height of the texture, and the texture color is then
queried at the corresponding pixel (Fig. 2.35). This color can serve as the albedo, for example.

We are now ready to implement textures. We will be using stb image (see Sec. 1.1) to load the
image and the stbi load function, and retrieve its width and height. Each triangle is associated with
a group that corresponds to the material index within the associated cat.mtl file. This material file,
in this case, contains a single material, so all group values are set to 0 for all triangles – this may
not be the case for more complex objects, where different textures can be used for different parts of
the mesh. You can add a function to load one (or several) textures upon loading the mesh, and your
intersection routine should now return an albedo computed locally. The result can be seen in Fig. 2.36.

15One can however notice that tweaking the integration hemisphere may break BRDF energy conservation...
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(0,0)

(1,1)

Figure 2.35: UV coordinates associate for each 3D vertex a 2D coordinate in the texture map, that
can be interpolated using barycentric coordinates.

" Albedo values are in the range [0, 1] while textures are integers stored in unsigned chars. Do not
forget to divide by 255 ! But at this stage, you may realize that your texture was saved in a gamma-
corrected color space, so you would also need to apply a gamma function of color2.2 to the queried
colors. Also, make sure to convert your pixel coordinates (x, y) to integers before accessing textures
with formulas such as texture[y*W*3+x*3+c]. If these coordinates contain fractional parts, the wrong
pixel will be accessed ! Finally, beware that the origin (0, 0) of UV coordinates is conventionally the
top left of the texture, while most often textures are loaded from bottom to top.

Blinn-Phong BRDF

Our materials were until now “perfect”: perfectly diffuse, perfectly specular or perfectly transparent.
However, most real-world materials are some combinations of these materials, or have some aspects
of these materials. A simple model was initially presented by Phong, called the Phong BRDF, and is
formulated as f(ωi, ωo) =

ρd
π + ρs⟨ωi, RN (ωo)⟩α, with RN (ωo) the reflection of ωo around the normal

N , and α the Phong exponent that controls the frequency of the reflection (high α produces smaller
highlights, giving the impression of a more shiny material, see Fig. 2.38). However, this model does
not model well highlight distortions at grazing angles (Fig. 2.37). A modified Phong BRDF model is
given by the Blinn-Phong model :

f(ωi, ωo) =
ρd
π

+ ρs
α+ 8

8π
⟨N,H⟩α

which better handles grazing incidences (the correct normalization factor is also slightly more complex).
The term H = ωi+ωo

∥ωi+ωo∥ is called the half-vector, a vector halfway between the incident and outgoing

directions (considering both vectors go away from the surface). We will implement this model.

To implement the Blinn-Phong BRDF, you could simply replace the diffuse BRDF we used by this
BRDF. That would work – up to large noise levels for specular materials. Our importance sampling
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Figure 2.36: Cat model with textures, with a gamma function applied. The code is now about 700
lines long, including the 200 lines obj file reader.

Figure 2.37: The original Phong model does not appropriately model the distortion of highlights at
grazing angles (left of each pair) while this is solved by the Blinn-Phong model (right of each pair).
Left image pair by an unknown author. Right image pair by Lecocq et al. 2017.

strategy consisted in sampling the hemisphere according to a simple cosine function, which produces
more often directions near the surface normal and few directions at grazing angles. However, if the
BRDF is highly specular, we expect the integrand to be very large near the reflected direction, and
very low far from it. This does not coincide with where we importance sampled our directions.

The goal will be to produce an importance sampling strategy for the Blinn-Phong model.

Importance sampling the specular lobe. We will first focus on the specular component and
assume ρd = 0 and ρs = 1. We have seen how to importance sample a direction that follows a cosine
law around the normal of the surface – we called this function random cos(const Vector &N). There
is a generalization of this importance sampling strategy that allows to sample according to some power
of a cosine law16.

16See again Philip Dutré’s Global Illumination Compendium https://people.cs.kuleuven.be/~philip.dutre/GI/

TotalCompendium.pdf

https://people.cs.kuleuven.be/~philip.dutre/GI/TotalCompendium.pdf
https://people.cs.kuleuven.be/~philip.dutre/GI/TotalCompendium.pdf
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r1, r2 ∼ U(0, 1)

x = cos(2πr1)

√
1− r

2
α+1

2

y = sin(2πr1)

√
1− r

2
α+1

2

z = r
1

α+1

2

where the pdf is given by p(X) = α+1
2π cosα θ, where here, θ is the angle with the +z axis (or any

other vector, up to a frame change as we did earlier).

