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Fig. 1. Sliced Optimal Transport Sampling. Global illumination of a scene (top left, San Miguel) requires integrating radiance over a high-dimensional
space of light paths. The projective variant of our sliced optimal transport (SOT) sampling technique, leveraging the particular nature of integral evaluation in
rendering and further combined with a micro-Cranley-Patterson rotation per pixel, outperforms standard Monte Carlo andQuasi-Monte Carlo techniques,
exhibiting less noise and no structured artifact (top right, 32spp) while offering a better spatial distribution of error (bottom right, errors from blue (small)
to red (large)). Moreover, our projective SOT sampling produces better convergence of the mean absolute error for the central 7×7 zone of the highlighted
reference window as a function of the number of samples per pixel (from 4spp to 4096spp, bottom-left graph) in the case of indirect lighting with one bounce.

In this paper, we introduce a numerical technique to generate sample dis-
tributions in arbitrary dimension for improved accuracy of Monte Carlo
integration. We point out that optimal transport offers theoretical bounds
on Monte Carlo integration error, and that the recently-introduced numeri-
cal framework of sliced optimal transport (SOT) allows us to formulate a
novel and efficient approach to generating well-distributed high-dimensional
pointsets. The resulting sliced optimal transport sampling, solely involving
repeated 1D solves, is particularly simple and efficient for the common case
of a uniform density over a d -dimensional ball. We also construct a volume-
preserving map from a d-ball to a d-cube (generalizing the Shirley-Chiu
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mapping to arbitrary dimensions) to offer fast SOT sampling over d-cubes.
We provide ample numerical evidence of the improvement in Monte Carlo
integration accuracy that SOT sampling brings compared to existing QMC
techniques, and derive a projective variant for rendering which rivals, and
at times outperforms, current sampling strategies using low-discrepancy
sequences or optimized samples.
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1 INTRODUCTION
The need to evaluate integrals of high-dimensional signals arises

in a number of applications such as finance or machine learning.
It is particularly crucial in global illumination where the radiance
through a pixel must be integrated across the multidimensional
space of possible light transport paths. Monte Carlo integration,
which approximates an integral through averaging the values of
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its integrand evaluated at n discrete locations within the integra-
tion domain, is often the only practical technique to handle this
challenging numerical task.

While the original Monte Carlo (MC) technique relies on random
sample locations, the resulting approximation error is often greatly
affected by sample clumping: intuitively, the amount of information
gathered by each sample on the integrand should be maximized, so
clumped samples are wasteful. Since the simple choice of regular
grid distributions (possibly jittered to avoid aliasing) is ill-suited
to the case of high dimensions, several efforts to define the notion
of “well-distributed” sampling followed. Guided by a known bound
on integration error depending on a measure of spatial uniformity
of the samples called discrepancy, quasi-Monte Carlo (QMC) meth-
ods proposed the use of specifically-crafted deterministic sample
locations, typically generated via low-discrepancy sequences. This
family of approaches is currently the cornerstone of most rendering
algorithms as it greatly improves the integration accuracy for a fixed
number of samples. More recently, spectral statistics of the spatial
distribution of samples have also been proven key to reducing the
approximation error, suggesting that carefully optimized sampling
locations can further improve upon low-discrepancy sequences.
Since optimizing sample distributions over high dimensional do-
mains is computationally challenging, variational approaches to
sampling (where samples are optimized to minimize a select mea-
sure of uniformity) have only been offered in low dimensions so far.
Yet, none specifically targets the reduction of Monte Carlo integra-
tion error, focusing instead of stippling or halftoning applications.
In this paper, we argue for the design of high-dimensional sam-

pling via optimal transport, and provide an efficient and practical
sample distribution optimization method in arbitrary dimensions
through sliced optimal transport, solely involving repeated 1D solves.
We provide ample numerical evidence of improved accuracy of
Monte Carlo integrations, and derive a projective variant which
rivals, and at times outperforms, current rendering strategies.

1.1 Background
We begin with a brief review of previous works on the generation

of sample distributions (i.e., pointsets) for integration purposes.

Poisson disk sampling. A common approach to generating well-
spread point distributions is through Poisson disk sampling, which
guarantees that two points are separated by at least a given min-
imum distance. While fast to generate using dart throwing tech-
niques [Bridson 2007], Poisson disk samples suffer from an inherent
white noise component [Torquato et al. 2006] that gravely weakens
its relevance to integration purposes in high dimension.

Low-discrepancy distributions. While a multitude of quadrature
methods for numerical integration exist in two or three dimensions,
Monte Carlo (MC) integration has remained themethod of choice for
the evaluation of high-dimensional integrals: its stochastic nature
offers an expected accuracy independent of the dimensionality of
the domain of integration. However, this same randomness in the
locations of samples often leads to large approximation errors, unless
many samples are employed. A better understanding of this issue
can be gained by considering the Koksma-Hlawka inequality, which
states that the accuracy of MC integration over a d-dimensional unit

cube [0, 1]d is bounded by the product of two independent factors:����∫ f (x)dx −
1
n

n∑
i=1

f (xi )

���� ≤ D({x1, ..., xn }).VarHK f , (1)

where D(.) is the so-called discrepancy of a point distribution mea-
suring its spatial uniformity, while VarHK f measures the variation
of the function f in the sense of Hardy and Krause (a multidimen-
sional extension of total variation), see [Hlavka 1961]. Evaluating
this discrepancy is particularly costly as it requires finding the
worst-case density deviation from a uniform pointset over arbitrary
convex regions. As a result, simpler notions of discrepancy (like the
star discrepancy D∗ involving only boxes with a corner at 0, the
extreme discrepancy, or the L2 discrepancy) have been proposed,
still offering valid — yet less tight — error bounds. Finally, note
that Eq. (1), and thus the notion of discrepancy, is only useful in
bounding the error for functions of finite Hardy-Krause variation; in
particular, MC integration of discontinuous multivariate functions
may result in large errors, while typical functions may have actual
errors far lower than the provided upper bound. When no a-priori
knowledge is available on the function f , the integration error be-
ing bounded by discrepancy implies that using sample distributions
with low discrepancy is a reliable way to bound the expected MC
error. Fortunately, there exists by now a series of sequences (de-
terministic enumeration of samples) which offer low discrepancy
by construction, the most popular ones being Sobol, Halton, Faure,
van der Corput, and Niederreiter sequences (see recent surveys
in [Lemieux 2009; Dick and Pillichshammer 2010; Keller 2013]). The
term quasi-Monte Carlo (QMC) refers to methods based on these
low-discrepancy sequences for MC integration. As evidenced by
their wide use in modern rendering engines such as PBRT [Pharr
et al. 2016] or Mitsuba [Jakob 2013], QMC approaches are considered
state-of-the art for error minimization in radiance estimation.

