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Why a survey on Optimal Transport?

50000

e Starts to be well established in CG

* Not as crazy as ChatGPT / generative Al, NeRF... -
. . . Number of papers containing
 Still much work has been done : survey is not exhaustive "Optimal Transport" over the years
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 Numerical techniques start to be fast enough for "real" applications

* No survey dedicated to applicationsin CG
* Though interesting surveys on numerical techniques, e.g. [Peyré & Cuturi 2019]
* We will also cover "numerics for the layman"

e Target audience:
* People wanting to understand optimal transport for their own applications
e Experts in optimal transport wanting to find new applications



Outline

* Introduction to optimal transport principles
« Common numerical solvers

» Applications:
* Image processing/texture synthesis
* Rendering/ sampling
+ Geometry/topology
* Animation / simulation



Intuition




Intuition: Monge

W(f,g) = mTlan ¢ (x, T(x)) f(x) dx

st. f(x) =g(TX)) |det]r(x)|
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Intuition: Kantorovich

W(f,g) = min f j c(x,y)dn(x, y)

XXY

st.| f drn(x,y) = f(x)dx ” Vx
Y

j dn(xy) = gody Yy
X
dr(x,y) =0




Intuition: comparison

A

T(x)

X

- Finds a "transport map" - Finds a "transport plan"
- Difficult non-linearproblem - Linear program
- May have no solution - "Always" has solution
(e.g., a Dirac splittingin two) (i.e., under reasonable assumptions)
- Leadsto PDEs - Also has dual formulation

When it exists, the solutionis the same.

Often, c(x,y) = llx = yll, = W,
Wp is a distance



Wasserstein barycenters

Interpolating between 2 probability distributions f and g
— Displacement interpolation
- Usesmaps Ty = (1 —t)ld+¢t.T



Wasserstein barycenters

* Displacement interpolation generalizes to n = 2 distributions

* Interpolation called “Wasserstein Barycenter”
* Minimizes: b = miny, Y, 2, W5 (h, f)




Simple cases

e Optimal transport and barycenters trivially solved for
* 1-d distributions with c(x,y) convex function of ||x — y||
* Solutions expressed through cumulative density functions F(x) = ffoo f(t)dt

1 ;. _

s W(f,9) = [, c(F7'(x) = 67 (x))dx

e T(x) = G‘l(F(x)) : always the same map

* B~1(x) = X, A4 F ~1(x) and then barycenter b obtained by inversion and differentiation

e 1-d discrete distributions (same setting): u = }.7- 5x V= Yicq Vi

ANz

YT(z)



Simple cases

e Optimal transport and barycenters trivially solved for

e Gaussian distributions with c(x,y) = |[x — y||?
1 1\1/2
o« WE(No, Ny) = tr(Zg + 21 — 2201) + o — pall with g, = (232123)
* T(x)=2Xp1x
 Barycenter: N'(u, Z) with u = X, A Uy and iterations

z(n+l) = Z Ak (\/ DICEEN) Y. z(n+1))1/
k

2

11



Numerical methods



Numerical Algorithms

* Most common algorithms:

* Linear programming

* Entropy-regularized solutions

* Geometric constructions for the semi-discrete problem
Sliced approximations
PDEs



Linear programming

 Solves the discrete problem
mplnz C(Xi,yj) Pij
Lj
s.t. ZPU- = f(x;)
J
Z Pij = 9(y;)

i
Pij =0
* Network simplex in O(n3logn) ; in practice, behaves in O(n?) on random data

* Implementations: [Bonneel et al. 2009], Python Optimal Transport (POT)



Entropy-regularized optimal transport

mpinE 2 C(Xi;y]')Pij — eE(P)
i

+constraints, rewritten as:

min (C,P) — ¢E(P
Peu(f’g)( ) (P)

Entropy,i.e., “blur”

with U(f, g) matrices whose rows sum to f and columns to g
and E(P) = —)P;; (log(Pl-j) — 1) is the entropy, € a small constant

