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Université Claude Bernard Lyon 1, LIRIS

Daniel Marx Professeur,
CISPA Helmholtz Center

Marie France Sagot Directrice de Recherche INRIA,
LBBE



Chapter 1

Introduction

Warm-up

As a researcher, we have only twice a total freedom on what to write: for the
PhD thesis and the habilitation. It is also an opportunity to make a short
break in our crazy life of researchers and ask ourselves: “why did I choose
to do that ? Are we happy with it ? What would I have done differently ?
What did I like the most in what I have done ?

In this manuscript, I have decided to focus on reconfiguration problems
and even more specifically on graph recoloring and reconfiguration of inde-
pendent sets. I have studied many other types of problems since I defended
my PhD thesis: distributed algorithms and graph certification, parameter-
ized algorithms, structural graph theory, economic game theory and many
other types of reconfiguration problems to name a few. But for a matter
of time devoted to the writing of this manuscript (and of coherence) I have
decided to focus more specifically on these two problems. I will nevertheless
briefly present some other reconfiguration problems in a final chapter of this
manuscript.

What to expect from this manuscript?

All the habilitations are different. Let me explain what this one is not:

• It is not a “stapler habilitation”. All the material included in this
manuscript is completely new1 except for a few pages corresponding
to an extension of a survey paper [48] we wrote together with Amer
Mouawad, Naomi Nishimura and Sebastian Siebertz. (It corresponds
to a part of Section 4.5 and Section 5.2.2).

• As I said, it is not an overview of all my research. I decided to exclu-
sively focus on one part of my research on which I spent an important

1Even if, I must confess, I sometimes a copy-pasted a few lines of some introductions
of papers of my own.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: A Rubik’s cube. (source Wikipedia)

part of my research time in these last 10 years.

• The manuscript does not include any detailed full proof of any of my
results. According to me, flooding reviewers with technical details is
not necessarily the best way to give a nice overview of my area of
research.

• This manuscript is not a non-technical document either. I have de-
cided to not fully include any (complicated) proof but have instead
prefered giving sketchs of the proofs of most of the results covered in
this manuscript (some of them are mine, some are not). Hopefully, the
reader interested in graph reconfiguration can extract from this thesis
some information on the classical proof techniques and ideas used in
this area. But that also permits me to give the scientific context of all
my results and explain which gain it gives to the community.

• I assumed that the reader is familiar with basic notions of graph theory.
More involved notions will be defined either in the Preliminary chapter
or when used in the manuscript. A non-specialist of structural or
algorithmic graph theory may find some parts a bit technical but I
tried to give motivations that go far beyond graph theory as much as
I could.

All these choices are personal and have affected the structure and the
content of this manuscript. I hope that you, as a reader, will like it and
could take home some information from it.

1.1 Examples of reconfiguration problems

Before formally defining what is a reconfiguration problem in Section 1.2,
let us first give some examples that illustrate the variety of these problems.

Puzzles.

When I was young, my brother used to play with Rubik’s cube (see Fig-
ure 1.1). In this game (called 1-player game or puzzle in the rest of the



CHAPTER 1. INTRODUCTION 3

Figure 1.2: Hanoi tower. (source Wikipedia)

manuscript to avoid confusion with all the other types of games studied
in computer science like economic game theory, combinatorial games, cops
and robber games, positional games for logic...etc...), we have a cube with
9 small colored squares in each face. In total there are 6 colors, appearing
9 exactly times. The goal consists in transforming a configuration of the
cube in the configuration where each face has exactly 9 squares of the same
color. The hardness of this puzzle comes from its combinatorics: despite its
reasonable size at first glance, there are 43, 252, 003, 274, 489, 860, 000 pos-
sible configurations in a Rubik’s cube ! To be honest, I never succeeded in
solving a Rubik’s cube. My brother used to solve it efficiently while I never
succeeded to finish it2.

I was not much better when I played the 15-puzzle (or “Taquin” in
french). In this game, the board is a 4 × 4-grid consisting of 15 parts of
a picture and an empty slot. The goal consists in moving the empty slot3

in order to reconstruct the picture. The rules of many other famous games
consist in trying to reach some desirable position starting from an arbitrary
initial configuration: Rush hour (where a car wants to escape a traffic jam),
Cache-Noisettes (where squirrels want to hide nuts).

One can wonder why my brother succeeded in solving the Rubik’s cube
while I didn’t. The answer is simple, he learned some generic methods that
permit to approach the target solution little by little. In a more mathemat-
ical language: he learned and applied efficiently an algorithm that allowed
him to reduce the symmetric difference between the current solution and the
target solution. What is difficult with these methods is that, in order to ap-
proach the target solution (and decrease the difference between the current
solution and the target solution), you might have to increase (temporarily)
the symmetric difference. In other words, you might have to temporarily
“destroy” your partial solution to build a better one. I learned, many years
later, that it is the main reason why reconfiguration problems are hard (but
also exciting).

Algorithms for Rubik’s cube are not that simple to describe. It is easier

2But I usually succeeded to finish one face, so, I turned it in the right direction so that
I could pretend to have succeeded.

3That is to permute in the representation the empty slot with a piece that is adjacent
to it.
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for the so-called Hanoi tower puzzle. In the Hanoi tower puzzle, we have
three rods and a number of disks of pairwise distinct diameters (see Fig-
ure 1.2). At each step, we can slide exactly one disk from a rod to another
one as long as we are not putting a disk of large diameter on a disk of small
diameter. Usually we are starting from a position where all the disks are
on the first rod and we want to move them on the last one. As for all the
other puzzles mentioned in this manuscript, its number of configurations is
exponential but there is a simple algorithm to solve it. Imagine that we
have n disks. Then we simply have to pretend that the larger disk does not
exist and move the n− 1 other disks on the second rod (which we can do by
induction). We then move the larger disk to the last rod and finally move
the n− 1 disks to the last rod.

Note that this algorithm provides a transformation whose length is expo-
nential in the number of disks. Indeed, the length ℓ(n) of the transformation
for n disks is 2ℓ(n − 1) + 1. So the length of an optimal transformation is
not always polynomial and then reconfiguration problems do not naturally
belong to NP. We will see that they “typically” belong to PSPACE which is
assumed to be a class that strictly contains NP. In other words, reconfigu-
ration problems are presumably much harder than “classical” optimization
problems. A second consequence is that, there does not necesarily exist a
polynomial (in terms of the size of the instance) transformation from an
initial to a target position.

Finally note that induction based proofs are standard in reconfiguration
and we will see many of them in this manuscript. They are unfortunately
often not optimal in general4. One of the goals of this manuscript is to
describe and survey algorithmic techniques developed for reconfiguration
problems.

Pancake flipping and sorting by reversals.

When I was young, I clearly preferred eating my mother’s crepes (which
are thin pancakes from French Brittany) rather than solving Rubik’s cubes.
Imagine that we have a pile of pancakes on a plate. Each of the pancakes
have a face that is more toasted than the other. As any reasonable person, we
would like to present the pile of pancakes to guests so that all the pancakes
have their toasted part below. Unfortunately, all the other plates are already
used or are in the dishwasher. So we have to flip pancakes, little by little,
using a spatula, as follows: we can put the spatula below a pancake and flip
all the pancakes above it upside-down. More mathematically, we can select
an integer i and return all the pancakes between the positions 1 and i in
such a way, after the flip, the j-th crepe is at position i− j and it has been
flipped. One can wonder: is it always possible to present all the pancakes

4It is optimal for Hanoi tower though.
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on their nicest side? If yes, how many steps are needed ? The answer to
the first question is positive. While it is possible to find some upper bounds
for the second question, the existence of a shortest transformation is not
always simple to find. Depending on models (there are slight variations on
the problem), deciding the existence of a transformation of length k is either
in P or NP-complete5.

This problem, which might seem artificial except if you like pancakes,
is heavily related to the so-called sorting by reversals problem which is of
importance in bio-informatics. In the problem we have two words of length
n on an alphabet Σ (typically 4 letters, A, T,C,G, corresponding to nu-
cleotides of the DNA) with the same number of occurrences of the different
letters. The goal is to transform the first into the second with the following
operation: at each step, we can select a prefix P of the word and reverse
this word. That is, if the word is PQ then we can transform it into PQ
in one step. (This operation that looks strange at first glance just means
that a portion of DNA glued the other part in the wrong direction which
sometimes happens in practice).

Computing this distance permits to evaluate the distance between genes.
Indeed, given two genes, one can wonder how many modifications have to
be performed in order to transform the first into the second. The less mod-
ifications are needed, the closest the species are. One of the possible modi-
fications during cell divisions is the one described above (even if, in reality,
the set of possible modifications of the DNA is indeed more complex).

Many problems in bio-informatics consists in trying to find a shortest
flipping sequence between combinatorial objects and sorting by reversal is
only one of these numerous examples.

Motion of robots and warehouse’s man problem.

Many problems in robotics can also be seen as reconfiguration problems. In
warehouses, there are more and more robots and the goal of these robots is to
move in order to perform some tasks. In other words, robots have an initial
position and want to reach a target position. When the factory is small and
the number of robots big, deciding the existence of such transformations is
complicated. And even when solutions exist, robots might have to move in
the wrong direction for some time in order to free some space for others (like
in Rush hour). Hearn and Demaine proved that deciding the existence of a
transformation between two configurations is PSPACE-complete even when
robots are of bounded size. The complexity study of this problem, called
the warehouse’s man problem, can be considered as the genesis of research
in algorithmic aspects of combinatorial reconfiguration.

5Note that the problem here belongs to NP. For many reconfiguration problems in
biology and discrete geometry, proving the existence of a polynomial transformation is
often simple, finding one of minimum length is the hard and exciting task.
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Note that this problem is slightly different from the problems already
described. Indeed, in all the previous problems above, the question was:
how can I find a transformation to my target position? How many steps
do I need? So in particular, we implicitly assume that the target configu-
ration can be reached6. For many reconfiguration problems considered in
this manuscript, the existence of a transformation is not guaranteed and
deciding it is often hard.

Flip distance between geometric objects.

Flipping between combinatorial objects in discrete geometry has been widely
studied for decades. As one of the (many other) objects, one can mention
Schnyder woods for triangulations of planar graphs which has been proven
to have many applications (for the representation of planar graphs) and
generalizations to larger surfaces.

Many other types of flips have been studied in the literature including
flip distance between triangulations (where studies focus on the diameter
of the configuration as long as trying to determine the length of a shortest
sequence), between non-crossing perfect matchings or non-crossing spanning
trees or quadrangulations.

1.2 Reconfiguration

In theory, solving a Rubik’s cube is incredibly simple. It suffices to rotate the
faces. The number of possible positions is bounded so, at some point, we will
reach the target position if it is possible. The hardness indeed comes from
the fact that the number of configurations of the Rubik’s cube is insane !
This is the first curse of reconfiguration: the reconfiguration rules are usually
simple, the instances are of small size, the problems we want to solve can
be formulated easily but the underlying structure is huge.

1.2.1 Configuration graphs

Let Π be a problem and I be an instance of Π (one can typically imagine
that we are given a Rubik’s cube). Let us also assume that we are given
a reconfiguration rule (that is a way to modify a solution into another, for
Rubik’s cube, it consists in a rotation of a face of the cube).

The configuration graph G(I) is the (meta)-graph whose vertex set con-
sists of all the solutions of I and there is an edge between two vertices S1, S2

if and only if it is possible to transform the first solution into the second in
one reconfiguration step. (For Rubik’s cube it corresponds to a face rota-

6which is not necessarily the case for Rubik’s cube for instance.
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tion)7. The diameter of the configuration graph is the maximum distance
between two vertices of the configuration graph (or +∞ if two vertices do
not belong to the same connected component).

As we have already seen for the Rubik’s cube, the main reason why
reconfiguration problems are difficult does not come from the problem by
themselves but from their size. Even if the initial objects are small, the
configuration is rapidly extremely large. We have already seen that for the
Rubik’s cube, the number of configurations is larger than several billions. If
we consider k-independent sets of a graph, we end up with a graph with pos-
sibly

(
n
k

)
vertices and the number of colorings of a graph can be exponential

in n.

1.2.2 Standard question in the reconfiguration field

Depending on the motivation of the underlying reconfiguration problem,
several types of problems have been studied in the literature:

• Reachability. Let I be an instance of a problem Π and R be a
reconfiguration rule and S1, S2 be two solutions of I. The goal is to
determine if there exists a transformation from S1 to S2 via a sequence
of reconfiguration steps keeping a solution all along the transformation.

If we see this problem from a configuration graph perspective, the
question becomes: does there exist a path from S1 to S2 in the config-
uration graph? This problem can be easily solved in graphs of decent
size using a simple BFS. However, since the size of configuration graphs
might be exponential in the size of the instance, computing such a BFS
might be too long. So we have to develop new techniques to find paths
without a complete exploration of the configuration graph.

• Connectivity. Let I be an instance of a problem Π and R be a recon-
figuration rule. The goal is to determine if, for every pair of solutions
S1, S2, there exists a transformation from S1 to S2 via a sequence of
reconfiguration steps keeping a solution all along the transformation.

From a configuration graph perspective, the question becomes: is the
configuration graph G(I) connected? Again, this question can be eas-
ily solved using a BFS when configuration graphs are of decent size.
So the hardness of this problem again comes from the fact that the
configuration may be very large.

Determining the connectivity of the configuration graph is, for in-
stance, interesting for random sampling. Indeed, one can try to sample
solutions as follows: we start from a solution we know and apply to

7Note that, all along the manuscript, reconfiguration steps can be undone meaning
that the configuration graph is an undirected graph.
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it iteratively a random small modification until we sample a solution
almost at random. In other words, we perform a random walk in the
configuration graph starting from a prescribed initial solution. To be
sure that all the solutions can be sampled, we need to be sure that
we can reach all the solutions from the initial prescribed solution, in
other words, when the configuration graph is connected.

More generally, the connectivity of the configuration graph is heavily
related to the mixing time of the underlying Markov chain (the more
connected the configuration graph is the faster the Markov chain con-
verges to its stationnary distribution).

• Diameter. Let I be an instance of a problem Π and R be a recon-
figuration rule which ensures that G(I) is connected. The goal is to
determine the diameter of G(I). Again, using a classical approach (like
computing all pairs of shortest paths), we can compute the diameter
in polynomial time in |G(I)|. So again, the hardness of the problem
is due to the size of the configuration graph. An important line of
research consists in determining if the diameter is polynomial (or even
linear) in |I| and does not depend on the size of G(I).
Such questions naturally arise in bioinformatics (genomic distance,
sorting by reversals, flip distance between phylogenetic trees...etc...),
discrete geometry (flip distance between triangulations or trees) or in
combinatorial optimization. For instance, the famous Hirsch conjec-
ture (now refuted) stating that the diameter of a polytope with n faces
in a d-dimensional Euclidean space has diameter at most n − d, can
be rephrased as a reconfiguration problem.

• Algorithmic aspects of reconfiguration. The community work-
ing in reconfiguration is interested in both purely theoretical results
(motivated by applications in random sampling) but also in more al-
gorithmic results (motivated for instance for applications in puzzles or
bio-informatics).

Algorithmically, reconfiguration problems are usually much harder
than their optimization counterparts. We will, for instance, see that
while the existence of an independent set of size at least k is in
NP, finding a transformation between two independent sets of size
k is PSPACE-complete. Many reconfiguration problems considered in
this manuscript are actually PSPACE-complete. Some reconfigura-
tion problems however lie in simpler graph classes (pancake flippings,
flips between triangulations...etc...). But these problems are usually
simpler since one can usually easily show that a transformation exists
and we simply want to determine a shortest transformation (whose
length is often known to be polynomial with simple arguments). How-
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ever these problems are hard and designing efficient approximation
algorithms is very challenging.

What, according to me, makes reconfiguration problems algorithmi-
cally interesting is that most of the classical techniques developed in
the last decades do not naturally generalize to reconfiguration prob-
lems. It is for instance, very complicated to design dynamic pro-
gramming algorithms for reconfiguration problems which makes trees
or bounded treewidth graphs already challenging and exciting graph
classes to study (we will discuss further this point in Chapter 4).

1.2.3 Relations with other fields of research

Random sampling and Markov chains.

A Markov chain or Markov process is a stochastic model describing a se-
quence of possible events in which the probability of each event only depends
on the current state and not on the previous ones. In other words, it is a
memoryless process where the future does not depend on history but only
on the current state. There are many ways to see a finite discrete Markov
chain. When I imagine one, I usually imagine a graph. A graph G is a pair
(V,E) consisting of a set of points V called vertices and where E consists
of pairs of elements of V called edges.

A Markov chain with finitely many states simply is a directed graph
D = (V,E) (that is we put a direction on edges, i.e. pairs of elements of
V are oriented), possibly with self loops. The arcs are given a non-negative
weight corresponding to a probability distribution on the arcs. In other
words, for all the vertices v of D, the sum of the weights of the arcs leaving
v equals one. That gives, when we are in some configuration, a distribution
of probabilities on what will be the next position.

Markov chains are widely studied in mathematics and have many ap-
plications, for instance for random sampling. When one wants to sample
a solution at random of a problem one can do it naturally using a Markov
chain. To do so, we define an adjacency relation between solutions and sim-
ply perform a random walk using this adjacency relation. In other words, we
simply perform a random walk in the configuration graph of the solutions.

The two mains questions studied in the random sampling community are
the following:

• Is the Markov chain ergodic ? Which can be restated in terms of
graphs as: is the configuration graph connected 8?

• What is the mixing time of the Markov chain? That is, how much
time do we have to wait to be sure that a solution is sampled almost

8To be ergodic, we need slightly more than the connectivity of the configuration graph
but since we usually consider lazy Markov chains the two notions are equivalent.
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at random. This question is, for instance, related to the diameter and
the connectivity of the configuration graph.

Enumeration problems.

In the last decades, a line of research has been devoted to enumerate at ran-
dom or count the solutions of a problem (motivated for instance by problems
for cheminformatics or database theory). Let us mention that some methods
related with configuration graphs. Assume that one can prove that the con-
figuration graph of the solutions of a problem are connected. Then, in order
to generate all the solutions, one simply has to explore the configuration
graph, using a BFS or a DFS.

Using a small trick9, one can prove that, if the degree of the configuration
graph is polynomial, one can enumerate all the solutions with a polynomial
delay (that is there is a polynomial delay between the enumeration of two
consecutive solutions). Unfortunately such enumeration algorithms have an
important drawback: they might need an exponential space. Indeed, when
one performs a BFS/DFS in a graph, we need a polynomial space in the size
of the input graph. Since the configuration graph may have exponential size,
this implies an exponential running time. Finding enumeration algorithms
which only need a polynomial space is usually a challenging problem. One
of the methods used to do so consists in finding an (implicit) ordering of
the solutions which permits to know, when we explore an edge of the con-
figuration graph, if the configuration we reach has already been explored or
not.

Correction of databases and re-optimization.

Another related field, slightly further from reconfiguration though, is re-
optimization or correction of databases. In this setting, we are given a
database with errors or an outdated solution of a problem. And the goal is
to reach a correct database or an updated optimal solution in the minimum
number of steps.

While these problems seem very close at first glance, the techniques are
quite different since, in these problems, we do not need to keep a solution all
along the transformation but simply reach one of them. In other words, we
can travel in a “supergraph” of the configuration graphs, making these prob-
lems easier (from a computational perspective). Note that in recent years,
some researchers studied optimization reconfiguration problems, whose goal
is to find, given a solution S, the best (for some optimisation function)
solution in the connected component of S in the configuration graph.

9The trick consists in outputting the solutions of even layers when we go down on the
tree and vertices of odd layers when we go up.
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1.3 Brief overview of the manuscript

Existing surveys on combinatorial reconfiguration and difference
with them.

In this manuscript, we will survey results and proof techniques in graph
recoloring and independent set reconfiguration. In the past 15 years, several
works already summarize results in combinatorial reconfiguration. A first
survey, written by Jan van den Heuvel, surveys in particular (but not only),
existing results on graph recoloring very nicely [131]. But most of the results
I will mention in this manuscript are more recent that the ones covered in
this survey, which proves the important vitality of this research field in the
last 15 years.

A second survey was written in 2017 by Naomi Nishimura [119] who
proposed an excellent survey summarizing all the results on combinatorial
reconfiguration at that time. This survey is the bible for whoever wants
to know if a problem has already been studied in the past. The important
width of this survey comes with a choice of not going too deep in proof
technique descriptions. That is why I have decided to focus on a subset
of reconfiguration problems to present in more detail techniques used in
reconfiguration.

I wrote in 2022 [48] a survey with Naomi Nishimura, Amer Mouawad and
Sebastian Siebertz which focuses on parameterized aspects of dominating set
and independent set reconfiguration. This manuscript has the same flavor
but is more general (and then much longer).

Introductions to reconfiguration are proposed in many PhD thesis, in-
cluding the ones of my former PhD students (I was very lucky to co-advise)
Marc Heinrich [91], Alice Joffard [100] and Valentin Bartier [3]. In my habil-
itation, I will cover a material of a wider range and describe proof techniques
with more details. However I will sometimes refer to their PhD for some
specific problems.

Let us now quickly describe the content of the three main chapters of
this manuscript.

1.3.1 Graph recoloring

The first part of the manuscript will be devoted to graph recoloring. Let
G = (V,E) be a graph. A (proper) k-coloring10 α of G is a function α from V
to {1, . . . , k} such that, for every pair of adjacent vertices u, v, α(u) ̸= α(v).

Two types of adjacencies between colorings have been studied: single
vertex recolorings and Kempe-recolorings. In what follows, we will almost
exclusively study the first one. Two colorings α, β are adjacent if they differ

10Unless otherwise stated, all the colorings will be proper and we will omit the proper
for brevity.
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on exactly one vertex. The configuration graph G(G, k) admits as vertices
all the proper k-colorings with the adjacency described above.

In this chapter we will mainly cover three topics that received a consid-
erable attention:

1. What is the evolution of G(G, k) when k is a function of the degeneracy
of the graph? This line of research, initiated by Cereceda during his
PhD thesis, has attracted a lot of attention, not only in general but in
restricted graph classes such as planar graphs.

2. What is the evolution of G(G, k) when k is a function of the maxi-
mum degree of the graph? This question, motivated by problems from
random sampling, has also been studied quite a lot.

3. Algorithmic aspects of graph recoloring. Deciding the reachability
problem is known to be PSPACE-complete and deciding this problem
on restricted graph classes has been widely studied.

We will also survey some results on distributed recoloring, a recent topic
of research. I will explain the links between distributed recoloring and lo-
cality in reconfiguration, which is, according to me, an important research
direction to prove linear upper bounds on the diameter of configuration
graphs.

We will complete this chapter by having a quick look at two related
problems: reconfiguration via Kempe changes and graph homomorphisms
reconfiguration (a coloring being a particular case of graph homomorphism).
And we will finally provide a last but nice application of graph recoloring
due to Wrochna.

1.3.2 Independent Set Reconfiguration

The second main chapter of this manuscript will be devoted to the study
of independent set reconfiguration. An independent set (seen as a set of
tokens) is a subset of vertices which are pairwise non-adjacent. We will
mainly focus on the differences between the two models of independent set
reconfiguration, namely Token Sliding and Token Jumping.

In the Token Jumping model, we can change a vertex of the independent
set into any possible other vertex while in the Token Sliding model we can
only move a token along an edge of the graph. We will in particular see
that:

1. These two problems behave completely differently even on restricted
graph classes such as chordal graphs on which one problem is trivial
while the other is PSPACE-complete (and designing polynomial time
algorithms on restricted subclasses is highly non-trivial).
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2. They also behave differently from a parameterized point of view. While
for the Token Jumping model, the behavior of the Independent Set
Reconfiguration (ISR) is quite well understood for sparse graph classes,
we will see that it is not the case for Token Sliding (and we will explain
the first existing results towards this direction).