Variational blue noise distributions. Another notion of equidistri-
bution of point samples was introduced by Robert Ulichney [Ulich-
ney 1987] in terms of spectral content: a pointset is said to exhibit
“blue noise” characteristics if its isotropic power spectrum has no
low-frequency components, has a peak at a characteristic frequency
(representing the inverse of the mean distance between points), and
is flat (white noise) at high frequencies. Recent work theoretically
confirmed that having no low frequency content in the spectrum of
a sample distributions ensures better Monte Carlo integration [Du-
rand 2011; Subr and Kautz 2013; Pilleboue et al. 2015; Öztireli 2016;
Singh and Jarosz 2017; Singh et al. 2019], explaining a posteriori
why a few popular sampling schemes such as Poisson-disk sampling
exhibit an asymptotic behavior no better than using random points.
While blue noise distributions in graphics were leveraged early on to
remove the harmful aliasing artifacts of regular sampling [Dippé and
Wold 1985; Cook 1986; Mitchell 1987, 1991], they regained consider-
able attention within the computer graphics community recently:
their spatial distribution in 2D visually offers a good balance be-
tween ordered and disordered distributions [Georgiev and Fajardo
2016; Heitz and Belcour 2019; Heitz et al. 2019], making them partic-
ularly well suited for stippling and halftoning. Consequently, many
variational approaches for generating blue noise pointsets through
optimization of sample positions have been proposed over the last
decade [Ostromoukhov et al. 2004; Kopf et al. 2006; Lagae and Dutré
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2006; Wei 2010; Fattal 2011; Zhou et al. 2012; Heck et al. 2013]. Most
germane to our work is the fact that a few variational blue noise
sampling techniques define their measure of uniformity through
optimal transport [Balzer et al. 2009; De Goes et al. 2012; Qin et al.
2017]; regrettably, their scalability in 2D and 3D does not extend to
arbitrary dimensions, and no discussions on approximation errors
when used for Monte Carlo integration were provided.

Projective sampling. Recent works [Kulla et al. 2018; Christensen
et al. 2018a; Jarosz et al. 2019] proposed to improve uniformity of
sampling distributions in low and high dimensions by starting from
good 2D configurations that they then lift to higher dimensions.
In sharp contrast, [Reinert et al. 2016] introduced an approach to
optimize spatial positions of multidimensional pointsets while pre-
serving spectral properties of lower-dimensional projections. Our
approach will be able to accommodate this projective sampling
idea (without suffering from the combinatorial explosion in high
dimensions), which we will then leverage for rendering purposes.

1.2 Contributions
Designing pointsets in arbitrary dimensions to ensure good accu-

racy in MC integration remains a difficult goal. The sparsity of theo-
retical foundations is a first issue: one can only leverage knowledge
on either the role of discrepancy or partial spectral properties, which
limits the number of approaches that one can design to construct
good sample distributions. A second issue is the need for sampling
in arbitrary dimensions. While low-discrepancy sequences are nat-
urally able to handle a high dimensional domain, their discrepancy
in this case might not be smaller than for a random set for practical
values of the number of samples n [Lemieux 2009]; moreover, their
periodic structure is known to generate visual artifacts in rendering
applications [Pharr et al. 2016].
In this paper, we point out that optimal transport offers theoret-

ical grounds to bound MC integration that are similar, yet differ-
ent from the discrepancy-based bound from Eq. (1), and that the
recently-introduced numerical framework of sliced optimal trans-
port [Pitié et al. 2005; Rabin et al. 2011; Bonneel et al. 2015; Bonneel
and Coeurjolly 2019] allows us to formulate a novel and efficient
approach to generating well-distributed high-dimensional pointsets.
While the resulting sliced optimal transport (SOT) sampling can
handle arbitrary densities over arbitrary domains through the sliced
Fourier theorem, the archetypical case of a uniform density over a
d-dimensional ball is particularly simple and efficient computation-
ally. We further introduce a bi-Lipschitz volume-preserving map
from the d-ball to the d-cube (generalizing the original Shirley-Chiu
area-preserving disk-to-square mapping [Shirley and Chiu 1997]) to
handle the d-cube case efficiently as well. We then present a wide
array of numerical tests for various dimensions d to demonstrate
the excellent approximation accuracy of our optimized sample dis-
tributions. Finally, we show that our technique can exploit specific
properties of the integrands to further decrease approximation error:
building upon the idea of projective blue noise [Reinert et al. 2016]
for rendering, we can specialize SOT sampling to generate samples
with both near equidistribution in the high-dimensional space and
near equidistribution of their projections onto select linear sub-
spaces. Rendering examples demonstrate clear improvements over
standard QMC methods used in rendering engines, see Fig. 1.

2 RELEVANCE OF OPTIMAL TRANSPORT TO SAMPLING
Optimal transport (OT) is a theoretical framework useful in a

variety of fields, from economics for resource allocation to math-
ematical physics for hydrodynamics. In its most general form, it
defines a formal notion of distance between generalized probability
density functions by evaluating an optimal transport plans between
them [Villani 2009]: intuitively, if each density is viewed as a given
amount of sand piled up in space, this metric is the minimum labor
needed to move one pile into the other. In our sampling context,
though, the simpler, but more specific notion of semi-discrete op-
timal transport is most relevant to our goals: it provides a simple
approximation bound for Monte Carlo integration, which we will
exploit for sampling generation in the remainder of this paper.

2.1 Distance of samples to spatial density
Optimal transport also allows to quantify how well a pointset

matches a given density function: as points in arbitrary dimensions
can be thought of as Dirac masses, OT provides a measure of how
much the points need to spread out (i.e., transport their mass across
space) to match the density function. This particular case is often
referred to semi-discrete optimal transport, and when applied to a
uniform density function, it defines an intuitive notion of “equidis-
tribution” for a pointset, very different from discrepancy.
More precisely, the semi-discrete optimal transport distance be-

tween a spatial density φ within a domain Ω ⊂ Rd and a set of n
sample points X = {xj ∈Ω}j=1..n can be mathematically formulated
as finding a spatial assignment π: Ω→{1,...,n} of every point x of Ω
to a sample xπ (x) that minimizes what is known as thep-Wasserstein
distanceWp (X ,φ), defined as:

Wp (X ,φ) B

(
min
π

∫
Ω
∥x − xπ (x )∥p φ(x)dx

)1/p
, (2)

under the constraint that each sample is considered to have the
same mass, i.e.,

∫
π −1(j) φ(x)dx =

1
n ∀j ∈ {1,...,n}. In the case p = 2,

a constrained optimization of the distanceW2(X ,φ) to compute a
pointset X best matching a spatial density φ is known to be effi-
ciently achieved via power diagrams [Aurenhammer et al. 1998].
This is precisely the approach adopted by a number of recent works
in graphics to compute “blue noise” pointsets sampling a given
continuous density [Mérigot 2011; De Goes et al. 2012; Lévy 2015;
Qin et al. 2017; Nader and Guennebaud 2018] through gradient
or Newton descent; yet none of these techniques are practical in
higher dimensions. Optimal transport was also used in [Rowland
et al. 2018] to couple subsets of multidimensional pointsets.

