
SPOT: Sliced Partial Optimal Transport

NICOLAS BONNEEL, Univ. Lyon, CNRS
DAVID COEURJOLLY, Univ. Lyon, CNRS

(a) Input (b) Target

(c) Full histogram matching (d) Partial histogram matching (e) Point clouds (f) Euclidean ICP (g) Our method

Fig. 1. Our technique allows to partially match point sets within an optimal transport framework. Left. In color matching applications such as that of Pitié et
al. [Pitié et al. 2005], matching all pixels of an input image (a) seen as 3D points in an RGB space to all pixels of a target image (b) can lead to erroneous
transfers (c) due to mismatched content (here, trees of the target are not present in the input, and distort colors in the output). Instead, we match the input
image (a) to a subset of an enlarged target image (b), thus effectively preventing spurious colors (d). Right. Given a source 2-d or 3-d point cloud (in red) and a
target one (in blue) of different sizes (e), we match them with a similarity transform. While classical iterative closest point (ICP) fails (f), our approach, called
fast iterative sliced transport, achieves robust registrations (g). Facade by Phil Whitehouse [CC BY 2.0] via Flickr (http://flic.kr/p/48kgPR) and palace by Neil
Williamson [CC BY-SA 2.0] (http://flic.kr/p/NJ6Vxq).

Optimal transport research has surged in the last decade with wide applica-
tions in computer graphics. In most cases, however, it has focused on the
special case of the so-called “balanced” optimal transport problem, that is, the
problem of optimally matching positive measures of equal total mass. While
this approach is suitable for handling probability distributions as their total
mass is always equal to one, it precludes other applications manipulating
disparate measures. Our paper proposes a fast approach to the optimal trans-
port of constant distributions supported on point sets of different cardinality
via one-dimensional slices. This leads to one-dimensional partial assignment
problems akin to alignment problems encountered in genomics or text com-
parison. Contrary to one-dimensional balanced optimal transport that leads
to a trivial linear-time algorithm, such partial optimal transport, even in 1-d,
has not seen any closed-form solution nor very efficient algorithms to date.
We provide the first efficient 1-d partial optimal transport solver. Along with
a quasilinear time problem decomposition algorithm, it solves 1-d assign-
ment problems consisting of up to millions of Dirac distributions within
fractions of a second in parallel. We handle higher dimensional problems
via a slicing approach, and further extend the popular iterative closest point
algorithm using optimal transport – an algorithm we call Fast Iterative Sliced

Authors’ addresses: Nicolas Bonneel, Univ. Lyon, CNRS, nicolas.bonneel@liris.cnrs.fr;
David Coeurjolly, Univ. Lyon, CNRS, david.coeurjolly@liris.cnrs.fr.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART89 $15.00
https://doi.org/10.1145/3306346.3323021

Transport. We illustrate our method on computer graphics applications such
a color transfer and point cloud registration.

CCS Concepts: • Computing methodologies → Image manipulation;
Point-based models.

Additional Key Words and Phrases: Optimal transport, sequence alignment

ACM Reference Format:
Nicolas Bonneel and David Coeurjolly. 2019. SPOT: Sliced Partial Optimal
Transport. ACM Trans. Graph. 38, 4, Article 89 (July 2019), 13 pages. https:
//doi.org/10.1145/3306346.3323021

1 INTRODUCTION
Optimal transport is a popular mathematical framework for manip-
ulating positive measures, and in particular, in most cases studied
so far, probability measures. It has become widespread in computer
graphics [Bonneel et al. 2011; Nader and Guennebaud 2018; Solomon
et al. 2015] and machine learning [Arjovsky et al. 2017; Deshpande
et al. 2018; Kolouri et al. 2018] for its ability to compare histograms
or to produce compelling interpolations between probability distri-
butions. Within this framework, transporting a histogram f towards
another д is often seen as moving a pile of sand shaped by the graph
of f towards a hole shaped by д at minimal cost. Stopping the
motion of the sand at some intermediate time defines a measure
in-between f and д, a concept called displacement interpolation,
or, when dealing with more than two input measures,Wasserstein
barycenter. This computationally difficult problem has received re-
cent attention, with fast solutions for various specific cases when
the size of the hole matches that of the pile of sand, the so-called

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

http://flic.kr/p/48kgPR
http://flic.kr/p/NJ6Vxq
https://doi.org/10.1145/3306346.3323021
https://doi.org/10.1145/3306346.3323021
https://doi.org/10.1145/3306346.3323021

89:2 • Bonneel et al.

balanced optimal transport problem [Bonneel et al. 2015; Kitagawa
et al. 2016; Nader and Guennebaud 2018; Solomon et al. 2015].
In our paper, we focus on discrete distributions with uniform

weights, that is, measures of the form
∑
xi δxi , i.e., a uniformly

weighted point cloud. In that form, the optimal transport problem
between these two measures is also known as a linear assignment
problem. However, in contrast to most approaches, we do not assume
equal total masses, thus allowing for the hole to be larger than the
mass it receives. This scenario for instance occurs when one tries
to match a 3-d point cloud within a larger point set, or when one
tries to transfer colors between images of different sizes, in which
case the assignment is only partial.
Among existing solutions, for large datasets possibly involving

millions of points scattered in high dimension, the only tractable
(balanced) optimal transport algorithm to date relies on a sliced
approximation [Bonneel et al. 2015; Pitié et al. 2005; Rabin et al.
2011]. Slicing consists in projecting the point cloud onto random one-
dimensional lines, and solving one-dimensional transport problems.
The speed of this approach relies on the triviality of solving balanced
one-dimensional transport problems. But surprisingly, even in 1-d,
the partial optimal transport problem has received little attention,
making this sliced approach unusable for point clouds of different
sizes.

Drawing connections between partial 1-d optimal transport and
sequence alignment problems, we design a first solution of qua-
dratic time complexity and linear space complexity outperforming
state-of-the-art dynamic programming solvers such as those used
in genomics. We further propose a new provably correct decom-
position technique based on the number of non-injective nearest
neighbor matches within quasilinear time complexity. This makes
our algorithm efficient, even for problems involving millions of
point masses, and with each independent sub-problems solvable in
parallel. We integrate this 1-d solver within a sliced optimal trans-
port framework to handle higher dimensional point sets. We further
adapt the popular Iterative Closest Point (ICP) algorithm to replace
nearest neighbor’s matches by our sliced partial transport matches.
We finally demonstrate applications such as proportion aware color
transfer between images, and point set registration. We summarize
our contributions as follows:
• We introduce a fast 1-d exact partial optimal transport al-
gorithm that solves problems involving millions on points
within fractions of a second. Its speed enables its use within a
sliced transport framework to manipulate higher dimensional
distributions.
• We develop a variant of the popular iterative closest point
point set registration algorithm using sliced partial optimal
transport that is more reliable on poorly initialized point
clouds.