We can use this formula to sample a half-vector H (which is the direction that follows some
lobe-shaped law around the normal), and bring it to our local frame with the same change of vari-
ables as before. We finally need to mirror ωo by H to obtain the desired sampled direction ωi.
This last step introduces a transformation that needs to be taken care of in the pdf: we now
have p(ωi) = 1

4⟨ωo,H⟩
α+1
2π ⟨H,N⟩α. Let us call this entire sampling procedure random pow(const

Vector &N, double alpha).

Importance sampling a mixture model. We would like to sample a distribution of the form
p(x) =

∑
i αipi(x), with

∑
i αi = 1. This can be achieved by using a uniform random number between

0 and 1 to determine which of the pi to sample, with probability αi. But then, multiple choices
are possible to numerically evaluate the integral I =

∫
f(x)dx =

∫ ∑
wifi(x)dx. The first, most

immediate, option is to ignore the particular form of the integrand, and compute the estimate as
I ≈

∑
k

f(xk)∑
i αipi(xk)

. However, this requires to evaluate pi(xk) for all pi. In our context, we have two

pi’s: one for the diffuse part that is cheap to compute, and one for the specular part that is expensive
to compute. Having to evaluate the pdf for the specular part although we sampled the diffuse part is
not optimal. There is another option that also works, by realizing that you actually evaluate a sum
of integrals. In that case, the uniform random number that you initially chose actually corresponds

to selecting which of the fi you want to evaluate. The estimator becomes I ≈
∑

k
fi(k)(xk)

αi(k)pi(k)(xk)
where

i(k) is the index of the k’s randomly sampled pdf pi, and xk the corresponding sample17. Doing so
allows to first determine which term is sampled, and then only evaluate this part. This implies that
if the diffuse component is chosen, there is no other complex function to evaluate compared to our
implementation for diffuse materials18. We end up with a code similar to:

1 Vector Scene : : getColor ( const Ray& ray , i n t ray_depth ) {
2 i f ( ray_depth < 0) re turn Vector ( 0 . , 0 . , 0 . ) ; // te rminates r e cu r s i on at some ←↩

point
3

4 Vector Lo ( 0 . , 0 . , 0 . ) ;
5 i f ( intersect ( ray , P , N , sphere_id ) ) {
6 i f ( spheres [ sphere_id ] . mirror ) {
7 // handle mirror s u r f a c e s . . .
8 } e l s e {
9 // handle Phong mate r i a l s

10 // add d i r e c t l i g h t i n g
11 Vector xprime = random_point_on_light_sphere ( ) ;
12 Vector Nprime = ( xprime=centerLight ) /( xprime=centerLight ) . norm ( ) ;
13 Vector omega_i = ( xprime=P ) /( xprime=P ) . norm ( ) ;

17Similar weighting strategies exist for more general classes of integrand, which is called Multiple Importance
Sampling

18There is a third option, but it works less well in practice – see Variance reduction for Russian-roulette http:

//cg.iit.bme.hu/~szirmay/c29.pdf for details.

http://cg.iit.bme.hu/~szirmay/c29.pdf
http://cg.iit.bme.hu/~szirmay/c29.pdf
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14 double visibility = . . . ; // computes the v i s i b i l i t y term by launching a ray ←↩
o f d i r e c t i o n omega i

15 double pdf = dot ( Nprime , (x=centerLight ) /(x=centerLight ) . norm ( ) ) /( M_PI*R*R ) ;
16 Vector brdf_direct = PhongBRDF ( . . . ) ; // the e n t i r e Blinn=Phong model
17 Lo = light_intensity /(4* M_PI*M_PI*R*R ) * brdf_direct * visibility * std : : max (←↩

dot (N , omega_i ) , 0 . ) *std : : max ( dot ( Nprime , =omega_i ) , 0 . ) / ( ( xprime=P ) .←↩
squared_norm ( ) * pdf ) ;

18

19

20 // add i n d i r e c t l i g h t i n g
21 double diffuse_probability = rho_d /( rho_d+rho_s ) ; // we should use some co l o r←↩

average o f rho d and rho s
22 i f ( uniform ( engine ) < diffuse_probability ) { // we sample the d i f f u s e lobe
23 Ray randomRay = . . . ; // randomly sample ray us ing random cos
24 Lo += albedo/diffuse_probability * getColor ( randomRay , ray_depth=1) ;
25 } e l s e {
26 Ray randomRay = . . . ; // randomly sample ray us ing random pow and mir ro r ing ←↩

o f ray . d i r e c t i o n
27 i f ( dot ( randomRay . direction , N ) < 0) re turn Vector ( 0 . , 0 . , 0 . ) ; // make sure←↩

we sampled the upper hemisphere
28 Vector brdf_indirect = rho_s * ( alpha+8)/(8* M_PI ) * PhongSpecularLobe ( . . . ) ; ←↩

// j u s t the spe cu l a r part o f the Blinn=Phong model
29 double pdf_pow = . . . ; // the pdf a s s o c i a t ed with our func t i on random pow ←↩

with the r e f l e c t i o n
30 Lo += brdf_indirect* std : : max ( dot (N , randomRay . direction ) , 0 . ) /((1=←↩

diffuse_probability ) *pdf_pow ) * getColor ( randomRay , ray_depth=1) ;
31 }
32 }
33 }
34 re turn Lo ;
35 }

Regarding the choice of ρs, it is usually taken as white for dielectrics (e.g., plastics), but can be
colored for metals. Results can be seen in Fig. 2.38.