2.2 Error bounds for Monte Carlo integration
The Rubinstein-Kantorovich theorem [Kantorovich 1948; Kan-

torovich and Rubinstein 1958] states through a duality argument
that the Wasserstein distanceW1(µ,ν ) for two densities µ and ν can
in fact be seen as an upper bound for finite Lipschitz functions of
the difference of their integrals over these two measures:

W1(µ,ν ) = sup
f :Rd→R

1
Lip(f )

∫
Rd

f (x) d(µ − ν ), (3)

where Lip(f ) represents the Lipschitz constant of function f . While
this equivalent definition of the optimal transport distance is rarely
used in graphics (with the notable exception of [Mullen et al. 2011]),
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it is especially interesting in our semi-discrete setting: it allows us
to derive a tight bound of the MC integration error for Lipschitz
continuous functions. In particular, using a uniform density dx/|Ω |

over the d-dimensional domain Ω, we deduce from Eq. (3) that for a
sample set X =

{
x1, ..., xn

}
, one has for any Lipschitz function f :����∫ f (x)dx −

1
n

n∑
i=1

f (x i )

���� ≤ Lip(f ) .W1(X , 1Ω), (4)

where 1Ω denotes the constant density 1/|Ω |. This derived bound has
a very similar form as the Koksma-Hlawka inequality from Eq. (1):
it also offers an error bound written as the product of two separate
factors, one only dependent on the function being integrated, and
one purely based on a measure of spatial uniformity — which is no
longer the discrepancy, but an optimal transport analog. Note that
while the Koksma-Hlawka bound was assuming that the function
had a finite Hardy-Krause variation, this one now assumes that the
function is Lipschitz continuous instead. Thus, the OT-based bound
is technically more restrictive in its assumption of the integrand.
However, Lipschitz continuity is a reasonable assumption in many
graphics applications; moreover, both functional spaces fail to in-
clude basic discontinuous functions, and practical functions may
lead to actual integration errors below both theoretical bounds.

2.3 Computational optimal transport in high dimension
Equipped with the error bound from Eq. (4), one may be tempted

to directly optimize a sample distribution by minimizing its Wasser-
stein distance to the uniform density. However, and despite a num-
ber of numerical optimal transport tools recently introduced in
graphics [De Goes et al. 2012; Solomon et al. 2014, 2015; Nader and
Guennebaud 2018], dealing with transport optimization in high
dimensions is not computationally tractable directly. Fortunately,
a recent variant of optimal transport offers a practical solution. A
modified notion of optimal transort, now called sliced optimal trans-
port (SOT [Pitié et al. 2005; Rabin et al. 2011; Bonneel et al. 2015;
Bonneel and Coeurjolly 2019]), proposes to express the transport
distance between two densities via an integral of 1D optimal trans-
port distances between all 1D projections of these densities. Given
that semi-discrete optimal transport in 1D amounts to a simple sort
(for all p-Wasserstein distancesWp , p ≥ 1), the SOT distanceWSOT is
amenable to tractable computational evaluations and optimizations
even in dimensions well above three through repeated 1D optimiza-
tions. However, to our knowledge, neither semi-discrete transport
nor the optimal location problem have been previously investigated
in the sliced optimal transport context. Moreover, the sliced optimal
transport distance being bounded by the d-th power of the optimal
transport distanceW1 [Bonnotte 2013], the bound from Eq. (4) with
sliced optimal transport becomes:����∫ f (x)dx −

1
n

n∑
i=1

f (x i )

���� ≤ Cd Lip(f )WSOT(X , 1Ω)
1

d+1 , (5)

whereCd is a constant that depends on the dimension d . Using SOT
instead of OT is thus akin to using a simplifications of the notion
of discrepancy in QMC approaches: it only relaxes the error bound
on integration errors. We are now ready to introduce the notion of
sliced optimal transport for sampling by adapting previous work to
our context of semi-discrete transport discussed above, and derive a
novel algorithm for the generation of equidistributed sample points.

3 SLICED OPTIMAL TRANSPORT SAMPLING
This section details the main theoretical and practical aspects of

our algorithm.We first review the general approach, before showing
how to efficiently adapt it for the uniform sampling of a d-ball and
a d-cube. We also extend our approach to provide projective SOT
sampling for rendering purposes.

3.1 Sliced optimal transport formulation
The core idea of our approach is to cast the problem of sampling

a distribution in term of the minimization of a sliced optimal trans-
port distance [Rabin et al. 2011; Bonneel et al. 2015], for which
repeated 1D transports can be used to spread samples efficiently in
arbitrary dimensions. To this effect, we define a SOT distance (or
cost)WSOT(X ,φ) between a density φ and a pointset X as:

WSOT(X ,φ) =

∫
Sd−1

(
min
π

∫
R
∥x − x

π (x )
θ ∥ Rθφ(x) dx

)
dθ , (6)

where dx denotes the 1D measure, θ denotes a direction (unit vec-
tor in Sd−1 ⊂ Rd ), x jθ B xj ·θ is the 1D abscissa representing the
orthogonal projection of sample point xj from X onto the 1D linear
subspace along θ , and Rθφ is the scalar function defined as

Rθφ(s) B

∫
θ ·x=s

φ(x) dx . (7)

One recognizes Rθφ(s) as the Radon transform [Radon 1986] of
the density φ, integrating the density φ in the affine subspace or-
thogonal to a “slice” direction θ ∈ Sd−1 at abscissa s . Our sliced
optimal transport distance can be understood as an integral over all
directions θ of the 1D (classical) optimal transport costW1 between
the projection of the pointset X along direction θ and the orthog-
onal projection of the spatial density φ along this same direction:
essentially, we express the fit between a pointset and a density by
the integral of the fit of their 1D projections, see Fig. 2. Instead,
previous work consideredW2 for sliced distances [Rabin et al. 2011;
Bonneel et al. 2015]; but theW1 optimization, which provides a
tighter bound, results in the same 1D assignments, although the
optimal assignment is no longer unique.
As a consequence, this formulation has a number of advantages

that we can leverage for computational purposes. First, reducing
the distance one (or a few) direction(s) at a time is very efficient as
we shall see next, in sharp contrast to the general optimal transport
problem. Second, once a distribution is optimized with respect to a
direction θ , it cannot have sample alignments along hyper-planes
orthogonal to θ : this naturally prevents aliasing artifacts and offers
the opportunity to prevent alignments in specific subspaces as well,
as we will explore in Sec. 3.6. Third, our iterative optimization is
agnostic to the domain dimensionality.

3.2 General approach to SOT sampling
Our sliced OT approach immediately suggests an algorithmic

approach to optimizing a pointset: one can project both the target
density and the pointset onto a series of one-dimensional lines, and
successively optimize the location of all points along each of these
directions to improve the one-dimensional fit between projected
sample density and projected target density.
Discrete set of directions. In order to discretize Eq. (6), we first

randomly sample K directions {θi }i=1..K (typically we use K =
64). Generating each direction with a uniform probability over the
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xj

⟨xj , θ⟩

C−1
d (θ , σ (j)−0.5n )

{δδδ j }

θ

Fig. 2. Optimal transport via one-dimensional slices. Our approach
adapts a distribution of n samples (green dots) to a spatial density function
(here, uniform, in grey) in arbitrary dimension through iterative 1D optimiza-
tion of the sliced optimal transport energy between the projected samples
(green circles) onto an arbitrary direction θ and the density projected or-
thogonally to this direction. The blue curve indicates the Radon transform
of the disk-shaped density,and the red dots indicate the directional update
δδδ j of the samples to optimize their distribution along θ .

hypersphere Sd−1 is trivially achieved by first generating d random
variables following a normal distribution N(0, 1), and normalizing
these variables to obtain the components of a unit vector.
Radon transform. We then compute the Radon transform of φ

along the directions {θi }i . The Radon transform defines a new prob-
ability density function Rθiφ, of which we compute the cumulative
density function Cθi defined as:

Cθi (x) B

∫ x

−∞

Rθiφ(s)ds,

and its inverse C−1
θi
(x) B inf{t ∈R : Cθi (t)>x}.