3. We will finally mention some results related to the diameter of the con-
figuration graph at the end of the chapter, a topic that -surprisingly-
did not receive a lot of attention for ISR so far.

1.3.3 Other reconfiguration problems

We will complete this manuscript with a short chapter on two other recon-
figuration problems: dominating set reconfiguration and matroid reconfigu-
ration. I mention them for two different reasons: the first one because it has
also been widely studied and I would like to give the reader a rapid overview
of what is known as well as interesting questions. The second, matroids, are
deeply related to reconfiguration problems and many questions related to
generalizations of matroids reconfiguration are widely open and, I think,
very exciting.

We will conclude this manuscript with a couple of research directions
for the future. (Note moreover that many open problems and questions are
included all along the manuscript and will not be repeated in the conclu-
sion).



Chapter 2

Preliminaries

2.1 Introduction to Graph Theory

2.1.1 Graphs

We assume that each graph G is finite, simple, and undirected. We let V (G)
and E(G) denote the vertex set and edge set of G, respectively. The open
neighborhood of a vertex v is denoted by NG(v) = {u | (u, v) ∈ E(G)}
and the closed neighborhood by NG[v] = NG(v) ∪ {v}. For a set of vertices
Q ⊆ V (G), we define NG(Q) =

⋃
v∈QNG(v) \Q and NG[Q] = NG(Q) ∪Q.

The subgraph of G induced by Q is denoted by G[Q], where G[Q] has vertex
set Q and edge set {(u, v) ∈ E(G) | u, v ∈ Q}. We let G−Q = G[V (G)\Q].

A walk of length ℓ from v0 to vℓ in G is a vertex sequence v0, . . . , vℓ, such
that for all i ∈ {0, . . . , ℓ − 1}, (vi, vi+1) ∈ E(G). It is a path if all vertices
are distinct. It is a cycle if ℓ ≥ 3, v0 = vℓ, and v0, . . . , vℓ−1 is a path. For
a pair of vertices u and v in V (G), by distG(u, v) we denote the distance
between u and v in G (which is the length of a shortest path between u and
v measured in number of edges and set to ∞ if u and v belong to different
connected components). The girth of G, girth(G), is the length of a shortest
cycle contained in G. The girth of an acyclic graph (i.e. a forest) is defined
to be infinite.

A class C of graphs is monotone if it is closed under taking subgraphs,
i.e., if G ∈ C and H ⊆ G, then also H ∈ C. It is hereditary if it is closed
under taking induced subgraphs. We do not distinguish between isomorphic
graphs.

For A,B ⊆ V (G) we write E(A,B) for the set of edges with one end-
point in A and one endpoint in B. For disjoint subsets A,B of V (G), we
write G[A,B] for the subgraph of G semi-induced by A and B, that is, the
subgraph with vertex set A ∪ B and all the edges with one endpoint in A
and one endpoint in B. A bipartite graph H is a semi-induced subgraph of
G if H = G[A,B] for some disjoint subsets A and B of V (G). Let H be a
bipartite graph with vertices a1, . . . , an (in one part) and b1, . . . , bn (in the

14
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other part). Then H is:

• a biclique Kn,n, of size n if we have (ai, bj) ∈ E(H) for all i, j ∈ [n],

• a co-matching of size n if we have (ai, bj) ∈ E(H) ⇐⇒ i ̸= j for all
i, j ∈ [n],

• a ladder of size n if {ai, bj} ∈ E(H) ⇐⇒ i ≤ j for all i, j ∈ [n], and

• a semi-ladder of size n if {ai, bj} ∈ E(H) for all i, j ∈ [n] with i > j,
and {ai, bi} ̸∈ E(H) for all i ∈ [n].

The biclique index, co-matching index, ladder index, or semi-ladder index
of a graph G is the largest n such that G contains a biclique, co-matching,
ladder, or semi-ladder of size n as a semi-induced subgraph, respectively. A
clique of size n, denote byKn, is a set of n pairwise adjacent vertices. A class
of graphs is biclique free, co-matching free, ladder free, or semi-ladder free
if the supremum of the biclique indices, co-matching indices, ladder indices,
or semi-ladder indices of its members is finite, respectively.

A hypergraph is a pair (V,E) where V is a set of vertices and E is a set of
subsets of V called hyperedges. Let H = (V,E) be a hypergraph. A set X of
vertices of H is shattered if for every subset Y of X there exists a hyperedge
e such that e ∩ X = Y . An intersection between X and a hyperedge e of
E is called a trace (on X). Equivalently, a set X is shattered if all its 2|X|

traces exist (in H). The Vapnik-Chervonenkis dimension (VC-dimension,
for short) of a hypergraph is the maximum size of a shattered set.

Let G = (V,E) be a graph. The closed neighborhood hypergraph of G is
the hypergraph with vertex set V (G) and where X ⊆ V (G) is a hyperedge
if and only if X = N [v] for some vertex v ∈ V . The VC-dimension of a
graph is the VC-dimension of its closed neighborhood hypergraph. The VC-
dimension of a class of graphs C is the maximum VC-dimension of a graph
of C.

For a graph G and a set X ⊆ V (G), we often partition the vertices of
V (G)\X into what we call X-projection classes (we write projection classes
when X is clear from context). That is, all vertices u, v ∈ V (G) \X of one
class satisfy N(u)∩X = N(v)∩X. For Y ⊆ X, we let CY denote the set of
vertices of V (G) \X whose neighborhood in X is exactly Y .

2.1.2 Width of graphs

We will define most of the classical graph classes on the fly in the manuscript
when we see them for the first time. We however want to discuss some width
graph parameters. The most classical width on graph is indeed treewidth.

Let G = (V,E) be a graph. A tree decomposition T of G is a tree together
with an assignment function such that:

• We associate to every vertex u of G a non-empty subtree Tu of T and,
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• For every edge e = (u, v) the subtrees Tu and Tv intersect.

One can define equivalently a tree decomposition as a pair (T,B) such that:

• For every node1 u of T , B(u) is a subset of vertices of G called the bag
of u,

• For every edge vw ∈ E, there exists at least one node u such that both
v and w are in B(u) and,

• For every vertex v ∈ V , the set of nodes Tv containing v in their bags
is a subtree of T .

The width of a tree-decomposition is the maximum size of a bag minus
one. The treewidth of a graph G, denoted by tw(G) is the minimum width
of a tree-decomposition of G. One can easily remark that forests are exactly
graphs of treewidth at most 1. Graphs of treewidth at most 2 are series-
parallel graphs, and contain important classes such as outerplanar graphs.
The pathwidth of G, denoted by pw(G), is defined similarly except that
the tree T has to be a path. We call such a tree-decomposition a path
decomposition. One can easily remark that the pathwidth of a graph G is
at least the treewidth of G and that the two parameters are not necessarily
comparable. Indeed, a complete binary tree for instance has treewidth one
but arbitrarily large pathwidth. A graph has bandwidth at most k if there
exists an ordering v1, . . . , vn of G such that, for every i, all the neighbors of
vi in G are included in {vi−k, . . . , vi+k}. It is an easy exercise to prove that
a graph of bounded bandwidth has bounded pathwidth.

When we observe leaves of the tree T , one can remark that either their
bag is included in the bag of their parent (and the node can be removed
while still giving a tree decomposition of T ) or there exists a vertex that
only belongs to that bag. This ensures that every graph of treewidth at
most r has a vertex of degree at most r (actually we can even prove that
the graph is r-degenerate).

A chordal graph is a graph G that admits a tree-decomposition such that
all the bags induce cliques. In other words, it is the intersection graph of
subtrees of a tree. This tree decomposition is called a clique tree of G. Note
that the above remark together with the fact that bags induce cliques ensures
that all the chordal graphs contain simplicial vertices, that is, vertices whose
neighborhood is a clique. Indeed, one can easily prove that all the vertices
that only appear in bags of leaves of the clique tree are simplicial.

It is well known that chordal graphs are perfect. A graph is perfect if
all its induced subgraphs satisfy χ(G) = ω(G). Equivalently, it has been
proven that a graph is perfect if it does not contain any induced odd cycle
of length at least 5 nor its complement. There is a natural relation between
chordal graphs and graphs of bounded treewidth which is the following:

1To avoid confusion, we will call nodes the vertices of the tree.
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Bounded degree

Bounded treewidth

Bounded cliquewidth

Bounded twinwidth

Chordal of bounded clique numberPlanar

Bounded genus

H-minor free

H-topological-minor free

Bounded expansion

Nowhere denseBounded degeneracy

Biclique free

Semi-ladder free

Figure 2.1: Inclusion diagram of several graph classes mentioned all along
the manuscript. Arrows indicate inclusion.

Remark 1. For every graph G of treewidth t, there exists a chordal graph
H which is a supergraph of G and which has clique number at most t+ 1.

The same relation holds between bounded pathwidth graphs and interval
graphs. In some sense, chordal graphs can be seen as completion of bounded
treewidth graphs. This completion is often easier to manipulate since the
structure of a bag in a chordal graph is a clique.

Hierarchy of graph classes Let us simply give the hierarchy of graph
classes of Figure 2.1. We will not define them all here but they will be useful
in the rest of the manuscript. The reader interested in the difference between
these graph classes can refer to this figure while reading the manuscript.

2.2 Markov chains

Let us give some basic definitions on finite Markov chains. The reader
interested in Markov chains can refer to the numerous books or lecture
notes dealing with the topic online. Some definitions will not be completely
formal or not as general as what they can be. It is done on purpose in order
to (try to) find the best balance between intuition and full generality. Let
us first define the Markov chains before explaining how they can be used to
sample solutions of a problem.

Markov chains. The configuration graph (or transition matrix ) of a finite
discrete Markov chain is a directed graph G = (V,E) with possible loops
together with a weight function ω on the arcs such that, for every vertex v,∑

w s.t. vw∈E ω(vw) = 1. In other words, for every vertex, the arcs leaving v
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define a probability distribution over the set of vertices of the graph. The
vertices of G are called the configurations2 of G.

A Markov chain3 is lazy if ω(vv) > 0 for some v. A Markov chain is said
to be irreducible if the graph G is strongly connected. A Markov chain is
said to be aperiodic if the least common divisor of all the closed walks of
the graph G is 1. From a graph point of view it means for instance that
the graph is not bipartite (graphs for which all the cycles have length 0
modulo 2) but more generally it does not belong to the class where all the
cycles have length 0 mod k. Note that if the chain is lazy then it is indeed
aperiodic since, if we are given a cycle of length r we can easily construct
closed walks of length of length r + ℓ for any integer ℓ ≥ 0. A chain that is
both irreducible and aperiodic is said to be ergodic.

A Markov chain with initial state4 v ∈ V is a sequence of vertices
v1, . . . , vr on G such that, at every step, vi+1 is chosen with probability
ω(vivi+1). In other words, a Markov chain is a random walk in the con-
figuration graph. More formally, a Markov chain with initial vertex v is a
stochastic process (i.e. a sequence of random variables x1, . . . , xr) such that:

• x1 = v

• P(xi+1 = wi+1|xi = wi, xi−1 = wi−1, . . . , x1 = v1) = P(xi+1 =
wi+1|xi = wi) = ω(wiwi+1)

The first point of the definition ensures that we are starting from v
while the second point ensures that the next step of the Markov chain only
depends on the last vertex of the path already visited in the configuration
graph.

In the rest of the manuscript, our configuration graph will have the ad-
ditional property that for every pair of vertices u, v, ω(u → v) = ω(v → u).
Such configuration graphs are called reversible. In particular, if the config-
uration graph is reversible, the graph G actually is an undirected graph.

Let M be a Markov chain with a set of states V . Let ν be a distribution
on V . We say that ν is stationary if, starting with probability distribution
ν on V we end up on ν after applying one step of the Markov chain. In
other words, Mν = ν. A stationary distribution is then a fixed point of
the Markov chain. One of the main results in Markov chain theory is the
following:

Theorem 2. Every ergodic Markov chain converges to its unique stationary
distribution.

2It is often called the set of states for general Markov chains.
3It is actually the configuration graph of the Markov chain, but by abuse of notation

we say that a Markov chain has some property if its configuration graph has it.
4We can more generally start from an arbitrary distribution over the configurations,

but we will only start from a single configuration in the rest of the manuscript.
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The uniform distribution is the distribution ν where ν(v) = ν(w) for
every pair v, w ∈ V with v ̸= w. In other words, ν(v) = 1/|V | for every v.
One can moreover easily remark that the following holds:

Remark 3. If the configuration graph is reversible then the uniform distri-
bution is a stationary distribution.

Note that if we have a full access to the graph G then it is indeed simple
to check that all the properties of the Markov chain we previously mentioned
indeed holds. We can also find the stationary distribution using basic linear
algebra methods since, if we see G as a transition matrix, we simply have to
solve the equation Gx = G, where x is a vector of length |V |. Unfortunately
in many practical cases, we cannot directly perform this computation for two
reasons: (i) either we only have stochastic information about the transition
matrix or, (ii) the graph G is actually too large to be computed and stored.
The cases we will need to cover actually lie in the second case since the graph
G will be actually exponential in the size of our initial instance in most of
the cases. In order to explain why, let us illustrate the random sampling
algorithm using Markov chains on graph colorings.

Mixing time We will not formally define the mixing time of a Markov
chain to avoid cumbersome notations. However, informally speaking, the
mixing time of the Markov chain is the number of steps needed to ensure
that, if we start from an arbitrary distribution, we are close to the stationary
distribution. In other words, the mixing time gives the speed of convergence
of the chain towards the stationary distribution. Usually, the faster, the
better since we want to sample a solution (almost) at random as fast as
possible.

2.3 Parameterized complexity

We assume here that classical complexity classes (P, NP, PSPACE, L and
NL) are known and do not define them. The interested reader can refer to
any book or advanced complexity course to get the definition of these classes
(and more).

A problem is fixed-parameter tractable, FPT for short, on a class C of
graphs with respect to a parameter k, if there is an algorithm deciding
whether a given graph G ∈ C admits a solution of size k in time f(k)·|V (G)|c,
for a computable function f and constant c. A kernelization algorithm is
a polynomial-time algorithm that reduces an input instance to an equiv-
alent instance of size bounded in the parameter only (independent of the
input graph size), known as a kernel; we will say that two instances are
equivalent if they are both yes-instances or both no-instances. Every fixed-
parameter tractable problem admits a kernel, however, possibly of exponen-
tial or worse size. For efficient algorithms it is therefore most desirable to
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obtain polynomial, or even linear, kernels. The W-hierarchy is a collection of
parameterized complexity classes FPT ⊆ W[1] ⊆ . . . ⊆ W[t]. The conjecture
FPT ⊊ W[1] can be seen as the analogue of the conjecture that P ⊊ NP.
Therefore, showing hardness in the parameterized setting is usually accom-
plished by establishing an FPT-reduction from a W[i]-hard problem for some
i. We refer to the textbook [61] for extensive background on parameterized
complexity.

Hence, for a reconfiguration problem, a kernelization algorithm is a
polynomial-time algorithm that transforms every input instance (G, k, Ss, St)
into an instance (G′, k′, S′

s, S
′
t) with |G′|+k′ ≤ f(k) for some function f and

such that (G, k, Ss, St) is a yes-instance if and only if (G′, k′, S′
s, S

′
t) is a yes-

instance. On the reduced instance (G′, k′, S′
s, S

′
t) one can then run a brute-

force algorithm to decide whether the initial instance was a yes-instance.

2.4 Distributed algorithms

Let us first introduce the LOCAL model of distributed computing, which is
one of the most studied models in distributed algorithms. This model has
been introduced by Linial [110].

Contrary to centralized algorithms where a central entity performs all the
computations, in the distributed setting, the nodes perform the computation
but only have access to partial information and must make a choice with that
information. We consider a graph G (often called network in that setting)
whose vertices have unbounded computational power, and whose edges are
communication links between the corresponding vertices. We are given a
combinatorial problem that we need to solve in the graph G. In the case of
deterministic algorithms, each vertex of G starts with an arbitrary identifier
(an integer between 1 and nc, for some constant c ≥ 1). The vertices then
exchange messages (of unbounded size) with their neighbors in synchronous
rounds, and after a fixed number of rounds (the round complexity of the
algorithm), each vertex outputs its local “part” of the global solution of
the problem. This could for instance be the color of the vertex in a proper
k-coloring. In Locally Checkable Labeling (LCL) problems, this output has
to be of constant size, and should be checkable locally, in the sense that the
solution is correct globally if and only if it is correct in all neighborhoods of
some (constant) radius. LCL problems include problems like k-coloring (with
constant k), or maximal independent set, but not maximum independent set
(for instance), and are central in the field of distributed algorithms.

It turns out that with the assumption that messages have unbounded
size, vertices can just send to their neighbors at each round all the informa-
tion that they have received so far, and in t rounds each vertex v “knows”
its neighborhood Bt(v) at distance t (the set of all vertices at distance at
most t from v). More specifically v knows the labeled subgraph of G induced
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by Bt(v) (where the labels are the identifiers of the vertices), and nothing
more, and the output of v is based solely on this information.

Usually the goal is to minimize the round complexity. Since in t rounds
each vertex sees its neighborhood at distance t, after a number rounds equal
to the diameter of G, each vertex sees the entire graph. Since each vertex
has unbounded computational power, a distinguished vertex (the vertex
with the smallest identifier, say) can compute an optimal solution of the
problem and communicate this solution to all the vertices of the graph.
This shows that any problem can be solved in a number of rounds equal to
the diameter of the graph, which is at most n when G is connected. The
goal is to obtain algorithms that are significantly more efficient, i.e. of round
complexity O(log n), or even O(log∗ n), where log∗ n is the number of times
we have to iterate the logarithm, starting with n, to reach a value in (0, 1].



Chapter 3

Graph Recoloring

The goal of this chapter is to overview (most of) the existing results on
graph recoloring proven in the past twenty years and highlight some of my
results. My goal is to try to give an idea of what has been done and how
and which challenges still remain. I will sketch the proof techniques of most
of the results in order to give to the reader an idea of the methods that are
usually used to tackle the problems in the community. This will allow me
to explain my contributions with respect to the state of the art at the time
of the publication.

3.1 Recoloring and palette size

In this chapter, we will mainly focus on graph recoloring via single vertex
recolorings. More general reconfiguration steps have also been studied. We
will briefly survey recolorings with Kempe changes in Section 3.8.1 or dis-
tributed recoloring in Section 3.5. However, in the remainder of this chapter,
unless otherwise specified, we will assume that one vertex is recolored at each
step.

For completeness, let us recall some definitions given in Chapter 1. Let
k be an integer and G be a graph. Two k-colorings are said to be adjacent if
they differ on exactly one vertex. Given two k-colorings α, β of G (referred
to as the source and target colorings), a recoloring sequence between α and β
consists in changing the color of one vertex at a time, transforming the source
coloring α into the target coloring β, with the property that the coloring is
proper at every step. In other words, a recoloring sequence between α and
β is a sequence of adjacent (proper) colorings starting on α and ending on
β where consecutive colorings differ on exactly one vertex.

Given a graph G and an integer k, the three classic questions considered
in recoloring are:

Question 4 (Connectivity). Is it possible to find a recoloring sequence be-
tween any pair of k-colorings of G?

22
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The decision associated problem will be defined as follows:

k-Mixing
Input: A graph G.
Output: YES iff there exists a recoloring sequence between any pair of
k-colorings of G (i.e. is G(G, k) connected?).

Question 5 (Diameter). When it is possible, how many steps are needed to
ensure the existence of a transformation?

Question 6 (Reachability). Let α, β be two k-colorings of G. Is it possible
to transform α into β?

Note that Question 6 is only interesting when the answer to Question 4
is negative. On the contrary, Question 5 only makes sense when the answer
to Question 4 is positive (or we should restrict to pairs of colorings between
which a transformation exists).

We can restate these questions from an alternative point of view using
the configuration graph. Recall that the k-configuration graph G(G, k) of
G has a vertex for each (proper) k-coloring of G, and an edge between
every pair of k-colorings that differ on exactly one vertex of G. Finding a
recoloring sequence between two colorings α and β is equivalent to finding
a path in G(G, k) between α and β. Such a path is called a reconfiguration
sequence from α to β. The k-recoloring diameter, denoted by diam(G, k), is
the diameter of G(G, k) 1. With this point of view, Question 4 becomes: is
G(G, k) connected? And Question 5 becomes: what is diam(G, k)?

We can define similarly the configuration graph of list colorings. Even
if it will not be the main topic of interest in this chapter, in several proofs,
we will need to consider list coloring versions. Let G be a graph and L be a
function that assigns to each vertex v a subset of integers Lv. A list coloring
α of (G,L) is a proper coloring of G such that α(v) ∈ Lv for every v. Two
proper list-colorings are adjacent if they differ on exactly one vertex. As for
standard coloring, the list-configuration graph G(G,L) of G has a vertex for
each list coloring of G, and an edge between every pair of list colorings of
G that differ on exactly one vertex of G. We can similarly wonder when
the configuration is connected and, when it is, what is its diameter. We can
now define formally the k-(List) Reachability problem:

k-(List) Reachability
Input: A graph G, an integer k, (resp. lists of size k assigned to each
vertex), two (resp. two list) k-colorings α, β of G.
Output: YES iff there exists a (list-)recoloring sequence between α and
β (i.e. do α, β belong to the same connected component of G(G, k) (resp.
G(G,L))?

1By convention, the diameter is +∞ when G(G, k) is disconnected.
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Typical behavior when the number of colors varies.
The answer to Questions 4 and 5 can be modified when the number of colors
k (called the palette size) is modified. The typical behavior can be described
by a series of regimes:

1. When k is too small, proper k-colorings simply do not exist, hence we
cannot discuss recoloring.

2. With few colors, proper k-colorings exist, but there is no reconfigu-
ration sequence between many pairs of colorings. In other words the
configuration graph has several connected components.

3. With a larger palette, we reach a regime where recoloring is feasi-
ble in general, but reconfiguration sequences might be long. In other
words, the k-configuration graph is connected, or not far from being
connected, but has a large diameter.

4. By increasing the number of colors, the reconfiguration sequences are
shorter and shorter.

5. When k is really large, there always exists a reconfiguration sequence
recoloring every vertex a constant number of times.

Note that the description above is a bit simplistic and reality might be
a bit more complicated. For instance, for a co-matching of size n, the k-
configuration graph is connected when k = 3 but not when k = n as we will
see in Section 3.3 (see Figure 3.6 for an illustration).

Most of the research in graph recoloring consists in trying to characterize
when there is a phase transition between the regimes described above.

3.2 Recoloring with the lens of degeneracy: Cere-
ceda’s conjecture

One of the most widely studied questions is the behavior of the diameter
of the k-configuration graph when k is a function of the degeneracy of the
graph. A graph G is d-degenerate if, for every subgraph G′ of G, there
exists a vertex of degree at most d. Equivalently, G is d-degenerate if there
exists an ordering v1, . . . , vn of the vertices of G such that, for every i, vi
has at most d neighbors in vi+1, . . . , vn. The ordering v1, . . . , vn is called
a d-degeneracy ordering of G. Note that a graph G of maximum degree2

∆(G) is indeed ∆-degenerate. But the gap between ∆ and the degeneracy
can be arbitrarily large3.