[Cuturi 2013, Benamou et al. 2014]



Entropy-regularized optimal transport

min (C,P)— cE(P
Pe,u(f’g)< ) (P)

* Can be rewritten as a projection:

min KL(P,
PEU(f.9) (.5

where ¢ = exp (—E)

&E

and KL(P, &) = )P;; (log (%) — 1) the Kullback-Leibler divergence
ij



>

Entropy-regularized optimal transport

* [teratively projecting on constraints: Sinkhorn algorithm (here, for
c(x,y) = llx — ylI*)

Al

Marginals p and ¢

o u) = _ f _
Gaussian_convolution»®)
e p(T+1) — g
Gaussian_convolution®)
o _ () —c;ii/e . ()
Pij — ui e U Uj

=4 £=10 =40 ¢ =100 £ =1000

LU

g = 3/1’\’7

e=6/N e=10/N e=20/N e=40/N e=60/N

[Solomon 2015]



Entropy-regularized optimal transport

» Easily adapted to Wasserstein barycenters

AR YYY Y © "

[Solomon 2015]

|deal for grids

Works for scattered data and for other costs too
* replace “Gaussian convolution” by matrix-vector multiplication

Generalizes when distributions do not have the same mass

However regularized OT between f and fis not O
* "Sinkhorn divergences" solves the issue by symmetrizing regularized OT [GeomLoss]



Semi-discrete Optimal Transport

Population density f



Semi-discrete Optimal Transport

Set of bakeries, factories, ...?



Semi-discrete Optimal Transport

No constrainton production: population go to their nearest bakery/factory/... regardless of population density



Semi-discrete Optimal Transport

Limited production: population go to the nearest bakery/factory with sufficient production!



Semi-discrete Optimal Transport

(needs for)
population here

quantity producec

Limited production: population go to the nearest bakery/factory with sufficient production!



Power diagram (Laguerre diagram)

* A partition s.t. each point x is assigned to its closest site x; with weight w;

lx —xlI2—w; < [x—x]|* —w, V)

Like a Voronoi diagram, but with weights {w,}




Semi-discrete Optimal Transport

* Goal: find a set of weights {w;} such that area(cell;) = mass;
* Dual formulation: {w;} are (opposite of) selling prices

* Intuition: “bakery i increases its selling price —w; until sufficiently
many clients leave, or decreases its selling price until sufficiently
many clients come”

* If everybody increase its price by same amount: no change



Semi-discrete Optimal Transport

» Easy way: gradient ascent:
* Compute power diagram of {x;} with weights {w;}
*w; «w; + 6.(&- — fxECe”l_du X)
* |terate

* Better way:
e Newton: second order minimization
e Requires Hessian (easy)

Area of cell |
= populationin this region

Mass of Diraci
= number of breads

* Generalizes to non quadratic costs .
produced by bakery i

* E.g., Apollonius diagrams for c(x,y) = ||x — yl|



Sliced Optimal Transport

* For discrete measures, consider 1-d projections

L [
T\
* Wsticea(1, v)* = de—1 W(Py (1), Pg(v))*d
* Monte Carlo estimation: 4, F(0)d6 ~ %Zk F(0) with 0, ~ US4 1)



Sliced Optimal Transport

* Not exactly like OT
e Can be used to compute barycenters by gradient descent (easy)

e Generalizes to continuous distributions
* Requires Radon transform

* Generalizes to point sets with different numbers of Diracs (harder)



Dynamical formulation

* Writing conservation PDE of a quantity f advected by vector field v

a—ft + div(f, v) =0

Forc(x,y) = llx —yll%, fo = fand f; = g, find v(x, t) minimizing:

man j lv(x, )% f:(x,t) dx dt

More complex solvers, generally for low-dimensional grids.