Slice optimization. Finally, we relocate the sample point xj to a
new location xj+δδδ j , where the total displacement δδδ j is

δδδ j B
1
K

K∑
i=1

di , j θi ,

with di , j being the displacement of xj that minimize the 1D sliced
optimal transport along direction θi . Denoting σ the permutation
of the indices {j}j=1..n such that

(
xσ (j) · θi

)
j , is a sorted sequence

of increasing values, one computes di , j directly via

di , j = C
−1
θi

(
σ (j) − 1

2
n

)
.

Spreading samples according to the Radon transform of the density
along the set of chosen directions then minimizesW1 along these
directions — thus improving the error bound from Eq. (5).

Discussion. The implementation of our approach is thus concep-
tually simple: after initializing the pointset with a scrambled Sobol
sequence [Owen 1998] (which offers, at very low computational
cost, a better initial distribution than a random distribution), the it-
erative process consideringK slices at a time to displace the samples
is repeated until convergence or when a fixed maximum number
of steps is reached. Note that the cost of the algorithm involves K

sorts of n projected points per iteration (i.e., O(Kn logn)), as well
as the cost for computing (or precomputing) the Radon transform
in a number of directions. We show next that this last task can be
achieved in constant time for a simple, yet very common case.

3.3 Uniform SOT sampling over d-balls
A key component of our formulation is the (partial) Radon trans-

form Rθφ of the density φ in a direction θ , and its inverse cumulative
distribution function. Numerical tools based on the Fast Fourier
Transform and the so-called Fourier slice theorem allow for the effi-
cient numerical evaluation the Radon transform [Toft and Sørensen
1996] on discretized domain. However, such numerical approxima-
tions can become impractical when dealing with very high dimen-
sions unless a closed-form expression of the Fourier transform is
known. Fortunately, the particular, yet common case of a uniform
density on a unit d-ball is particularly simple to evaluate without
advanced numerical methods. Indeed, the radial symmetry of the
d-ball implies that the Radon transform does not depend on the
chosen direction θ . We will hence denote it as Rφ(s)B Rθφ(s) ∀θ .
Additionally, whenφ is a uniform density, we can explicitly compute
the resulting Radon transform in closed form: its cumulative density
function becomes trivial to evaluate for odd-dimensional spaces,
and requires only little additional effort for even-dimensional spaces.
We prove in App. A that the expression for the function Rφ and its
cumulative density function Cd in dimension d is:

Rφ(s) =
πd/2

Γ
( d
2 + 1

) √1 − s2, and (8)

Cd (x) =


(d−1)/2∑
k=0

(−1)k
(
d−1
2
k

)
x 2k+1

2k+1 if d is odd,

√
π Γ

(
1+d
2
)

2 Γ
(
1+ d2

) + 2F1
( 1
2 ,

1−d
2 ,

3
2 , x

2) x if d is even,
(9)

where Γ(.) is the Gamma function, and 2F1(.) is the so-called hyper-
geometric function, involving polynomials and trigonometric func-
tions; see Fig. 3. We further invert the cumulative density function
numerically using a gradient descent approach to offer an efficient
way to evaluate the inverse cumulative density functionC−1

d (x): this
inverse function is tabulated once and for all as a precomputation.

-1.0 -0.5 0.5 1.0

1

2

3

4

5 3D Ball
5D Ball
7D Ball
9D Ball
11D Ball

-1.0 -0.5 0.5 1.0

1

2

3

4

5 2D Ball
4D Ball
6D Ball
8D Ball
10D Ball

Fig. 3. Radon for d-balls. The Radon transform of a d-ball is direction-
independent, so we display the radial component of the Radon transform
of a ball as the dimension d increases. While the transform is polynomial
for odd dimensions (left), it involves the hypergeometric 2F1 function for
even dimensions (right).
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y
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Fig. 4. Ball-to-cube map in arbitrary dimension.We illustrate the ball-
to-cube mapping process. First, the ball is divided into two parts: the inside
and outside of a double cone. These parts are then transformed to a cylinder
via the transformation Φtmp. They are then mapped to the cube, resulting
in a generalized Shirley-Chiu transform [1997] from ball to cube.

3.4 Uniform SOT sampling over d-cubes
While spherical domains are often desirable, cubical domains are

also frequently required in a variety of sampling applications. The
naive solution in this case, based on rejecting samples generated
in a circumscribing ball if they do not lie inside the unit cube, is
not algorithmically tractable as the volume ratio of the ball to the
cube grows exponentially with the ambient dimension. Computing
the (partial) Radon transform for a uniform density within a d-cube
suffers from the same exponential dependence with the dimension,
rendering this second option impractical as well.

Mapping approach. Instead, we propose a strategy that maps the
d-dimensional ball Bd to the d-dimensional cube [0, 1]d while pre-
serving the uniformity of our distributions. Such a mapping should
have a constant Jacobian determinant (thus preserving volume) so
as not to affect the local density of points, and should be of minimal
distortion. Note that this is precisely what Shirley and Chiu [1997]
proposed in 2D (i.e., an area-preserving map from the disk to the
square), but now extended to arbitrary dimension. We leverage the
work of Griepentrog et al. [2008] to offer such a d-dimensional
generalization, which will allow us to directly transform our effi-
cient generation of samples on the uniform d-ball onto the uniform
d-cube (Fig. 6 shows pointsets from the disk mapped to the square).

A d-ball to d-cube map. Griepentrog et al. [2008] proposed a
volume-preserving invertible mapping Φ from the d-ball to the d-
cube using the (d −1)-cylinder as an intermediate domain. Since
this work does not seem known in our community, we provide a
brief overview of the general construction here, and write down
the expressions of the various maps involved in App. B for the
reader’s convenience. First, the ball is decomposed into three parts:
Bd =B▽ ∪B∆ ∪B◃▹ , where B▽ and B∆ form a double cone aligned
with the last axis of Rd , while B◃▹ is the leftover part as depicted in
Fig. 4. More specifically, the three subdomains are defined as:

B▽ B
{
(x,y), x ∈ Rd−1,y ∈ R+ |y ≥ γ ∥x∥

}
∩ Bd

B∆ B
{
(x,−y), x ∈ Rd−1,y ∈ R+ |y ≥ γ ∥x∥

}
∩ Bd

B◃▹ B Bd \ {B▽ ∪ B∆} ,

where γ , defining the aperture angle π
2 − arctan(γ ) of the cone, is

the unique solution in R+ of:

(d − 1)
∫ arctan(1/γ )

0
sin(α)d−2 dα =

∫ arctan(γ )

0
cos(α)d−2 dα . (10)

Table 1. Ball-to-cube map parameters. Values of γ , ϱ , and τ to compute
the invertible map of Griepentrog et al. [2008] for dimensions d ≤ 10.