Camera and object motion

We can move an object by a transformation T by instead transforming the rays via the inverse T−1 of T .
Specifically, considering a 4x4 affine transform T , you need to transform the ray origin (Ox, Oy, Oz, 1.0)
and direction (ux, uy, uz, 0.0) by T−1. The point of intersection found should then be transformed by

T and its normal should be transformed by the inverse transpose matrix
(
T−1

)T
= T−T . Doing so has

several advantages over directly transforming the vertices of each object upon loading them. First,
a BVH can be appropriate for a mesh but not for a rotated version of it. But second, and more
importantly, this allows for instantiating objects by merely storing several transforms of the same
geometry. And finally, it allows for animating objects by merely playing with the transformations,
rather than building a BVH at each frame of the animation.

Moving the camera is more straightforward: just transform the origin and direction of the ray
when initially generating rays.

Recall that the inverse of a rotation is its transpose, the inverse of a diagonal scaling matrix is a
diagonal matrix with the inverse of the scaling factors, and the inverse of a translation is a translation in
the opposite direction. Our affine transforms usually are compositions of these elementary transforms.
So, if a matrix encodes the transformation y = sRx+t with s a scaling factor, R a rotation matrix and
t a translation, then x = RT (y− t)/s. As such, when there is no scaling factor and when dealing with
vectors such as the normal vector, the inverse transposed transformation is the original transformation.
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Figure 2.38: Cat model with a Blinn-Phong BRDF with varying α and ρs (here, ρs is not colored).
α controls the roughness of the material (i.e., the size of highlights) while ρs controls the intensity
of highlights. Note that since ρd is guided by a texture between 0 and 1 and ρs is a constant, this
particular rendering may not preserve energy. The rendering takes 1min20 for 1000spp – the code is
about 740 lines long.

" Beware: you may have used the coordinates of the light source in your code, outside of the
ray-object intersection test (e.g., during the shading computation). Do not forget to also transform
these coordinates if you want to move the light source !

Normal Mapping

A common way to fake small details without increasing the geometric complexity of the mesh is to use
normal maps – a second way to tweak the shading normal, the fake normal used during the shading
computation in place of the geometric normal. A normal map is simply a texture that stores the
shading normal in some local frame. The two coordinates UV within the normal maps are mapped
to tangent and bi-tangent vectors (i.e., two vectors orthogonal to the geometric normal that form
an orthogonal basis, as we did when we first implemented indirect lighting), and the RGB value
within each pixel encodes the shading normal vector in this local frame. As such, most normal maps
are blueish: the blue component represents the normal component of the shading normal, and the
shading normal is most often close to the geometric normal that would be encoded as pure blue:
(0, 0, 1). However, to handle negative values, RGB pixel values are transformed using a RGB ∗ 2− 1
transformation, so in fact, a shading normal that would be identical to the geometric normal would
be encoded (0.5, 0.5, 1) (or (127, 127, 255) in unsigned char).

To obtain the tangent and bitangent vectors, we will not proceed as before. In fact, our tangent
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Figure 2.39: Another model (see http://www.cadnav.com/3d-models/model-45798.html) with
Blinn-Phong BRDFs. The BRDF parameters can be found in the supplemental materials of “Ex-
perimental Analysis of BRDF Models” (https://people.csail.mit.edu/wojciech/BRDFAnalysis/
BRDFFits.pdf), a document that contains fits of several analytical BRDF models on 100 measured
materials. Here, they correspond to metallic-gold, alum-bronze, and green-metallic-paint. Note that
this 3d mesh has both few very large triangles and many small triangles. This results in a highly
unbalanced BVH, and the rendering time suffers: about 25min for 1000 spp and 5 bounces, for (only)
143k triangles – something that could be fixed with the Surface Area Heuristic for better balancing.
The mesh has first been scaled by a factor 0.1, then translated by Vector(0, 21, 45) ; the focus
distance is 44 instead of 55.