Other solvers

* Deep learning
 Compute embedding [Courty 2018] : computing barycenters and distances
* Learning barycenters [Lacombe 2022] : only barycenters
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Common uses of optimal transport

e As a distance between distributions

* In neural network or other fitting losses

* To best approximate a continuous distribution with discrete primitives (e.g.,
stippling), to fit surfaces to point clouds, for retrieval...

* As a way to match discrete distributions
* E.g., matching pixel colors

* As a way to interpolate between distributions
e To produce nice "warps" (e.g., BRDF highlights)
* As a way to enforce mass preservation

e E.g., for surface parameterization (area preserving maps), fluid simulation
(incompressibility), computational optics (redirecting light distributions)



Applications



Applications to Image Processing

2.

"anillustration of the mathematical theory of Monge's optimal transport applied to image processing'



Applications to Image Processing

* Image gray values as a distribution




Applications to Image Processing

Image retrieval

-

1) 0.00 2) 8.16 3) 12.23

. . —_—
4) 12.64 5) 13.82 6) 14.52 7) 14.70 8) 14.78
29020.jpg 29077.jpg 29005.jpg 29017.jpg 20003.jpg | 53062.jpg 29018.jpg 29019.jpg

* Features = Image colors in CIE-Lab [Rubner 2000] w |
* Clusteringin colorspace ' [ ' ] >
* Features = SIFT descriptors, shape contexts, spinimages [Ling 07] - 1 [ . .

i

* Improving solvers: o | | N |
* Unbalanced case [Pele 08] - | < ]

* Thresholdingground distances [Pele08,09] : "' .

« B

-
E [Rubner 2000]

[Rubner2000]



Applications to Image Processing
Color Grading

Input photo Target style



Input photo Target style



Input photo Target style




Input photo Target style



Applications to Image Processing
Color Grading

* Every Flavor of OT:
» Sliced OT [Pitié 05, Bonneel 15]
e Entropy regularized OT [Solomon 15]
e Simplexsolver on color clusters [Morovic 03, Bonneel 11, Rabin 15 ...]
* Gaussian distributions[Pitié 07]

e Color distribution in CIE-Lab = 1D OT for luminance, 2D for
chrominance [Bonneel 13, Solomon 15]

* Quantization artifacts [Rabin 10, Rabin 14, Chizat 18, Bonneel 19]

[Rabin 10]



Applications to Image Processing
Color Grading

- o |

i fralilisd ol
RIIFFERRY -

Photoshop Continuous
sliced OT
[Pitié 2007 b]

Gaussian OT Discrete
sliced OT

[Pitié 2007a}
[Bonneel 15]




Applications to Image Processing
Style Transfer

* Style = Gram matrix of the CNN features [Gatys 2016], matching done through OT
[Kolkin 19]

* Semi-discrete OT between synthesized patches and sample patches [Galerne 18],
with a multiscale approximation [Leclaire 21]

* Portrait relighting: OT between histograms of normals, positions, colors. (Monge

l

formulation)

B

fitted model

fitlled model

jiodsuea | -Ssepy A[0S
[Shu 17]

output




Applications to Image Processing

Image and Shape Interpolation

* Low-structure data (smoke, fluids)

[Haker 04]

p(0) = po p(1/4) p(1/2)

p(3/4)

[Hug 2015]



Applications to Image Processing

Image and Shape Interpolation

* Adding physics constraints [Hug 2015]
* Anisotropic force fields
* Penalization on the velocity

v ) R
Kip,m,v) = 5] [ || — po||? dx dL. B SN
0 Jo

R{v) = 5 Jy [[(Wst(t-) + (Vactr(t,))7) /2] 22 A

ar'J ""f:i; 2 .