2 PRIOR WORK
Optimal transport is a computationally complex problem, often
expressed as a linear program due to Kantorovich (Table 1, (a)),
and we refer the reader to recent books on the subject for details
on this theory [Peyré et al. 2017; Santambrogio 2015; Villani 2003].
The variables being optimized form what is known as a transport

plan to describe the amount of mass from each bin of an input
(possibly high-dimensional) histogram that needs to travel to each
bin of a target histogram. In this definition, it is assumed that both
histograms are normalized. Directly solving this linear program can
be very costly, and has only been typically done for histograms of
up to a few tens of thousands of bins [Bonneel et al. 2011]. Faster
alternate approaches have tried to tackle particular cases, such as
semi-discrete formulations [Gu et al. 2013; Kitagawa et al. 2016; Lévy
2015; Mérigot 2011] for matching weighted point sets to continuous
densities via geometric constructions, or formulations to match 2-d
continuous distributions to uniform continuous distributions [Nader
and Guennebaud 2018]. Other approaches approximate the problem,
such as entropy-regularized optimal transport, which results in
blurred transport plan but is extremely fast to compute, especially
when data lie on a grid [Solomon et al. 2015]. However, when data
do not lie on a grid, this method may require explicitly storing cost
matrices between all pairs of bins thus making it intractable for
more than a few tens of thousands of bins. As a last resort, sliced
optimal transport [Bonneel et al. 2015; Pitié et al. 2005; Rabin et al.
2011] relies on random 1-d projections for which optimal transport
is trivial, but comes at the cost of being optimal only on these
projections and not necessarily on the higher dimensional space.
The bulk of the computations lies within the sorting of projected
points on the line, which comes at an O(n logn) complexity.
When histograms are not normalized, the transport problem

needs to be relaxed. Notably, the “unbalanced” optimal transport of
Benamou et al. [Benamou 2003] replaces hard constraints by soft
constraints in a Monge formulation to accommodate for densities of
unequal masses within a PDE framework. Chizat et al. proposed a
fast numerical solution of the unbalanced problem [2016] in the case
of entropy-regularized optimal transport with soft constraints on
marginals, but suffering from the same space complexity as the bal-
anced problem for scattered data. Figalli introduces partial optimal
transport that keeps all constraints of the linear program hard [Fi-
galli 2010], but replaces equality with inequality constraints (Table 1,
(b)). Our formulation is a special case of this linear program for the
problem of matching point clouds (Table 1, (c)).
Our particular case specializes the above problem by Figalli in

four ways. First, we consider a simpler 1-d problem and only move to
higher dimensions via a slicing scheme. Second, we do not consider
general functions or histograms, but only unweighted sets of Diracs;
in the notations of Table 1, this amounts to f0(xi) = 1 for xi ∈ X and
f1(yj) = 1 for yj ∈ Y where X and Y are two one-dimensional point
sets respectively of sizem andn. Third, we typically consider the cost
of moving a point from one place to another as being a quadratic cost,
that is, c(x,y) = (x − y)2 (note that we could consider any convex
function of the distance without changing the assignment [Villani
2003]). Finally, we require all the mass from the first, smaller, point
cloud to be matched to some parts of the target point cloud – in the
notations of Table 1, η = min(

∑
f0,

∑
f1) =m.

While at the surface this problem seems overly specific, it simply
amounts to matching point clouds of different cardinality, a common
problem in computer graphics as we shall see in Sec. 6. Stated as an
assignment problem, this question has been tackled as the linear
assignment problem when point clouds have the same size [Lu and
Boutilier 2015]. In a form related to the Monge optimal transport

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

SPOT: Sliced Partial Optimal Transport • 89:3

Table 1. We position our formulation (c) with respect to other optimal transport formulations. Formulation (a) assumes histograms are normalized and
formalizes the classical optimal transport problem. Formulation (b) deals with histograms of different masses, only transporting a fraction η ≤ min(

∑
f0,

∑
f1).

Our formulation (c) is a linear assignment problem, and is a special case of (b) when η = min(
∑
f0,

∑
f1) and when dealing with Dirac masses.

(a) Kantorovich discrete OT (b) Partial OT [Figalli 2010] (c) Linear Assignment (ours)

W (f0, f1) = min
P

∑
i , j

c(xi , yj)Pi , j (1)

s.t.Pi , j ≥ 0 , ∀i , j (2)
m∑
j=1

Pi , j = f0(xi) , ∀i (3)

n∑
i=1

Pi , j = f1(x j) , ∀j (4)

Wp (f0, f1) =min
P

∑
i , j

c(xi , yj)Pi , j (5)

s.t. Pi , j ≥ 0 , ∀i , j (6)
n∑
j=1

Pi , j ≤ f0(xi) , ∀i (7)

m∑
i=1

Pi , j ≤ f1(x j) , ∀j (8)

m∑
i=1

n∑
j=1

Pi , j = η (9)

Ws (f0, f1) = min
P

∑
i , j
(xi − yj)2Pi , j

(10)
s.t. Pi , j ≥ 0 , ∀i , j (11)

m∑
j=1

Pi , j = 1 , ∀i (12)

n∑
i=1

Pi , j ≤ 1 , ∀j (13)

formulation, this formulation amounts to finding an injective map
a : {1,m} ↪−→ {1,n} minimizing

min
a injective

∑
(xi − ya(i))

2 .

However, despite the simplicity of the problem formulation, such
assignment problems remain extremely difficult to solve, with even
approximate state-of-the-art solutions taking hours to solve for
large scale instances (millions of points) [Lu and Boutilier 2015] but
using more general cost functions.
When restricting to 1-d domains and the class of cost functions

we target, the problem can be trivially solved ifm = n. In this case, it
can be shown that the trivial solution ends up pairing points in order
from left to right [Rabin et al. 2011]. Still in 1-d, whenm , n, the
problem can be solved by using a dynamic time warping algorithm,
but this procedure is much more costly and, to our knowledge,
has not been investigated for optimal transport. Such an algorithm
makes use of dynamic programming to find an alignment between
the two point sequences. This approach has been used in genomics
to align DNA sequences [Charter et al. 2000], for aligning text
documents to display their “diff” [Gale andChurch 1991], to compute
the Levenshtein distance between two strings [Levenshtein 1966], or
to align audio sequences [Kaprykowsky and Rodet 2006]. A classical
exact algorithm is the Hirschberg’s algorithm [Hirschberg 1975],
that, while only requiring O(m + n) storage (as opposed to O(mn)
for standard dynamic programming), still performs in O(mn) time
complexity and remains too slow in practice for large problems.

In contrast, while remaining in O(mn) in the worst case, we pro-
vide an exact solution of large scale instances of millions of points
in fractions of a second in 1-d, and approximately in seconds or
minutes in n-d.

3 PARTIAL TRANSPORT IN 1-D
Given a set of points X = {xi ∈ R}i=1..m and Y = {yj ∈ R}i=1..n
on the real line,m < n, the goal is to find an injective assignment
a : {1,m} ↪−→ {1,n} minimizing

∑
(xi − ya(i))

2.
The core of our algorithm lies within an efficient 1-d assignment

procedure. It consists of a worst-case quadratic time complexity
matching that performs in near linear time in practice (Sec. 3.1),

and a problem decomposition that performs in quasilinear time
complexity and allows each sub-problem to be solved independently
in parallel (Sec. 3.3). Both rely on the same principles, and start with
a (non injective) nearest neighbor assignment t .

3.1 Quadratic time algorithm
We first compute a nearest neighbor assignment t : {1,m} → {1,m}
between X and Y . This can be performed in linear time by sorting
both sequences and scanning them at the same time from left to
right since t(i + 1) ≥ t(i). The nearest neighbor match already
minimizes

∑
(xi − yt (i))

2 by definition but may not be injective. In
fact, if it is injective, the problem is already solved by taking a = t .
Our algorithm thus consists in resolving issues at or around places
where t(i) = t(j) for i , j. To do so, we scan X from left to right
and consider the sub-problem of matching X ′ = {xi }i=1..m′ with
Y , progressively increasingm′ from 1 tom.