The following was observed independently by both Bonsma and Cere-
ceda [31] and Dyer et al. [68]:

2∆(G), or ∆ when G is clear from context, will always denote the maximum degree G
in the rest of the manuscript.

3A star on n vertices is 1-degenerate but has maximum degree n− 1.
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Theorem 7 (Dyer et al. [68], Bonsma and Cereceda [31]). Let d be an
integer, k ≥ d + 2 and G be a d-degenerate graph. The graph G(G, k) is
connected and diam(G, k) ≤ 2n − 1.

Sketch of the proof. By induction on n. The result indeed holds when n = 1.
Let v1, . . . , vn be a d-degeneracy ordering of G. By induction, there exists a
recoloring sequence R from4 α|G\v1 into β|G\v1 of length at most 2n−1 − 1.
When we perform the same recoloring sequence in G, the only possible
conflicts5 happen when a vertex vi has to be recolored with color c but (i)
vi is adjacent to v1 and (ii) v1 is currently colored c. In that case, we can
first modify the color of v1 with a color that does not appear in N [v1] and
then recolor vi. It is possible since v1 has degree at most d and k ≥ d+ 2.

So there exists a transformation between α and β. The vertex v1 is
recolored at most |R| times (since we recolor it at most once for every step
in R) plus one last time at the final step to give v1 its target color. So
the total number of recolorings is at most 2 · |R| + 1, which completes the
proof.

Let α be a coloring of G. A color c is free for v in α if c does not appear
in α(N [v]). When there is no free color for v, we say that v is frozen. A
coloring is frozen if all the vertices are frozen.

Obviously, the analysis of Theorem 7 is far from optimal in practice since
(i) and (ii) are indeed usually not satisfied at each step. Moreover, we choose
to recolor v1 with an arbitrary free color. When there are several free colors,
some choices might be better than others. The local best choice consists in
recoloring v1 with the free color that will appear the latest in N(v1) in the
rest of the transformation6. For a d-degenerate graph and k ≥ d + 2, we
can define the Best Choice Algorithm as the algorithm given in the
proof of Theorem 7 which makes the local best choice each time v1 has to
be recolored. While, in most of the cases, this modification does not affect
the worst case analysis of Theorem 7, it sometimes permits to obtain linear
bounds. In particular, one can easily prove that the following holds:

Lemma 8 (Bousquet, Perarnau [49]). Let d, k be two integers such that
k ≥ 2d+ 2 and G be a d-degenerate graph.
There exists a reconfiguration sequence between any pair of k-colorings re-
coloring each vertex at most d+ 1 times. In particular:

diam(G, 2d+ 2) ≤ (d+ 1)n.

4For a subset S of vertices and γ a coloring, we denote by γ|S the restriction of γ to
the vertices of S.

5We say that there is a conflict in a reconfiguration sequence if the resulting coloring
after the recoloring step is not proper.

6The best choice is local in the sense that it might not be optimal in the shortest
reconfiguration sequence of the whole graph because of future vertices that have to be
included. It can be seen as a greedy choice that minimizes the number of recolorings.
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Sketch of the proof. The proof follows the steps of the proof of Theorem 7
except that we keep track of the number of recolorings of each vertex. Since,
at each step where v1 has to be recolored, there are d+ 1 free colors for v1
and the neighborhood of v1 is recolored at most d · (d+ 1) times in R, one
can easily prove that the Best Choice Algorithm recolors v1 at most
d+ 1 times.

Several variants of Theorem 7 have been used as subroutines of recol-
oring algorithms (e.g. in [39] where it is used with a partition of V (G)
into independent sets). Using the Best Choice Algorithm (with a much
more involved analysis this time), we proved with Valentin Bartier and Marc
Heinrich that the configuration graph of 5-colorings of graphs of treewidth
2 have linear diameter [7] (see Section 3.3.1 for more details).

Cereceda’s conjecture. For every d-degenerate graph G, Theorem 7 en-
sures that G(G, k) is connected if k ≥ d + 2 but the proof only provides
an exponential upper bound on the diameter. And Lemma 8 ensures that
G(G, k) has linear diameter if k ≥ 2d+ 2. This raises two questions:

1. Can diam(G, k) be exponential when k = d+ 2?

2. What is the behavior of the diameter when the number of colors in-
creases? In particular, when does diam(G, k) become linear?

Both questions are extensively studied. Cereceda proposed in 2009 [53]
the following conjecture:

Conjecture 9 (Cereceda [53]). For every d-degenerate graph G, if k ≥ d+2
then diam(G, k) = Od(n

2).7

Cereceda’s conjecture is only known to be true for d = 1 [27] (forests).
The quadratic function cannot be improved since the diameter of the con-
figuration graph of 3-colorings of paths8 has quadratic diameter. The lower
bound for this proof follows from the following simple but extremely nice
argument, which is the only non-trivial lower bound technique known in
graph recoloring:

Theorem 10 (Bonamy et al. [27]). The path Pn on n vertices satisfies:

diam(Pn, 3) = Ω(n2).

Sketch of the proof. Let us sketch the main ideas of the proof of the lower
bound. The upper bound will follow from Theorem 20 in Section 3.3.1. Let

7The notation f(n) = Od(g(n)) means that for every d ≥ 0, there exists a constant Cd

such that f(n) ≤ Cd · g(n).
8Paths being indeed 1-degenerate.
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Figure 3.1: Two 3-colorings of a path at quadratic distance. In the repre-
sentation of colorings, I adopt the Lucas de Meyer’s convention where the
initial coloring is the inner color while the target one is the outcolor for each
vertex. In other words a vertex colored red in the middle and green outside
is colored red in the initial coloring and green in the target one.

1 2 3

2 3

1 2 3

3
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Figure 3.2: Two paths associated to 3-colorings of a path. The path at the
right is obtained from the path at the left after the recoloring of the 4-th
vertex from 3 to 1.

us denote by v1, . . . , vn the vertices of Pn and α be a coloring of Pn. In the
rest of the proof, we consider the colors modulo 3.

For every i ≤ n−1, the difference α(vi+1)−α(vi) is either +1 or−1. So we
can associate to α an oriented path Qα in the n×n-grid as follows. We start
from the vertex (0, 0) in the grid and, for every i, if α(vi+1) − α(vi) = +1,
then Qα goes to the vertex at its right. Otherwise α(vi+1)−α(vi) = −1 and
then the path Qα goes to the vertex above (see Figure 3.2 for an illustration).

Assume that we can recolor vi from color a to color b in α. Since there
are exactly 3 colors, the two neighbors of vi are colored the same in α (with
the third color c). So the recoloring consists in replacing in Qα an edge right
followed by an edge up into an edge up followed by an edge right (or the
converse) (see Figure 3.2). In particular, this single vertex recoloring only
modifies by one the area under the curve Qα.

Since we can easily construct two colorings whose area under the curve
differ by Ω(n2), the lower bound of Theorem 10 follows: 123123123... and
132132132132... (see Figure 3.1).

The lower bound of Theorem 10 can be easily extended to chordal graphs
G with (ω(G) + 1) colors [27], where ω(G) denotes the size of a maximum
clique of G. Indeed, we can simply add to the path Pn ω − 2 new vertices
connected to all the vertices of the path (and all connected together). Note
however that it increases arbitrarily the maximum degree of the graph (see
Figure 3.3 for an illustration).

Lemma 11 (Bonamy et al. [27]). For every ω ≥ 2, there exist chordal graphs
G such that:

diam(G,ω(G) + 1) = Ω(n2).
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Figure 3.3: Two 4-colorings of a chordal graph G with ω(G) = 3 at quadratic
distance.

The tightness of this bound will be proved in Section 3.3.1. Since in all
the constructions where the degeneracy is large and the diameter is quadratic
we are aware of, there exist large degree vertices. This raises the following
question:

Question 12. Does there exist a function f such that, for every d, there ex-
ists a d-degenerate graph Gd of maximum degree f(d) such that diam(Gd, d+
2) = Ω(n2) ?

Cereceda’s proof only ensures that the configuration graph has exponen-
tial diameter. One can wonder if we can at least ensure that the diameter
of the configuration graph is polynomial. Together with Marc Heinrich we
proved in [41] the first polynomial upper bound (depending on d) on the di-
ameter of the configuration graph. In particular, it provides the only proof
that diam(G, 4) is polynomial for 2-degenerate graphs G.

Theorem 13 (Bousquet, Heinrich [41]). Let d, k be two integers and G be
a d-degenerate graph.

• if k ≥ 3
2 · (d+ 1) then diam(G, k) = O(n2);

• if k ≥ (1 + ϵ)(d+ 1) and 0 < ϵ < 1 then diam(G, k) = Oϵ(n
⌈1/ϵ⌉);

• if k ≥ d+ 2 then diam(G, k) = Od(n
d+1).

Sketch of the proof. We will not give a complete proof of Theorem 13 but
simply its flavor for k = d+2. Let us start with a simple remark. In order to
prove that the diameter is O(nd+1), instead of proving that we can transform
any coloring α into any coloring β, we will prove that we can transform α
into a (d+ 1)-coloring in O(nd+1) steps9. The conclusion then follows from
the following very simple claim whose proof is left as an exercise.

Claim 14. Let d, k be two integers such that k ≥ d + 2. If any k-coloring
of a d-degenerate graph G can be transformed into a (k − 1)-coloring in N
steps then the diameter of G(G, d) is at most 2dN .

9This technique is pretty standard in reconfiguration as we will see all along this chap-
ter.
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Let us now explain how we can transform α into a (k − 1)-coloring.
In the proof of Theorem 7, we peeled the graph by removing small degree
vertices one after another. The first idea of the proof consists in taking the
opposite point of view: we will start with v1 and add the vertices in the
reverse ordering. In other words, we will consider the subgraph induced by
v1, . . . , vi for increasing i.

When we do so, we cannot simply remove the other vertices of the graph
as we did in Theorem 7. Indeed, if we recolor the vertex v1 with the color
of vj for some j ≥ i, we are not sure to be able to recolor vj with another
color to authorize this recoloring. Indeed, the vertex vj might have a large
degree and then vj might be frozen in the current coloring. So instead of
deleting vertices vi+1, . . . , vn, we will fix their color10. These vertices will be
called the blocked vertices.

The blocked vertices vi+1, . . . , vn set some constraints on the vertices
v1, . . . , vi, and we will represent these constraints with list colorings. For-
mally, let α be a coloring of G and i ≤ n. For every j < i, the list Li(vj)
of vj (for α) is [1, k] \ α(N [vj ] ∩ {vi+1, . . . , vn}) 11. Since k ≥ d + 2, one
can easily remark that, for every i, j, the number of neighbors Nj of vj in
vj+1, . . . , vi satisfies |Li(vj)| ≥ |Nj |+ 2 (called property (⋆)).

Let us denote by Gi the subgraph of G induced by {v1, . . . , vi} and
d+i (j) = |N(vj) ∩ {vj+1, . . . , vi}|. Property (⋆) can be rephrased as follows:
the order v1, . . . , vi satisfies that, for every j ≤ i, |Li(vj)| ≥ d+i (vj)+2. Note
that for i = n, it simply means that v1, . . . , vn is a d-degenerate ordering of
G and k ≥ d+ 2.

The second idea of the proof consists in introducing the notion of full
colors. A color c is full for v1 . . . , vi (for a coloring α) if, for every j ≤ i, one
of the following holds:

1. α(vj) = c or,

2. there exists j′ > j such that vj′ is colored c in Gi or,

3. c ̸∈ Li(vj).

Note that if a color c is full for v1, . . . , vn then, every vertex is either colored
c or has a neighbor after it in the ordering colored c. So the removal of
all the vertices colored c (and of the color c from the set of colors) leaves a
instance where:

• The degeneracy has decreased by one and,

• The number of colors has decreased by one.

10In the sense that we will not modify their colors.
11For every subset of vertices S, we denote by α(S) the set of colors in S.
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So if we can reach a coloring where a color c is full for v1, . . . , vn we can
apply induction on k. Indeed, we remove the color c and all the vertices X
colored c and apply induction on G′ = G[V \X]. So to conclude we simply
have to prove that we can transform α into a coloring with a full color in a
polynomial number of steps.

One can easily prove that α(v1) is full for v1. The rest of the proof, not
detailed here, consists in proving by induction that if we have a coloring
such that a color c is full for v1, . . . , vi, then we can find a (short) recoloring
sequence of Gi to a coloring such that a color c′ is full for v1, . . . , vi+1. We
repeat this operation at most n times to reach a coloring where a color c is
full for v1, . . . , vn.

The proofs of the other upper bounds follow the same scheme except
that: (i) since there are more colors, we can find colorings where several
colors are full (which allow us to reduce faster the degeneracy of the graph)
and, (ii) we can stop when the number of colors is at least 2d + 2 rather
than when d = 0 since, in that case, Lemma 8 ensures that there exists a
reconfiguration sequence of linear length.

Note that the first item improves a result of Cereceda [53] who showed
that diam(G, 2d+ 1) is quadratic for any d-degenerate graph G.

We have decided to state Conjecture 9 in its weakest version since we
allowed the constant in front of the quadratic function to depend on d.
We actually have no proof that it is necessary. This question is somehow
related to Question 12 since we cannot obtain a quadratic diameter without
”cheating” by arbitrarily increasing the maximum degree of the graph.

Conjecture 15 (Strong Cereceda’s conjecture). There exists a constant C
such that, for every d-degenerate graph G and every k ≥ d+2, diam(G, k) ≤
C · n2.

Note that in most of the cases where Cereceda’s conjecture has been
proven, the constant does not depend on d (see e.g. Theorem 20 and 21 in
Section 3.3.1).

Let us end this part with some open problems:

Conjecture 16 (Bartier, Bousquet [36]).

• There exist c < 3
2 and r ∈ N such that diam(G, cd + r) = Ω(n2) for

every d-degenerate graph G.

• There exist c < 2 and r ∈ N such that diam(G, cd + r) = Ω(n) for
every d-degenerate graph G?

Note that a positive answer to the second question immediately implies
a positive answer to the first one as observed in [41] (it follows directly from
the proof of Theorem 13).
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The particular case of Cereceda’s conjecture for d = 2 is, so far, still
open.

Conjecture 17. There exists a constant c such that diam(G, 4) is quadratic
for every 2-degenerate graph G.

Recall that Cereceda’s conjecture is only known to be true when d =
1 [27] and d = 2 when ∆ = 3 [78]12. For d = 2, the best known general
upper bound is O(n3) by Theorem 13.

Maximum average degree versus degeneracy. The average degree of
G is 2 |E(G)|

|V (G)| . The maximum average degree of G, denoted by mad(G) is the
maximum, over all the induced subgraphs H of G, of the average degree
of H. There are natural relations between maximum average degree and
degeneracy. Indeed, a graph of maximum average degree d has degeneracy
at most d and a graph of degeneracy d has maximum average degree at most
2d (since every subgraph on r vertices has at most dr edges).

By adapting the ideas of the proof of Theorem 13 together with a par-
tition of the graph into independent sets of linear size, Carl Feghali proved
that the following holds:

Theorem 18 (Feghali [76]). Let d, k be two integers such that k ≥ d + 1
and ϵ > 0. Every graph G with maximum average degree d− ϵ satisfies13

diam(G, k) = Oϵ(n(log n)
d−1).

Theorem 18 strengthens a result we obtained with Guillem Perarnau [49]
which only provides a polynomial upper bound on the diameter. For d-
regular graphs, Theorem 13 only ensures that the diameter is at most nd−1

when k = d + 2 while Theorem 18 ensures that the diameter is almost
linear. Theorem 18 also gives the best known upper bounds on the recoloring
diameter for planar graphs (for k ≥ 8) and many of its restricted classes.
However, in planar graphs (and several other graph classes), the maximum
average degree tends to 6. So, Theorem 13 gives the best upper bound for
k = 7 while Theorem 18 is better as long as k ≥ 8. So, in general, the two
results are incomparable (see Section 3.3.2 for a more complete discussion
on planar graphs).

Note that the number of colors cannot be improved in Theorem 18
since paths P have maximum average degree (tending to) 2 and G(P, 3)
has quadratic diameter. Similarly, as we observed before, it cannot be im-
proved in Theorem 13 either since the k-configuration graphs of cliques are
not connected when k = d+ 1.

12The recent result of [39] even ensures that the diameter is linear in that case.
13The notation Oϵ means that the constant might depend on ϵ.



CHAPTER 3. GRAPH RECOLORING 32

3.3 Cereceda’s conjecture on restricted graph classes

3.3.1 Chordal graphs and bounded treewidth graphs.

Before showing that Conjecture 9 holds on chordal graphs, let us first make
the following remark:

Lemma 19 (Cereceda [53]). Let Kn be the clique on n vertices and k ≥ n+1.
Then there exists a transformation between any pair of k-colorings α, β of
Kn recoloring every vertex at most twice.

Sketch of the proof. Let D be the digraph on n vertices with an arc from x
to y if y is colored in β(x) in α. Informally, xy is an arc if the current color
(in α) of y prevents the recoloring of x into its final color (in β). Since the
graph is a clique and α, β are proper colorings, d+(x) ≤ 1 and d−(x) ≤ 1
in D for any x ∈ V . Hence D is the disjoint union of directed paths and
circuits.

One can easily remark that we can directly reconfigure directed paths
by recoloring every vertex of the path at most once. Indeed, we first recolor
the vertex of out-degree 0 with its target color and repeat until the path is
empty.

Since k ≥ n+ 1, every vertex can be recolored with a free color. So, for
circuits, we first recolor any vertex of the circuit with a free color. The circuit
is then transformed into a directed path and the conclusion follows.

Bonamy et al. proved in [27] that Conjecture 9 holds for chordal graphs
(they even prove the strongest version of the conjecture, Conjecture 15
holds). Note that the quadratic function cannot be improved for any value
of d when k = d+ 2 as we have seen in Lemma 11.

Theorem 20 (Bonamy et al. [27]). Let d, k be two integers such that k ≥
d+2. For every d-degenerate chordal graph G, there exists a reconfiguration
sequence between any pair of k-colorings recoloring every vertex at most n
times.

In particular diam(G, k) ≤ n2 for every chordal graph when k ≥ ω(G)+1.

Sketch of the proof. The second point simply follows from the fact that
ω(G) = d + 1 for chordal graphs (chordal graphs being perfect). The idea
of the proof of the first point is based on what became a classical argument
on reconfiguration proofs: the vertex identification technique.

Let us prove by induction on the number of vertices ofG that it is possible
to transform a coloring α into a coloring β by recoloring every vertex at most
n times. If the graph G is a clique, the result holds by Lemma 19 (the proof
is illustrated on Figure 3.4). Let T be a clique tree of G where no bag is
included in any other and v be a vertex that only belongs to a leaf of the
clique tree. Such a vertex is called a simplicial vertex. (It is well-known that
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Figure 3.4: Initial coloring is on the outside while target coloring is on the
inside. The vertices a and b are colored the same in the initial and target
coloring so they can be merged into a single vertex. On the contrary, c has
to be recolored before being merged with b. It is possible since c is simplicial.

every chordal graph admits a simplicial vertex.) Note that the neighborhood
of a simplicial vertex is a clique. Let Xv be the bag of v in T and X be the
bag of the neighbor of Xv in T . The bag X contains a vertex w that is not
in Xv (otherwise Xv can be contracted with X in the clique tree).

Let us prove that we can recolor in α (and similarly in β) the vertex v
with the color of w by recoloring vertices of Xv at most once. If v is not
colored with the color c of w and has no neighbor colored c in α, then we
can directly recolor it with c. Otherwise v has a neighbor y colored c. Since
y is not adjacent to w (the coloring is proper), y only belongs to Xv in T .
In particular y is simplicial. Since k ≥ ω + 1, we can thus recolor y with a
new color and then color v with c. So, by recoloring every vertex of Xv at
most once, we obtain two colorings α′, β′ where v, w are colored the same.

The contraction of v and w gives a new chordal graph with clique number
ω and n− 1 vertices. By induction, we can recolor α′ into β′ by recoloring
every vertex at most n − 1 times. This recoloring can be extended to G
by performing the same sequence (and recoloring both v and w when the
contracted vertex is recolored).

Theorem 20 has been extended by Bonamy and Bousquet to bounded
treewidth graphs [19]. We propose here a very short proof of that result by
Feghali [74]:

Theorem 21 (Bonamy, Bousquet [19], Feghali [74]). Let t, k be two inte-
gers such that k ≥ t + 2. Every graph G of treewidth at most t satisfies
diam(G, k) ≤ n2.

Proof. Let us sketch the short proof of Feghali [74] which reduces this state-
ment to Theorem 20 (with a slightly worse bound on the diameter). As in
the proof of Theorem 13, the idea is to prove that the following holds:
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Claim 22. Let G be a graph of treewidth t and k ≥ t+2. Then we can reach
from any k-coloring γ of G a (k − 1)-coloring of G in at most n2 steps.

Before sketching the proof of this claim, let us explain how we can use
it to derive Theorem 21. We can transform α (resp. β) into a coloring
α′ (resp. β′) using only k − 1 colors in at most n2 steps. One can easily
show that every graph contains an independent set I whose removal reduces
the treewidth of the graph by (at least) one. We color in α′ and β′ all the
vertices of I with color k. So the colorings now agree on I. We conclude by
recoloring by induction α′(G \ I) into β′(G \ I) (with at most k − 1 colors)
in O(n2) steps.

Let us now explain how to prove Claim 22 whose idea has been reused
in several other proofs.

Proof of Claim 22. Let γ be a coloring of G. If a bag X of a tree decom-
position T of G contains two vertices u, v colored the same in γ, then we
contract them (and the width of the resulting graph has not increased).

We repeat this operation until, in all the bags, all the vertices are colored
differently. Let us denote by G′ the resulting graph and γ′ the coloring of
G′. If we consider the chordalization H of G (that is the graph obtained
from G′ by adding all the edges between any pair of vertices belonging to
the same bag of T ), then γ′ is a proper coloring of the chordal graph H and
k ≥ ω(H)+1. Thus, by Theorem 20, we can transform γ′ into an ω-coloring
of H by recoloring every vertex at most n times. To conclude, one can
easily remark that we can extend this recoloring sequence into a recoloring
sequence from γ to an (t + 1)-coloring of G in G (since ω(H) ≤ t + 1 and
identified vertices form an independent set).

One can wonder what happens when the number of colors increases.
Lemma 8 ensures that the diameter is linear when the number of colors is
twice the treewidth plus 2. In particular, for graphs of treewidth 2, the
diameter is linear when k ≥ 6. We improve this result with Valentin Bartier
and March Heinrich and settle the whole picture for graphs of treewidth 2:

Theorem 23 (Bartier, Bousquet, Heinrich [7]). Let G be a graph of treewidth
at most 2 and k ≥ 5. Then diam(G, 5) ≤ C · n for some integer C.

Sketch of the proof. We first use the Feghali’s trick described in the proof of
Theorem 21 to transform G into a chordal graph of clique number at most
three. By abuse of notations, we still denote by G the resulting graph.

Let α, β be two 5-colorings of G. The proof then consists in proving
that the Best Choice Algorithm (BCA) described just after Theorem 7
recolors every vertex a bounded number of times. We refer to the proof of
Lemma 8 for notations. Let v1 be a vertex of degree 2 (which exists since the
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treewidth is 2) and let S be the reconfiguration sequence given by the BCA
between α and β in G− v. When we try to adapt the proof of Lemma 8, v1
can be recolored at most C + 1 times. We assume by contradiction that it
is indeed the case and show that many strong conditions must be satisfied
on the sequence of recolorings.

We can (for instance) prove that:

• Both neighbors of v1 are recolored exactly C times in S.