AEN NN N P ?
i '”’ W 3 R = L:. T || Ry — Translation penalizatio Rigid penal
g i L*‘ U 1 |59 ¥, g
[eT0]
m@ %\ A\ A ™ S || £
§ _’;\:EE_I N 5, ‘“M;L’H e "-'i""?"r\-;}
] U \\) A = -
PO} = po pl178) pl3/8) p(172) P5/8) p(3/4) #(7/8) pl1}) = m

[Hug 2015]




Applications to Image Processing

Image and Shape Interpolation

e Constrain the barycenters to follow an image prior (GAN prior) [Simon 20]

MMJJ:J:J}

Pixel Space

(b) Was n barycenter:
‘ & é § j g j J ) S
= > . - = >
Latent Space o)
(a) Image #1 (c) GAN latent space linear interpolation (e) Image #2 o E
@ 'mage Manifold N

£8845 1 1]

(d) Ours — WBP with a GAN as an image prior

SSSSSSSSSS

FI

qeX, v

argmin (1 — a)W3(p1,q) + aW3i(p2. q)
Pa =
st. reM, r=q.



Applications to Image Processing

Image and Shape Interpolation

» OT is not efficient for general images, but can work for specific cases.

Used to illustrate OT algorithmes.

[Mérigot 11]




Applications to Image Processing

Texture synthesis

* Heeger-Bergen [1995]: steerable pyramid
coefficients, iterative synthesis by sub-band
matching using 1d OT.

* Tartavel [2016] replaces the matching with sliced OT.

* Spot Noise texture [Galerne 2018]

* Semi-discrete OT between 3x3 spot noise patches and
exemplar patches

* Aggregation by averaging SanEE e o PE
* [Leclaire 21]: faster approximation [Galerne 2018]




Applications to Image Processing

Texture synthesis

optim Lgw

[Heitz 21]

OT as a loss for Deep Learning texture synthesis
* Replace the Gram matrix loss with a sliced Wasserstein loss

between CNN features [Heitz 21]
* Semi-discrete OT between texture features synthesized by a

generator and target texture features [Houdard 22]

e OT for preprocessing textures
* Blending patch colors using Gaussian distribution blending

closed form formula. Ensure Gaussian distribution by
computing an OT (LP). [Heitz 18]

i sample of synthesized

latent distribution { =
ative model gy
. Un
ga(z) - A

texture gg(z)

distribution of images gaf({

current feature distribution

Lo
— (F;o ¢
po = ;k go)4¢

minimizing w.r.t.

target texture up

OTe(pap,v)

[Houdard 22]

target feature distribution

m
1 .
v=— E OF‘ (ua)
T ]
1=1




Applications to Image Processing

Natural images generation

* Generate images that look like an input set of images

* Generative Adversarial Networks (GAN): replace the Jensen-Shannon =

divergence with a Wasserstein-1 distance [Arjovsky 17]
* Discriminator becomes a Critic

Lwaan(G,C) = Eenps [C(2)] = Eonp,, ., [C ()]

e By weight clipping, optimal Cis such that :
Lwaan(G,C) =Wi(tres, ba)

* Avoidsvanishinggradientsand mode collapse

* Better training by replacing weight clipping with a gradient penalty
[Gulrajani 17]

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)

7. TR ool M-ﬂ

G No BN and a constant number of filters, D: DCGAN

No normallzatlon in elther GorD

Gated multlphcanve nonhn i
e

101-layer ResNet G and D

[Gulrajani17]



Applications to Image Processing

Natural images generation

* Wasserstein GAN with semi-discrete OT [Lei 19]

* G computes a transport map from latent space to data manifold

* D computes a Kantorovich potential '
* If the cost is strictly convex, G writes in closed form from optimal D g
— D :We(pe,v), pe

[Lei 2019]

* GAN now superseded by denoising diffusion models [Ho 2020]
* Bounds on the W1 distance between the output distribution and the target distribution [De Bortoli 22]

Generative modeling = synthesizing a distribution mimicking an input
discrete distribution. OT is a natural tool in this context.