X

Y ys

x1 xr

ya(1)

xm′ xm′+1

yt (m′+1)ya(m′)

ys

case 1

ys

case 2

Fig. 2. X is shown as blue dots, Y as orange dots. The assignment for the
current sub-problem involving {xi }i=1. .m′ and Y is displayed as green
lines. Intervals of bijective assignments are boxed in gray. When treating
xm′+1, its nearest neighbor, shown in magenta, collides with the existing
assignment. Two cases arise: shifting all green arrows by one to the left
(case 1○), or preserving all green arrows (case 2○), whichever costs less. In
this example, case 1○ merges the two intervals of bijective assignments and
s is thus updated.

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

89:4 • Bonneel et al.

Notations. Let us assume that we have solved the optimal as-
signment problem of X ′ towards Y , denoted by a. The assignment
thus associates X ′ to the range of points {yj }j=a(1)...a(m′) ∈ Y (see
Fig. 2). Such a range can be decomposed into intervals of consecu-
tive points of Y which are each assigned to consecutive points of
X ′. We denote by s the rightmost point of {ya(1) . . .ya(m′)} which
is not assigned to any point of X ′. If the range has no such free
spot s (in that case, a is bijective between X ′ and the range), we set
s ← a(1) − 1. We denote by r the index of the point in X ′ such that
a(r) ← s + 11. By construction, a([r ,m′]) is a range of consecutive
integer values [s + 1,a(m′)].
Algorithm 1: Quadratic partial optimal assignment.
input :Points X and Y .
output :Optimal assignment of X to Y .

1 Let t be the nearest neighbor assignment of X to Y ;
2 a(1) ← t(1);
3 form′ from 2 tom do
4 if t(m′ + 1) > a(m′) then
5 a(m′ + 1) ← t(m′ + 1);
6 else
7 Retrieve s and r ;
8 w1←

∑m′
i=r (xi − ya(i)−1)

2 + (xm′+1 − ya(m′))
2;

9 w2←
∑m′
i=r (xi − ya(i))

2 + (xm′+1 − ya(m′)+1)
2;

10 if w1 < w2 then
// case 1

11 a(m′ + 1) ← a(m′) + 1;
12 a([r ,m′]) ← [s,a(m′) − 1];
13 else

// case 2

14 a(m′ + 1) ← a(m′) + 1;

15 return {a(i)}i=1...m .

Update steps. We now consider the point xm′+1. If t(m′ + 1) >
a(m′), we set a(m′+1) ← t(m′+1) – this corresponds to the nearest
neighbor match t(m′) not colliding with any existing assignment.
If t(m′ + 1) ≤ a(m′), we analyze two cases: case 1 offsets the
last subsequence of consecutive values in a to the left to leave
room for a new assignment by setting a([r ,m′]) ← [s,a(m′) −
1] and a(m′ + 1) ← a(m′) + 1. Case 2 directly pushes the new
assignment on the right, that is, directly settinga(m′+1) ← a(m′)+1.
To choose between these two cases, we compare their costs (w1
and w2 in Algorithm 1) and proceed with the case with smaller
cost. Algorithm 1 describes this process. Its correctness is given in
appendix. As we increasem′ tom during the update step, we end
up with the optimal assignment of X to Y in O(max(n +m,m2)):
the nearest neighbor assignment t is obtained in O(n +m). Then,
for (possibly) eachm′ between 1 andm we evaluate two sums in
O(m′ − r). As we shall see in Sec. 3.4, we can considerably improve
the efficiency of the algorithm making it tractable for large scale
problems (millions of points) by recursively updating these sums,
only re-evaluating them occasionally.

1When a(1) = 1, s is undefined. In that case, we set r ← 1 and proceed with only case
2 steps of our algorithm described next.

3.2 Simplifying the problem
In many cases, parts of the initial problem can be solved in linear
time. For instance, we can detect if t is injective in linear time, in
which case the problem is solved by setting a ← t . Also, ifm = n, the
trivial assignment a([1,m]) ← [1,m] is optimal. We explain below
three other cases that simplify or even solve the initial problem in
linear time.
First, when there exists some k such that xi < y1 ,∀i < k , i.e., X

starts “before” Y , we can assign a(i) ← i ,∀i < k . This can be made
even stronger: while xi < yi , we set a(i) ← i as illustrated below.

⇒

This holds symmetrically at the end of the sequence and often allows
to significantly reduce the problem range.
Second, we can further reduce the range of Y based on the

number of non-injective values in the nearest neighbor map t .
Specifically, let p = card{t(i) = t(i + 1), ∀i < m}. Then, it
is enough to consider the sub-problem of matching X to Y ′ =
{yj }j=max(1,t (1)−p)..min(t (m)+p,n):

⇒p = 3

A less tight bound, considering only the interval [max(1, t(1) −
m),min(t(m) +m,n)] in Y , could be constructed in O(logn) with-
out requiring any nearest neighbor computation. A proof of both
statements is provided in supplementary material.
Finally, whenm = n − 1, a linear time solution can be obtained,

inspired by Hirschberg’s algorithm [1975]. In this case, there ex-
ists some k to be determined such that a([1,k − 1]) = [1,k − 1]
and a([k,m]) = [k + 1,n]. Such k minimizes mink

∑k−1
i=1 (xi −yi)

2 +∑m
i=k (xi − yi+1)

2. Denoting C =
∑m
i=1(xi − yi+1)

2, the above mini-
mization problem can bewrittenmink

∑k
i=1(xi−yi)

2+C−(xi−yj+1)2

which can be obtainedwithin a single linear search, asC is a constant
and need not be computed.

⇒ yk

All these simplification steps have a computational cost in O(m +n)
and can be used as preprocessing to reduce X and Y before using
the quadratic algorithm of Sec. 3.1.

3.3 Quasilinear time problem decomposition
A key component of our algorithm is a quasilinear time decompo-
sition, often allowing to decompose the initial problem into many
small independent sub-problems that can be solved in parallel, and
that all benefit from simplifications exposed in Sec. 3.2.
The bottleneck of our quadratic time solution is the need to re-

evaluate a possibly large sum many times during the run of the
algorithm to determine the better of two cases 1 or 2 . The key
intuition is that both cases can be kept as candidates without per-
forming any summation. We maintain intervals of points in Y that
contain both cases – these intervals may thus contain gaps, which
ultimately will not be assigned by an point inX . The main advantage

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

SPOT: Sliced Partial Optimal Transport • 89:5

X1 X2 X2

Y1 Y2 Y3

⇒A1 A2 A3

s1 ℓ1
s2/s3

ℓ2/ℓ3

X ′1 X ′2

Y ′1 Y ′2

A′1 A′2
s1 ℓ1/s2 ℓ2

Fig. 3. When adding the blue point in to the linear time problem decomposition, we extend Y3 on both sides and thus merge the sub-problems A2 and A3
(while updating the sub-problem extremities).

is that such intervals can be maintained in near linear time and can
be used to split the problem into shorter independent sub-problems.
Each sub-problem Ak is characterized by two points sets Xk ⊂ X
and Yk ⊂ Y , and the index of the first free spot sk on the left of Yk
and ℓk on the right in Y (see Fig.3).