Figure 2.40: I rotated the cat around the vertical axis by 45 degrees using matrix transforms (along
with a hardcoded translation), and rotated the camera by -10 degrees around the x axis.

vectors did not matter before since our reflectance model was isotropic. Conventionally, these vectors
T and B (for Tangent and Bi-tangent) are aligned with the UV parameterization: a vector V (P ) in
3D space at point P , can be expressed as a linear combination of T (P ) and B(P ) at P : V (P ) =
Vu(P )T (P ) + Vv(P )B(P ).

As such, in a triangle DEF with UV coordinates Du and Dv (similarly for E and F ), and space
coordinates Dx, Dy, Dz (similarly for E and F ), we have

E −D = (Eu −Du)T + (Ev −Dv)B

F −D = (Fu −Du)T + (Fv −Dv)B

In matrix form, this reads:Tx Bx

Ty By

Tz Bz

(
Eu −Du Ev −Dv

Fu −Du Fv −Dv

)
=

Ex −Dx Fx −Dx

Ey −Dy Fy −Dy

Ez −Dz Fz −Dz



http://www.cadnav.com/3d-models/model-45798.html
https://people.csail.mit.edu/wojciech/BRDFAnalysis/BRDFFits.pdf
https://people.csail.mit.edu/wojciech/BRDFAnalysis/BRDFFits.pdf
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It becomes easy to invert the system, as:Tx Bx

Ty By

Tz Bz

 =

Ex −Dx Fx −Dx

Ey −Dy Fy −Dy

Ez −Dz Fz −Dz

(
Eu −Du Ev −Dv

Fu −Du Fv −Dv

)−1

where the inverse of a 2x2 matrix is easily computed using A−1 = 1
det(A)Cof(A)T with Cof the

cofactor matrix:

(
Eu −Du Ev −Dv

Fu −Du Fv −Dv

)−1

=
1

(Eu −Du)(Fv −Dv)− (Fu −Du)(Ev −Dv)

(
Fv −Dv −(Ev −Dv)

−(Fu −Du) Eu −Du

)

Written differently, we have:

T =
1

det
((E −D)(Fv −Dv)− (F −D)(Fu −Du)) (2.16)

B =
1

det
(−(E −D)(Ev −Dv) + (F −D)(Eu −Du)) (2.17)

det = (Eu −Du)(Fv −Dv)− (Fu −Du)(Ev −Dv) (2.18)

Now, we can easily compute normalized T and B at each vertex of each triangle of the mesh19,
and interpolate these vectors at the desired intersection point P using barycentric coordinates. The
resulting shading normal becomes N̂ = r(P )T (P ) + g(P )B(P ) + b(P )N(P ) where r, g, b represent
the red, green and blue components of the normal map (with the affine transform to bring them in
[−1, 1]), and T (P ), B(P ), N(P ) represent the tangent, bitangent and (geometric) normal vectors at
point P 20. See Fig. 2.41 for the result.

Participating Media

Until now we have considered the medium in which light travels is just vacuum. It is however quite
common for the medium to scatter light – for instance, fog, clouds, the atmosphere, dust... These
media are called “participating media”. We will simulate that.

The first things to observe is that light is absorbed and scattered away as it travels through the
medium. Light is absorbed exponentially with the distance traveled, as the Beer-Lambert law. But
there is another phenomenon: light reaching neighboring particles is also in-scattered, adding its
contribution to the light ray being considered. This is illustrated in Fig. 2.42.

These phenomena transform the rendering equation by modifying the intensity of the light reaching
a point P2 if it came from P1 in a direction ωi, while up to now, the light emitted from P1 in direction ωi

was the same as the light received by P2 from that direction. The absorption of light can be described
by a multiplicative factor T (t) that depends on the distance parameter t the light has traveled through
the medium. The in-scattered light will be denoted Lv. We have:

Li(P2, ωi) = T (∥P1 − P2∥)Lo(P1, ωi) + Lv(P1, ωi)

19You may need to fiddle a little bit with the code: you may or may not have per vertex normals, and you may want to
obtain per vertex (and not per vertex per triangle) tangents and bitangents. Here, we will consider that we have obtained
one tangent T per vertex of the mesh by averaging the T computed for all triangles containing this vertex, orthogonalize
it w.r.t. the per-vertex normal by removing its component along the normal, and then compute the bitangent B as the
crossproduct between N and T .