dim. γ ϱ τ
3 2/

√
5 2/3

√
2/
√
3

4 0.821353089207943 0.5890486225480863 0.8382695966098716
5 0.7666031370294717 0.5333333333333332 0.8545740127924683
6 0.723424902134195 0.4908738521234051 0.8673491949880967
7 0.6881297272460576 0.4571428571428572 0.8776916965664375
8 0.6585046305043636 0.4295146206079796 0.8862745508336505
9 0.6331279880529004 0.4063492063492063 0.8935367660649970
10 0.611037644218746 0.3865631585471816 0.89977849007590771

The ball-to-cylinder mapping Φtmp has a closed form expression on
both B▽ (and thus, on B∆ by symmetry) and B◃▹ (see Appendix).
This temporary map allows us to recursively build the ball-to-cube
mapping by always separating the last coordinate of a point in
dimension d via the relationship:

Ball2Cubed
(
x
y

)
=

(
Ball2Cubed-1(x′)

y′

)
where

(
x′

y′

)
=Φtmp

(
x
y

)
, (11)

where we use a row vector notation for the arguments and a bold
font for multivariable arguments. Only the value of γ for d = 3
was analytically computed in the original paper by Griepentrog et
al. [2008], but computing the solution of Eq. (10) (and the corre-
sponding ϱ and τ values, see Appendix) in higher dimensions is a
simple matter of precomputation. We provide these values up to
dimension 10 in Tab. 1 for completeness.

3.5 Multiple class SOT Sampling
The simplicity and generality of our SOT sampling allows a num-

ber of useful variants. We can, for instance, achieve multiclass sam-
pling by simply altering our optimization procedure. From an initial
distribution of samples already labeled, we can make sure these
labels are perfectly interwoven during each 1D sort by reordering
the assignment of the samples based on their associated label: this
alteration will induce a better distribution of the respective classes
with respect to each other in higher dimension. However, it may in-
duce a decrease in global uniformity of the whole sample set due to
the enforcement of this interweaving constraint. We thus alternate
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Fig. 5. Multiclass SOT sampling. SOT sampling with two classes (left) and
three classes (right) both exhibit excellent spectral behavior for individual
classes (Ci ), as well as for the entire set; note that the radial mean power
spectra were computed using only the samples within the square inscribed
in the disk to allow for a proper discrete Fourier transform.
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Fig. 6. From random to SOT samples for uniform density. Starting from a random distribution of 1024 samples over a disk (top left) or a square (middle
left), iterating batches of 64-slice optimizations (left to right, up 16384 iterations) improves the uniformity of the samples, with no further visual improvement
after 300 iterations. If we map our disk distribution (top) onto the square (bottom) via our area-preserving deformation, we observe a very good approximation
of the square-based distribution which no longer requires the evaluation of a Radon transform over the square.

this modified 1D treatment with the vanilla one: alternating multi-
class 1D steps with regular ones until convergence or a maximum
iteration count results in both high class distribution quality and
global uniformity as seen in Figure 5.

3.6 Projective SOT sampling for rendering
Another variant of our SOT sampling targets rendering specifi-

cally. As we discussed early on, Monte Carlo integration is particu-
larly relevant to light transport simulation: rendering requires the
estimation of an integral over all light paths within a scene con-
necting the camera sensor to light sources [Veach 1997]. However,
the integrand in this case has a particular structure that our SOT
sampling approach can further exploit. To simulate light bouncing
k times over surface elements of a 3D scene, radiance must be in-
tegrated over a 2k-dimensional space. Furthermore, the radiance
reaching the camera can be integrated over its aperture to simulate
depth-of-field effects, over its sensor to avoid anti-aliasing, and over
time to handle motion blur. While this integration requires well
distributed samples over the entire high-dimensional space, it can
be beneficial to distribute samples uniformly within each of these k
subspaces as well (i.e., for each possible path length): both Reinert
et al. [2016] and Perrier et al. [2018] have proposed techniques to
enforce a blue noise or Poisson disk property not only in a high
dimensional path space d , but also in each 2-dimensional pair or
combinations of dimensions.

Our method easily supports a similar functionality by performing
optimization steps using projection directions lying within these
subspaces. For a given choice of path-space dimension 2k (typically,
we pick 6D or 8D), we initialize n samples in this high dimension
through random sampling of a uniform density. Then, for each step
of our minimization, we pick a set of directions from the full space
as well as from the target projections in orthogonal two-dimensional
subspaces: we randomly pick K directions uniformly distributed

in the full high dimensional space, and K/2 directions uniformly
distributed within each of the k projective subspaces. Since a good
projective uniformity on thed-ball does not equate a good projective
uniformity after mapping onto the d-cube, we add a modification of
our computation of displacements: for each projective direction, we
project the current samples onto its associated 2D subspace, map
them to the corresponding 2-ball, and perform the SOT estimate of a
displacement vector per sample there; we then map all the displace-
ments back onto the d-cube using the inverse map. When all these
displacements for all subspaces and the entire space are computed,
we average them to deduce a total displacement per sample as in
the vanilla SOT optimization procedure. This averaging can even
be made dependent on the subspaces: one can for instance weight
the displacements proportionally to the dimensionality (or respec-
tively, the inverse thereof) of their associated subspace to induce a
stronger preference for equidistribution in high (respectively, low)
dimensional spaces. This modified optimization procedure, iterated
until convergence or a maximum iteration count, allows for a bal-
ance between full-space equidistributions and equidistributions in
the chosen subspaces and their combinations. Other strategies with
a different balance between various properties could be derived
as well, but we found this simple variant (that we call “projective”
sliced optimal sampling) quite efficient as is. We will demonstrate
its efficacy in Sec. 4.4 for rendering purposes.

4 RESULTS
We now present a series of numerical tests to ascertain the proper-

ties of our new SOT sampling method. While performing an exhaus-
tive analysis of Monte Carlo integration with SOT samples in high
dimensions is unsurmountably difficult, we study its behavior from
a variety of perspectives, including visual inspection and spectral
analysis in low dimensions, numerical accuracy and convergence for
both low and high dimensions, as well as computational efficiency.
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4.1 Low-dimensional SOT sampling
We first provide visual and numerical evaluations of our results

in low dimensions to better understand their basic properties.
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BNOT
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Fig. 7. 2D Fourier spectrum.Whether a SOT sampling with 4K samples
is generated on a disk, directly on a square, or via mapping from a SOT
sampling of the disk to the square, its power spectrum and radial mean
power spectrum clearly exhibit all the hallmarks of blue noise distributions —
with additional artifacts due to boundary alignment and/or mapping effects
on a square domain. Note that the (radial mean) power spectrum for the
disk case was computed using only samples within the square inscribed in
the disk to allow for a proper discrete Fourier transform.

SOT iterations in 2D. Fig. 6 shows how a 2D pointset, initialized
through random sampling of a uniform distribution, evolves as
SOT iterations of 64-slice displacements are performed, for both
a disk (top) and a square (middle) domain. The disk domain uses
our uniform sampling method over balls as described in Sec. 3.3,
while the square domain uses a more general – thus more costly –
numerical evaluation of a (partial) Radon transform over the domain.
After around 256 iterations, the pointsets have visually converged.