Specifically, we again consider an increasing sub-problem involv-
ing {xi }i=1..m′ and similarly keep track of the last available free spot
s as well as the currently last value ℓ considered. This sub-problem
thus involves {yj }j=s+1..ℓ . We also store a flag { fj }j=1..n where
fj = false indicates that yj has been considered by either cases 1
or 2 at some point in the algorithm, or fj = true otherwise.
Update. We now consider the point xm′+1. If ft (m′+1) = true,

we mark t(m′ + 1) as occupied by a candidate, and we hence set
ft (m′) ← false. If t(m′ + 1) = t(m′), we extend the range of the
current sub-problem by two candidates, one at the left of the current
range and one at its right. This reads fs ← false and fℓ+1 ←
false. If t(m′ + 1) , t(m′) but ft (m′+1) = false, the sub-problem
is only extended on the right, that is, fℓ+1 ← false. The proof is
detailed in supplementary materials. Our decomposition algorithm
is explicited in Algorithm 2.
The amortized cost of retrieving s or merging intervals via a

linked-list solution akin to Union-Find makes the expected com-
plexity of each operation to scale as the inverse of the Ackermann
function (nearly a constant) [Tarjan and Van Leeuwen 1984].

3.4 Efficient Implementation
A naive implementation of Algorithm 1 would require two sums to
be re-evaluated each time t(m′+1) ≤ a(m′), making it unnecessarily
slow for large problems. In practice, we can considerably improve
the efficiency of the algorithm. The key idea is to realize that in
most cases, these sums can be progressively updated, by storing
two sums S1 and S2, respectively corresponding to the case 1 of
offsetting a or 2 to keep it unchanged.
These sums can be respectively updated as long as case 2 is

selected, by using the update formula S1 ← S1 + (xm′+1 − ya(m′))
2

and S2 ← S2 + (xm′+1 − ya(m′)+1)
2. However, as soon as case 1 is

selected, the previously computed sum of the costs of moving the
current subsequence to the left becomes the new sum of the costs of
leaving the assignment unchanged, and the new sum of the costs of
moving the current assignment to the left is invalidated and would
need to be recomputed if needed in the future. As such, S2 should
take the value of S1 and S1 should be invalidated (it would need
to be recomputed by summing values from r tom′ if it is needed
again, thus making the algorithm quadratic in the worst case). In
our implementation, we make use of a linked-list structure akin to

Algorithm 2: Decomposition of the assignment problem.
input :Points X and Y .
output :A decomposition of the assignment problem into

independent ones.

1 Let t be the nearest neighbor assignment of X to Y ;
2 Initialize Boolean flags {fj }j=1. . .n to true;
3 form′ from 1 tom do
4 if ft (m′) is true then
5 ft (m′) ←false;
6 Compute the extremities sk and ℓk (if ft (m)−1 or ft (m)+1

are false we may traverse sub-problems to locate the first
free spots);

7 Create a new sub-problem
Ak ← ({xm′ }, {yt (m′) }, sk , ℓk);

8 else
9 Let Ak′ be the sub-problem containing yt (m′);

10 if fsk′ (resp fℓk′) is false, merge sub-problem Ak′ with
the one associated to ysk′ (resp. yℓk′) ;

11 Update the extremities sk′ and ℓk′ ;
12 if t (m′) , t (m − 1) then
13 Update the extremity ℓk′ ;
14 Ak′ ← (Xk′ ∪ {xm′ }, Yk′ ∪ {yℓk′ }, sk′ , ℓk′);
15 else
16 Update both sk′ and ℓk′ ;
17 Ak′ ← (Xk′ ∪ {xm′ }, Yk′ ∪ {ysk′ , yℓk′ }, sk′ , ℓk′);

18 return disjoint sub-problems {Ak }.

Union-find to merge intervals of bijective assignments ; we use a
similar structure for the quasilinear time decomposition algorithm
(Alg. 2). Source code is available in supplementary materials.

4 SLICED PARTIAL TRANSPORT
While 1-d optimal transport has limited interest per se, it is the main
ingredient of sliced optimal transport. Sliced optimal transport is
a very fast algorithm that shares similar properties with optimal
transport [Bonneel et al. 2015] and works in n dimensions. It has
notably been used for deep learning applications [Deshpande et al.
2018; Kolouri et al. 2018] and other machine learning tools [Kolouri
et al. 2016], as well as for computer graphics [Bonneel et al. 2015;
Pitié et al. 2005; Rabin et al. 2011]. Its speed comes from the fact that
balanced 1-d optimal transport has a trivial linear complexity solu-
tion. It further allows to compute sliced Wasserstein barycenters,
the equivalent of Wasserstein barycenters in the sliced framework.

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

89:6 • Bonneel et al.

However, the balanced condition makes it difficult to use for prob-
lems that are intrinsically unbalanced.
Our partial 1-d optimal transport solution, while of quadratic

complexity in the worst case, is fast (see experiments in Sec. 6.4) and
is thus amenable to the computation of sliced optimal transport. Also,
formulas for gradients and Hessians computed for the balanced case
by Bonneel et al. [2015] remain unchanged in the partial transport
case. The algorithm for sliced (partial) Wasserstein barycenters is
summarized below.

The sliced Wasserstein barycenter of a set of d-dimensional point
sets {Xk }k=1..K weighted by {λk }k=1..K is defined as theminimizer

argmin
X̃

E(X̃) = argmin
X̃

∑
k

λk

∫
Sd−1

WS (Projω (X̃), Projω (Xk))dω ,

where Sd−1 is the (d − 1)-dimensional sphere of directions, usually
discretized over a finite set of directions Θ (uniformly or randomly),
Projω (X) projects the point set X onto the line of direction ω as
Projω (X) = {⟨xi ,ω⟩}i .W is the transport cost as computed in Sec. 3.
Minimizing this energy can be performed via a gradient descent
or Newton steps [Bonneel et al. 2015]. In fact, the gradient can be
easily expressed as:

∇E(X̃) =
∑
k

λk

∫
Sd
(Projω (X̃) − Projω (Xk ◦ ak)) ,

where ak is the assignment function of the (partial) optimal trans-
port between X̃ and Xk . The Hessian is also easily computed in
closed form as

H (X̃) =
1
|Θ|

∑
θ ∈Θ

θθ t ≈
1
d
Idd×d ,

where θ t denotes the transpose of the direction θ . With these values,
one can perform Newton’s iterations via the update X̃ ← X̃ −

H−1∇E(X̃). Transporting an entire point cloudX0 toX1 corresponds
to a gradient descent ofW S (X0,X1). In this case, we resort to a
stochastic gradient descent strategy and perform descent steps with
a single randomly determined direction at a time.

5 ITERATIVE TRANSPORT ALGORITHM
A common problem in point cloud processing is that of register-
ing points under a given transformation model. For instance, one
tries to match a point cloud with another by supposing the trans-
formation between them is rigid, or constrained to a similarity, or
affine, or homographic, etc. A well-known algorithm to solve this
problem is the Iterative Closest Point (ICP) algorithm. Given a point
cloud X0 to be matched against X1, this algorithm proceeds by first
matching points of X0 to their nearest neighbors in X1, and, given
this assignment, the best transformation in the class of allowed
transformations is found by minimizing an energy (typically, for
rigid or similarity transformations, the transformation can be found
via an orthogonal Procrustes problem [Schönemann 1966] using
Singular Value Decompositions or Kabsch algorithm). The algo-
rithm then transforms the initial point cloud using the computed
transformation. The process is repeated until convergence.
However, this algorithm requires points clouds to be relatively

close to start with and suffers from local minima.While this has been
addressed by Yang et al. [2013] for estimating rigid motion leading

to a globally optimal solution, this does not easily extend to other
classes of transformations. In practice, we observe that extremely
bad behaviors may arise when considering similarity transforms
(rotation, translation and scaling). In that case, the lack of injectivity
of the nearest neighbor map tends to estimate progressively smaller
scaling factors as iterations increase, occasionally leading to a trivial
zero scale solution: this solution is in fact globally optimal for the
ICP problem, leading to a zero cost of matching the entire input
point cloud to a single nearest neighbor point in the target point
cloud (see Fig. 9). This motivates the use of a metric which accounts
for an injective mapping, such as the sliced metric we are proposing.
We thus propose to replace the nearest neighbor matching by

a partial sliced optimal transport matching. We call our algorithm
Fast Iterative Sliced Transport (FIST). We illustrate our results on 3d
point cloud registration using a similarity transform in Sec. 6.2.