20Similarly to the smooth shading normals we have implemented in Sec. 2.2.1, having a shading normal that is not
exactly the geometric normals can lead to issues in energy conservation.
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Figure 2.41: Horse model without (left) and with (middle) normal mapping ; the normal map of the
body is illustrated on the right. The code is about 850 lines and runs in 1min 12s (left) or 1min 15sec
(right) using 1000spp and 5 bounces. The mesh has only 5333 polygons, but normal mapping makes
it look more complex. The mesh can be downloaded here: http://www.cadnav.com/3d-models/

model-46223.html. It has been rotated like the cat, scaled by 0.15 and translated by (10, -10, 0).
The order of the textures to be loaded (since there is no .mtl file) is: body2 d.tga, body2 d.tga,
gear d.tga, gear d.tga, body2 d.tga

x
P

P1

P2
x

x
ωi

Figure 2.42: The light coming from direction ωi is absorbed by the medium, but the medium also
contributes positively (arrows in blue) to the light reaching point P2.

The factor T (t) is called the transmittance function, and equals:

T (t) = exp

(
−
∫ t

0
σt(P (r))dr

)
where P (r) = P1 + r ωi and σt is the extinction coefficient of the medium, that can be seen as the
gas density of the medium, with σt = σa + σs the sum of the absorption coefficient and the scattering
coefficient. In a few cases of interest, this integral can be computed in closed form. This is the case of
homogenous media, where σt is a constant and thus T (t) = exp(−σtt). This is also the case for expo-
nentially decaying fog (such as in the atmosphere) where σt(y) = α exp(−β(y−y0)) with y the altitude

over some ground level y0, in which case T (t) = exp
(

α
βωi,y

(exp(−β(Py − y0))− exp(−β(P1,y − y0)))
)

with ωi,y the y component of the ωi direction, and similarly for Py and P2,y. Here P1 is the ray origin
while P2 is the first ray-scene intersection along the ray direction ωi. An illustration of the effect of

http://www.cadnav.com/3d-models/model-46223.html
http://www.cadnav.com/3d-models/model-46223.html
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absorption can be seen in Fig. 2.43.

Figure 2.43: The absorption term T , using a uniform extinction coefficient (left, σt = 0.03) and
exponentially decreasing model (right, σt = exp(−0.3(y + 10))).

Regarding Lv the in-scattered radiance, it corresponds to all light reaching points along the ray
that scatter light in the direction ωi. It can also simply be expressed as:

Lv(P1, ωi) =

∫ t

0
σs(P (r))T (r)

∫
S2
f(ωi, v)Li(P (r), v)dvdr

Here f is called the phase function and acts similarly to a BRDF. This function tells how much
a light is reflected off a particle (e.g., of dust) or a molecule (e.g., of gas), similarly to the way a
BRDF describes how much light is reflected off a surface. For simplicity, we will implement a uniform
phase function (i.e., f = 1./(4π)) though you can google Mie scattering formula for large particles,
and Rayleight scattering for particles smaller than the light wavelength (giving its color to the sky).

At first sight, it seems that adding this integration in our path-tracer would be extremely costly.
In fact, recall that what we are doing is Monte-Carlo that essentially does not care about the dimen-
sionality of the integrand ! We are here merely adding a couple of dimensions to an integral equation
that already had many. What we need is to merely be able to evaluate the integrand only with random
parameters for r and v, and the way we average over all light path will take care of evaluating the
integral. Our code should just look like:

1 Vector Scene : : getColor ( const Ray& ray , i n t ray_depth ) {
2 i f ( ray_depth < 0) re turn Vector ( 0 . , 0 . , 0 . ) ; // te rminates r e cu r s i on at some ←↩

point
3

4 Vector Lo ( 0 . , 0 . , 0 . ) ;
5 i f ( intersect ( ray , P , N , sphere_id ) ) {
6 i f ( spheres [ sphere_id ] . mirror ) {
7 // handle mirror s u r f a c e s . . .
8 } e l s e {
9 // handle Phong mate r i a l s

10 }
11 }
12 // return Lo ; // prev ious code without p a r t i c i p a t i n g media
13

14 double T = . . . . ; // t ransmit tance func t i on ( use c l o s ed form expr e s s i on )
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15 Vector Lv = sigma_s_r*T_r*phase_func*getColor ( random_ray , ray_depth=1) ; // ←↩
eva luate the integrand with a random ” r ” and random ”v”

16 double pdf = . . . ; // pdf f o r the cho i c e o f ” r ” and ”v”
17 re turn T*Lo + Lv/pdf ; // re turn the rad iance modi f i ed by the p a r t i c i p a t i n g medium
18

19 }

The problem is that the above code contains 2 calls to getColor, one (hidden) to compute the
indirect lighting contribution for Phong materials, and another (shown) for the participating medium
computation. This will makes the number of rays in the scene explode. While one option is to use
a smaller ray depth for the participating medium, a simpler solution lies within Single Scattering.
In the (direct) single scattering approximation, only the direct component is sampled instead of the
entire sphere for the in-scattered contribution (while the light source will contribute a lot to the in-
scattered radiance, the indirect lighting from objects and from nearby particles is often a much smaller
contribution). We will thus not call getColor but send rays toward the light source for which the
intensity is either that of the light source, or zero if it is occluded.