• v1 is recolored once every two recolorings of its neighbors in S.

• the neighbors of v1 are recolored alternatively in the sequence S and
follow a precise recoloring sequence.

Indeed, since the two neighbors of v1 are adjacent (v1 is simplicial), we
can derive a lot of information on the structure of the recolorings of N(v1)
in S. And since they are themselves recolored C times, there is a lot of
structure on how their own neighborhoods are recolored. Finally, we prove
that if C is large enough, it gives too many constraints on the sequence of
recolorings, which leads to a contradiction with the choices performed by
the BCA algorithm.

One can note that the number of colors in Theorem 23 is the best we
can hope for by Lemma 11.

We were not able to generalize this statement to larger values of k. In
particular, we were not able to slightly improve the bound of Lemma 8 for
bounded treewidth graphs and show that the diameter is linear even when
the number of colors is at most 2 · tw(G) + 1. As for Theorem 23, we
simply have to prove that we can save one recoloring in the Best Choice
Algorithm to obtain this bound but we did not succeed to prove it. We
left the following as open problems:

Conjecture 24 (Bartier, Bousquet, Heinrich [7]). • There exists a con-
stant C such that diam(G, tw(G) + C) = O(n) for every graph G.

• There exists a constant C such that diam(G,ω(G) + C) = O(n) for
every graph chordal graph G.

A weakening of this question was asked in [36] for chordal graphs: Even
the existence of a real r < 2 such that diam(G, r ·tw(G)+C) is linear is still
open. Also note that this question is the restriction in the case for bounded
treewidth graphs of Conjecture 16.

With Valentin Bartier, we proved that Conjecture 24 holds for chordal
graphs whose maximum degree is bounded by a function of the maximum
clique. Namely we showed that the following holds:
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Figure 3.5: There is no edge between non consecutive blocks. A region is
a subset of three blocks. The second and fourth regions are color change
regions and the third is a permutation region. The buffer here is the second,
third and fourth region. While we have a control on what happens in the
buffer, what is at the left is the final coloring and what is at the right is the
initial coloring.

Theorem 25 (Bartier, Bousquet [36])). Let G be a d-degenerate chordal
graph of maximum degree ∆. For every k ≥ d+4, diam(G, k) = O(f(∆) ·n).

Moreover, given two colorings α, β of G, a transformation of length
O(f(∆)n) can be found in linear time.

Proof. The proof of this result is quite technical and we will try to give the
main intuition of it in a very particular case: power of paths. (The notions
of the proof are illustrated on Figure 3.5).

Let P be a path on n vertices on vertex set v1, . . . , vn and let us denote
by G the graph where vi, vj is an edge if and only if |i − j| ≤ ω. Powers
of paths are indeed chordal and one can remark that ω consecutive vertices
form a clique. There is a natural partition of the vertex set into blocks of
ω consecutive vertices. Also remark that there is a very simple coloring of
the graph with ω colors where the i-th vertex of each block is colored with
color i. Indeed, for every i ≤ ω, the union of the i-th vertices over all the
blocks form an independent set. (In other words, in Figure 3.5, the vertices
on the same row form an independent set).

In what follows, we will see colorings of G with a slightly different per-
spective: A coloring will be considered as a sequence of n/ω (ordered) vectors
of ω colors. The first vector of colors corresponds to the colors of the vertices
v1, . . . , vω; the second vector corresponds to the vertices vω+1, . . . , v2ω and
so on.

Imagine now that we have two colorings α, β and that we want to recolor
from α to β. Our goal will just consist in trying to recolor one sequence of
ordered vectors of colors into the other. Until now, we have simply redefined
the notion of colorings as a sequence of ordered vectors.
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The key idea of the proof now consists in proving that, if we have a
certain amount of consecutive ordered vectors (whose size is bounded in
terms of k and ∆), called a buffer such that (i) the coloring of the buffer
satisfies some good properties and such that, (ii) at the left of the buffer the
coloring already is the target coloring and, (iii) at the right of the buffer, the
coloring is the initial coloring then we can slide by one vector at the right
the buffer by only recoloring vertices of the buffer in such a way (i), (ii) and
(iii) still holds at the end of the recoloring process.

A coloring satisfying (i), (ii), (iii) is called a good coloring. What is a
good coloring of a buffer? It should have several properties. The first one is
the following:

• Between two consecutive blocks B,B′, at most one color changes14. In
other words, there is at most one integer i such that the color of the
i-th vertex of B differs from the color of the i-th vertex of B′.

This property allows us to be sure that we can recolor any vertex in the buffer
since the total number of colors in the neighborhood of a vertex consists of
at most ω+2 colors (every vertex is only adjacent to its block and the blocks
before and after it). But knowing that we can recolor every vertex is indeed
not enough to find an efficient recoloring algorithm.

The second idea of the proof consists in partitioning the blocks of the
buffer three by three. A set of three consecutive blocks is called a region.
A good coloring of the buffer should satisfy the following: for every region,
the three consecutive blocks should be of one of the three following types
(see Figure 3.5 for an illustration):

• An identity region: the (ordered) vector of colors of the three blocks
is the same.

• A color change region: there is at most one color difference between
the first and the last block of the region; that is there is exactly one
index i such that the color of the i-th vertex has changed (and all the
other colors remain the same).

• A permutation region: there exist two integers i, j such that, for every
r ̸= i, j, the color of the r-th vertex is the same in the first and the
last block. And the colors of the i-th and j-th vertex of the first and
last blocks are permuted.

One can prove that, if we take a long enough buffer in terms of k, we
can indeed find a proper coloring where the first block corresponds to the
target coloring and the last block is the initial coloring and where all the
regions are identified, color change or permutation regions.

14Actually there will be some small exceptions, but let us assume it for simplicity.
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Figure 3.6: The complete bipartite graph Kn,n minus a matching is 2-
chromatic but admits frozen n colorings.

The tour de force consists in proving that if we have a buffer for a set
of consecutive blocks, then we can move the buffer at the right of one step
by simply recoloring vertices of the buffer. The idea consists in adding color
changes and permutation regions to fit the coloring of the new block that is
now at the right of the buffer. However, we cannot add such regions forever
(the buffer being of bounded size). We prove that if we apply twice a permu-
tation region on the same pair i, j, then we can remove both permutations
and replace both regions with identity regions. And the same holds for color
change regions (which is much easier to prove).

Recall that for chordal graphs, we have ω(G) = d+1 so the result ensures
that the diameter has size at most O(∆) · n) when k ≥ ω + 3. We end this
part with the following question:

Conjecture 26. If G is a d-degenerate chordal graph of maximum degree
∆ then diam(G, d+ 3) is at most O(f(∆)n).

In some very restricted cases (such as powers of paths), our proof tech-
nique can be extended to k = d+3 but this is mainly due to the very strong
structure of these graphs.

Beyond chordal graphs. One can wonder if all these results on chordal
graphs can be generalized beyond. A first natural generalization of chordal
graphs are perfect graphs (graphs with no odd holes15 and no antiholes).
One can ask if, for perfect graphs, it is always true that G(G, k) is connected
as long as k ≥ χ(G) + 1. The answer is negative even on bipartite graphs,
as shown by the following example.

Consider a complete bipartite graph G = Kn,n where the set of vertices
is U ∪V . We now remove from G a perfect matching between U and V (see
Figure 3.6 for an illustration). One can easily remark that:

• The graph is perfect and 2-colorable (as it is bipartite).

15A hole being an induced cycle of length at least 4. An antihole is the complement of
a hole.
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Figure 3.7: A 3-colorable weakly chordal graph with a frozen 4-coloring.

• G(G, k) is connected for every 3 ≤ k ≤ n−1 (a color must belong only
to one part and we can then reach a 2-coloring in O(n) steps).

• G(G,n) contains isolated vertices (by coloring each edge of the anti-
matching with a new color).

A second natural generalization of chordal graphs are weakly chordal
graphs. A graph is weakly chordal if it does not contain any hole nor anti-
hole of length at least 5. Weakly chordal graphs are not perfect but their
structure has been widely studied. In particular, an equivalent characteri-
zation of weakly chordal graphs in terms of 2-pairs exists. Again, one can
naturally wonder if, for every weakly chordal graph G, G(G, k) is connected
as long as k ≥ χ(G)+1. Feghali and Fiala proved in [77] that this is not the
case. The result was improved by Merkel in [115] who showed that, for every
c, there exists a weakly chordal graph Gc such that G(Gc, χ(Gc) + c) is not
connected. To do so Merkel started with the triangle-free weakly chordal
graph of Figure 3.7 which admits a frozen 4-coloring. Then he proved with
an inductive construction based on blow-ups that there exist weakly chordal
graphs Gc with frozen k-colorings where k is large compared to χ(Gc).

Nevertheless, for both graph classes, the following is still open:

Question 27. Do perfect graphs satisfy the Cereceda’s conjecture? What
about weakly chordal graphs?

3.3.2 Planar graphs and related classes.

Planar graphs. In the last few years, planar graphs and related (sub)classes
received considerable attention. Since planar graphs are 5-degenerate, it is
possible to recolor any 7-coloring into any other in at most O(n6) steps by
Theorem 13. Moreover, by Theorem 18, it is possible to find a transforma-
tion of length O(n · polylog(n)) when k ≥ 8.

One can wonder if the value of 7 can be improved. In other words, is it
possible to transform any 6-coloring of a planar graph into any other? The
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Figure 3.8: A frozen 6-coloring of a planar graph.

answer is negative as mentioned in [19]. There exists a frozen 6-coloring of
a planar graph represented in Figure 3.3.2. (A coloring is said to be frozen
when the color of no vertex can be modified.)

The second question that attracted a lot of attention in the last few years
is the following: when can we ensure that there exists a linear transformation
between any pair of k-colorings of a planar graph? Lemma 8 ensures that
G(G, 12) has linear diameter for every planar graph G. Dvořák and Feghali
proved that this bound can be improved to 10:

Theorem 28 (Dvořák, Feghali [65, 67]). For every planar graph G and
every k ≥ 10, the diameter of G(G, k) is at most 7n.

Sketch of the proof. This result has been proven twice. The authors first
proposed a proof using a discharging argument in [66]. The idea consists in
transforming the proof into a 9-coloring by recoloring every vertex at most
once or at most twice but then the first recoloring consists in changing the
color for color 10.

But we will focus here on another proof of that result proposed (again)
by Dvořák and Feghali a few months later using a Thomassen type ap-
proach [67]. The high level idea of the proof consists in adapting the proof
that planar graphs are 5-choosable16 (due to Thomassen) [129].

Let us first briefly re-explain the proof of [129] which is by induction
on the number of vertices. The key ingredient of the proof is the induction
hypothesis. Instead of assuming that all the vertices have lists of size 5,
we assume that all the vertices have lists of size 5 but the vertices of the
external face that have lists of size 3. Moreover an edge uv of the outerface
has a fixed coloring. Let us now explain how we can reduce the size of the

16That is, we can list color every planar as long as every vertex receives a list of size at
least 5.
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graph to apply induction. Assume first that the outerface has a chord. This
chord cuts the graph (and the outerface) into two parts of stricly smaller size
which both contains this chord. We first color the part containing the edge
uv (whose color is fixed) by induction. This coloring then selects a color for
the chord, which fixes the color of an edge of the outerface of the other part
on which we apply induction. If the outerface contains no chord, we select a
vertex w of the outerface adjacent to v and we (i) remove it from the graph,
(ii) remove two colors of the list of w (different from the colors of u and v)
from the lists of the neighbors of w. We can easily prove that the induction
applies and that a coloring of the remaining graph can be extended to v.

Let us now come back to the proof of Theorem 28. In the rest of this
proof, we will only very briefly sketch the argument that consists in proving
that we can transform any 10-coloring into a 9-recoloring by recoloring every
vertex at most twice with a similar technique. (One can easily derive from
that statement that the configuration graph has linear diameter).

The general idea is the same. Let us first propose a model (which will
not work and be adapted later). All the vertices which are not internal have
lists of size 9 (the color 10 is forbidden)17. The vertices of the outerface have
lists of size 5 and we fix the recoloring of an edge uv of the outerface. Note
that some vertices might be colored with colors that are not in their lists
(e.g. vertices colored 10) but we want to be guarantee that (i) if we recolor
a vertex, its new color is in its list, (ii) at the end all the vertices are colored
with colors in their lists and (iii) all the vertices are colored at most once.

Unfortunately, this approach can hardly work if we only fix the recoloring
of an edge and try to remove only one vertex of the outerface at each step
as in the Thomassen proof. So the idea of Dvorak and Feghali consists in
removing all the vertices of the outerface at the same time instead of simply
one vertex.

This raises a serious issue since one internal vertex might be adjacent
to all (or at least many) vertices of the outerface. Indeed, if we remove the
color of the vertices of the outerfaces to their neighbors, we may end up
with a vertex with an empty list of colors after this operation. To avoid this
problem, we will fix the recoloring of a P3 (or a triangle) instead of an edge.
For some reasons we will not detail here, this P3 plays the same role as the
chord in the Thomassen proof.

Let us now sum up our assumptions. There are three vertices of the
outerface for which the recoloring sequence is completely fixed and we know
that their recolorings have to be performed at the very last steps of the
transformation. All the other vertices of the outerface have lists of size 5
and the internal vertices have lists of size 9. Moreover, if we remove the
external face, vertices still have lists of large size. So we would like to apply

17Actually in the model all the vertices do not necessarily have colors of their own lists
but if they are recolored, they have to be with a color of their lists.
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induction as in the Thomassen proof.
Unfortunately, there is a hidden pathological case. In order to patch

this problem, the idea of Dvorak and Feghali consists in saying that they
authorize to recolor the P3 in such a way the intermediate color might be
10.

Subclasses of planar graphs Let us now briefly discuss the behavior of
the diameter of the configuration graph on subclasses of planar graphs. For
outerplanar graphs18, the picture is complete. Indeed, a triangle being out-
erplanar, G(G, 3) is not necessarily connected19. The example of Lemma 11
with clique number 3 is chordal and ensures that G(G, 4) can have quadratic
diameter. And Theorem 23 ensures that diam(G, 5) is linear since outerpla-
nar graphs have treewidth at most 2.

With Marc Heinrich, we proved in [41] that every bipartite planar graph20

G satisfies that diam(G, 5) is at most quadratic. The proof of this result is
based on a discharging argument (as many results discussed in the rest of
this section). This result has been strengthened by Cranston and Mahmoud
(again with a discharging proof) who proved that the same holds if we con-
sider planar graphs with no triangle nor cycles of length 5 [60]. Many results
have been obtained on the diameter of the configuration graph depending on
the girth of the planar graph. As far as we know, they are all summarized
on Table 3.3.2.

Girth/colours 4 5 6 7

3 +∞ +∞ +∞ O(n6) [41]

4 +∞ O(n4) [41] O(n log3(n)) [76] O(n) [67]

5 < +∞ [5] O(n log2 n) [76] - -

6 O(n3) [41] O(n) [5] - -

7+ O(n log n) [76] - - -

Table 3.1: Existing and open cases for the diameter of the k-configuration
graph of planar graphs with girth g for some combinations of values of k and
g. Note that any bound at a given position in the table implies the same
bound at its right and below it.

Recently, list recoloring of (subclasses of) planar graphs has been studied.
Cranston proved in [59] that the (list)-configuration graph has linear diam-
eter when (i) G is a triangle-free planar graphs and lists have size at least 7
or (ii) mad(G) < 17/5 and lists have size at least 6 or (iii) mad(G) < 22/9
and list have length at least 4. Results of the same flavor (depending on the

18A graph is outerplanar if it can be drawn in the plane in such a way all its vertices
belong to the external face.

19Recall that all outerplanar graphs are 3 colorable since they are 2-degenerate.
20Planar graphs that are also bipartite.
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v1 v2

v3
v4

v5

Figure 3.9: A 2-degenerate 1-island with the ordering v1, . . . , v6. Assume
that all the vertices of V \ {v1, . . . , v6} are recolored c times. Since v1, v2
only have one neighbor on the outside. So they are recolored at most c/2+1
times with the BCA. v3 is recolored at most 1

2(c/2 + 1) + 1
2c+ 1 = 3c/4 + 2

times; v4 is recolored at most ⌈12(c/2+1)+ 1
2(3c/4+2)+1⌉ = 5c/8+3 times;

and finally v5 is recolored at most 7/8c + 4 times. So if c is large enough,
all the vertices are recolored less than c times.

sizes of faces adjacent to triangles) have been recently proven by Chandran,
Gupta and Pradhan [57].

I would only like to end this section with the sketch of a very simple proof
of a result of Table 3.3.2 which uses the concept islands of planar graphs.
(The proof is not based on a discharging argument but the existence of such
islands is proven with a discharging argument).

Theorem 29 (Bartier et al. [5]). The configuration graph of 5-colorings of
planar graphs of girth at least 6 has linear diameter.

Sketch of the proof. The proof is based on a result of Esperet and Ochem [71]
stating that every planar graph of girth at least 6 contains a 2-degenerate
1-island of bounded size. We say that H is a 2-degenerate 1-island if the
following holds:

• each vertex v ∈ V (H) has at most one neighbor in G \H, and

• there exists an ordering v1, . . . , v|V (H)| of the vertices of H such that
for each i ∈ {2, . . . , |V (H)|}, the vertex vi has at most two neighbors
in the graph G−H + {v1, . . . , vi−1}.

Since every large enough planar graph of girth at least 6 contains a 2-
degenerate 1-island H of bounded size, the proof simply consists in proving
that, if we can recolor G\H without recoloring too much every vertex, then
the same holds for G. To do so, we use the Best Choice Algorithm
and prove that, since every vertex of H only has 1-neighbor which is not
in the island, we save some recolorings (compared to 2-degenerate graphs),
which permits to conclude. (See Figure 3.9 for the counting on a very simple
example which gives the idea of the proof).
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Kp Kp

Kp

KpKp

Kp

Figure 3.10: A blow-up of C6 with cliques of size p. The chromatic number
is 2p but the graph admits a 3p frozen coloring by coloring the i-th set with
colors the colors {3 · (i mod 3), . . . , 3 · (i mod 3) + p− 1}.

The proof of Theorem 29 is interesting since it removes at each step a
subset of vertices instead of a single vertex or an independent set as it is
usually the case. It would be interesting to see if similar larger removal
subsets can be applied in other settings to prove or improve upper bounds
on diameter of configuration graphs. Note that other types of islands exist
in various subclasses of planar graphs but, as far as we tried, none gave us
any relevant upper bound on the diameter of the configuration graph.

3.3.3 H-free graphs

Let H be a graph. A graph G is H-free if G does not contain H as an
induced subgraph. One can wonder for which graphs H we can guarantee
that G(G, k) is connected or has a small diameter for every H-free graph G.
The main topic of study in H-free graphs focuses on the case k = χ(G) + 1.

Let k ≥ χ(G) + 1. Lemma 19 ensures that diam(G, k) ≤ 2n for every
P3-graph G. Bonamy and Bousquet proved that G(G, k + 1) is connected
and has linear diameter for every P4-free graph G [19]. The diameter of the
configuration graph has been improved to 4n in [15]. Merkel proved in [115]
that diam(G, k) is linear when G is a 3K1-free graph. On the negative side,
since bipartite graphs might admit frozen colorings with an arbitrarily large
number of colors (as we observed in Figure 3.6), G(G, k) is not necessarily
connected when H is a K3-free graph. Feghali and Merkel also proposed
in [80] a 2K2-graph (and then P5-free) graph G which is 7-chromatic but
admits a frozen 8-coloring.

A complete dichotomy theorem was recently obtained by Belavadi, Cameron,
Merkel in [12] who characterized exactly for which graphs H, G(G, k) is con-
nected for every H-free graph G.

Theorem 30 (Belavadi, Cameron, Merkel [12]). For every H. G(G,χ(G)+
1) is connected for all the H-free graphs G if and only if H is an induced
subgraph of P3 + P1.

Sketch of the proof. Their result is based on the results mentioned above
and:
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• The description of a simple collection (4K1, C4, claw)-free
21 graphs G

such that G(G, 32χ(G)) is not connected (see Figure 3.10).

• A recoloring algorithm for (P3 + P1)-free graphs based on the simple
structure of the anti-components of these graphs.

As far as I know, in the case of the 2K2-free graphs, we do not know if
the following holds:

Conjecture 31. For every c ≥ 2, there exists a 2K2-free graph such that,
G(G,χ(G) + c) is not connected.

The example for c = 1 in [80] has been proven to be exact using a
computer assisted proof. Note that the question is also open for P5-free
graphs. The authors of [12] also started the study of similar questions when
two graphs are forbidden.

We would like to end this part on H-free graphs with two questions. The
first is related to Question 31.

Question 32. Does there exist a natural graph class G such that there exists
G ∈ G such that G(G,χ(G)+1) is not connected but there exists c such that,
for every G ∈ G, G(G,χ(G) + c) is connected?

In most of the cases, when G(G,χ(G)+1) is not connected, it is because
G admits a frozen coloring. But it is not always the case, for instance for
every r ≥ 1, G(C3r+2, 3) is not connected but does not admit any frozen
coloring. When the number of colors increases, it is easy to find graphs
whose configuration graph is not connected with no frozen coloring but they
usually contain frozen subgraphs. This raises the following natural question.

Question 33 (Belavadi et al. [12]). Let k ≥ 4. Does there exist a graph
G whose k-configuration graph is not connected but G does not contain an
induced subgraph with a frozen k-coloring.

A positive answer to that question would give more examples of bad
cases for reconfiguration which may be helpful to construct graphs whose
configuration graphs are not connected or have large diameter.

3.4 Recoloring with the lens of maximum degree:
Random sampling

3.4.1 Random sampling

In this part, we will briefly discuss relations between graph recoloring and
Glauber dynamics. Even if I tried to make this section as self-contained as

21A claw is a star with three leaves, that is K1,3.
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possible, the reader with no prior knowledge on Markov chains can safely
skip this subsection without any impact on his/her understanding of the rest
of the manuscript. (For a very rapid introduction to Markov chains, one is
referred to Chapter 2).

Let G be a graph and c0 be a (proper) k-coloring of G. We define a
Markov chain X0, X1, . . . , Xr over the set of k-colorings of G by defining the
coloring Xi+1 from Xi as follows:

• Select a vertex v at random and a color c at random.

• Recolor v with color c in the coloring Xi if the resulting coloring is
proper.

Note that this Markov chain is lazy, which means that, for any coloring
α, if Xi = α for some i, the probability that the coloring remains α at step
i+ 1 is positive. Indeed, if the pair (v, c) that is drawn at random satisfies
that α(v) = c then the coloring remains the same. It is a well-known fact
that, for lazy Markov chains, ergodicity and irreducibility are the same. In
other words, this Markov chain is ergodic if and only if it is irreducible.

This Markov chain has been widely studied in the random sampling
community as well as in statistical physics22 under the name of Glauber
dynamics for graph colorings (abbreviated into Glauber dynamics in the rest
of the thesis). As we have seen in Section 3.2, an important line of research
in graph recoloring has been devoted to studying configuration graphs when
the number of colors is related to the degeneracy. The main parameter of
interest considered in random sampling has been the maximum degree ∆ of
the graph.

The aim of this chapter is not devoted to giving a full overview of the
results related to the ergodicity or the mixing time of Glauber dynamics.
The reader with a background on graph theory interested in Glauber dy-
namics can for instance read the excellent introduction of Marc Heinrich to
the topic in his PhD [91].

Mixing time of Glauber dynamic. By Theorem 7, as long as k is at
least the degeneracy plus 2, the configuration graph is connected and then
the chain is indeed ergodic. One can nevertheless easily prove that the
mixing time of the Glauber dynamic can be exponential when the number
of colors is bounded, even on stars (which have degeneracy one).