Applications to Rendering

"a realisticillustration of the mathematical theory of Monge-Kantorovich's optimal mass transport applied to light transport
simulation for rendering"



Applications to Rendering

Image stippling & Monte Carlo sampling

* Image stippling
* Considers grayscale image = probability density function
* For artistic purpose, and for printing with black ink droplets
e Extends to colors

"BNOT" (Blue Noise Through Optimal Transport), [De Goes 2012]



Applications to Rendering

Image stippling & Monte Carlo sampling

* Monte Carlo sampling
 Numerical integral evaluation: ,
f(x;)

fﬂf(x)dx N e p(x;)

where x; follow law of probability density function p

* When p(x) = 1, converges faster when {x;}; are noti.i.d. but blue noise




Applications to Rendering

Image stippling & Monte Carlo sampling

* In both cases

* Problem =finding samples that approximate function best
* Typical approach Lloyd-like:

* Semi-discrete OT (exact, entropic or sliced)
e Center samples
* Repeat.

* Differences:
* Image stippling is 2-d, rendering n-d
* Image stippling: non-uniform density ; rendering: considers uniform case
e For rendering: may enforce uniformity in projections
* Image stippling: may interleave colors



Applications to Rendering

Image stippling & Monte Carlo sampling

ground truth ground truth random

e Stippling: generalization to curves [Lebrat 2019]



Applications to Rendering

Reflectance manipulation

* |Interpolating between different BRDFs
e 2 BRDFs [Bonneel 2009]

* n BRDFs [Solomon 2015]

* n car paint BTFs [Golla and Klein 2018]
(flakes interpolation)

* Densifying sparse BRDFs
* By interpolating between incident directions [Ward 2014]
* By projecting on dataset of dense BRDFs [Bonneel 2016]

* OT between BRDF degradations correlate with perception [Lavoué 2021]



Applications to Rendering

Computational optics and imaging

* Transporting light distribution to given target (mirrors or refractors)
* Semi-discrete OT with discretized flat light [Schwartzburg 2014]
* With obtained assignment, recover normal with Snell law
* Then, surface reconstruction from normals

X
X
X
X




Applications to Rendering

Computational optics and imaging

* Transporting light distribution to given target (mirrors or refractors)

* Linear program OT with paraboloid normals and target envmap [Andre 2015]
* Assumes a point light, and surface made of parabolas pointing towards it
* Goal: find parabola focal distances, spreading light differently towards each direction
« Uses c(x,y) = —log(1 — x.y) with incoming light direction x and paraboloid normal y

* Dual of OT linear program gives focal distances
\

5%\



Applications to Rendering

Computational optics and imaging

* Transporting light distribution to given target (mirrors or refractors)

* Semi-discrete OT for general problems [Meyron 2018]

» Refractor/reflector, near/far-field, collimated/punctual light source, concave/convex
surfaces... in the same framework

« Amount to standard semi-discrete OT with c(x,y) = ||x — y||?
(up to changes of variables)

Mirror R 2 areet Tieh
* Uses a set of parabolas .5 & \arget mght
. 7‘(‘{2&'\,1 ‘ :
: s R x {0}

Collimated source Collimated source

Mirror ‘R ﬂmght

0
Point source Point source



Applications to Geometry Processing

"a realisticillustration of the mathematical theory of Monge-Kantorovich's optimal mass transport applied to geometry processing'



Applications to Geometry Processing

Shape comparison and retrieval

e Shapes as a bag of descriptor
* Descriptor: Geodesic distances to a set of anchor points [Rabin 10]
* Sliced Wasserstein 2 as a distance metric between the descriptors.

(a) Articulated shapes dataset of [17]. Pairs of shapes from different classes. The
complete dataset is composed of 8 classes of 5 elements.