Mapping effects. Still in Fig. 6 (bottom), we also display a SOT
sampling in a square domain computed from the disk sampling
result via our disk-to-square map as explained in Sec. 3.4. While
the resulting pointset based on the map is not as well distributed
as the properly evaluated sliced optimal transport sampling, the
former does not result in obvious directional alignments, and scales
far better to high dimensions in terms of computational complexity.
Spectral properties in 2D. As a means to evaluate SOT sampling

compared to previous blue noise sampling methods, we also provide
in Fig. 7 the power spectrum, computed via averaging over angles,
of a sliced optimal transport pointset in a 2D square generated
via mapping. The resulting spectrum is, as expected, close to the
characteristic blue noise profile. In particular, we observe the telltale
behavior near the DC component where the spectrum remains flat
for a large frequency band, and a white noise at high frequencies.
Compared to other blue noise methods such as [De Goes et al. 2012],
we also exhibit a peak at the characteristic frequency, but observe a
minor anisotropy of the spectrum due to the distortion induced by
the disk-to-square mapping.
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Fig. 8. 4D radial spectra. (top) Radial power spectra comparison in dimen-
sion 4 of 4K samples for various samplers; note that while dart throwing
exhibits a stronger peak than SOT, its behavior at low frequencies is also
significantly worse than all others (bottom) With a random initialization,
the radial power spectra of SOT sampling goes from a white-noise shape to
a more blue-noise one during optimization.

Spectral properties in 4D. As a first foray into higher dimensions,
we show in Fig. 8 how our SOT optimization in 4D improves the
spectrum of a sample distribution (computed via a 4D fast Fourier
transform of the unit 4-cube) as K-slice batches are performed, still
using a random initialization of the samples for illustration purposes.
The profile goes from flat at very early stages, to blue noise. Finally,
we demonstrate that other usual sampling techniques (dart throwing,
Sobol, or jittered grids) do not exhibit a similar profile in 4D (top).

4.2 Integration accuracy for SOT sampling
The main goal of our work is to provide an efficient way to create

high-dimensional pointsets for which constant-weight quadrature
evaluations offer improved accuracy compared to existing methods.
We thus performed a number of numerical evaluations, using simple
Gaussian functions and other analytical integrands, to evaluate how
our approach fares compared to a regular Monte Carlo method or
to quasi-Monte Carlo methods.

Smooth functions in low & high dimensions. In Fig. 10 (left), we test
the accuracy of Monte Carlo integration for a multivariate Gaussian
distribution of the form д(x)=exp

(
− 1
2 (x − µ)T Σ−1(x − µ)

)
, where

we constrain the mean vector to satisfy 0< µi <1 and the covariance
matrix so that each eigenvalue is at least 0.06 and at most 0.15.
For each curve, we average the integration errors over the same
1024 randomly-selected Gaussians to offer a less noisy visualiza-
tion, but depict the minimum and maximum errors from these 1024
integrations to offer an evaluation of the error variance. A typical
multivariate Gaussian distribution used in our integration tests is
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Fig. 9. Fourier spectra on projections. In dimension 6 with 8K samples, we compare our projective SOT sampling (bottom) to other techniques such as
Projective Blue Noise [Reinert et al. 2016] to enforce good projective distributions in dimensions {1, 2}, {3, 4} and {5, 6}. The power spectra and radial
mean for these 2D projections demonstrate the quality of our projective SOT variant, and highlights that Owen-scramble Sobol sampling exhibits significant
artifacts in these subspaces, while our vanilla SOT shows an expected white noise distribution.

shown in the inset. Monte Carlo integration
using our SOT sampling performs far better
than integration using Sobol or Sobol with
Owen scrambling for 100 samples and above
in this 2D test. We even consistently outper-
form the recent PMJ02 method of Christensen
et al. [2018b]. This superior behavior holds
true in 4D and 6D with a reduced margin of improvement. The same
test in dimension 20 shows that we still outperform Sobol with Owen
scrambling. All Sobol initialization vectors were taken from [Joe and
Kuo 2008], in the same order. For completeness, we also included in
all our graphs an example of optimized low-discrepancy pointsets:
we used rank-1 lattices [Keller 2004] generated via the implementa-
tion of [L’Ecuyer and Munger 2016]. As a side note, rank-1 samples
may happen to have toroidal symmetry over the unit domain due
to their lattice nature, and this special configuration is known to
lead to exponential convergence for the integration of smooth and
periodic functions; our choice of functions purposely prevents this
case, which would have otherwise been not representative of the
typical use of numerical integration in higher dimensions.

Discontinuous functions in low & high dimensions. In order to ex-
plore the numerical behavior of our sampling strategy more broadly,
we also tested the accuracy of MC integration for discontinuous
functions. As a representative example, we chose a simple Heaviside
(fn (p)=1 if p · n>0, 0 otherwise) function to show our robustness
to discontinuities. The same error plot as above (with this time, 1024
different Heaviside with each a randomly-selected normal n) do not
exhibit large differences between our SOT sampling and traditional
QMC methods: as Fig. 10(right) indicates, this class of functions
is not really well handled by either, consistent with the expected
absence of theoretical error bounds in this case. Yet, SOT sampling
performs as well as, or at times slightly better than, Sobol with
Owen scrambling — even in dimension 20.

4.3 Computational complexity of SOT sampling
Our algorithm for SOT sampling generation requires the prior

selection of two parameters: the number of slices K and the total
number of batches. In order to evaluate a good strategy to automat-
ically set these parameters, we plotted the SOT energy of a pointset
as a function of batch and slice numbers. For all dimensions up to 20,
it indicates that there is virtually no numerical advantage in using
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Fig. 10. Monte Carlo integration on canonical functions.We consider various integration tests in dimensions 2, 4, 6, and 20 to evaluate MC integration
error as a function of the number of samples n. The Gaussian integrands (left) column depicts the error averaged over 1024 integrations of random multivariate
Gaussian distributions in the [0, 1)d domain; each solid curve indicates this error for a different sampler, and the associated shaded region indicates the
max and min error over the 1024 integral evaluations. The Heaviside integrands (right) column depicts the error averaged over 1024 integrations of random
Heaviside functions going through the center of the [0, 1)d domain; the same visualization of min, mean, and max errors is used. Note that Orthogonal Arrays
refers to the CMJND sampler of [Jarosz et al. 2019], while PMJ02 refers to the method of [Christensen et al. 2018b].
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(II) Cornell scene, two bounces
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(III) Cloud rendering, two bounces
Fig. 11. Reference scenes used in our rendering experiments. For the Cornell test, we use either (I) indirect lighting with only one bounce (thus requiring
6D samples), or (II) two bounces (needing 8D samples); highlighted windows (marked as a, b, and c in each case) are 7×7-pixel regions used for convergence
plots in Figs. 12 and 15 respectively. For our cloud scene with a participating medium (III), we render two light bounces in PBRT, using 8D samples (2D for rays
initialization in screen-space, and 3D per bounce to sample depth and direction of each light–medium interaction); highlighted windows (marked as a, and b)
are 16×16-pixels areas used for convergence plots in Fig. 17.
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Fig. 12. Convergence plots for 6D. For the three pixel windows depicted in Fig. 11(a), we plot the graphs of absolute errors as a function of sample count.

more than 64 slices (see inset for
the case of dimension 6; all other
dimensions are similar up to scale).
We therefore use K =64 in all our
results. The number of batches
needed to reach a near optimal
SOT energy is also quite indepen-
dent of the dimension; we thus
used 4096 batches for all dimensions up to 20. Higher dimensions
may require, instead, a stopping criterion based on the magnitude of
energy decrease for improved accuracy. With these two parameters
fixed, we provide an evaluation of the typical performance of our
algorithm in Fig. 18: we depict our running times as a function of the
number n of samples and as a function of the spatial dimension d .
We observe clearly an O(d) complexity, with odd dimensions being
slightly faster to handle than even dimensions because of hypergeo-
metric function evaluations. We also see a quasilinear dependence to
the number of samples as expected from our repeated 1D sorts. The
time required to compute the sphere-to-cube mapping is negligible
compared to the optimization steps, as it only involves a maximum
of 0.01% of the total computational time. Finally, a typical running
time for 16K samples in 8D using 4096 optimization batches of 64
slices each is below 10 seconds on an AMD Ryzen Threadripper
2990WX with 32 cores at 3 GHz.