Lemma 34. The Glauber dynamics has a non-polynomial mixing time on
stars when k = o( n

logn).

22The reconfiguration with Kempe chains has also been studied a lot in statistical
physics, in particular the so-called WSK algorithm (see [122] for instance for more in-
formation about it).



CHAPTER 3. GRAPH RECOLORING 47

Sketch of the proof. Consider a star with n − 1 leaves colored with k + 1
colors colored initially at random. One can wonder how many steps are
needed to change the color of the center of the star (in order to sample a
coloring at random, we should be able to change the color of the center of
the star). First, the center of the star has to be selected (which happens
with probability 1/n at each step). But, above all, the selected color c for
the center has to be available (i.e. it should not appear in the neighborhood
of the center). One can easily prove that the probability that no leaf is
colored c is (1 − 1

k )
n. A simple calculation ensures that this probability is

smaller than 1
polyn when k = o( n

logn).

So the mixing time cannot be polynomial when k is too small (even on
1-degenerate graphs). But how much can it decrease when k increases? Let
us explain why Ω(n log n) is usually a lower bound on the mixing time.

We consider the following problem. In each cereal box, there is a small
gift called a coupon. Assume that a collector wants to collect all the gifts
in the breakfast cereal boxes and that, in total, there are n of them. How
many boxes does the collector have to buy before getting all the coupons?
One can prove that the total number of boxes that have to be bought by the
collector in order to get all the coupons is, with high probability, O(n log n)
(assuming that all the coupons appear with the same probability). To see
this, one can simply remark that, if we denote by τi the number of steps we
need to collect i coupons, we have:

E(τn) = E(
n∑

i=1

τi − τi−1) =
n∑

i=1

(E(τi − τi−1))

where τ0 = 0. Each variable τi − τi−1 is a geometric random variable with
success probability (n − i + 1)/n. A simple calculation ensures that this
expectation is of order θ(n log n).

Let us now explain why the coupon collector problem is related to our
problem. If we start from a coloring, we (informally) need to change the
colors of all the vertices of the graph to be sure that we can reach any
possible coloring. So in order to be sure that we need to sample a coloring
almost at random, we need to select at least once every vertex vertex, which,
by the coupon collector problem happens after Ω(n log n) steps23. One can
then wonder what is the number of colors that ensures that the mixing
time is Ω(n log n) or at least polynomial in n. The central conjecture is the
following:

Conjecture 35. The mixing time of the Glauber dynamics of the (∆ + 2)-
colorings of a graph of maximum degree ∆ is O(n log n).

23The argument here is informal and actually slightly incorrect.
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One can easily remark that, if correct, ∆ + 2 cannot be improved since
(∆+1)-colorings of a clique are frozen (and then the configuration graph is
not connected). Jerrum [99] and Salas and Sokal [121] independently proved
that the mixing time is O(n log n) when k ≥ 2∆ + 1 using a path coupling
argument.

Theorem 36 (Jerrum [99], Salas and Sokal [121]). For every k > 2∆, the
Glauber dynamics is mixing in O(n log n) steps.

Proof. Let us first sketch the idea of the proof for k > 3∆. We will not
formally define all the notions needed for the proof, we will simply try to give
informal (and then slightly incorrect sometimes) definitions and intuitions.

Consider two chains Xt, Yt which are Glauber dynamics on the same
graph G with k colors. A coupling (Xt, Yt) of these two Markov chains is a
Markov chain such that if we consider independently the first or the second
coordinate everything that happens is as if we were running the Glauber
dynamics on G with k colors. For instance, we can decide to choose a vertex
v1 at random and a color c1 at random to define Xt+1 and a vertex v2 at
random and a color c2 at random to define Yt+1. Each chain then indeed
behaves as the Glauber dynamics.

However, we can also decide to correlate the moves of Xt with the moves
of Yt. The easiest (non independent) coupling consists in saying that, in both
chains, we apply the same rule at the same time (let us call this coupling
the identity coupling). In other words, from (Xt, Yt), we select a vertex v
at random and a color c at random and define (Xt+1, Yt+1) as the pair of
colorings obtained in the Glauber dynamics after applying the recoloring of
v with c. The behavior of Xt and Yt are related but if we simply look at the
first (or the second) coordinate we simply observe the classical behavior of
the Glauber dynamics.

The magic result about path coupling is due to Bubley and Dyer [51]
which ensures that if we can find a path coupling which reduces (with a
decent probability) the distance between Xt and Yt when Xt and Yt only
differ on one vertex, then the Glauber dynamics is mixing in O(n log n) 24.

Let us now explain how we can use this result to obtain bounds on
the mixing time of the Glauber dynamics when k > 3∆ (the coupling is
described on Table 3.2). Let us consider the identity coupling. Let Xt, Yt be
two colorings that differ on exactly one vertex v. Let us now evaluate the
expected distance25 between the colorings (Xt+1, Yt+1).

• If we select a vertex w that is not in N [v] then w is recolored in Xt if
and only if w is recolored in Yt. So the distance between the colorings

24The result of Bubley and Dyer is widely more general but I tried to make it as simple
as possible.

25We define the (Hamming) distance between two colorings as the number of vertices
on which the two vertices differ.
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Pair (w, c) 3∆ 2∆

w /∈ N(v), c (w, c) → 0 (w, c) → 0

v, c ̸= c1, c2 (v, c) → 0 (v, c) → 0

v, c = c1, c2 (v, c) → −1 (v, c) → −1

w ∈ N(v), c ̸= c1, c2 (w, c) → 0 (w, c) → 0

w ∈ N(v), c = c1 (w, c) → +1 (w, c2(v)) → 0

w ∈ N(v), c ̸= c2 (w, c) → +1 (w, c1(v)) → +1

Table 3.2: Description of the coupling to obtain a polynomial mixing time
for > 3∆ and > 2∆ colors. For the pair in Xt in the leftmost column, the
other columns give the pair selected in Yt for the coupling (the term at the
right of the → describes the evolution of the distance for that pair). We
denote by c1 and c2 the colors of v on Xt and Yt respectively.

is not modified in these cases.

• If we select v, then the distance decreases as long as we select a color
that does not appear in N(u) in Xt and Yt. (Note that these colors
are the same since Xt and Yt only differ on v). Since there are at most
∆ colors in N(v) and k > 3∆, the number of cases where the distance
decreases is at least 2∆ + 1. Such an event is called a success.

• If we select a vertex w in N(v) then the distance between Xt+1 and
Yt+1 might increase by one. The distance can increase when w is
recolored with the color c of v in Xt or with the color c′ of v in Yt.
(Indeed, in the first case for instance, w might be recolored with c in
Yt+1 while w will remain of its initial color in Xt+1). Such an event is
called a fail and there are at most 2∆ pairs (w, c) that might lead to
a failure.

So in total, the number of pairs leading to a success is larger than the number
of failures. So the expected distance between the colorings decreases (and
one can easily compute by which amount). And the result of Bubley and
Dyer ensures that the chain is mixing in time O(n log n) when k > 3k.

In order to prove the result when k > 2∆ instead of 3∆ one has to
choose slightly more carefully the coupling between the two Markov chains.
We perform the identity coupling except that we flip two types of recolorings.

• The recoloring, in Xt, of a neighbor w of v with the color of v in Xt is
coupled, in Yt, with the recoloring of w with the color of v in Yt.

• The recoloring, in Xt, of a neighbor w of v with the color of v in Yt is
coupled, in Yt, with the recoloring of w with the color of v in Xt.

In all other cases, Xt and Yt attempt to modify the same vertex to the same
color (that is, we follow the identity coupling).
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The number of successes is, following the previous analysis, at least ∆+1
since k > 2∆. The magic comes from the fact that the number of fails is
at most ∆. Indeed, the identity coupling has a drawback: when we try to
recolor in Xt with the color c of v in Yt we perform the same recoloring in
Yt. The color of w in Xt+1 might change while we know that the color of w
will not change in Yt+1. So we couple an event where we know that there
is no change with an event where there might be a change. And there are
∆ such events where there might be a change in Xt but not in Yt. And
symmetrically there are ∆ events where there might be a change in Yt but
there is no change in Xt.

The new coupling described above permits to couple the events where
there is no change in Xt with events where there is no change in Yt (first
item). And the events where there might be a change in Xt or Yt are
coupled together (second item). So the number of fails is at most ∆ and,
which completes the proof.

The ratio of 2 has been improved by Vigoda [132] who proved that the
chain is rapidly mixing as long as k > 11

6 ∆. The proof is widely more
complicated and in particular consists in adapting the Glauber dynamics
by recoloring short Kempe chains (and proving that this new Markov chain
has a similar mixing time). The question of improving this bound remained
open for almost 20 years until Chen et al [58] proved that the chain is rapidly
mixing if the number of colors is at most (116 − ϵ)∆ for some (small) positive
real ϵ. Conjecture 35 has been studied in various graph classes such as
bounded treewidth graphs [92] (see e.g. [91] for more details).

3.4.2 The special case k = ∆+ 1

When k = ∆+ 1, the k-configuration graph is not necessarily connected as
we already mentioned, for instance for cliques (the coloring of a clique being
frozen). The same holds even restricted to triangle-free graphs [22]. In all
these examples, the fact that the configuration graph is not connected is
ensured by the existence of frozen colorings.

But, in general, the k-configuration graph might not be connected even
if there is no frozen coloring. For instance, G(C5, 3) is not connected even
if C5 has no frozen 3-coloring26. One can for instance remark that it is not
possible to transform the coloring 12312 into 13232.

Surprisingly, Feghali et al. proved that, as long as ∆ ≥ 3, it is always
possible to transform a non-frozen (∆+1)-coloring into any other non-frozen
(∆ + 1)-coloring. Note that the same does not hold for ∆ = 2 for instance
for C5

27. So the case of cycles described above is really specific. More

26We will prove in Section 3.6 that the configuration graph has two connected compo-
nents.

27The case of ∆ = 2 is often particular in graph (re)coloring; see e.g. Gallai’s theorem.
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formally, Feghali, Johnson and Paulusma proved in [78] that, for any ∆ ≥ 3,
one can transform any non-frozen (∆+1)-coloring of a connected graph into
any other in at most O(n2) steps. In other words, they prove that, for every
connected graph G, the graph G(G,∆ + 1) consists of a (possibly empty)
connected component containing all the non-frozen colorings and isolated
vertices.

It naturally raises several questions:

1. What is the proportion of frozen colorings with respect to the total
number of colorings? In particular, if we sample a coloring at random
in the connected component of G(G,∆+ 1) composed of all the non-
frozen colorings using the Glauber dynamics, do we sample a coloring
at random in a set of colorings containing almost all the colorings?

2. Is the upper bound of O(n2) proposed in [78] tight?

3. What is the mixing time of the non-frozen component of G(G,∆+ 1)
?

With Marthe Bonamy and Guillem Perarnau, we characterize the max-
imum number of frozen colorings with respect to the total number of color-
ings:

Theorem 37 (Bonamy, Bousquet, Perarnau [22]). Let G be a graph and α
be a (∆ + 1)-coloring of G. Then

P(α is frozen) ≤ (9/10)n/(∆+1)−1.

Sketch of the proof. The very high level idea of the proof is not that com-
plicated (even if the proof techniques are quite involved). Let α be a partial
coloring of a graph H and x be a vertex such that no vertex of N(x) is
colored in α. We say that a partial coloring of H is frugal if no vertex has
two neighbors colored the same in α. Note that any partial coloring of a
frozen (∆ + 1)-coloring of a graph G is frugal.

The main step of the proof consists in showing that the number of ex-
tensions of a frugal partial coloring α to N(x) which are still frugal colorings
is at most 9

10 of the number of possible extensions of α to N(x). The proof
is based on a case distinction on the number of colors that appear in the
second neighborhood of x in the partial coloring.

When we have this lemma, we can easily conclude by remarking that
there exists a color class containing r := n/(∆ + 1) vertices v1, . . . , vr. We
can then apply iteratively the result on Hi = V \ N [

⋃
j≤i vi] to get the

result.

So if the number of vertices is large enough compared to the ∆, the
number of frozen colorings is exponentially small which answers the first
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question. Note that the division by ∆ in the exponent is indeed needed
since all the colorings of a clique are frozen.

We also partially answered the second question with Laurent Feuilloley,
Marc Heinrich and Mikael Rabie by proving that the quadratic upper bound
obtained by Feghali, Johnson and Paulusma in [78] can actually be improved
into Ω(n) when the maximum degree is bounded. Namely, we proved the
following:

Theorem 38 (Bousquet, Feuilloley, Heinrich, Rabie [39]). Let G be a con-
nected graph with ∆ ≥ 3. The diameter of the non-frozen component of
G(G,∆+ 1) is at most O(∆c∆n), where c is a constant.

Sketch of the proof. One of the key ingredients of the proof consists in prov-
ing that, if we have a non-frozen vertex, then we can ”duplicate” it. More
formally, we can prove that, if x is non frozen in a (∆ + 1)-coloring α of G
and y a vertex at distance 7 from x, then we can obtain, by only recoloring
vertices of B(x, 6), a coloring where both x and y are non-frozen. Let us
call this property (⋆). Note that since we only recolor vertices in B(x, 6),
the number of steps needed to obtain this coloring is bounded (in terms of
∆)28.

Let us explain how we can use the property (⋆) to prove Theorem 38.
Let α, β be two non-frozen (∆ + 1)-colorings of G.

• We first select a maximal independent set S at distance c (for a large
enough constant c) containing a non-frozen vertex x.

• Using (⋆), we can unfreeze all the vertices of S one after another by
duplicating non-frozen vertices and propagating them towards other
vertices of S. We can do so by remarking that, if we recolor a vertex
then its frozen neighbors become non-frozen. Indeed, since k = ∆+1,
a vertex is frozen if all the colors appear exactly once in its closed
neighborhood. So, if a neighbor of a frozen vertex is recolored, then
it becomes non-frozen. So if we have a path of frozen vertices, we can
“propagate” the vertex that is not frozen along the path.

• We can prove (using a variant of Theorem 7) that α|V \B(S,7) can be
transformed in β|V \B(S,7) in O∆(|V \ B(S, 7)|) steps. Note however
that this sequence cannot immediately be used in V since a recoloring
might be in conflict with a vertex of B(S, 7). However, we can prove
(again using (⋆)) that this recoloring sequence can be extended to V
in O∆(n) steps. In other words, we can transform α into β′ where β′

matches with β on V \B(S, 7) in O∆(n) steps.

28Actually it can even be obtained with a constant number of single vertex recolorings.
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• We finally prove that we can independently recolor each ball29 B(x, 7)
to reach the target coloring β for every x ∈ S.

As for Theorem 25, the diameter here depends on ∆ (exponentially in
that case) which makes it less interesting when ∆ is not a constant. It could
be interesting to see if the dependency on ∆ can be avoided30.

Question 39. Let G be a connected graph of maximum ∆ ≥ 3. Is it true
that:

• Every connected component of G(G,∆+1) has diameter O(poly(∆)n)?

• Every connected component of G(G,∆+ 1) has diameter at most Cn,
for a constant C independent of ∆?

Let us conclude this section with the following question that is a natural
generalization of Conjecture 35.

Question 40. Does every connected component of G(G,∆+1) has polyno-
mial mixing time?

3.4.3 Above ∆+ 1 colors

When k ≥ ∆+2, the configuration graph is always connected and the mixing
time is conjectured to be O(n log n). One can wonder what is the diameter
of the configuration graph when k ≥ ∆ + 2. Is it necessarily linear? One
can easily prove that the diameter is O(∆n). Actually, we can prove that
the configuration diameter is O(χg(G)n) when χg(G) is the grundy number
of G as long as k ≥ χg(G) + 1. The greedy number of G for the order
v1, . . . , vn is the largest possible color used in the greedy coloring of G for
the order v1, . . . , vn

31. Note that, if we consider an optimal coloring of a
graph G = (V,E) with color classes V1, . . . , Vχ(G) then the greedy number
for the order V1, . . . , Vχ(G) is χ(G). In other words, there exists an order that
gives an optimal coloring. The grundy number of G is the maximum, over all
the orders O, of the greedy number of G for O. In other words, the grundy
number is the worst possible number of colors used in a greedy coloring.
Note that χg(G) ≤ ∆ + 1 for every graph G (but it can be arbitrarily
smaller in some cases).

With Marthe Bonamy, we proved that the following holds:

29Actually we sometimes have to recolor a slightly larger set but, since c has been chosen
large enough, the balls remain independent.

30Note that in [78], the diameter is quadratic but does not depend on ∆.
31The greedy coloring of G consists for an order O in giving to every vertex the smallest

possible color when it is considered.
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Lemma 41 (Bonamy, Bousquet [19]). If k ≥ χg(G) + 1 then diam(G, k) ≤
2χ · n.

Sketch of the proof. Let α, β be two colorings. The first step consists in
considering vertices one by one to recolor them in α and β with a color
(possibly different) in {1, . . . , χg(G)}. This is indeed possible by definition
of grundy number. Note that, at the end of this step, the color χg(G) + 1
is not used. By abuse of notation, we still denote by α and β the resulting
colorings.

The second step consists in considering the color classes of β one by one
to obtain a coloring αi such that the vertices of β colored j with j ≤ i
are also colored with j in αi. To transform αi−1 into αi, we recolor all the
vertices colored i in αi−1 with χg(G)+1, then recolor all the vertices colored
i in β with i and finally change the color of the remaining vertices colored
χg(G) + 1 with another color, which completes the proof.

One can wonder if the dependency on χ can be removed. Cambie et al.
recently answered in the positive in [52] with a very simple argument:

Lemma 42 (Cambie, Cames van Batenburg, Cranston [52]). For every
graph G, diam(G,∆(G) + 2) ≤ 2n.
Even stronger, the diameter of G(G,L) is at most 2n as long as |Lv| ≥
d(v) + 2 for every vertex v.

Sketch of the proof. Let α, β be two list colorings of (G,L). There exists
in β a color class c whose size is not smaller than in α. We recolor all the
vertices colored with c in α with another color and then color all the vertices
colored c in β with c. The conclusion follows by induction.

They then proved a finer upper bound depending on ν(G) where ν(G) is
the maximum size of a matching (a set of pairwise extremity disjoint edges)
of G.

Theorem 43 (Cambie, Cames van Batenburg, Cranston [52]). For every
graph G and list assignment L:

1. If |Lv| ≥ d(v) + 2 for every vertex v then the diameter of G(G,L) is
at most n+ 2ν(G).

2. If |Lv| ≥ 2d(v) + 1 for every vertex v then the diameter of G(G,L) is
at most n+ ν(G).

Sketch of the proof.
(1) If ν(G−v) = ν(G) for all v ∈ V , then a classical result of Gallai ensures
that G is factor-critical, i.e. G admits a matching of size (n − 1)/2. In
that case n + 2ν(G) = 2n − 1 and the conclusion follows from Lemma 42.
Otherwise, there exists v ∈ V that is in all the maximum matchings of G.
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In that case, they prove that v can be colored similarly in both colorings
in at most 3 steps32. Deleting v reduces n by 1 and ν(G) by 1. The proof
follows by induction.

(2)The proof of the second point follows from the Edmonds–Gallai Decom-
position theorem and a more subtle recoloring argument.

They conjectured that the following holds:

Conjecture 44 (Cambie, Cames van Batenburg, Cranston [52]). For every
graph G and list assignment L such that |Lv| ≥ d(v) + 2 then diameter
G(G,L) is at most n+ ν(G).

They show that, if true, this bound is optimal for the list version. Note
however that, as far as I know, no non-trivial lower bound (larger than n)
nor better upper bound is known for classical recoloring. In particular, the
two following questions are open:

Question 45. • Is it true that the diameter of G(G,∆(G) + 2) is at
most n+ ν(G)?

• Does there exist a collection of graphs (Gr)r≥1 such that ν(Gr) = r
and the diameter of G(G,∆(G) + 2) is at least n + ν(G) ? At least
n+ ϵν(G)?

Line graphs. The line graph H of a graph G is a graph whose vertex set is
E(G) and there is an edge between two vertices ofH if the two corresponding
edges in G share an endpoint. A line graph is a graph H that is the line
graph of some graph G. It is well-known that the line graph H of a graph G
of maximum degree ∆ is either ∆ or (∆+1)-colorable. It cannot be colored
with less colors since edges of G incident to a vertex of maximum degree
create a clique of size ∆. And a classical argument using Kempe chains due
to Vizing ensures that line graphs are (∆ + 1)-colorable.

One can wonder what is the minimum value kmin of k, as a function
of ∆, from which we can guarantee that the configuration graph of proper
k-edge colorings is connected. This question has been answered by Aline
Parreau, Jonathan Noel, Marc Heinrich and Alice Joffard33. The coloring
of the Petersen graph depicted in Figure 3.11 with 5 colors is frozen. And
we can easily generalize this example to the Kneser graph KG2∆−1,∆−1 of
degree ∆, colored with 2∆ − 1 colors such that every edge is assigned the
color corresponding to the missing number in the union of the sets of its two
vertices. This proves that kmin = 2∆.

32That is actually true for every vertex and not simply for vertices belonging to all the
maximum matchings.

33During a Combinatorial Reconfiguration workshop at Aussois. Private communica-
tion.
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Figure 3.11: A 5-coloring of the Petersen graph that is frozen. (To see
that the coloring is frozen, note that, for every vertex, the set of colors not
incident to that vertex is disjoint to the one of its neighbors.

3.5 Recoloring with the lens of distributed com-
puting: local and parallel recoloring

3.5.1 Linear diameter and locality

Most of the proof techniques described so far provide quadratic or expo-
nential upper bounds on the diameter of the configuration graph. These
proofs are typically based on vertex identification techniques that consist in
identifying together vertices or groups of vertices (e.g. Theorems 20 or 21)
or are based on vertex deletion techniques (e.g. Theorems 7, 23 or 13).
The problem of the identification technique is that a linear number of ver-
tices might be merged together and then a single vertex recoloring in the
contracted graph might already imply a linear number of recolorings in the
original one. This usually prevents us from obtaining a linear diameter. For
the vertex deletion technique, in order to get a linear diameter, we have to
prove that the new vertex can be added in the existing partial sequence by
simply recoloring this additional vertex (or vertices) with a constant number
of recolorings. This can be done in some particular cases (e.g. Theorem 23
or 29) but it often needs a very careful analysis and, at the end, we often
have the feeling that the assumption is much stronger than what it should
be in practice to guarantee a linear diameter.

If we see these techniques (and in particular the vertex identification
technique) slightly differently and look at the reconfiguration sequence be-
tween two colorings α and β, it means that when we decide to change the
color of a (contracted) vertex, then we might have to change the color of
many vertices in the original graph that are possibly far apart in the graph.
For instance in the proof of Theorem 20, we finally end up on a clique where
vertices correspond (roughly) to maximal independent sets in the original
graph ! This fact is highly non-desirable if we want to find short reconfig-
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uration sequences and is probably useless when we have some slack on the
number of colors. Indeed, since we have some slack we should be able to
only recolor vertices locally. Again in the case of chordal graph, we should
be able to “cut” the maximal independent set and only recolor a small part
of it when the number of colors is large enough.