Regarding the random distance r, we could use a uniform random number in (0, t) (with t the
distance between the origin of the ray and the nearest intersection). But the exponentially decaying
nature of the absorption makes it less relevant to sample a point that is very far away (since the light
that will reach P2 will be highly absorbed). We could instead use an importance sampling strategy
that maximizes the contribution of light sources21. Instead, we will adopt a slightly simpler strategy:
using an exponential distribution. To sample r with an exponential distribution of parameter λ, we
can use r = − log(u)/λ with u a uniform random number in (0, 1)22 and the corresponding pdf is
p(x) = λ exp(−λx).

Regarding the random choice of v, we will sample a point on the light source, use the change
of variable formula (which includes the visibility term, squared distance..), and throw a ray in this
direction v. We will use the same pdf as we computed earlier for sampling spherical area light sources.
The resulting images can be seen in Fig. 2.44.

" You may see very few bright pixels that do not seem to make sense. These are called fireflies
and correspond to events of very low probability that would require many many more rays to be
compensated.... You may want to discard paths where the pdf is smaller than an epsilon. Beware
however that it biases the rendering, but again, variance vs. bias is a tradeoff.

To conclude this course on path-tracing, I will just show a nicer scene. Because let’s face it: the
colors I previously used are just ugly. See Fig. 2.45;

21See for instance Importance Sampling of Area Lights in Participating Media http://library.imageworks.com/pdfs/

imageworks-library-importance-sampling-of-area-lights-in-participating-media.pdf
22This can be easily demonstrated using the inverse cumulative distribution function.

http://library.imageworks.com/pdfs/imageworks-library-importance-sampling-of-area-lights-in-participating-media.pdf
http://library.imageworks.com/pdfs/imageworks-library-importance-sampling-of-area-lights-in-participating-media.pdf
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Figure 2.44: Adding the in-scattered radiance to the models presented in Fig. 2.43, with uniform (left,
σs = 0.004) and exponential (right, σs = 0.5 exp(−0.3(y + 10))) fog. I used λ = 0.3t. The code is 900
lines and renders in 3min 40sec.

2.2.2 Photon Mapping

A completely different approach relies in launching photons from all light sources, making them interact
with the scene and storing photons on the 3d geometry at each bounce: this produces a photon map
that contains millions of photons desposited in the scene (Fig. 2.46). This photon map is stored within
an acceleration structure tailored for spatial search (while we could use A BVH as well, kd-trees that
produce a space partitionning are often preferred in photon mapping). The scene is finally raytraced
from the camera (without making the ray bounce), and at each ray-scene intersection, nearby photons
are collected using the acceleration structure, and density estimation is performed to estimate how
much energy is reflected towards the camera. Density estimation can be performed by looking for
a fixed number of neighbors and looking how far we need to look for these photons, or it can be
performed by counting how many photons fall within a fixed search radius. This raytracing step is
the final gathering.

Similarly to bidirectional path-tracing, launching photons from light sources allows to better cap-
ture phenomena like caustics, that are otherwise difficult to capture with (unidirectional) path-tracing.

2.2.3 Precomputed Radiance Transfer

Let’s write the rendering equation without emissivity:

Lo(ωo) =

∫
Ω
f(ωi, ωo)Li(ωi)⟨ωi, N⟩dωi

We can easily decompose the different quantities on orthogonal basis functions defined on the
(hemi-)sphere: {Fk}k. Let’s denote the decomposition using hat symbols, and include the cosine term
in the BRDF:

f(ωi, ωo)⟨ωi, N⟩ =
∑
k

f̂k
ωo
Fk(ωi) (2.19)

Li(ωi) =
∑
k

L̂i
kFk(ωi) (2.20)
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Figure 2.45: A nicer scene that includes an exponential fog, better colors for the walls and the ground,
and the Davy Jones model that can be found at http://www.cadnav.com/3d-models/model-45279.
html. Since there is no .mtl file, the textures (by number) should be loaded in that order: 2, 3, 11, 5,
1, 0, 9, 8, 6, 10, 7, 4. These textures include alpha maps (used in this rendering) that tell whether an
intersection should be considered as opaque or transparent (it should be tested inside the ray-triangle
intersection test), as well as specular maps (not used in this rendering) that give the ρs coefficient par
pixel. Rendering time: 4 min. for 1000 spp.