6 APPLICATIONS AND RESULTS
This section details two applications of our partial sliced optimal
transport framework. The first matches colors in a photograph by
possibly using superpixels, and the second uses our FIST algorithm
to register point clouds. We then analyze our algorithm in term of
performance.

6.1 Color Matching
Transferring colors between images has become a classical image
processing problem. The goal is to distort the color distribution of
an input image, without changing its content, to match the style of
a target image. This matching problem has seen numerous optimal
transport solutions [Bonneel et al. 2015, 2013; Pitié et al. 2005; Pitié
et al. 2007; Rabin et al. 2010]. In addition to their use of optimal
transport, a common point to these approaches is that they consider
the problem of matching normalized histograms. A consequence
of that is often acknowledged as a limitation: their content should
not differ. For instance, matching an image with 80% trees and 20%
sky to an image containing the opposite ratio will inevitably lead
to trees becoming blue or sky becoming green. This is illustrated
in our teaser, Fig. 1, in which the input image does not contain the
colorful trees of the target image, thus leading to unatural colors in
the transferred example using the formulation of Pitié et al. [2005].
Several approaches also require the images to have exactly the same
number of pixels – this is precisely the case for sliced transporta-
tion [Bonneel et al. 2015; Rabin et al. 2010].

To address this issue we propose two solutions within our SPOT
framework. Our first solution simply enlarges the target images to
give more freedom to each input pixel to be matched to target pixel
values. Our second solution, inspired by that of Rabin et al. [2014] in
the context of relaxed optimal transport, segments the input image
into a number of superpixels using the SLIC algorithm [Achanta
et al. 2010] and consider the problem of matching each superpixel
color distribution independently in the target image. To prevent
discontinuities between adjacent superpixels cares need to be taken.
In particular, all superpixels should use the same set of projection
directions, and we further apply the color transfer regularization
technique of Rabin et al. [Rabin et al. 2010] (altered to use a cross
bilateral filter for simplicity [Paris and Durand 2009]). While the

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

SPOT: Sliced Partial Optimal Transport • 89:7

full histogram matching 2 superpixels 6 superpixels 13 superpixels target

Fig. 4. We perform color transfer between two images of identical sizes (640 × 427 pixels) and regularize the result. We segment the source images in a
number of SLIC superpixels [Achanta et al. 2010] (shown in the first row) and use the target image shown in the last column. A single superpixel (first column)
corresponds to the balanced case, with the same energy being minimized as the method presented by Pitié et al. [Pitié et al. 2005]. Despite the color transfer
being regularized, large distortions can occur in the balanced sliced color transfer ; increasing the number of superpixels tends to regularize the color mapping
as there is more freedom to search for similar-looking pixel subsets in the target image. All color transfers were computed in 5 to 8 seconds for 100 iterations.
Increasing to 1000 iterations did not visually impact results. Images via Flickr: [Public domain]: Two apples by freestock.org (http://bit.do/spt0), [CC BY 2.0]: one
apple by Eneko Castresana Vara (http://bit.do/spt2), apples by Ventsislava Bonina (http://bit.do/spt3), fireplace by Dominic Alves (http://bit.do/spt4).

second solution is much faster since all superpixels are smaller and
can further be processed in parallel, it sometimes lead to a loss of
style as the number of superpixels increases (see Fig. 4). Results for
the first solution were often better, albeit slower (see Fig. 1 and 5).
We compare our partial optimal transport solution to the unbal-

anced framework of Chizat et al. [2016] in Fig. 6. Their method,
based on repeated convolutions [Solomon et al. 2015] requires two
Gaussian filterings of so-called scalings per iteration. In our experi-
ment, the algorithm typically converged in 200-300 iterations, which
results in runnning times of 7-10 minutes when working on 2563
RGB voxel grids.

6.2 Shape Registration
We illustrate our FIST algorithm on 2-d and 3-d registration exam-
ples, representing sampled 2-d images and 3-d shapes. We initialize
the input point cloud far from the target point cloud, andwe estimate
a similarity transform between them. We compared to traditional
ICP and an optimal transport solution. ICP systematically fails, esti-
mating a too small scaling factor due to the lack of injectivity. Full
fledged optimal transport performed best, but was intractable (see
Sec. 6.4). Using our solution, we observed that registering point
sets of very different cardinality produces many local minima (see

Fig. 8, and failure case in Fig. 14). However, matching point sets of
(roughly) similar cardinality performed well in most cases (Fig. 7 in
2-d and 9 in 3-d – see also teaser image 1).
In Table 2, we compare our method against ICP variants that

account for scaling factors, proposed by Du et al. [2007], Horn
et al. [1988], Umeyama et al. [1991] and Zinsser et al. [2003], all
provided in Maass’ library [2016]. We also compare with classi-
cal ICP and the full-fledged optimal transport solution based on a
network simplex solver. To do so, we registered a sampled source
Stanford bunny to the same bunny sampled differently, and applied
200 random similarity transforms to the source point cloud. These
transforms were sampled uniformly in angle and translation, and
using a Fisher-Snedecor distribution F(30,30) for scaling factors. We
vary the size of the source point cloud (5k, 8k, 9k and 10k samples),
and keep the target point cloud at 10k samples. We compute average
and median relative error in Frobenius norm between the ground
truth and estimated matrices as homogeneous transformations. The
network simplex performs well, but it is also by far the slowest,
making it unpractical for larger problems. However, this indicates
that optimal transport-based solutions are useful in this context.
Then, our method works best when point clouds have similar car-
dinalities, but is outperformed by that of Zinsser et al. [2003] and

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

http://bit.do/spt0
http://bit.do/spt2
http://bit.do/spt3
http://bit.do/spt4

89:8 • Bonneel et al.

(a) Input (b) Target (c) Full Transfer (d) 20% Larger (e) 40% Larger
[Bonneel et al. 2015] (Our method) (Our method)

Fig. 5. We transfer the colors of the target image (b) to the input (a). We either resize the images so that the problem is balanced and leads to the same
formulation as that of Pitié [Pitié et al. 2005] (c) or so that the problem becomes unbalanced using a 20% larger target image (both in width and height, column
d) or 40% (e). Images via Flickr: [CC BY 2.0]: Tree by Steve Parker (http://flic.kr/p/26TptPA), [CC BY-SA 2.0]: air balloon by Kirt Edblom (http://flic.kr/p/Ys81nY),
roses by Felix Schaumburg (http://flic.kr/p/f6bkoR), clouds by Tim Wang (http://flic.kr/p/5mrPsc), White House by Diego Cambiaso (http://flic.kr/p/qbrBCJ).