In order to obtain linear upper bounds on the diameter of configuration
graphs, we need to find other techniques. The goal of this section is to dis-
cuss a bit further the two techniques already described in this manuscript,
namely: Theorems 25 and 38 in order to explain their similarities and differ-
ences. In my opinion, both techniques can be seen as local transformations.
But how can we define the locality of a transformation? It is extremely hard
to find a good answer to that question. Very informally speaking, we would
like to define it as: “the recoloring of some vertex v only has a local impact
and does not globally affect the graph”. Or in a converse way “the recolor-
ing sequence for v will only depend on some ball of small radius centered
on v and not on the whole graph G”. Another way of defining it would be
that these techniques can be adapted in the LOCAL model of distributed
computing. We will see that the techniques I introduced satisfy (in a sense)
both statements.

3.5.2 Parallel recoloring and sliding buffer technique

Recoloring in parallel and dependencies between recoloring steps.
Consider a recoloring instance where the source and the target colorings
differ only on an independent set. In this instance, any sequence created
by iteratively assigning its target color to a vertex that does not have it
already, is valid. The order can be chosen arbitrarily, because there is no
dependency between the color changes: a vertex does not need one of its
neighbors to first change its color in order to be able to change its own.

A way to capture this absence of dependency is to note that we can par-
allelize the recoloring: we can just take all the vertices that do not have their
target colors and recolor them in parallel34. We can now define a parallel
recoloring sequence as a sequence of recolorings of independent sets while
keeping a proper coloring all along the transformation. From such a parallel
sequence, it is easy to derive a sequential recoloring sequence: decompose
any parallel step by performing all the individual vertex recolorings one after
the other.

Now, one might wonder if, in general, allowing parallel recoloring dra-
matically reduces the number of steps or not. Let us consider two examples
with very different behaviors.

Consider the case of paths colored with 3 colors (note that ∆ = 2 for
paths). And consider a source coloring of the form 1,2,3,1,2,3... and a target

34Recoloring all the vertices of some desirable independent set “at the same time” was
already used, e.g. in [75].
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coloring of the form 2,3,1,2,3,1... In this case, even if we allow parallelization,
at step i, only the vertices at distance at most i from an extremity can change
color. Therefore, the recoloring must be very sequential, and we will use at
least Ω(n) parallel steps. In other words, there are strong dependencies
between color changes35. This example can be easily generalized to any
power of paths to any possible number of colors. One can easily remark that
the r-th power of a path admits a (2r+1)-coloring where all the vertices but
the first or last ones are frozen. Indeed one can remark, by simply coloring
xi with color i mod 2r+1, we obtain a proper coloring where all the vertices
but the r first and last are frozen. So in order to simply permute the colors
for this coloring, we need to modify the colors of vertices from the left (or
from the right) before being able to recolor vertices in the middle of the
graph. So in this example, we cannot expect to only modify colors locally
to reach the target coloring. This example is interesting since Gr,n (i) is a
graph of maximum degree 2r with a non-frozen (2r + 1)-coloring, (ii) is a
chordal graph of clique number r + 1 colored with 2r + 1 colors. So there
are some cases where we cannot expect a transformation with a bounded
number of parallel recolorings even for chordal graphs where the number of
colors is essentially twice the degeneracy36.

As a second example, consider graphs of maximum degree ∆ with at
least 2∆ + 2 colors. Let us explain how we can reach a (∆ + 1)-coloring
in O(∆) parallel recolorings. One can first, for every i ≤ ∆ + 1, recolor
in parallel all the vertices colored i with a color in {∆ + 2, . . . , 2∆ + 2}.
After ∆ + 1 parallel recolorings, there is no vertex colored with a color in
{1, . . . ,∆+1} anymore. And we can then finally obtain any (∆+1)-coloring
with ∆ + 1 additional steps.

This raises the following natural question.

Question 46. When recoloring is possible, how many parallel steps are
needed?

Note that when the number of parallel steps is bounded then we have
a linear reconfiguration sequence. One can argue that, in that setting, we
recolor a set that is possibly a maximal independent set and then that
there is no difference with Theorem 20. But there is one big difference: we
do not ask here the recolorings to be synchronized. Every vertex of the
independent set makes its own choice that is completely independent from
the other choices. In the sequence described above, the vertices initially
colored i do not care of the colors of the other vertices colored i.

Most of the cases, the answer to Question 46 is large. Indeed, when we
have a coloring that is almost frozen (like in the path example above but also

35Actually in that case, one can prove that a recoloring sequence needs Θ(n2) single
vertex recolorings and that we can recolor it with Θ(n) parallel steps.

36Even if Theorem 25 ensures that there exists a linear transformation in that case.
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for (∆ + 1)-colorings where almost all vertices might be frozen, a bounded
number of parallel steps cannot be reached. However, in the second case,
we prove that a bounded number of parallel steps is possible after a linear
pre-processing37 while it is not possible for paths. In other words, we ask
the following question:

Question 47. When recoloring is possible, can we bound the number of
parallel steps after a pre-processing of linear size?

The drawback of that technique is that we need to find a way to properly
define an ordering on the vertices “from left to right” to make this method
work. Moreover, the technicity of the proof is higher since we need to keep
properties on the coloring of the buffer. The advantage though is that we
do not need any pre-processing phase.

3.5.3 Distributed recoloring

Let us now formally define what we mean by distributed computing. In
distributing recoloring (in the LOCAL model), every vertex v outputs a
sequence c1, . . . , cr of colors, called the schedule of v, where c1 is the initial
color of v, cr is the target color of v and, at each step i, the set of vertices X
such that ci ̸= ci+1 should be an independent set of the graph. While in an
optimization problem only the number of rounds is important, in distributed
recoloring, the length of the schedule is also of importance. So the goal is to
find the best possible balance between the number of rounds of the algorithm
and length of the schedule.

Distributed recoloring has been introduced in [28] by Bonamy et al.
One can notice immediately that, with the classical definition of recoloring,
we cannot expect that much in terms of number of rounds. Indeed, if we
consider a coloring that is locally frozen in the sense that all the vertices but
only a small number are frozen, one cannot expect a LOCAL algorithm with
a sublinear number of rounds (for instance in the case of the power the path
discussed in Section 3.5.1). So we have to relax a bit the conditions on the
number of colors or on the colorings. The authors decide in [28] to consider
the following variant: we are given two k-colorings of a graph G and a set
of ℓ additional colors (not used in α nor β), how many steps are needed
to transform α into β using the colors between 1 and k + ℓ ? We call this
problem by the (k, ℓ)-distributed recoloring problem. We will see that this
condition of additional color can actually be drastically weakened in some
cases since we can prove that we only need to assume that our colorings are
locally non-frozen (in the sense that in every ball must contain a non-frozen
vertex).

The key results of [28] are the following:

37That is a linear number of single vertex recolorings.
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Theorem 48 (Bonamy, Ouvrard, Rabie, Suomela, Uitto [28]). The (3, 1)-
distributed recoloring problem on trees can be solved in O(log n) steps with
a schedule of length O(1).

Sketch of the proof. The key ingredient of the proof is an algorithm that
solves the following sub-problem in O(log n) rounds: given a tree, the goal
is to find an independent set I such that the removal of I splits the tree in
components of size 1 or 2. When this algorithm is given, we can simply give
to all the vertices of I the additional color at the first round. Then, we can
simply recolor locally and independently each connected component with
the 3 initial colors and finally give to the vertices of I their final color.

A natural extension of trees are chordal graphs. One can then naturally
wonder if these results can be extended to chordal graphs. We answer this
question positively in [38] by proving that the following holds:

Theorem 49 (Bousquet, Feuilloley, Heinrich, Rabie [38]). Let G be a chordal
graph and α, β be two proper k-colorings of G. It is possible to find a sched-
ule of length nO(log∆) to transform α into β in O(ω2∆2 log n) rounds in the
LOCAL model using at most:

• c additional colors, with c = ω − k + 4, if k ≤ ω + 2,

• 1 additional color if k ≥ ω + 3.

One can remark that for trees it gives a slightly weaker result since (i) it
only ensures that one additional color is needed when we have 4-coloring of
a tree (instead of a 3-coloring as in Theorem 48 and (ii) we have a schedule
whose length depends on ∆. However, the graph class covered by this result
is much wider than the one covered by Theorem 48.

We will not cover the proof technique since we would need to introduce
a bit too much material from distributed algorithms. However, the key in-
gredient of this proof consists in applying Theorem 25 in parallel to several
independent sections of the graph. We obtain these different sections using
a “Rake and Compress” method on the tree decomposition of the chordal
graph. And in order to be sure that we can apply the machinery of The-
orem 25, we have to use Kempe chains that are appropriately cut using
additional colors if they are too long (to be sure that the recolorings remain
local).

The second main positive result of [28] consists in giving (3, 1)-distributed
recoloring algorithm for graphs of maximum degree 3 (with sequences and
schedule of size O(polylog(n))). Note that it consists of a graph of maximum
degree ∆ with a total number of colors equal to ∆ + 1. One can then nat-
urally wonder if Theorem 38 can be extended into a distributed algorithm.
The answer is positive. Namely we showed that the following (informally
stated theorem) holds:
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Theorem 50 (Bousquet, Feuilloley, Heinrich, Rabie [38]). Let d be a con-
stant. Consider two colorings where in every ball of radius d there is a
non-frozen vertex. Suppose we are given a set of selected vertices that are at
distance at least d and at most 2d one from another. Then, for every vertex,
we can compute its recoloring schedule by looking only at its neighborhood at
distance O(d) as long as the total number of colors is at least ∆+ 1.

3.6 Algorithmic aspects graph recoloring

In this section, we will overview the most important algorithmic results
related to graph recoloring. In a series of articles, Cereceda together with
Bonsma, van den Heuvel and Johnson proved that the following holds:

Theorem 51. The following holds:

• 2-Mixing and 2-Reachability are in P.

• 3-Reachability is in P [55] while 3-Mixing is coNP-complete [54].

• 3-Mixing is always negative for 3-chromatic graphs [54].

• For every k ≥ 4, k-Reachability is PSPACE-complete [31].

Let us briefly sketch the proof that 3-Reachability can be decided in
polynomial time. Let α be a 3-coloring of a graph G. Given a cycle C of
G (together with a cyclic ordering of the vertices), we can assign a weight
to every (oriented) edge uv of C which is α(v) − α(u) mod 3. Note that
the weight of an edge is either +1 or −1. The winding number of a cycle is
the sum of the weights of C divided by 3. (One can easily remark that the
winding number is an integer). One can remark that the following holds:

Lemma 52. Any recoloring of a vertex of C does not modify the winding
number.

Sketch of the proof. The flavor of the proof is similar to the one of Theo-
rem 10. If we can modify the color of a vertex v, then the two neighbors of
v on C are colored the same. So the two edges incident to v are weighted
+1 and −1. The modification of the color of v simply replaces the pair of
weights (+1,−1) by (−1,+1) (or the converse).

So, if there is a transformation between α and β then all the cycles must
have the same winding number in α and β. This necessary condition is
however not sufficient.

A vertex v is fixed (for α) if, for every coloring in the connected com-
ponent of α in G(G, 3), v is colored α(v) 38. They proved that one can find

38Fixed vertices are for instance vertices that belong to fixed cycles, that are cycles of
length 0 mod 3 where all the vertices i mod 3 are colored i.
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in polynomial time all the fixed vertices. They prove that fixed vertices
are either fixed vertices of cycles or vertices that belong to frozen paths (of
the type 123123...) between two fixed vertices. And they proved that the
”winding number” between fixed vertices (defined as for cycles) cannot be
modified (with a proof following the scheme of Lemma 52).

They finally prove that the following holds which is enough to conclude

Theorem 53. Given two 3-colorings α, β of a graph G, there exists a trans-
formation between α and β if and only if:

• the fixed vertices of α and β are the same and,

• the fixed vertices are colored the same in α, β and,

• for every cycle and every path between fixed vertices, the winding num-
ber is the same.

Moreover, all these conditions can be checked in polynomial time.

We will not give the hardness proofs of Theorem 51 but let us explain
why 3-Mixing belongs to co-NP. Assume that G(G, 3) is not connected.
Then there exist two colorings α and β that do not belong to the same
component of G(G, 3). And Theorem 53 ensures that if we are given these
colorings, we can determine in polynomial time that they are not in the
same connected component of G(G, 3). So if an oracle can guess α, β we are
done and then 3-Mixing is in co-NP.

Note that Lemma 52 is a very nice tool to decide the existence of a
transformation. We have said before that G(C5, 3) is not connected. This
can be seen as an easy corollary of Lemma 52. Indeed, one can remark that
the winding number of 12312 is 1 while the winding number of 13213 has
winding number −1. More generally, we can derive the number of connected
components of G(Cn, 3) quite easily.

Note that if we consider the list coloring problem instead, the List
Reachability problem becomes PSPACE-complete even for k = 3 [31].

Before going into results on restricted graph classes, let us finish this
part with the following natural question left opened in several articles for
more than 15 years:

Question 54 (Cereceda, van den Heuvel, Johnson [54]). Is k-Mixing PSPACE-
complete for k ≥ 4 ?

Even if this question is still open, I recently proved with a very simple
proof that the problem is NP-hard.

Theorem 55 (Bousquet [35]). For every k ≥ 4, k-Mixing is co-NP-hard.
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Sketch of the proof. The main idea of the proof of Theorem 55 consists in
considering the 3-To-2 problem, asking whether, giving a 3-coloring of a bi-
partite graph if it can be transformed into some 2-coloring. Since 3-colorable
graphs are never 3-mixing by Theorem 51 and since it is easy to prove that a
bipartite graph B is 3-mixing if and only if any 3-coloring can be transformed
into a 2-coloring, the 3-To-2 problem is co-NP-complete

To complete the proof, we make the following reduction. Let k ≥ 4. Let
us provide a reduction from 3-To-2 to k-Mixing. Consider the graph G
consisting of B plus k − 3 vertices X inducing a clique which are complete
to B. The proof follows from the fact that G is k-mixing if and only if every
3-coloring of B can be transformed into a 2-coloring.

Restricted graph classes. The 4-Reachability problem is known to be
PSPACE-complete even for bipartite graphs and any fixed constant k ≥ 4.
Wrochna proved in [134] that k-Reachability also is PSPACE-complete
even restricted to bounded bandwidth graphs (we will give a formal defini-
tion of bandwidth in Chapter 4). Since graphs of bounded bandwidth have
bounded pathwidth and bounded cliquewidth, k-Reachability remains
PSPACE-complete even restricted to these classes.

Theorem 56 (Wrochna [134]). k-Reachability is PSPACE-complete on
bounded bandwidth graphs.

Let us briefly describe the proof of Wrochna39. To prove Theorem 56,
he proved that the so-called H-Word Reachability problem is PSPACE-
complete. He obtained the hardness of this problem with a reduction from
the hardness of 2-balanced symmetric string rewriting. Since then,H-Word
Reachability became one of the main tools used to prove hardness for
reconfiguration problems.

Let Σ be an alphabet and H be a directed graph (possibly with self-loops
and digons) on vertex set H. We say that W is an H-word if, for every pair
of consecutive letters ab of W , a → b is an arc of H. Two H-words are
adjacent if they differ on exactly one letter.

H-word Reachability
Input: Two H-words W1,W2 of the same length.
Output: YES if and only if there exists a reconfiguration sequence of H-
words from W1 to W2 such that every pair of consecutive H-words in the
sequence are adjacent.

The main part of the proof Theorem 56 consists in proving that the
following holds:

39We will again discuss a similar proof in the next chapter for Independent Set Re-
configuration.
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Theorem 57 (Wrochna [134]). There is a digraph H for which H-Word
Reachability is PSPACE-complete.

Note that H is universal and then can be seen as a bounded graph (even
if no bound on its size is provided in the proof). The following questions
are, as far as I know, open:

Question 58. • Can we find an explicit upper bound on the size of H
such that H-Word Reachability is PSPACE-complete?

• Is H-Word Reachability decidable in polynomial time when |H| =
3?

The second part of the proof of Theorem 56 consists in proving that
k-Palette List Reachability is PSPACE-complete even on a very re-
stricted class of graphs40. Using this fact, Wrochna proved that k-Reachability
is PSPACE-complete. To prove the latter point, one can easily remark that,
if we create a new clique K of size k such that its i-th vertex ki is col-
ored with i then we can easily force the colors of a vertex u to belong to
S ⊆ {1, . . . , k} by simply connecting u to each vertex ki such that i /∈ S. If
we create such a clique for every vertex, one can easily remark that we do
not increase by more than k the pathwidth of G (and the same holds for
bandwidth).

Let us complete this part with some additional algorithmic results on
graph recoloring. On the positive side, Hanataka, Ito and Zhou proved
in [89] that k-Reachability is polynomial on split graphs and trivially
perfect graphs. They also show that this result cannot be extended to
chordal graphs since deciding k-Reachability is PSPACE-complete even
on chordal graphs of bounded clique number [87].

Wrochna [134] gave an FPT algorithm for k-Reachability (and even
for more general problems) parameterized by k plus the tree-depth of a
graph. Hatanaka et al. [88] also proved that List Coloring Reachability
remains PSPACE-complete even for threshold graphs, whose modular-width
is bounded. Ito, Kamiński, Demaine proved in [97] that List Coloring
Reachability also is PSPACE-complete even restricted to planar graphs of
maximum degree 3 with 6 colors.

The intriguing case of interval graphs. One particular subclass of
chordal graphs received considerable attention in the literature: interval
graphs. Indeed, if we consider two (ω + 1)-colorings, then there exists a
transformation between them by Theorem 7 (since they are ω − 1 degener-
ate). On the other hand, no coloring exists if k < ω. Despite all our efforts,
we were not able to solve the following question:

40In an instance of k-Palette List Reachability, the vertices have constraints on
their colors given by lists which are subsets of {1, . . . , k}.
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Question 59. Can ω-Reachability be decided in polynomial time on in-
terval graphs?

One can naturally remark that cliques on ω vertices are completely
frozen. So if the two colorings do not agree on cliques of size ω then we
can answer negatively. So we can assume that cliques of size ω are colored
the same. If we decide to remove vertices of these clique, we obtain an in-
stance of the list reachability problem to the case where we want to find
a recoloring sequence between to ω colorings in an interval graph of clique
number at most ω − 1 where list constraints are ”decreasing” in the sense
that if a color c if forbidden for a vertex v then all the vertices at its left (or
right) also have this constraint.

A particular case of that question has been solved by Bonsma and
Paulusma in [34] who proved that if the interval graph is (ω− 1)-connected
then the question can be decided in polynomial time41.

3.7 A last application of graph recoloring

Marcin Wrochna proposed the following result using Theorem 53.

Theorem 60 (Wrochna). Every graph without any cycle of length 0 mod 3
(non-necessarily induced) is 3-colorable.

Sketch of the proof. Let us prove it by induction on the number of edges.
If there is no edge, the conclusion indeed holds. Let uv be an edge of G.
When deleting uv, the resulting graph admits a 3-coloring α by induction.
Let X1, X2, X3 be the vertices of V colored respectively 1, 2 and 3 in α. Let
β be the 3-coloring where the vertices of X1 are colored 2, the vertices of
X2 are colored 3 and the vertices of X3 are colored 1.

Now, we apply Theorem 53 to prove that there exists a reconfiguration
sequence from α to β in G′ = G \ uv. If there is no recoloring from α to
β, either there is a cycle C that is frozen or there is a cycle C which does
not admit the same winding number in α and β. A frozen cycle should have
length 0 mod 3, which is impossible. And since we just took the permutation
1 → 2 → 3 → 1 on the colors, the winding number of every cycle has not
been modified.

So there exists a reconfiguration sequence from α to β. Since u, v have
the same colors in α and β but these colors are not the same and only one
vertex is recolored at each step, there exists a step where u and v are not
colored the same. Let us denote by γ this coloring. Since u, v are not colored
the same in γ, the addition of the edge uv still gives a proper coloring of G,
which completes the proof.

41Their result actually holds more generally on chordal graphs.
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One can wonder if this result can be extended to triangle-free graphs
with no induced cycles of length 0 mod 3. Bonamy et al. proved in [23] that
these graphs are c-colorable for some constant c. One can wonder if they
are 3-colorable. The winding number assumption in the proof still holds. So
the only problem that might happen is that the deletion of any edge might
create an induced cycle of length 0 mod 3, which might happen as observed
by Wrochna. So the following is still open:

Question 61. Are all the graphs with no induced cycle of length 0 mod 3
3-colorable?

3.8 Kempe chains and homomorphisms

3.8.1 A brief overview on reconfiguration via Kempe changes

Until now, we only considered single vertex recolorings. Note however that
another important recoloring rule has been studied in the last decades: re-
coloring via Kempe changes. Let G = (V,E) be a graph and α be a coloring
of G. We denote by Gα(a, b) the subgraph of G induced by vertices with
colour a or b. A connected component of Gα(a, b) is known as an (a, b)-
component of G and α. These components are also referred to as Kempe
chains. If a coloring β is obtained from a coloring α by exchanging the
colours a and b on the vertices of an (a, b)-component of G, then β is said
to have been obtained from α by a Kempe change. A pair of colorings are
Kempe equivalent if one can be obtained from the other by a sequence of
Kempe changes. A set of Kempe equivalent colorings is called a Kempe
class.

Kempe changes where introduced in the nineteenth century in an at-
tempt to prove the 4-color theorem 42. Even if the proof ended up to be
false, the idea has been successfully used many times, for instance to prove
the 5-color theorem or for the proof of Vizing’s theorem43.

Meyniel first proved that all the 5-colorings of a planar graph are all
Kempe equivalent. Las Vergnas and Meyniel [107] proved that all the k-
colorings of a graph of maximum degree ∆ are Kempe equivalent as long
as k ≥ ∆ + 1. Mohar conjectured in [116] that the same holds as long as
k ≥ ∆. Jan van den Heuvel disproved this conjecture in [131] showing that
the prism (see Figure 3.12) is a counterexample.

Feghali, Johnson and Paulusma proved in [79] that it is the only cubic
counterexample to the conjecture of Mohar. We generalized this result to
all values of ∆ with Bonamy Feghali and Johnson in [20].

Theorem 62 (Bonamy, Bousquet, Feghali and Johnson [20]). Let k ≥ 3 and

42All planar graphs are 4-colorable.
43Every graph is (∆ + 1)-edge colorable.
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Figure 3.12: A prism. Every Kempe change modifies two colors on the inner
and the outer cycles. In particular the orientation of the coloring of the cycle
(Blue Red Green or Blue Green Red) is permuted in both cycles. So one
cannot transform a coloring where both cycles are oriented the same into a
coloring where the orientation of both cycles are reversed.

G be a graph distinct from the 3-prism. Any k-coloring can be transformed
into any other via a sequence of at most O(n2) Kempe changes.

Recently, Bonamy, Delecroix and Legrand-Duchesne [24] improved this
result by providing a polynomial transformation (and with a stronger state-
ment).

One can wonder how many colors are needed to ensure the existence
of a Kempe transformation. A well-known conjecture of Hadwiger states
that, for every t, every Kt-minor-free graph is (t−1)-colorable. Las Vergnas
and Meyniel asked in 1981 if the (t − 1)-colorings of these graphs are all
Kempe equivalent. It was recently disproved by Bonamy, Heinrich, Legrand-
Duchesne and Narboni who showed in [26] that there exist Kt-minor free
graphs with frozen (32 − ϵ)t-colorings for every ϵ > 0. This beautiful proof
is based on an extremely simple construction.