‘Ial Hﬂﬂﬂmmﬁﬁﬁﬁr

100 100 — 1D
—4D —
80 S 80 8
= o °
= S . .
é § < Sampling locations z; € § Histograms of {dq(xi,y) }yee
L 60 £ 60 ‘S
(=] Q L]
E j=)]
o 40 S 40 P_:a
< 2
<
20 —5 20
—4D
DD 10 20 30 40 00 20 40 60 80 100
Image Rank Average Recall

(b) Recall vs Image Rank. (c) Average Precision-Recall.

[Rabin 10]



Applications to Geometry Processing

Shape interpolation
O o6 8 %
2D or 3D shapes for which feature matching is impossible O 0 0 Q & &

Discretizing the volume as point sets+ sliced Wasserstein [Rabin 12]

* Pointssampledinthevolume

[Rabin 12]

Semi-discrete OT to interpolate between two tetrahedral meshes
[Lévy 15]

* Recoversa topology throughouttheinterpolation

Alternative to sampling: shapes = indicatorfunctions discretized on grids
(2d or 3d)

* Fastconvolutional Wasserstein Distances [Solomon 15]

[Solomon 15]

OT-based shape interpolation: well defined but still some topological
issues, mass may split, connected components appear and disappear.




Applications to Geometry Processing

Shape registration (point cloud to point cloud)

* Matchingpartial point clouds using sliced Optimal
Transportation [Bonneel 19]
* Injectivity is guaranteed

(a) Source. (b) Target. (¢) RobOT. (d) S-RobOT and target. (e) Deep features (source, target).

* |CPvariant

° E ntro py_regu | a ri zed un ba I an CEd o) pti ma I tra n spo rt [Sh en 2 1] (f) After pre-alignment, target. (g) After deep registration, target. (h) After fine-tuning, target.

buildingon [Chizat 18] [Shen 21]
OT, ,(A,B) = melﬂréNxM ZZ"“J sllpi — a5l30
i=1 j=
-+ (J'QKL(TFL'JHCE%‘ @[33.) + T KL(Zj?TZ,JHai) + T KL(Zgﬂthﬁj) .

v W
Entropic blur at scale o. 7 should match A. .. ...onto B.



Applications to Geometry Processing

Shape registration (point cloud to mesh)

e Semi-discrete Optimal Transport [Mérigot 18]
* Restricted power diagram on the mesh
*  Weights optimized by a damped Newton

* OT-ICP
* Dropstheassignmentstep and replace it by semi-discrete OT
* Each pointis assigned to the barycenter of its power cell
* Faster empirical convergence/far away poses

* Also for remeshing:
* Dual of the computed power diagram yields remeshing of the mesh. [Mérigot 2018]
* Allows to adapt locally the mesh density



Applications to Geometry Processing

Shape registration (mesh to mesh)

* Variance minimizing transport plan [Mandad17]

* Surfacediscretized as point sets
* Transport planthat minimizes the variance between the neighborhoods.

* Deep Shells [Eisenberger20b]
* Replaces matching step of Smooth Shells with entropy-regularized OT
* All steps become differentiable

Optimal transport for shape registration: needs
further constraintsor only used as a metric

Source

Smooth
Shells

[Mandad 17]

Deep
Shells



Applications to Geometry Processing

Shape reconstruction

* |dea: measure the distance between a mesh and a input point cloud, optimize the mesh to lower the OT cost
between mesh and pointcloud.

* 2D sketches [De Goes 11]

* Assignmentto nearest mesh simplex
* OTcostcomputed in closed form on edges

[De Goes 11]

* 3D surfaces [Digne 14]

* Local OT solve to approximate the global solve
* Mass can split

* Application also to sharp feature recovery

[Digne 14]



Applications to Geometry Processing

Shape Parameterization

Parameterization = Unfolding a mesh on a planar/spherical domain

* Conformal mapping preserves angles but large area distortion

* Area distortion of this parameterization= density/“L

i

 OT between’ andan uniform density

* Combination of conformal mapping+ OT map = area preservation mapping
* [Dominitz 09]: solved using a gradient flow