4.4 Rendering with SOT sampling
Integrations performed in the context of rendering are very spe-

cific, so we proposed a variant of our sliced optimal transport ap-
proach by designing samples equidistributed in high dimensions
as well as in select subspaces. A first way to evaluate the quality
of the pointsets we generate for rendering purposes is to examine
2D projections of the samples in order to evaluate their equidis-
tribution in the most relevant subspaces. Fig. 9 shows the spectra
and radial spectra of each 2D projection for a 6D projective SOT
sampling, generated with a weighting of respectively 2 and 1 for the
full dimensional 6D space and each of the 2D projective subspaces.
Compared to [Reinert et al. 2016], we observe a much improved
projective behavior, with a clear absence of frequencies near DC.
Note that a similar illustration in 4D is given in our supplemental
material (as well as additional visualizations of 2D projections of
6D samples), and the improvements are equally clear.

We also tested the efficacy of this projective variant on three
rendering scenes: the purposely simple Cornell test (Figs. 11 (I)
and (II) show the two viewpoints we will use, in which small 7×7-
pixel windows are marked as test regions of increasing complexity
for error convergence plots), the more involved San Miguel scene
(Fig. 1), and a volumetric rendering of a cloud (Fig. 11(III)). For
the Cornell scene, Fig. 13 shows the spatial distribution (per-pixel
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Fig. 13. Rendering results in dimension 6. We render the Cornell scene with one bounce of indirect lighthing using various samplers and for several
sample counts. To highlight the efficiency of Monte Carlo integrations, we display the error maps (per-pixel absolute difference with reference image in Fig. 11)
using pseudocolors (from blue to red, with a linear map from 0 to 0.002/spp). While SOT sampling does not help much for rendering, its projective variant is
better and/or more consistent than other typical approaches, particularly so for low counts of samples per pixel.
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Fig. 14. Rendering results in dimension 8. We render the Cornell scene for two bounces of indirect lighthing using various samplers and for several
sample counts. The same visualization as in Fig.13 is used, but now compared to the reference image in Fig. 11(b) and with a linear map from 0 to 0.001/spp.
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Fig. 15. Convergence plots for 8D. For the three pixel windows depicted in Fig. 11(right), we plot the graphs of absolute errors as a function of sample count.
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Fig. 16. Volumetric rendering results in 8 dimensions.We render a cloud-like participating medium, simulating two medium interactions (bounces) using
various samplers and for several sample counts. Samples are 8-dimensional: 2D screen space and two bounces using 2+1D for each bounce direction and depth.
As in Fig.14, error maps (per-pixel absolute difference with reference image in Fig. 11) use pseudocolors from blue to red, with a linear map from 0 to 0.002/spp.

100 101 102 103

Samples per pixel

10 3

10 2

M
ea

n 
Ab

so
lu

te
 E

rro
r

White noise
Dart throwing
Sobol
Rank1
Proj. SOT CR

Full image

100 101 102 103

Samples per pixel

10 3

10 2

10 1

M
ea

n 
Ab

so
lu

te
 E

rro
r

White noise
Dart throwing
Sobol
Rank1
Proj. SOT CR

(a)

100 101 102 103

Samples per pixel

10 3

10 2

M
ea

n 
Ab

so
lu

te
 E

rro
r

White noise
Dart throwing
Sobol
Rank1
Proj. SOT CR

(b)
Fig. 17. Convergence plots for 8D volumetric. From left to right: convergence of the full image, and of the 16 × 16-pixels areas highlighted in Fig. 11. The
main curves represent the mean absolute error of 8 independent realizations (when applicable) while the encasing auras represent the bounds of the mean
absolute error over the 8 independent realizations.
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Fig. 18. Performance. To assess the efficiency of our algorithm, we plot
its computational cost as a function of the number of samples (left, for
dimensions 2 and 8), and as a function of the dimension (for 16K samples).
We used 4096 batches of 64 slices for both graphs.

absolute difference with the reference image) of various samplers
when indirect lighting with only one bounce (i,e., using samples
in 6D generated as described above) is simulated, whereas Fig. 14
simulates two bounces (i.e., using samples in 8D, still with the same
weighting strategy, but there is now one additional 2D subspace).
For our volumetric rendering shown in Fig. 16, we also use 8D
samples to handle two bounces: our projective SOT pointsets are
optimized to sample both the whole 8D space as well as the 3D
spaces of bounces, the 2D spaces of directions, and the 1D spaces of
depths; the subspaces (1, 2, 3, 4, 5, 6, 7, 8), (1, 2), (3, 4, 5), (6, 7, 8), (3),
(4, 5), (6), and (7, 8) are weighted respectively 4, 1, 2, 2, 1, 1, 1, and
1 during our projective optimization procedure. The participating
medium we use has an isotropic phase function and its density
field derives from a closed-form representation [Bálint and Mantiuk
2019] encased inside a spherical domain and modified to allow
gaps of zero density. Such a representation allows for a closed-form
expression of the transmittance over the interval of a ray–medium
intersection, which in turn lets us apply closed-form tracking [Novák
et al. 2018] to sample the depth of the interaction over the same finite
interval. We provide results for sample counts varying from 4 to
4096. We tested our projective SOT sampling in two different ways.
We first tried a straightforward strategy where each pixel randomly
selects a realization of projective SOT sampling; we denote this
approach as “Proj. SOT”. We also tested adding a micro-Cranley-
Patterson rotation per pixel, i.e., toroidal translations using random
vectors of length (2 ·spp)−1 (larger translations may alter the quality
of non-toroidal samplers like ours [Singh et al. 2019]), to enrich
the projective SOT realizations; this second aproach is denoted
“Proj. SOT CR” in our results. The results show reduced errors for
our sampling, at times significantly, compared to the traditional
use of Sobol with Owen scrambling. We also rival, and sometimes
outperforms, rank-1 sampling — although rarely on large sample
counts. Note that our tests used one global Sobol pointset for the
entire image (leveraging its stratification property), while the other
samplers were used locally (per pixel), with toroidal translations for
rank-1 and Proj. SOT CR.
Finally, we also provide convergence plots on three different

7×7 test windows, from both the one- and two-bounce cases of
the Cornell scene in Figs. 12 and 15 respectively, and on two dif-
ferent 16×16 test windows from the volumetric scene in Fig. 17.