3.8.2 Graph homomorphisms

A natural generalization of colorings is graph homomorphisms. An homo-
morphism from G to H is a function that assigns to every vertex of G a
vertex of H in such a way every edge uv of G is mapped on an edge of H.
One can simply prove that G has an homomorphism to Kk if and only if
G is k-colorable. An important line of research in the last few years has
been devoted to homomorphism reconfiguration. The main problem studied
is the H-Homomorphism Reconfiguration problem that, given two ho-
momorphisms from G to H, tries to determine if it is possible to transform
one into the other via a sequence of single modifications (that is we can
change the function on one vertex at a time). H-Homomorphism Recon-
figuration is PSPACE-complete even for H = Kk as the problem is hard
for coloring.
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The seminal work in this community is a result of Wrochna who proves
the following polynomial result

Theorem 63 (Wrochna [135]). H-Homomorphism Reconfiguration
can be decided in polynomial time when H does not contain any (non nec-
essarily induced) copy of C4.

The proof is based on an homotopy argument and somehow generalizes
the winding number argument used to prove that we can decide the existence
of transformations between 3-colorings. In particular, one can easily prove
that the number of times a cycle C of G turns around a cycle of H cannot
be modified.

Many recent results extended the results of Wrochna by generalizing his
arguments for (directed) homomorphisms. Many hardness results have also
been obtained, even for very simple graphs H such as reflexive graphs. A
graph is reflexive if every vertex has a self-loop. The existence of a homo-
morphism to a reflexive graph is trivial since one simply has to map all the
vertices of G to the same vertex in H. Surprisingly, the picture is really
different for homomorphisms since it has been proven in [109] that Homo-
morphism Reconfiguration is hard even restricted to reflexive graphs.



Chapter 4

Independent set
Reconfiguration

4.1 Token Sliding and Token Jumping models

In this chapter, we focus on the reconfiguration of independent sets. Given a
simple undirected graph G, a set of vertices S ⊆ V (G) is an independent set
if the vertices of this set are pairwise non-adjacent. Finding an independent
set of size k, i.e., the Independent Set problem, is known to be NP-hard,
but also W[1]-hard1 parameterized by solution size k and not approximable
within O(n1−ϵ), for any ϵ > 0, unless P = NP. Moreover, Independent
Set remains W[1]-hard on graphs excluding C4 (the cycle on four vertices)
as an induced subgraph [29].

In this manuscript, we view an independent set as a collection of tokens
placed on the vertices of a graph such that no two tokens are placed on ad-
jacent vertices. This gives rise to three natural adjacency relations between
independent sets (or token configurations), also called reconfiguration steps.

Token Sliding. In the Token Sliding model, introduced by Hearn and
Demaine [90], two independent sets are TS-adjacent (or adjacent when the
variant is clear from context) if one can be obtained from the other by remov-
ing a token from a vertex u and immediately placing it on another vertex v
with the requirement that uv must be an edge of the graph. The token is
then said to slide from vertex u to vertex v along the edge uv. A (TS)-
reconfiguration sequence from I to J , denoted by I ⇝TS J , is a sequence
of independent sets starting on I and ending on J such that consecutive
independent sets in the sequence are TS-adjacent. The k-TS-configuration
graph of G, denoted by GTS(G, k), is the graph whose vertices are the k-
independent sets of G and there is an edge between two independent sets if
they are TS-adjacent. Note that there exists a TS-reconfiguration sequence

1Informally, this means that it is unlikely to be fixed-parameter tractable.
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from I to J if I and J are in the same connected component of GTS(G, k).
The main algorithmic problem that has been considered in the literature for
this model is the following problem:

Token Sliding Independent Set Reachability (TS-IRS)
Input: A graph G, an integer k, two independent sets I, J of size k.
Output: YES if and only if I ⇝TS J .

Hearn and Demaine [90] introduced this problem in a reduction devoted
to prove that the so-called warehouse man’s problem is PSPACE-complete,
even restricted to robots of bounded size. Without giving the details of
that problem, it belongs to a wide class of problems in robotics where we
want to transform a solution (consisting of robots in some position) into a
target position by moving robots one by one while satisfying conditions all
along the transformation (in order to avoid collisions between robots and
unauthorized moves of robots).

If we see the possible sets of positions as the vertices of a graph and
we put an edge between two positions if two robots cannot be in these two
positions because they are too close or collapsing (the conflict graph), then
a set of possible positions for robots corresponds to an independent set of
the conflict graph. In all these problems, the robots cannot jump from a
position to another but can simply move to close positions which corresponds
to moving along edges of the conflict graph.

Another motivation behind the token sliding model (not only for inde-
pendent sets but more globally for reconfiguration problems) is its relation
with puzzles. A puzzle is a one-player game where, given some configuration
of the puzzle, one wants to transform this configuration into a desirable posi-
tion. As we have already seen in the introduction, the Rubik’s cube and the
15-puzzle for instance lie in this category. For the example of the 15-puzzle
for instance, the way we are transforming a configuration into another con-
sists in sliding the empty slot along an edge of the board (consisting of a
4× 4 grid). The warehouse’s man problem, as well as the Rush Hour game,
can be seen as reconfiguration problems close to the TS-IRS problem where
we want to allow some space for the robots to move in a conflict graph.

Token Jumping. In theToken Jumpingmodel, introduced by Kamiński
et al. [101], we drop the restriction that the token should move along an edge
of G and instead we allow it to move to any vertex of G provided it does
not break the independence of the set of tokens. That is, a single reconfig-
uration step consists of first removing a token on some vertex u and then
immediately adding it back on any other vertex v, as long as no two to-
kens become adjacent. The token is said to jump from vertex u to vertex v.
Two independent sets are TJ-adjacent (or adjacent when the variant is clear
from context) if one can be obtained from the other by removing a token
from a vertex u and immediately placing it on any other vertex v. A (TJ)-
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reconfiguration sequence from I to J , denoted by I ⇝TJ J , is a sequence
of independent sets starting on I and ending on J such that consecutive
independent sets in the sequence are TJ-adjacent. The k-TJ-configuration
graph of G, denoted by GTJ(G, k), is the graph whose vertices are the k-
independent sets of G and there is an edge between two independent sets if
they are TJ-adjacent. Note that there exists a TJ-reconfiguration sequence
from I to J if I and J are in the same connected component of GTJ(G, k).
Again, the most studied algorithmic problem for that model is the following:

Token Jumping Independent Set Reachability (TJ-IRS)
Input: A graph G, an integer k, two independent sets I, J of size k.
Output: YES if and only if I ⇝TJ J .

When we restrict to maximum independent sets of the graph, the token
sliding and token jumping models are equivalent (and then TJ-ISR and TS-
ISR are equivalent). Indeed, if we have a maximum independent set I of a
graph G and we want to remove a vertex u from I and replace it by a vertex
v, the vertex v has to be in the neighborhood of u since otherwise I ∪ {v}
would be an independent set, which contradicts the fact that I is maximum.
So, in what follows, when we say that some independent set reconfiguration
problem is hard (or simple) for maximum independent sets, the result holds
for both the TS and TJ models.

In general, however, TS-ISR and TJ-ISR have different behaviors as we
will see later. In most of the cases, constructing algorithms in the token
jumping model is easier than the token sliding model. We will explain why
in Section 4.5 but the idea is that, for token jumping, we just have to keep an
independent set while in the token sliding model, we also have to slide along
edges. In some sense, the sliding version adds some connectivity condition
on the transformation. This additional condition might force us, in order
to simply move a token from u to a non-adjacent vertex v, to perform a lot
of slides of other tokens to allow this move. Indeed, we would like to slide
the token on a path from u to v but are not sure that it keeps a solution
all along. So we might need to move back and forth a lot of tokens to allow
the moves along this path. In particular this additional condition is really
helpful in order to build hardness proofs

One of the motivations to study this variant comes from statistical
physics. As for recoloring, one can sample independent sets at random
using a Markov chain as follows: at every step, select a vertex v of the inde-
pendent set I at random and a vertex w of the graph at random and replace
v by w in I if the resulting set is an independent set. This hard-core model
is studied in various fields such as statistical physics, operational research
or random sampling.

Note that recently, the puzzle community tried to construct hard puzzles
based on “jumping moves” rather than sliding moves. One of the motivations
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to introduce and study these puzzles come from the existing hardness results
on TJ-ISR. The reader interested in jumping puzzles is, for instance, referred
to [103].

Token Addition Removal. In the Token Addition Removal model,
introduced by Ito et al. in [96], we are allowed to add or remove a vertex
from an independent set at each turn. One can indeed find a reconfiguration
sequence between any pair of independent sets in this model by removing all
the vertices of the first independent set and then adding all the vertices of
the other. What makes the problem hard is that we add a threshold value t
and ask for a transformation where all the independent sets in the sequence
have size at least t. We will not really discuss this model in the rest of
the manuscript since the Token Jumping and the Token Addition Removal
models have been proven to be equivalent in [101].

4.2 Algorithmic aspects of Independent Set Re-
configuration

4.2.1 Hardness results

NCL and hardness on planar graphs. TS-ISR and TJ-ISR has been
proven to be PSPACE-complete even restricted to maximum independent
sets for planar graphs of maximum degree 3 in [90]. The initial motivation
of the Hearn and Demaine paper was not to prove that TS-IRS and TJ-
IRS are PSPACE-complete but to prove that some sliding problems are. To
prove their results, they introduce a new problem, called Nondeterministic
Constraint Logic Reconfiguration (or NCL Reconfiguration for short).
They then prove that this problem is PSPACE-complete and finally give a
simple reduction to prove that TS-ISR and TJ-ISR are PSPACE-complete.

Before explaining a bit what NCL Reconfiguration is, let us first
explain why these problems lie in PSPACE (and more globally why most
of the reconfiguration problems lie in PSPACE). Given a graph G and two
independent sets I, J , one can indeed compute the configuration graph in
exponential time and then determine if the two independent sets are in the
same connected component of the configuration graph. This very simple
algorithm ensures that the problems TS-ISR and TJ-IRS lie in EXPTIME.
But they actually belong to PSPACE since it is simply a reachability problem
in an exponential graph. Indeed, since there are less than nk independent
sets of size k, we can label each independent set with at most log(nk) bits.
Since the accessibility problem in a graph G can be solved in logarithmic
space. Now, we have a simple non-deterministic algorithm to decide if I, J
belong to the same connected component by simply “guessing” the next
independent set in the sequence. This algorithm only needs a polynomial
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Figure 4.1: An and/or graph with an orientation. Bold edges have weight
2 and light edges have weight one. All the vertices either have three or one
bold edges. The configuration represented here is not valid since the bottom
left and vertex only have one incoming arc of weight one. All the other
vertices satisfy the condition that the in-degree is at least two.

number of bits of memory since it only needs to check that the current
and next independent sets are indeed adjacent in the configuration graph
which can be done in polynomial time. Since, by Savitch’s theorem, we have
NPSPACE=PSPACE, the problems TS-ISR and TJ-IRS are in PSPACE.

Let us now explain what is NCL (see Figure 4.1 for an illustration).
Suppose that we are given a cubic graph with edge-weights in {1, 2} such
that each vertex is either incident to three weight-2 edges (“or vertex”) or
one weight-2 edge and two weight-1 edges (“and vertex”), which we call an
and/or graph. A (valid) NCL configuration is an orientation of the edges
of the graph such that the total weights of incoming arcs at each vertex is
at least two2. Two NCL configurations are adjacent if they differ in a single
edge direction. In NCL Reconfiguration, we are given an and/or graph
and two NCL configurations, and the objective is to determine whether there
exists a sequence of adjacent NCL configurations that transforms one into
the other. It is shown in [90] that NCL Reconfiguration is PSPACE-
complete.

Theorem 64 (Hearn, Demaine [90]). NCL Reconfiguration is PSPACE-
complete, even restricted to planar graphs.

Many reconfiguration problems are proven to be PSPACE-complete using
reduction from NCL Reconfiguration. (In some sense NCL Reconfig-
uration can be considered as the equivalent of 3-SAT for reconfiguration).
We will not discuss this reduction nor the uncrossing gadget (for NCL and
then further for ISR). Using Theorem 64, they obtain the following corollary,
which is the starting point of an important line of research in combinatorial
reconfiguration:

2To explain a bit the notions, note that for an or vertex, we can simply select any
incoming edge (we simply need an OR on the three incoming edges) while for an and
vertex, if the weight 2-arc is not incoming we need to select the second AND third arc as
incoming arcs.
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OR gadget AND gadget

Figure 4.2: The gadgets of the hardness reduction from Hearn and Demaine
to prove that TS-ISR is PSPACE-complete.

Theorem 65. TS-ISR and TJ-ISR are PSPACE-complete, even restricted to
planar graphs of maximum degree 3 and restricted to maximum independent
sets.

Sketch of the proof. The proof is a simple reduction from NCL reconfigura-
tion. The gadgets are represented in Figure 4.2. The set of edges leaving the
gadget are called port edges and are linked to their corresponding neighbors
in the and/or graph. For every edge uv, if uv is oriented from u to v in an
NCL configuration, we place a token on the port edge of uv in the gadget
of v. One can easily notice that every independent set with exactly one
token on each port edge corresponds to a valid configuration of the and/or
graph (and conversely) and that a valid NCL reconfiguration sequence gives
a valid TS-ISR sequence.

Word reconfiguration and hardness on bounded bandwidth graphs.
Let us first define bandwidth. A graph G has bandwidth at most k if there
exists a path P and a bag function B that assigns to each vertex of the
graph G a vertex of P in such a way:

• For every vertex p ∈ P , B−1(p) has size at most k. In other words, at
most k vertices are assigned to the same vertex of P .

• For every edge uv of G, B(u) and B(v) are either the same or adjacent
in P .

One can easily remark that a graph of bandwidth at most k has pathwidth
at most 2k. Indeed assume that P has r nodes, we can then define a path
P ′ on r − 1 nodes such that the bag of the i-th vertex of P ′ consists of the
bags of the i-th and (i + 1)-th nodes of P . The path P ′ is indeed a path
decomposition of P with bags of size at most 2k.
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The proof of the following theorem is based on Theorem 57 which ensures
that H-Word Reachability is PSPACE-complete:

Theorem 66 (Wrochna [134]). TS-ISR and TJ-ISR are PSPACE-complete,
even on bounded bandwidth graphs and restricted to maximum independent
sets.

Sketch of the proof. Let A,B be two H-words of the same length n with
alphabet Σ. The idea consists in creating n cliques of size Σ. An independent
set of size n has to contain exactly one vertex per clique which corresponds
to a letter. Now, between every pair of consecutive cliques we put an edge
between a and b if a cannot be followed by b in the graph H. In other words,
between consecutive pairs, we always have the same bipartite graph. The
graph indeed has bounded bandwidth because every vertex is only adjacent
to its own clique, the clique before and the clique after it.

Note that the constant in the proof of Theorem 66 is not explicit (but
anyway large). Determining an explicit upper bound is open:

Question 67. Give an explicit upper bound r on which TS-ISR and TJ-ISR
are PSPACE-complete on graphs of bandwidth at most r? Pathwidth at most
r? Treewidth at most r?

Since there is no known upper bound on which the problem is known to
be hard, it is natural to study it for small values of r for understanding its
behavior. Several groups tried to determine if the problem is polynomial for
graphs of treewidth at most 2. As far as I know, none of them succeeded.
Even worse, the problem remains open even on very restricted subclasses of
graphs of treewidth at most 2, like outerplanar graphs.

Conjecture 68. TS-ISR and TJ-ISR can be decided in polynomial time on
outerplanar graphs and more generally on graphs of treewidth 2.

Usually, on these classes of graphs, it is easy to design dynamic pro-
gramming algorithms. Unfortunately, as we will see later, designing dy-
namic programming algorithms for reconfiguration problems is much harder
than in the classical setting. Solving this conjecture, which can be seen as
a toy problem, might need a new strategy which might be helpful for other
problems too.

Up to this point, all the hardness results we mentioned on one model
also hold for the other. One can wonder if the two models are equivalent.
The answer is negative! There are a lot of classes where the behavior in the
two models are different. We will discuss in details a bit later the particular
case of chordal graphs which is trivial for token jumping and hard for token
sliding. But let us first discuss the class of bipartite graphs:

Theorem 69 (Mouawad, Lokshtanov [111]). TS-ISR is PSPACE-complete
and TJ-ISR is NP-complete.
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Sketch of the proof. We will only discuss the TJ-ISR part of the theorem,
the other follows from a classical hardness reduction. Note that since re-
configuration problems do not clearly lie in NP, we have to prove both
inclusions. The authors prove that the problem is NP-hard from the fact
that computing treewidth in co-bipartite graphs is NP-hard and they can
prove that both problems are equivalent. So, in the rest of the sketch we
will focus on the fact that the problem belongs to NP.

Instead of Independent Set Reconfiguration, we will consider the Vertex
Cover Reconfiguration problem. On bipartite graphs, the two problems are
the same since we only have to see that if we replace edges by non-edges
between the two sides of the bipartite graph, an independent set becomes
a vertex cover and conversely. Note moreover that instead of TJ we will
consider the TAR version where we are allowed to add and remove vertices
from the vertex cover (without going above a fixed threshold). The proof
follows from two different and both very nice lemmas.

The first idea of the proof consists in proving that we can perturb the
graph in order to ensure that the minimum vertex cover reachable from a
vertex cover X is unique. To do so, we consider the connected component
of X in the configuration graph and let us denote by Y a vertex cover of
minimum size. Now, we modify the graph by duplicating 2n − 1 times the
vertices of Y and 2n times the others. Let us denote by GY the new graph.
The new threshold on the size of the vertex cover is ν = 2nk−2n−1. Let Z
be a vertex cover of size at most ν in GY . We say that Z saturates a ∈ V (G)
if all the copies of a in GY contain a token. One can easily prove that if Z
is a vertex cover then it should saturate a vertex cover of G. Moreover, if a
transformation initially exists, then we can adapt it in GY . So we can from
now on assume that, in the connected component of our vertex cover, we
have a unique minimum size vertex cover3.

The second idea of the proof consists in proving that, if we start from a
vertex cover X in a graph G, then a smaller vertex cover in the connected
component of X (if it exists) can be reached in at most O(n) steps. To
prove that, the authors show that there should be an illegal crown. A
crown in a bipartite graph (A,B) is a pair (C,H) such that |C| > |H| and
N(C)∩A = H. The idea is that if a vertex cover contains at least one vertex
of H then it is never interesting to move a vertex from H. Indeed otherwise,
we should cover all the edges between that vertex of H by covering all the
vertices of H whose size is larger than C. This (actually technical !) lemma
being proved, we can simply remove that vertex (and one token from the
graph). Using this lemma, they succeed to prove that, since a shortest path
to a vertex cover of smaller size cannot contain any vertex of a crown, then
such a path should have linear length at most. In order to prove it they

3Note that this reduction actually works for any possible graph class but as far as I
know has never been used for other classes.
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succeed to prove that in order to reach a vertex cover of smaller size, one
can do it via a monotone path meaning that a token will be at most once
added and removed from the vertex cover during the sequence. Note that
proving such a monotonicity result in reconfiguration is really rare (and also
note that this proof is nothing but simple). This indeed ensures the existence
of a linear transformation (if it exists) that decrease smthe size of the vertex
cover.

Let us now conclude by recombining all the arguments. Let X,Y be two
vertex covers. Let us guess the smallest vertex cover in the component of
X and apply the reduction from it. The new graph G′ has quadratic size
and the new threshold is ν. Now we now that we can in O(|V ′|) = O(n2)
step reduces by one the size of the vertex cover and we can reduce the size
of the vertex cover at most O(n3) times. So the oracle can give us, if it
exists a transformation from X,Y to the smallest vertex cover in at most
O(n4) steps if it exists which concludes the fact that the problem belongs
to NP.

4.3 Chordal graphs

Chordal graphs are very interesting since their behavior really differs de-
pending if we consider the Token Sliding or Token Jumping model. Let us
first remark that the following holds:

Theorem 70. For every chordal graph G, the k-TJ configuration graph is
connected and has diameter at most 2k.

Sketch of the proof. The proof is by induction on k. The proof follows from
the fact that chordal graphs contain simplicial vertices. A vertex is simplicial
if its neighborhood is a clique. One can easily prove that, if v is a simplicial
vertex, then there exists a maximum independent set that contains v. Now,
consider two independent sets I, J of size k. Since N(v) is a clique, N(v)∩I
and N(v)∩ J have size at most one. So, in at most 2 steps, we can add v in
I and in J . (Indeed if v is not in I then we simply remove the unique vertex
of N(v) ∩ I if it exists or any other vertex from the independent set and
add v). Now, G \N(v) is still a chordal graph and the conclusion follows by
induction.

One can wonder if the same holds for Token Sliding. The answer is
negative. We obtained the first step in that direction with Marthe Bonamy
in [18] where we showed that deciding if the TS-configuration graph is con-
nected is co-NP-hard even restricted to split graphs4, a simple subclasses of
chordal graphs. Belmonte et al. later gave in [13] a reduction from NCL
Reconfiguration to prove that the following holds:

4A graph is split if its vertex set can be partitioned into a clique and an independent
set (with arbitrary edges between these two sets).
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Theorem 71 (Belmonte et al. [13]). TS-ISR is PSPACE-complete, even
restricted to split graphs.

One can then naturally wonder on which subclass of chordal graphs
TS-ISR can be decided in polynomial time. There are two natural ways
to simplify chordal graphs: either we reduce the size of the cliques or we
reduce the number of branchings in the clique tree. In the extremal cases,
we obtain trees in the first case (clique number two) and interval graphs in
the second (the clique tree is a path). Both problems have been proven to
be decidable in polynomial time.

Theorem 72 (Demaine et al. [63]). TS-ISR can be decided in linear time
on trees. And every connected component of GTS(T, k) has diameter at most
O(n2) for every tree T and every integer k.

Sketch of the proof. Let I be an independent set of size k of a tree T . The
main step of the proof consists in proving that we can, in linear time, de-
termine all the vertices of I that are rigid, that is vertices that belong to all
the independent sets of the connected component of I in GTS(T, k).

Let I, J be two independent sets of T . If there exists a transformation
from I to J then I and J must have the same rigid vertices. If the sets of
rigid vertices are different, we return false. Otherwise, we can simply remove
all these vertices and their neighborhoods from the graph safely.

The second step of the proof consists in proving that the answer is posi-
tive as long as there is the same number of tokens in each connected compo-
nent in each connected component of the remaining forest. In other words,
there always exists a transformation between two non rigid independent sets
in every tree.

As we already observed, Theorem 72 corresponds to chordal graphs with
clique number equals 2. One can naturally wonder if the following holds:

Question 73. Can TS-ISR be decided in polynomial time on chordal graphs
of bounded clique number?

Note that in the case of split graphs (on which TS-ISR is PSPACE-
complete), the clique number is indeed arbitrarily large. Moreover with
Valentin Bartier and Amer Mouawad, we proved that the problem is FPT
in that case [8].

With Marthe Bonamy, we also proved that TS-ISR can be decided in
polynomial time on interval graphs:

Theorem 74 (Bonamy, Bousquet [18]). TS-ISR can be decided in polyno-
mial time on interval graphs.
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We prove this result using dynamic programming. While it is usually
easy to design dynamic programming algorithms for chordal or interval
graphs for optimization problems, it is much harder for reconfiguration prob-
lems. Consider for instance the very simple example of the computing of a
maximum independent set on a bounded treewidth graph G. If one wants
to construct a maximum independent set, there is a very simple dynamic
programming algorithm on the tree decomposition rooted on an arbitrary
node r. For every node s and every subset R of nodes in the bag S of s, we
define v(s,R) as the size of the maximum independent set of the subgraph
rooted on s containing R and not containing S \ R. Since S separates the
subgraph rooted on s with the rest of the graph, one can now easily com-
pute this value with a dynamic programming algorithm bottom-up from the
leaves.