With this decomposition, one can rewrite the above rendering equation:

Lo(ωo) =

∫
Ω

∑
k

f̂k
ωo
Fk(ωi)

∑
l

L̂i
lFl(ωi)dωi

=
∑
k

∑
l

f̂k
ωo
L̂i

l
∫
Ω
Fk(ωi)Fl(ωi)dωi

If the basis functions are orthogonal with respect to the inner product ⟨Fk,Fl⟩ =
∫
ΩFk(ωi)Fl(ωi)dωi,

this means that
Lo(ωo) =

∑
k

∑
l

f̂k
ωo
L̂i

l

In other words, one can easily compute the integral by just performing a scalar product between
vectors of coefficients. It can become easy to use this technique for rendering, by precomputing
tabulated values for the decomposition of a BRDF onto some basis functions and the decomposition
of some incident lighting (e.g., computed using photon mapping, or modeled using an environment
map, see Fig. 2.47 and 2.49), and performing the dot product in realtime.

Spherical Harmonics. Spherical Harmonics (SH) are commonly used orthogonal basis functions
on the sphere (Fig. 2.48). They are analogous to the Fourier transform on the plane (eigenfunctions

http://www.cadnav.com/3d-models/model-45279.html
http://www.cadnav.com/3d-models/model-45279.html
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Figure 2.46: Interior scene: (a) Traditional ray tracing. (b) Photon map. (c) Precomputed radiance
estimates at 1/4 of the photon positions. (d) Complete image with direct illumination, specular
reflection, and soft indirect illumination. Fig. 5.2 of the SIGGRAPH 2002 course “A Practical Guide
to Global Illumination using Photon Mapping”.

Figure 2.47: An environment map (or envmap) is simply a panoramic image representing the incident
radiance at a point. It is often used for outdoor scenes since it well approximates distant illumination,
and can be captured by mobile phone apps that stitch photographs into a panoramic image, or by
taking photo(s) of a chrome ball (left). Here, the same environment map is shown with 3 different
parameterizations: Latitude-Longitude, light probe, and cube map.

of the Laplacian operator are sine and cosines on the plane, and are spherical harmonics on the sphere
; if you are not sure about what is a Fourier transform, see Sec.??). They hence represent a frequency
decomposition of the signal. Similarly to the Fourier transform, they posess a discrete version, that can
be efficiently evaluated using Fast Fourier Transforms. Additionally, they posess rotation formulas:
one can obtain the SH decomposition of a rotated version of the signal using a simple (block diagonal)
matrix-vector multiplication of the SH coefficients of the original signal. This property can be useful
for frame changes and interpolation. The m = 0 subset of SH are called Zonal Harmonics.

Finally, from the rendering equation expressed in term of dot product between SH coefficients,
it becomes clear that a low frequency illumination over a high frequency (e.g., specular) surface will
produce the same result than a high-frequency illumination over a low-frequency (e.g., diffuse) material
– see Fig. 2.49. This is one reason why photographers use light diffusers: they will make skin more
matte, and remove shiny reflections.

Spherical Wavelets. Spherical Harmonics have the same limitations that Fourier basis functions:
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Figure 2.48: Spherical Harmonics up to degree 5 (Source Dr Franz Zotter, Wikimedia Commons).

Figure 2.49: First image: input environment map, as a light probe. Other images: Progressively
increasing the number of terms in the spherical harmonics decomposition increases accuracy. In that
order: 3, 5, 6, 7, 30, 55, 80 spherical harmonic bands (N bands correspond to N2 coefficients).

they are non-local, and tend to induce ringing artifacts when clamped abruptely. Compressing highly
specular BRDFs with SH is thus not very efficient. In this context, wavelets that were introduced for
image processing have been extended to work on the sphere. A simple Haar wavelet decomposition
on the sphere can be obtained via successibe triangulations of the sphere, filtering and differences.
A detailed hands on introduction to spherical wavelets in matlab can be found in Gabriel Peyré’s
Numerical Tours: https://www.numerical-tours.com/matlab/meshwav_4_haar_sphere/.

2.2.4 Radiosity

In the special case of diffuse surfaces, with isotropic omnidirectional emissivity (Le does not depend on
ωo), and assuming vacuum (then the incident radiance Li is exactly the outgoing radiance Lo coming
from another point, at equilibrium, and is simply our unknown denoted L) the rendering equation can
be further simplified:

https://www.numerical-tours.com/matlab/meshwav_4_haar_sphere/
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Figure 2.50: Progressively increasing the number of spherical harmonic bands to represent a gold
BRDF makes it more shiny. In that order: 1, 2, 3, 4, 6, 12 SH bands (N bands correspond to N2

coefficients).