(a) Full Transfer (b) Unbalanced (z = 0.99) (c) Unbalanced (z = 0.95)

[Solomon et al. 2015] [Chizat et al. 2016] [Chizat et al. 2016]

Fig. 6. For comparison, we repeat the same experiment as the first two
rows of Fig. 5, but instead using the (balanced) entropy-regularized optimal
transport of Solomon et al. [2015] (a), and the unbalanced variant of Chizat
et al. [2016] with two different KL constraints on marginals (using their
notation, z1 = z2 = 0.99 (b) or 0.95 (c)). We post-processed results with the
same filtering [Rabin et al. 2010] to reduce quantization artifacts.

Umeyama et al. [Umeyama 1991] when the source point cloud only
has half the number of points of the target point cloud. We did not
observe significant differences between Umeyama et al. and Zinsser
et al. In our experiment, classical ICP systematically resulted in

infinite average and median relative errors since in most cases, the
estimated scaling factor was 0 – these values are hence not reported
in the table.
Table 2. We compare our method against variants of ICP due to Du et
al. [2007], Horn et al. [1988], Umeyama et al. [1991] and Zinsser at al. [2003],
as well as a (slow) in-house network simplex based optimal transport so-
lution [2011]. We show average (and median, in parenthesis) percentage
relative errors in Frobenius norm between ground truth and estimated trans-
formations matrices. We vary the size of the source point cloud from 5k to
10k samples and keep the target point cloud at 10k samples.

Method \# pts 5k 8k 9k 10k
Ours 31.65 (25.53) 3.06 (1.38) 1.73 (0.15) 1.74 (0.16)

Network Simplex 26.70 (13.58) 7.85 (1.85) 3.62 (0.89) 2.14 (0.07)
Du 34.04 (7.26) 33.97 (7.24) 34.02 (7.22) 34.25 (7.34)
Horn 216.45 (77.53) 332.86 (82.27) INF (86.96) 168.82 (83.73)

Umeyama 21.59 (1.49) 21.58 (1.47) 21.53 (1.48) 21.69 (1.53)
Zinsser 21.59 (1.49) 21.58 (1.47) 21.53 (1.48) 21.69 (1.53)

6.3 Sliced Partial Barycenters
We illustrate preliminary results on sliced partial barycenters. In
Fig. 10, we compute a barycenter between a cat and a dog, both
sampled with 100k points. This barycenter is a distribution of points
in-between these two input distributions in term of optimal trans-
port distances. It requires computing gradient descent steps that
may lead to different local minimas depending on the initialization

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

http://flic.kr/p/26TptPA
http://flic.kr/p/Ys81nY
http://flic.kr/p/f6bkoR
http://flic.kr/p/5mrPsc
http://flic.kr/p/qbrBCJ

SPOT: Sliced Partial Optimal Transport • 89:9

(a) Point clouds (b) Euclidean ICP (c) Our method

Fig. 7. We register the red to the blue point cloud in (a) using a similarity
transform (translation, rotation and scaling). Samples on both point clouds
are different. We used a classical Iterative Closest Point algorithm in (b)
that uses nearest neighbors and our sliced partial transport matching in (c).

and lack of convexity of the energy landscape. To study this be-
haviour, we perform this gradient descent by either initializing the
barycenter point cloud with the cat samples, or with a uniformly
random point cloud. We also vary the number of samples within
this barycenter. We observe that as the number of samples in the
barycenter approaches the number of samples in the input distribu-
tions (100k), the influence of the initialization is reduced: the energy
has less local minimas as the problem is more balanced.

6.4 Performance Analysis
We first analyze the ability of our decomposition algorithm to pro-
duce a number of sub-problems on a typical FIST application. We
match two sampled cat images, shown in Fig. 7, second row. The
input distribution has 8k samples and the target has 10k samples.
We use 40 FIST iterations and 20 slices, ultimately producing 800
linear assignment problems of size 8k × 10k to solve. Among those,
70 problems could not be decomposed any further and had to be
solved entirely with the quadratic time algorithm, and 13 problems
were decomposed in only two smaller sub-problems. Among these
smaller sub-problems, a number of them were trivially solved with
the special cases handled in Sec. 3.2. The proportion of these sub-
problems is shown in orange. As the initial problem is decomposed
into more sub-problems, their size also become smaller on average,
and the proportion of them trivially solved hence increases.

We further analyze the performance of our algorithm on the same
example when varying the number of samples in the source and

10k

8k

5k
#pts (a) Point clouds (b) Euclidean ICP (c) Our method

Fig. 8. We compare classical ICP with our method when reducing the num-
ber of points being matched. The target distribution always has 10k samples,
but we vary the source distribution from 5k to 10k samples. We observe
that matching point clouds of similar cardinality behave better: convergence
speed increases, and local minimas are less frequently encountered.

target distributions. Results are shown in Fig. 12 – computation
times do not include the sorting cost, but only the 1-d matching. In
most cases, the algorithm runs in fractions of a second, even when
matching millions of samples. All runs were performed on a 16-core
machine. Interestingly, slower problems arise for mn ≈ 0.5: matching
point clouds of either nearly equal or very different cardinality
produces many trivial sub-problems. In Fig. 13, we illustrate the
convergence rate of a sliced distance computation between two
sampled 3-d characters seen in Fig. 9.

We finally provide total running times per FIST iteration, sorting
time included, on the 2-d and 3-d examples shown in the paper in Ta-
ble 3. We compare our performance with three competing strategies.
First, we compare to a nearest neighbor based ICP implemented
using the fast nanoflann nearest neighbor search library. While this
method is about 10× faster per iteration, it completely fails in our
registration experiments with poorly initialized matches, and also
tends to require more iterations. Second, we compare to the strat-
egy of matching samples via an exact optimal transport solver (as
opposed to optimal per slice) that uses a state-of-the-art linear pro-
gramming solver based on a network simplex algorithm [Bonneel
et al. 2011]. We observed that this strategy leads to better quality
results (see Fig. 14) and often converges in less iterations than our
sliced approximation, but it remains between 1000 and 4000 times
slower per iteration on smaller problems, and cannot be run on prob-
lems of more than a few tens of thousands samples due to memory
limits. We finally compared to a house-made variant of Hirschberg’s
algorithm [Hirschberg 1975] that first decomposes the initial prob-
lem into sub-problems using Algorithm 2, and recursively solves

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

89:10 • Bonneel et al.

(a) Point clouds (b) Euclidean ICP (c) Our method

Fig. 9. We register the red 3d point cloud to the blue point cloud shown in (a) using a similarity transform estimated with a classical ICP and our transport
based method, similarly to the setup in Fig. 7. In (b) and (c), the registered point set is shown in blue. In practice, for classical ICP, this point set is barely
visible, if at all: the registration often leads to degenerate configurations with extremely small estimated scaling factors.

linear-space and quadratic-time complexity dynamic programming,
invoking the simplification of sub-problems detailed in Sec. 3.2 as
termination criteria for this recursive approach. This was initially
considered to be part of our solution, and has been well optimized
(parallelized and vectorized, partly on the GPU). Still, this method
performs between 5 to 150 times slower than the proposed solution.