These tests demonstrate that our projective SOT approach rivals
optimized pointsets such as rank-1 in quality and can lead to no-
ticeable gains compared to low-discrepancy sequences for less that
1000 samples, with the difference basically vanishing for larger sizes.
While complex regions do not benefit much from our SOT sampling,
less complex regions are often estimated with a lower error. Note
that our supplementary material provides further visual results for
completeness. We also observe uneven errors for Sobol sampling in
all rendering cases: these errors are highly structured with blocky
appearances that can be linked to uneven stratification in several
dimension pairs for some sample numbers, see Fig. 12 in our Supple-
mental material. Rank-1 sampling is also uneven in quality, although
less so: Fig. 13 shows that 4096spp behaves noticeably worse than
2048spp, while Fig. 14 does not show such an artifact — and in
fact, outperforms projective SOT at high spp for this particular case.
Our supplementary material provides visual evidence of spurious
alignments in several dimension pairs as well in Figs. 19, 22 and 23.

5 CONCLUSIONS
Our proposed sliced optimal transport strategy for point sam-

pling generation efficiently constructs, in low or high dimension,
pointsets with good uniformity properties with respect to either a
constant or variable density probability function. When using these
samples for Monte Carlo integration, we observe reduced integra-
tion error compared to quasi-Monte Carlo approaches. Surprisingly,
our approach is an order of magnitude better on smooth integrands
thanmost low-discrepancy sequence strategies, known as the fastest
variance reduction approaches for QMC.

Limitations. As we designed our sampling approach to reduce
integration error, the support of the density distribution as well as
the boundary of the domain of integration Ω affects our sample dis-
tributions: in a square for instance (Fig. 6, second row), we see that
a layer of points has formed along the border. While this benefits
the integration accuracy by improving the sampling of the “discon-
tinuity” that the border creates, it may be detrimental if our samples
are used for other purposes such as stippling. At this moment, we
do not have a clear understanding of how these boundary samples
affect practical applications and spectral properties.

Future work. This work raises a number of interesting questions,
both on the practical front and from a theoretical standpoint. Con-
vergence of our SOT optimization may become slow in very high
dimensions (see Supplemental Material for statistics); if scalabil-
ity is important, it might be interesting to explore how a faster
convergence of our minimization could be obtained through more
advanced numerical techniques than simple iterated averages of
sliced transport optimizations. The design of other ball-to-cube
maps minimizing different forms of distortion would also be of
value. Additionally, while our projective sampling approach was
already proven valuable for rendering applications, we believe that
a more systematic evaluation of weighting strategies in our projec-
tive variant (maybe guided by the weights used in [L’Ecuyer and
Munger 2016] or [Reinert et al. 2016]) could result in appreciable
gains. Moreover, there may be a number of other contexts for which
an extension of our projective variant could be valuable. In par-
ticular, more complex constructions of generalized projective SOT
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sampling which could offer Pareto optimality of the equidistribution
in each subspace are an intriguing possibility to maximize sampling
quality. Finally, understanding from a theoretical perspective why
transport-based sampling generation is, in practice, often better
than other sampling approaches may lead to further improvements.
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Table 2. For a point (x, y) ∈ Rd with x ∈Rd−1 and y ∈R, this table summarizes the functions used in Eqs. (12) and (13) to define the mapping Φtmp(x, y) of a
point (x, y) of the unit d -ball to a point in the d -cylinder.
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A RADON FOR UNIFORM DENSITY OVER d-BALL
In this short appendix, we provide the general form of the Radon

transform of a uniform density u on a unit d−dimensional sphere. If
Vd (r ) denotes the volume of a ball of radius r in dimension d , then:

Vd (r )B
πd/2

Γ(d2 + 1)
rd =Kd r

d and u(x)B

{
1/Vd (1) if |x| ≤ 1
0 otherwise.

By symmetry, the Radon transform Rθ of u does not depend on
the chosen direction θ , so the Radon transform Ru B Rθu can be
computed as the volume of the subspace orthogonal to any slice
direction. Without loss of generality, we take θ B (1, 0, 0, . . . , 0).
Denoting x= {xi }i=1..d the coordinates of a d-dimensional point
x, the unit ball is defined implicitly through {x|

∑
i x

2
i ≤ 1}. The

subspace of constant x1 orthogonal to the chosen direction θ can
thus be described through the inequality

∑
i=2..d x

2
i ≤ 1 − x21 . This

subspace characterizes a ball of dimension (d−1) and radius
√
1 − x 2

1 .
We then deduce that the Radon transform of the uniform density
over the d−dimensional ball is Ru(s)=Vd−1(

√
1 − s2), as in Eq. (8).

Our optimal transport-based solution further requires the inverse
cumulative density function Cd of Ru in dimension d . We first ex-
press the cumulative density function Cd (x):

Cd (x) =
1

Vd (1)

∫ x

−∞

Ru(t) dt

=
Kd−1
Kd

∫ x

−1

(
1 − t2

) d−1
2 dt .

For odd dimensions, the above expression yields the integral of a
polynomial of degree d that can be computed in closed form, while
the case of even dimensions involves the use of the hypergeometric
function 2F1 — see Eq. (9) for the exact expressions.

B BALL-TO-CUBE MAP
As explained in Griepentrog et al. [2008], for a d-dimensional

point (x,y) ∈ B▽ (where x ∈ Rd−1 and y ∈ R), we can map it to a
part of the d-dimensional cylinder using

Φ▽tmp(x,y) =
(
x1

д▽(x,y)
τ (γ )

, . . . , xd−1
д▽(x,y)
τ (γ )

,h▽(x,y)
)
. (12)

For a point (x,y) ∈ B∆, the same expression is valid for Φ∆
tmp with

just a simple sign change for y, by symmetry of these two domains.
Finally, for (x,y) ∈ B◃▹ , we can use:

Φ◃▹
tmp(x,y) =

(
x1д

◃▹(x,y), ..., xd−1д
◃▹(x,y),

h◃▹(x,y)
ϱ(γ )

)
, (13)

where the functions involved are defined in Tab. 2. In these def-
initions, the functions д and h are the effective maps, and ϱ and
τ are just used to scale both parts of the mapping to make them
coincide at their common border. The intuition behind h▽ and д◃▹ is
to displace points from the surface of a d−dimensional ball onto the
matching surface of the d-dimensional cylinder. д▽ and h◃▹ are then
defined in order to attain a constant determinant of the Jacobian.
As a result, these three maps creates a volume-preserving and low
distortion map Φtmp from the entire sphere to the entire cube in
dimension d summarized as follows: denoting S(x,y) B (x,−y),

Φtmp(x,y) =


Φ▽tmp(x,y) if (x,y) ∈ B▽

S(Φ▽tmp(x,y)) if S(x,y) ∈ B▽

Φ◃▹
γd (x,y) if (x,y) ∈ B◃▹

S(Φ◃▹
γd (x,y)) if S(x,y) ∈ B◃▹ .

Because the d-cylinder is the tensor product of a (d−1)-ball and
of one (e.g., the last) direction, we can compute the complete map
Ball2Cube recursively through Eq. (11). Note that the original paper
by Griepentrog and coauthors provide the (simple) expression for
the inverse map from the d-cylinder to the d-sphere.
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