L(x) = Le(x) +
ρ(x)

π

∫
Ω
L(x, ωi)⟨ωi, N⟩dωi

Notice how the result does not depend on any direction: one can freely navigate in the scene
without needing to recompute anything. We will rewrite the rendering equation so as to integrate
over the scene surface elements rather than directions, as we did in Sec. 2.2.1:

L(x) = Le(x) +
ρ(x)

π

∫
S
L(x, ωi(x

′))G(x, x′)dx′

with G(x, x′) = ⟨ωi(x
′), N⟩ ⟨N

′,−ωi(x
′)⟩Vx(x′)

∥x−x′∥2 the form factor we talked about earlier in Sec. 2.2.1.

The idea is to decompose again the unknown radiance L onto basis functions. Typically, either
constant or piecewise linear functions are used per triangle of the mesh. For instance, using constant
basis functions per triangles, and denoting Bk the basis functions which is 1 over triangle k and 0
elsewhere, we can rewrite the above expression in this basis as:

Lk = Lk
e +

ρk

π

∑
l

LlGk,l

This yields a particularly simple linear system, written in matrix/vector form:

L = Le + diag(
ρ

π
)GL

and by rearranging terms:

L =
(
Id− diag(

ρ

π
)G

)−1
Le = M−1Le
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Solving linear systems in general is out of the scope of this class23. However, a particularly simple
approach is to use Jacobi iterations, that read at iteration n+ 1:

Li,n+1 =
1

Mi,i

Li
e −

∑
j ̸=i

Mi,jL
j,n


where Li,n is the radiosity at triangle i and iteration n, and converges to the true solution Li as

n → ∞. It happens that each additional Jacobi iteration simulates one new light bounce.

The last detail I did not mention is how to compute the matrix G. This matrix (assuming piecewise
constant basis functions) has coefficients Gi,j =

∫
Ti

∫
Tj

G(x, x′)dxdx′ where the integration is over all

pairs of triangles. Since G(x, x′) includes a visibility term, there is no real hope to have a closed form
expression in the general case: this integral is performed by sampling pairs of points, computing the
visibility term by raytracing, and evaluating the integral using Monte Carlo integration. To generate
uniformly random points within a triangle (with pdf p(x)1/area), one can again rely on the Global
Illumination Compendium:

r1, r2 ∼ U(0, 1) (2.21)

α = 1−
√
r1 (2.22)

β = (1− r2)
√
r1 (2.23)

γ = r2
√
r1 (2.24)

(2.25)

with α, β and γ the barycentric coordinates of the sampled point. A radiosity result can be seen in
Fig. 2.51. More recent approaches allow for glossy materials24.

2.3 Discussion

Nowadays, most work on radiosity has been abandonned: this approach is most often costly and
(almost) limited to diffuse scenes, but mostly, highly dependent on the mesh quality. Rendering a
large diffuse flat wall cannot be done with a single quadrilateral (or two triangles) but many triangles
that would ideally align with cast shadows (a few approaches try to progressively refine the mesh
where needed).

Also, offline, costly path-tracing and real-time GPU rasterization tend to get inspired by each
other. A couple of game engines start to integrate path-traced effects on the GPU for rendering
specular or transparent objects, mostly by using very very few samples per pixel combined with clever
filtering tricks (e.g., using deep learning). Conversely, it can be sometimes useful to rasterize the first
bounce of a path-tracer since the first intersection between camera rays and the scene can often be
found directly by rasterizing (if no depth of field effect is desired).

23You can see a couple of slides I wrote at https://projet.liris.cnrs.fr/origami/math/presentations/matrices.
pdf

24Implicit visibility and antiradiance for interactive global illumination, https://hal.inria.fr/inria-00606794/PDF/
ImplicitVisibilityAndAntiradiance.pdf

https://projet.liris.cnrs.fr/origami/math/presentations/matrices.pdf
https://projet.liris.cnrs.fr/origami/math/presentations/matrices.pdf
https://hal.inria.fr/inria-00606794/PDF/ImplicitVisibilityAndAntiradiance.pdf
https://hal.inria.fr/inria-00606794/PDF/ImplicitVisibilityAndAntiradiance.pdf
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Figure 2.51: Radiosity result – my (very naive) implementation has 100 lines for building and solving
the linear system + 450 lines for defining basic classes (Vector, Triangle, Mesh...), reading obj files,
constructing the BVH, intersecting. There are 10 light bounces (i.e., Jacobi iterations), 62 892 triangles
and piecewise constant basis functions. The entire matrix M is densely stored so it is huge in memory
(about 100GB in total for one matrix M per RGB color channel) – much better strategies exist –
and the computing time is a few hours. The mesh is available at https://perso.liris.cnrs.fr/
nbonneel/radiositymesh.obj – triangles with group==3 are emissive.

https://perso.liris.cnrs.fr/nbonneel/radiositymesh.obj
https://perso.liris.cnrs.fr/nbonneel/radiositymesh.obj
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