7 LIMITATIONS, CONCLUSIONS AND FUTURE WORK
We have proposed the first fast approach for computing sliced opti-
mal transport of point sets of different cardinalities, and used it for
color matching and within a similarity transform estimation algo-
rithm. However, difficult fundamental questions remain regarding
its behavior on energy landscapes when cardinalities differ signifi-
cantly. For instance, our preliminary experiments with sliced partial
Wasserstein barycenters show that a barycenter with much less
samples than the input dataset heavily depends on the initialization,
while this is not the case as the number of points in the barycen-
ter increases. This would indicate that, as the number of points
increases, the energies involved seem empirically more convex. We
observe a similar behavior within our FIST algorithm. In addition,
measuring optimal transport from slices may give surprising so-
lutions, which are optimal per slice but far from globally optimal
(Fig. 14, second row). Unfortunately, computing exact optimal trans-
port remains intractable to date on large problems. We believe a

mixed strategy may provide interesting solutions to these issues, by
initially performing FIST steps and occasionnally switching to ICP.
Given the speed of our sequence alignment procedure, it could

also be worth investigating its generalization to other alignment
tasks such as DNA alignment. Still, we have shown that SPOT can
be useful in practice for computer graphics on color and point set
processing. We expect it could be further used for other applica-
tions such as part-based geometry retrieval, or machine learning
applications similarly to traditional sliced transport.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their detailed feedback to
improve the paper. This project was supported in part by French
ANR under Grant No.: ANR-16-CE23-0009 (ROOT) and ANR-15-
CE40-0006 (CoMeDiC). We thank Adobe for software donations.

REFERENCES
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and

Sabine Süsstrunk. 2010. Slic superpixels. Technical Report.
Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN. (2017).

arXiv:1701.07875.
Jean-David Benamou. 2003. Numerical resolution of an “unbalanced” mass transport

problem. ESAIM: Mathematical Modelling and Numerical Analysis 37, 5 (2003).
Nicolas Bonneel, Julien Rabin, G. Peyré, and Hanspeter Pfister. 2015. Sliced and Radon

Wasserstein Barycenters of Measures. J. of Math. Imaging and Vision 51, 1 (2015).
Nicolas Bonneel, Kalyan Sunkavalli, Sylvain Paris, and Hanspeter Pfister. 2013. Example-

Based Video Color Grading. ACM Trans. on Graphics (SIGGRAPH) 32, 4 (2013).

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

SPOT: Sliced Partial Optimal Transport • 89:11

Table 3. This table reports data for our FIST registration experiments: the number of samples for the source and target distribution, the number of slices
used, the computation time per FIST iteration, and the number of iterations it took to converge. We also provide when available running times for competing
approaches: matching points via full-fledged optimal transport correspondences computed with a network simplex solver [Bonneel et al. 2011], a traditional
ICP using a fast nearest neighbor search, and a custom slice-based approach using Hirschberg’s dynamic programming algorithm for 1-d matching. While we
found the network simplex makes registration converge in less iterations, it is simply intractable for problems larger than a few thousand samples, mostly due
to its memory requirements that grow in O(mn).

Name Source Target Slices Time per iter. # iter Time per iter
Network Simplex

Time per iter
Nearest Neighbor

Time per iter
Hirschberg

2d Cat 5k 10k 20 0.03 200 31 0.003 0.15
2d Cat 8k 10k 20 0.04 130 40 0.005 0.56
2d Cat 10k 10k 20 0.04 14 155 0.006 0.04
2d Car 90k 100k 20 0.66 16 X 0.05 83
2d Face 120k 200k 40 1.72 100 X 0.07 188
3d Cat 150k 200k 100 4.71 200 X 0.10 745

3d Castle 150k 200k 40 2.18 55 X 0.09 221
3d Character (cut) 80k 100 100 2.29 100 X 0.05 274
3d Character (full) 90k 100 20 0.69 100 X 0.05 40

50k 80k 100k

Fig. 10. Sliced partial Wasserstein barycenter (λ0 = λ1 = 0.5) of two 100k
points sets (first row) representing a cat and a dog, using a varying number
of samples. The minimization is initialized with the cat point set (second
row) or with uniform random samples (third row). With 100k samples, this
corresponds to the balanced case, solved in Bonneel et al. [2015]. While
even in this case the energy is non-convex, both initializations result in
similar centroids. However, when reducing the number of samples in the
barycenter, the two initializations produce different results, illustrating the
lack of convexity of the problem.

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. 2011.
Displacement interpolation using Lagrangian mass transport. In ACM Trans. on
Graphics (SIGGRAPH Asia), Vol. 30.

Kevin Charter, Jonathan Schaeffer, and Duane Szafron. 2000. Sequence alignment using
FastLSA. In International conference on mathematics and engineering techniques in
medicine and biological sciences. 239–245.

Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. 2016.
Scaling Algorithms for Unbalanced Transport Problems. Math. Comp. 87 (07 2016).

Ishan Deshpande, Ziyu Zhang, and Alexander Schwing. 2018. Generative Modeling us-
ing the SlicedWasserstein Distance. In IEEE Conf. on Comp. Vis. and Patt. Recognition
(CVPR).

Shaoyi Du, Nanning Zheng, Shihui Ying, Qubo You, and Yang Wu. 2007. An extension
of the ICP algorithm considering scale factor. In IEEE Int. Conf. on Image Processing

1 2 5 10 20 50 100 200
Number of subproblems

0

10

20

30

40

50

60

70

Nu
m

be
r o

f o
cc

ur
en

ce
s

Total number of subproblems
Proportion of trivial subproblems

Fig. 11. Performing a FIST on an 8k to 10k problem using 20 slices and 40
FIST iterations, we analyze how the quasilinear time problem decomposition
helps reduce the compexity. This graph shows how the 800 1-d problems
were split into sub-problems of various sizes, as shown in blue, a fraction of
which were trivial to completely solve via linear time procedures explained
in Sec. 3.2. In particular, only 70 problems were impossible to decompose
into simpler sub-problems, 13 problems were split into only 2 smaller sub-
problems 5 of which being trivial to solve.

10k100 1k 100k 1M 5M
n

100

1k

10k

100k

1M

3M

m

1E-5

1E-4

1E-3

1E-2

1E-1

1

10

100 1k 10k 100k 1M 5M
n

10-4

10-2

100

102

tim
e

(s
ec

on
ds

)

80%
50%
30%
5%

Fig. 12. Left. Performance of our 1-d assignment problem as a function of
m and n when matching two point clouds (time in seconds averaged over
100 slices). Right. For clarity, we extract 4 lines of constant α = m

n ratio
(also shown on the left) and express the time of matching αn 1-d points
with n points as a function of n.

(ICIP), Vol. 5.

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

89:12 • Bonneel et al.

0 50 100 150 200
Number of directions

0

20

40

60

80

100

120

R
el

at
iv

e
pe

rc
en

ta
ge

 e
rro

r

Fig. 13. Rate of convergence of a sliced optimal transport computation
between two 3-d points set of 80k and 100k samples illustrated in Fig. 9 (first
row) shown as percentage of relative error. Although not monotonously
decreasing, the error falls below 1% after 200 slices are used.

Input FIST Network Simplex

Fig. 14. We show the occasional behavior of sliced optimal transport (second
column) when cardinalities differ too much. In the first row, we encounter a
local optimum, when matching 5k to 10k samples. The second row shows
slicing issues when matching 1k to 10k samples: while the transport is
optimal per slice, it is not optimal in 2-d as samples of the triangle are outside
of the star. In both cases, full-fledged optimal transport (third column) gives
the expected result, but is intractable for more complex problems.

Alessio Figalli. 2010. The optimal partial transport problem. Archive for rational
mechanics and analysis 195, 2 (2010), 533–560.