* [Zhao13]:solved using semi-discrete OT

* Used for OT-based shape retrieval [Lipman 09, 11, Su 15]: W2 between mapped domain to compare surfaces

[Zhao 13]



Applications to Geometry Processing

Transport on surfaces

Transportation of densities defined on non-euclidean domain l ) l

[Solomon 14] Variational formulation = look for a tangential vector field J
* Flow lines of J are geodesics on the surface

Projection on a spectral basis -> family of geodesic distances

Alternative: entropic regularization [Solomon 15]

Better: Dynamic formulation for quadratic costs [Lavenant 18]

< ) ~E— b

\ \ '
’ . - < ~
\ . t
’ E ‘ =
\ \ 1 (
[ 4 LS —
t=0 t=1/7 I =2/7 t=3[7 t=4/7 t=5/7 t =6/7 t=1

< r L N “\ \\‘

[Lavenant 18]

Two variants of
[Solomon 15]

[Lavenant 18]



Applications to Geometry Processing

Transport on surfaces

* Interpolation of Directional field [Solomon 19] :
e OT matches the vector field singularities Input: Frame 0

* Masses = classification of singularities
* Allows for negative mass N
L] LP Solver Frame 5/50 Frame 10/50

Frame 15/50

Frame 20/50

Frame 25/50

Frame 30/50 Frame 35/50

e Tensor-valueddistributions[Peyré 19]
* Quantumregularized optimization
* Modified Sinkhorn algorithm
* Interpolation of orientation field

\\\\\

$3%%

t=1/8 t=1/4 t=3/8

Frame 40/50

Frame 45/50

[Solomon 19]

[Peyré 19]



Application to simulation and animation

1

"a realisticillustration of the mathematical theory of Monge-Kantorovich's optimal mass transport applied to fluid simulation”



Applications to simulation and animation

Fluid simulation

* Incompressible Euler equations=flow under a volume preserving map
* Fluid at any state = warping of a uniform density under area preserving map

* Recoverincompressibility using optimal transport
* Particle-based approach: apply forces, advect, projection with OT

Projection with OT = Semi-discrete OTbetween particles and uniform density [Gallouét and Mérigot 2018]
Partial semi-discrete OTfor free boundary fluids [Lévy 2022]
Semi-discrete entropy-regularized transport [Qu 2022]

Move particles towards the barycenter of their cell




Applications to simulation and animation

Animation

Wasserstein barycenters (with Sinkhorn divergence) to interpolate between animation keyframes [Zhang 2022]

tvwowee

Linear program OT to interpolate between cloud keyframes [Webanck 2018]

Entropy-regularized barycenters to interpolate plant point clouds [Golla 2020]

(A

tiv1

* OT barycenters as a way to parameterized shapes for swimmers [Ma 2021]




Other popular applications

* Musicinterpretation
* Recovering notes from a spectrum [Flamary 16]
* Match pitches for smooth transition [Henderson 19]

* Cosmology

* Accurate baryon variations through semi-discrete OT [von Hausegger 22]

e Text retrieval and analysis
* Documentdistances (word distribution) using relaxed EMD [Kusner 15]

* MachinelLearning
* Semi-supervision [Solomon 14]/transfer learning [Courty 17]

* Genomics
* Unbalanced OT between gene signatures [Schiebinger 14], Gene mover's distance [Bellazzi 21]




Discussion & Conclusion

Many applications of OT in particular for interpolation
* May not preserve topology
* Not alwaysmeaningful (e.g., for direct image warping)

If input data # probability distribution
» How do we cast dataas a probability distribution?

Many results are superseded by Deep Learning
* But the optimizationtools are still useful even for ... Deep Learning

Remaining problem: scalability
* Many fast algorithms but still slow for millions of variable
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Questions?

a realisticillustration of the mathematical theory of Monge-Kantorovich's optimal mass transport applied to asking questions
by an audience
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