William A Gale and Kenneth W Church. 1991. Identifying word correspondences in
parallel texts. In Speech and Natural Language: Proceedings of a Workshop Held at
Pacific Grove, California, February 19-22, 1991.

Xianfeng Gu, Feng Luo, Jian Sun, and S-T Yau. 2013. Variational principles for
Minkowski type problems, discrete optimal transport, and discrete Monge-Ampere
equations. arXiv:1302.5472 (2013).

Daniel S. Hirschberg. 1975. A linear space algorithm for computing maximal common
subsequences. Commun. ACM 18, 6 (1975), 341–343.

Berthold KP Horn, Hugh M Hilden, and Shahriar Negahdaripour. 1988. Closed-form
solution of absolute orientation using orthonormal matrices. JOSA A 5, 7 (1988).

Hagen Kaprykowsky and Xavier Rodet. 2006. Globally optimal short-time dynamic
time warping, application to score to audio alignment. In IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), Vol. 5.

Jun Kitagawa, Quentin Mérigot, and Boris Thibert. 2016. Convergence of a Newton
algorithm for semi-discrete optimal transport. arXiv:1603.05579 (2016).

Soheil Kolouri, Charles E Martin, and Gustavo K Rohde. 2018. Sliced-Wasserstein
Autoencoder: An Embarrassingly Simple GenerativeModel. arXiv:1804.01947 (2018).

Soheil Kolouri, Yang Zou, and Gustavo K Rohde. 2016. Sliced wasserstein kernels for
probability distributions. In IEEE Conf. on Comp. Vis. and Patt. Recognition (CVPR).

Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, Vol. 10. 707–710.

Bruno Lévy. 2015. A Numerical Algorithm for L2 semi-discrete optimal transport in
3D. ESAIM M2AN (Mathematical Modeling and Numerical Analysis) (2015).

Tyler Lu and Craig Boutilier. 2015. Value-Directed Compression of Large-Scale Assign-
ment Problems. In AAAI Conf. on Artificial Intelligence.

Edgar Maass. 2016. Point cloud alignment: ICP methods compared. Technical Report.
Quentin Mérigot. 2011. A Multiscale Approach to Optimal Transport. Computer

Graphics Forum (2011).
Georges Nader and Gael Guennebaud. 2018. Instant Transport Maps on 2D Grids. ACM

Trans. on Graphics (SIGGRAPH Asia) 249 (2018).
Sylvain Paris and Frédo Durand. 2009. A fast approximation of the bilateral filter using

a signal processing approach. International journal of computer vision 81, 1 (2009).
Gabriel Peyré, Marco Cuturi, et al. 2017. Computational optimal transport.

arXiv:1803.00567 (2017).
Francois Pitié, Anil C. Kokaram, and Rozenn Dahyot. 2005. N-Dimensional Probablility

Density Function Transfer and Its Application to Colour Transfer. In IEEE Int. Conf.
on Computer Vision (ICCV).

François Pitié, Anil C Kokaram, and Rozenn Dahyot. 2007. Automated colour grading
using colour distribution transfer. Comp. Vis. and Im. Understanding 107, 1-2 (2007).

Julien Rabin, Julie Delon, and Yann Gousseau. 2010. Regularization of transportation
maps for color and contrast transfer. In IEEE Int. Conf. on Image Processing (ICIP).

Julien Rabin, Sira Ferradans, and Nicolas Papadakis. 2014. Adaptive color transfer with
relaxed optimal transport. In IEEE Int. Conf. on Image Processing (ICIP).

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. 2011. Wasserstein barycenter
and its application to texture mixing. In International Conference on Scale Space and
Variational Methods in Computer Vision. Springer, 435–446.

Filippo Santambrogio. 2015. Optimal transport for applied mathematicians. Birkäuser,
NY (2015).

Peter H Schönemann. 1966. A generalized solution of the orthogonal procrustes problem.
Psychometrika 31, 1 (1966), 1–10.

Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional wasserstein distances:
Efficient optimal transportation on geometric domains. ACM Trans. on Graphics
(SIGGRAPH) 34, 4 (2015).

Robert E Tarjan and Jan Van Leeuwen. 1984. Worst-case analysis of set union algorithms.
Journal of the ACM (JACM) 31, 2 (1984), 245–281.

Shinji Umeyama. 1991. Least-squares estimation of transformation parameters between
two point patterns. IEEE Trans. on Patt. Analysis & Machine Intelligence 4 (1991).

Cédric Villani. 2003. Topics in optimal transportation. American Mathematical Soc.
Jiaolong Yang, Hongdong Li, and Yunde Jia. 2013. Go-icp: Solving 3d registration

efficiently and globally optimally. In IEEE Int. Conf. on Computer Vision (ICCV).
Timo Zinßer, Jochen Schmidt, and Heinrich Niemann. 2003. A refined ICP algorithm

for robust 3-D correspondence estimation. In IEEE Int. Conf. on Image Processing.

A CORRECTNESS OF ALGORITHM 1.
Let a([1,m′]) be the optimal assignment of X ′ to Y and let us con-
sider a new point xm′+1. First, we consider the case t(m′+1) > a(m′).
This implies that xm′+1 should be assigned to yt (m′+1) (lines 4–5)
to minimize

∑
(xi −ya(i))

2 as any other assignment of xm′+1 would
have a higher cost.
We now suppose that t(m′ + 1) ≤ a(m′). We claim that xm′+1 is

assigned either to ya(m′)+1 (case 2), or to ya(m′) with a shift of
the assignments of {xr , . . . , xm′} by one to the left until the first
empty spot ys (case 1). First, xm′+1 cannot be optimally assigned
to any yl with l > m′ + 1. Indeed, as the nearest neighbor of xm′+1
is (strictly) before ya(m′)+1, any other assignment of xm′+1 would
have a higher cost. By definition, the assignment a is bijective be-
tween {xr , . . . , xm′} and {ya(r), . . . , xa(m′)}) and is the optimal as-
signment between X ′ and Y . If xm′+1 is assigned to ya(m′), then the
optimal assignment is obtained by only shifting the assignments of
{xr , . . . , xm′} by one to the left. Indeed, shifting those assignments
by more than one would create a free spot yl ∈ {ya(r), . . . ,ya(m′)}
not assigned to any point in X ′ ∪ {xm′+1} (letm′′ be the index of
the point in X ′ associated with yl−1), leading to two independent
sub-problems. This would have been detected at stepm′′ of Algo-
rithm 1, which is a contradiction to the fact that a is the optimal
assignment of X ′ to Y . Similarly, if xm′+1 is assigned to any point

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

SPOT: Sliced Partial Optimal Transport • 89:13

before ya(m′) the assignment would have a higher cost. Algorithm 1
compares the costs of the two alternatives, 1 and 2 , to obtain the
optimal partial assignment a : {1,m′+ 1} minimizing

∑
(xi −ya(i))

2.

ACM Trans. Graph., Vol. 38, No. 4, Article 89. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Prior Work
	3 Partial Transport in 1-d
	3.1 Quadratic time algorithm
	3.2 Simplifying the problem
	3.3 Quasilinear time problem decomposition
	3.4 Efficient Implementation

	4 Sliced Partial Transport
	5 Iterative Transport Algorithm
	6 Applications and Results
	6.1 Color Matching
	6.2 Shape Registration
	6.3 Sliced Partial Barycenters
	6.4 Performance Analysis

	7 Limitations, Conclusions and Future Work
	Acknowledgments
	References
	A Correctness of Algorithm 1.