This does not work for reconfiguration of independent sets since TS-ISR
is PSPACE-complete. One can wonder why. The problem with reconfigu-
ration is that we cannot really consider separately the vertices that belong
to the subtree rooted on a node s and the other part of the graph. Indeed,
imagine that we have an instance where we want to transform I into J
where I ∩ S = J ∩ S. Let us denote by H the subgraph of G rooted on s
and G′ = (G − H) ∪ S. The fact that I and J agree on S does not imply
that these vertices do not move during a transformation (that is, we cannot
simply remove vertices in the intersection of the solutions and restrict to the
other vertices). Let us denote by V1 the subset of vertices in V (H) \ S and
V2 = V \ (V1 ∪ S). In order to find a transformation between I and J , we
might have to move tokens of the independent set from V1 to V2 via S to
free some space and allow moves on V1 (and conversely). Even worse, there
is no reason why the number of back and forth moves between V1 and V2

would be bounded (and since the problem is PSPACE-complete, it is indeed
not the case). For interval graphs, we succeeded in dealing with these back
and forth moves.

Sketch of the proof of Theorem 74. In an interval graph, there are two nat-
ural orders on the vertices: we can sort them by increasing right endpoint
(end ordering) or by increasing left endpoint (beginning ordering).

The first claim of the proof is the following: to decide if we can transform
an independent set I into an independent set J in polynomial time, we can
prove that it is enough to decide in polynomial time if the leftmost possible
vertex (for the end ordering) that can be reached from I and from J are
the same (the conclusion then follows by induction). In other words, even
if in general it is not true that if a vertex belongs to the intersection of the
independent sets we can delete it (as well as its neighborhood), it is valid
for that special vertex.

So we simply have to find an independent set in the component of I in
GTS(G, k) with the leftmost possible right endpoint. To do so, we prove that
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we can reach such an independent set by repeating the following procedure
until it reaches a fixed point:

• Try to push left the leftmost token of the independent set while the
other tokens of the independent set are fixed,

• Try to push right the second token of the independent set while the
first token is fixed (but all the other tokens are allowed to move).

The first item can trivially be performed in polynomial time since we simply
try to move a token to another in a graph (which is simply a connectivity
question). We prove that the second can be solved by induction using a non-
trivial dynamic programming (the goal being to only have to remember in
total a polynomial number of configurations to start with which can actually
be done).

The drawback of this proof is that it does not guarantee that every
connected component of GTS(G, k) has polynomial diameter. Briański et al.
improved our result in [50] by proving that the diameter of each connected
component of GTS(G, k) is quadratic when G is an interval graph.

As we already observed, interval graphs can be seen as an extremal case
of chordal graphs since clique trees are paths in interval graphs. One can
wonder what can happen if we put slightly less restrictions on the clique
tree. If we decide to bound the number of nodes of degree at least 3 in the
clique tree, then the problem becomes PSPACE-complete since the clique
tree of split graphs is a star. One can then naturally ask what happens
if the number of leaves in the clique tree is bounded, a question left open
in [18]:

Conjecture 75 (Bonamy, Bousquet [18]). TS-ISR can be decided in poly-
nomial time on chordal graphs whose clique tree has a bounded number of
leaves.

Note that TS-ISR has been proven to be decidable in polynomial time in
other restricted classes such as block graphs [93] (chordal graphs where all
the 2-connected components are cliques). The problem can also be decided
in polynomial time on cactus graphs [95] (graphs where all the 2-connected
components are cycles).

4.4 Other polynomial time algorithms

H-free graphs. For Token Sliding, Kamiński et al. gave in [102] a linear-
time algorithm to decide TS-ISR for cographs (which are P4-free graphs).
Bonsma et al. proved in [32] that TS-ISR can be solved in polynomial time
for claw-free graphs. This result generalizes a result of Ito et al. [96] who
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proved that TS-Matching Reconfiguration can be decided in polyno-
mial time (a matching is an independent set of a line graph, which is a
claw-free graph).

In the Token Jumping model, Bonsma proved that TJ-ISR can be de-
cided in polynomial time for cographs in [33] as well as claw-free graphs [32].
With Marthe Bonamy, we proved that deciding if GTJ(G, k) is connected is
polynomial for cographs [17] answering a question of [33].

One can generally wonder what is the complexity of TS-ISR and TJ-ISR
for more general graphs H. We proved with Valentin Bartier and Moritz
Mülenthaler [10] that the following holds using an Alekseev trick:

Theorem 76 (Bartier, Bousquet, Mülenthaler [10]). TS-ISR and TJ-IRS
are PSPACE-complete on H-free graphs for every connected graph H that
is not the subgraph of a subdivision of a claw (even restricted to maximum
independent sets)5.

Sketch of the proof. The proof follows the same line as Alekseev’s proof [2]
to prove the hardness of maximum independent set inH-free graphs when H
is not the subdivision of a claw. Let I and J be two maximum independent
sets of a graph G and let G′ be a (well-chosen) subdivision of G. Alekseev
observed that every maximum independent set of G can be associated to
a maximum independent set of G′. We denote the independent sets of
G′ corresponding to I and J by I ′ and J ′ respectively. Using Alekseev
reduction, we only have to show that there exists a reconfiguration sequence
that transforms I into J if and only if there exists one that transforms I ′

into J ′ to complete the proof.

Since the TS-ISR and TJ-ISR can only be polynomial on H-free graphs
where H is the subdivision of the claw (for connected graphs H), and since
we know that the problem can be decided in polynomial time on claw-free
graphs [32], one can naturally wonder what happens on fork6-free graphs.
We proved the following:

Theorem 77 (Bartier, Bousquet, Mülenthaler [10]). The following holds:

• TS-ISR and TJ-IRS can be decided in polynomial time on fork-free
graphs for maximum independent sets.

• TS-ISR can be decided in polynomial time on fork-free graphs.

The idea of this proof consists in reducing the problem to the claw-free
case that has been done by [32]. While it is not complicated for maximum
independent sets using a short but nice argument, the argument is much

5A graph G1 is a subdivision of G2 if it can be obtained from G2 by subdividing edges.
6A fork is a star with 3 leaves where one of the branches is subdivided once. In other

words, it is a claw where one of the edges has been subdivided once.
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more complicated for non necessarily maximum independent sets for Token
Sliding. We did not succeed to prove it for Token Jumping and left the prob-
lem as open. While the structure of the symmetric difference between two
independent sets is well understood (paths, cycles, complexes), we did not
succeed to treat complexes (which can easily be treated for Token Sliding).
We nevertheless conjecture that the following holds:

Conjecture 78. TJ-ISR can be decided in polynomial time on fork-free
graphs.

In general, it is not true that the reconfiguration of maximum inde-
pendent sets and non maximum independent sets have the same complexity
status. For instance, on split graphs, TS-ISR is PSPACE-complete [13] while
TS-ISR on maximum independent sets is indeed polynomial.

For the optimization variant of independent sets, the complexity status
of computing a MIS in a P5-free graph remained open during decades until
Lokshtanov et al. proved in [113] using potential maximum cliques that it is
possible to compute a MIS in polynomial time in P5-free graphs. This result
has been extended to P6-free graphs in [83]. And the complexity status of
computing a MIS in Pk-free graphs is still open for every k ≥ 7.

For reconfiguration, we tried to adapt the potential maximum clique
method for P5-free graphs but did not succeed. A new method may be
needed to tackle the problem (and may provide some new insight for its
optimization counterpart):

Question 79. Can TS-ISR and TJ-ISR be decided in polynomial time on
P5-free graphs? On Pk-free graphs?

Other graph classes. For TJ-ISR, one can notice that the problem has
been proven to be polynomial on even-hole free graphs in [101]. As far as I
know, the following is still open:

Question 80. Can TS-ISR be decided in polynomial time on even-hole free
graphs?

TS-ISR and TJ-ISR has also been proven to be decidable in polynomial
time on bipartite permutation and bipartite distance-hereditary graphs [81].

4.5 Parameterized algorithms

This part is an extension of the section on parameterized aspects of recon-
figuration of independent sets from the survey [48] we wrote with Naomi
Nishimura, Amer Mouawad and Sebastian Siebertz on parameterized as-
pects of reconfiguration problems (restricted to independent sets and domi-
nating sets).
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4.5.1 Hardness results

On general graphs, the following (unsurprisingly) holds:

Theorem 81 (Mouawad et al. [117]). TJ-ISR is W[1]-hard when param-
eterized by the number of tokens k (and even when parameterized by k + ℓ
where ℓ is the lengh of the sequence).

Sketch of the proof. The reduction is from the Independent Set problem
parameterized by solution size k. Given an instance (G, k) of Independent
Set, we construct an instance (G+Kk+1,k+1, k+1, Is, It) of TJ-ISR, where
G+Kk+1,k+1 is the graph consisting of the disjoint union of G with a biclique
having k+1 vertices in each part. We let L and R denote the two parts of the
biclique and we set Is = L and It = R. It is not hard to see that (G, k) is a
yes-instance of Independent Set if and only if (G+Kk+1,k+1, k+1, Is, It)
is a yes-instance of TJ-ISR; before any token can jump to R we must have
at least k tokens in G forming an independent set.

Actually, we proved that TJ-ISR remains W [1]-hard even restricted to
{C4, . . . , Cp}-free graphs [4], for any p ≥ 4 adapting a proof that computing
a maximum independent set in such a graph is W [1]−-hard [29].

TJ-ISR and TS-ISR are then very unlikely to admit FPT algorithms
parameterized by k. But one can wonder if they really belong to the class
mentioned above. The answer is negative. Bodlaender, Groenland and
Swennenhuis characterized in [16] exactly to which class these problems
belong to: XL. The class XL consists of the parameterized problems that
can be solved by a symmetric Turing machine that uses f(k) · log n space,
where k is the parameter, n the input size and f any computable function7.
(We will explain why the problems belong to that class in the following
proof).

Theorem 82 (Bodlaender, Groenland and Swennenhuis [16]). TS-ISR and
TJ-ISR are XL-complete.

Sketch of the proof. The reduction is from Accepting Log-Space Sym-
metric Turing Machine which is an XL-complete problem. A Symmetric
Turing Machine is a Nondeterministic Turing Machine, where the transi-
tions are symmetric, that is for any transition we can also take its reverse.
Informally speaking8 it means that if we perform a move in an execution of
the Turing machine, we can immediately cancel that move and come back
to the previous situation. Note that in reconfiguration we are indeed sym-
metric since when we just performed a move, we can cancel it and come
back to the previous independent set.

7The class XL can be seen as the counterpart of the class L (logarithmic space) for
classical complexity setting.

8We will not give the formal definition since it is not that simple.
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The typical XL-complete problem is the following:

Accepting Log-Space Symmetric Turing Machine
Input: A symmetric Turing Machine M = (S,Σ, T, sstart, A)

9 with Σ =
[1, n] and a work tape with k cells.
Parameter: k.
Question: Does M accept?

Note that there is no word to read but simply the initial tape. Also note
that a symmetric Turing machine is not determinist but one can actually
easily prove that XL=XSL, that is, what can be done with a deterministic
Turing machine is actually equivalent to what can be done with a sym-
metric non-deterministic Turing machine (see [16] for more details). (This
statement can be seen as the parameterized counterpart of the fact that
reachability in an undirected graph is in L (while in directed graphs it is
in NL). In particular, one can easily see that a reconfiguration sequence is
indeed (i) a symmetric transformation (what has been done can be undone)
and (ii) can be represented using f(k) log n bits since there are at most nk

independent sets. So, from an independent set I where each element of the
work tape corresponds to a vertex of I, we simply guess the transformation
to J and check that, each time we perform a token move, we are keeping an
independent set. So TJ and TS-IRT belong to XSL, which is equal to XL.

In order to prove the hardness result, Bodlaender et al. proved that
both TS-ISR and TJ-ISR are equivalent under XL-reductions; so proving
the hardness of one of them is enough to get the result. They actually
show that it suffices to prove that Partitioned TS-Independent Set
Reconfiguration is XL-complete to complete the proof. In this variant,
the vertex set is partitioned into k+1 sets V1, . . . , Vk, Vk+1 containing exactly
one token in the source and target independent sets. And every token is
forced to stay on its own subset Vi of vertices all along the transformation.
For every i ≤ k, the token on Vi represents the current letter of Σ on the i-th
position of the work tape. The last set Vk+1 will permit to represent all the
pairs (q, i) where q is a state and i the position of the machine. Now if we
have a transition, they prove that we can represent it using three additional
vertices (for each transition). Very informally speaking, the first vertex will
permit to check that the tape indeed contains the right letters at the correct
positions (and that we are allowed to perform this transition), the middle
vertex is a waiting vertex and the last vertex permits to check that we have
modified the tape as claimed by the transition at the end. We refer the
reader interested to [16] for more details.

9S is the set of states, Σ is the alphabet, T is the set of transitions, sstart is the initial
state and A is the set of accepting states.
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4.5.2 Independent set reconfiguration under token jumping

Having established hardness, we now focus on the parameterized complexity
of TJ-ISR on sparse classes of graphs.

Graphs of bounded degree. We first explain why TJ-ISR is fixed-
parameter tractable for the simple case of graphs G of maximum degree
∆ [4]. Let Is, It be the source and target independent sets. Since Is ∪ It has
at most 2k∆ neighbors, there are two options, depending on the number
of vertices in the graph. If G has at most 3k(∆ + 1) vertices, then we
can construct the configuration graph via brute force in FPT-time. On the
other hand, if G has more than 3k(∆ + 1) vertices, then V (G) \ N [Is ∪ It]
contains an independent set J of size at least k. It is then possible to form
a reconfiguration sequence by moving the tokens in Is into J one token at
a time and then moving tokens from J into It in the same manner. Thus,
TJ-ISR parameterized by k admits a kernel of linear size on classes of graphs
of bounded degree.

In more general sparse classes of graphs, a reconfiguration sequence
might not exist even for arbitrarily large graphs since there might exist
(almost) universal vertices, i.e., vertices connected to (almost) all. However,
due to the sparsity constraints, very few such vertices can exist. As we shall
see, in many cases, e.g., planar, nowhere dense, as well as Kh,h-free graphs,
one can use such vertices to find one or more irrelevant vertices.

Planar graphs and Kh,h-free graphs. Another typical sparse graph
class is the class of planar graphs. Ito et al. [98] proved the following:

Theorem 83 (Ito, Kamiński, Ono [98]). TJ-ISR parameterized by k is
fixed-parameter tractable on the class of planar graphs.

Sketch of the proof. For Is and It the source and target independent sets,
respectively, we consider projection classes of neighborhoods in X = Is ∪ It,
calledX-projection classes10, and prove either the existence of a yes-instance
or that each X-projection class can be reduced to having at most f(k)
vertices, for some computable function f . Since |Is ∪ It| ≤ 2k there are
at most 22k = 4k projection classes11, and we therefore obtain the desired
kernel.

Recall that for Y ⊆ X, CY denotes the set of vertices y of V (G) \ X
such that N(y) ∩ X = Y . The vertices of CY form the Y -class; a Y -class
is a (Y, r)-class when |Y | = r. Since planar graphs are K3,3-free, no three
vertices can share more than two neighbors, and hence the number of vertices
in a (Y, r)-class with r ≥ 3 is at most 2.

10More formally, a vertex v is in the class Y if N(v) ∩X = Y .
11Actually one can prove that planar graphs have a linear number of classes.



CHAPTER 4. INDEPENDENT SET RECONFIGURATION 86

As every planar graph is 4-colorable, every subgraph of size at least 4k
contains an independent set of size at least k. Thus, if any (Y, r)-class where
r ≤ 1 is large enough, we can simply transform Is into an independent set
J contained in CY and then transform J into It; adding as possible first and
last steps the jumps of the token in Is ∩ Y and the token in It ∩ Y , if those
tokens exist.

To complete the proof, it suffices to consider (Y, 2)-classes. We can prove
that if CY is large enough, then it can be replaced by an independent set of
size k. Indeed suppose that at some point of the reconfiguration sequence a
token is moved to a vertex in CY to form an independent set I. Clearly, I
cannot contain any vertex in Y . In addition, the fact that G does not contain
K3,3 ensures that every vertex of V (G) \ Y has at most two neighbors in
CY (recall that I does not intersect with Y and |CY | ≥ 3). In particular, no
vertex in I can have more than two neighbors in CY , so that the set I has
at most 2k neighbors in CY . Thus, for large enough CY , we can always find
a vertex in CY that is not in the neighborhood of the current independent
set I. Hence, when CY is large enough we can instead retain an independent
set of size k.

Since we can bound the size of all the neighborhood classes of X, one
can easily prove that we get a kernel of polynomial size. One can then ask
the following question:

Question 84. Does TJ-ISR admit a linear kernel on planar graphs?

The intuition behind the proof of Theorem 83 for K3,3-free graphs is
that (Y, r)-classes for r ≥ 3 are of bounded size and (Y, r)-classes for r ≤ 2
are either of bounded size, or can be reduced to bounded size in forming
a kernel. However, when we consider K4,4-free graphs (or more generally
Kℓ,ℓ-free graphs), there can exist a (Y, 2)-class CY that does not immediately
imply a yes-instance (in the sense that we cannot guarantee that we can
immediately move source and target independent sets to an independent set
of CY ) nor is easily reducible (in the sense that a vertex of V (G) \ Y can
be adjacent to arbitrarily many vertices of CY ). One can then wonder if
the problem remains FPT on that class of graphs. We proved with Arnaud
Mary and Aline Parreau that the answer is positive:

Theorem 85. For every ℓ, TJ-ISR parameterized by k is fixed-parameter
tractable on Kℓ,ℓ-free graphs.

Sketch of the proof. Note that if no vertex is adjacent to many vertices in
CY , then we can replace the Y -class by an independent set of size k, just as
in the case of K3,3-free graphs. Otherwise, a result of Kövári, Sós, Turán
[104] ensures that in Kℓ,ℓ-free graphs, for every ϵ > 0, the number of vertices
ZY incident to an ϵ-fraction of the vertices of the set CY is bounded (in terms
of ϵ and h).
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The key idea of the proof to adapt the proof of Theorem 83 for Kℓ,ℓ-free
graphs entails updating the set X = Is ∪ It by adding to X the vertices of
ZY for every Y ⊆ X, thereby forming the set X ′. We can now refine the
categorization of the projection classes depending on their neighborhoods in
X ′. Let Y ′ ⊆ X ′ such that the Y ′-class is large. Either Y ′ ⊈ X and then
the Y ′-class is a refinement of a Y -class where Y ⊆ X and |Y | < |Y ′|. Since
(Y ′, ℓ)-classes have size at most ℓ − 1, we intuitively “gained” something
since we cannot increase too often the neighborhood of a class in X. But if
Y ′ ⊆ X we did not gain anything.

The algorithm proposed in [47] consists of repeating this refinement12 by
iteratively defining sets X1 = X,X2, X3, X4, . . . , Xr (where r only depends
on k and ℓ). The authors finally prove that if, after all these steps, the size
of a class is large enough, then replacing this class by an independent set
of size k does not modify the existence of a reconfiguration sequence from
Is to It. In other words, even if the neighborhood in Xr of a class has not
increased compared to X, then we can nevertheless reduce it.

Although this proof provides a fixed-parameter tractable algorithm, in
contrast to the case of planar graphs, it does not give a kernel whose size is
polynomial (in k and ℓ). This difference leads to the following question:

Question 86. Does TJ-ISR admit a polynomial kernel (polynomial in k
and ℓ) on Kℓ,ℓ-free graphs?

Degenerate and nowhere dense graphs. Even if degenerate and nowhere
dense graphs are included in biclique-free graphs, we think that it is worth
mentioning the proof techniques of [112], which are of independent interest.

For both graph classes, the authors in [112] show that one can find irrel-
evant vertices by making use of the classical result of Erdős and Rado [70],
also known in the literature as the sunflower lemma. A sunflower with r
petals and a core Y is a collection of sets S1, . . . , Sr such that Si ∩ Sj = Y
for all i ̸= j; the sets Si \ Y are petals and we require all of them to be
non-empty. Note that a family of pairwise disjoint sets is a sunflower (with
an empty core). Now assume that one can find a large (in terms of the
number of tokens k) sunflower with core Y in the collection of sets defined
by the closed neighborhoods of a set of vertices v1, . . . , vq in the graph. That
is, we have N [v1], . . . , N [vp], p ≤ q, such that such that N [vi] ∩ N [vj ] = Y
for all i ̸= j. Note that if any independent set I of size k intersects with
the core then I cannot contain any vertex from v1, . . . , vp. Otherwise, I can
intersect with at most k petals. Moreover, any vertex of the graph which is
not included in the core or in some petal cannot be adjacent to a vertex from
v1, . . . , vp. Hence, if p is large enough (in terms of k), then we can always

12The exact refinement is actually slightly more involved but the following paragraph,
though not entirely accurate, supplies the intuition behind the proof.
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delete one of the vertices from v1, . . . , vp without affecting the existence of
a reconfiguration sequence from Is to It. This follows from the fact that we
can always find another vertex in v1, . . . , vp that will be used to “mimic”
the behavior of the deleted vertex.

To find large sunflowers in degenerate graphs one can immediately apply
the sunflower lemma; in a degenerate graph at least half of the vertices
have degree at most twice the degeneracy (since the average degree of a
d-degenerate graph is at most 2d). Hence, as long as the graph is large
enough, one can always find a sunflower of the appropriate size and delete
one irrelevant vertex. One can wonder if the following holds:

Question 87. Does TJ-ISR admit a polynomial kernel (polynomial in k
and d) on d-degenerate graphs?

The algorithm for nowhere dense graphs closely mimics the previous
algorithm in the following sense. Instead of using the sunflower lemma to
find a large sunflower, the authors use the so-called notion of uniform quasi-
wideness [62] to find a “large enough almost sunflower” with an initially
“unknown” core and then use structural properties of the graph to find this
core and complete the sunflower. At a high level, uniform quasi-wideness
states that if G comes from a nowhere dense class and A ⊆ V (G) is large
enough, then we can find a small set X ⊆ V (G) whose deletion leaves
a large set B ⊆ A that is 2-independent in G − X (where a set B is 2-
independent whenever its vertices are pairwise non-adjacent and pairwise
do not share any common neighbors). The trick consists of first looking at
(Is ∪ It)-projection classes and then finding a large class in which we can
find the sets B and X (using uniform quasi-wideness). Then, we further
classify the vertices of B into X-projection subclasses. The petals of the
sunflower, which consist of vertices of B and their neighbors (recall that B
is 2-independent) can then be found in a large X-projection subclass and
the core will be a subset of X∪Is∪It. The existence of a large X-projection
subclass can be guaranteed by appropriately choosing the sizes of B and X.

The curious case of bipartite graphs. Although bipartite graphs are
not sparse nor appear in Figure 2.1, they merit attention, since we be-
lieve that there remain several interesting questions that have yet to be
answered. It is still unknown if TJ-ISR is W[1]-hard on bipartite graphs.
However, Agrawal et al. [1] showed that the problem is unlikely to be fixed-
parameter tractable. The proof is based on the fact that Balanced Bi-
clique13 does not admit an FPT-time 2-approximation algorithm assuming
Gap-ETH14 [56]. Equivalently, we cannot distinguish in FPT-time (param-

13Given a graph G, the goal is to find the largest k such that G admits a Kk,k as an
induced subgraph.

14Informally speaking, Gap-ETH states that we cannot, for some ϵ > 0, distinguish in
subexponential time 3-SAT formulas that are satisfiable from those which are ϵ-far from
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eterized by k) a graph that admits a balanced biclique of size k from a graph
that does not admit a balanced biclique of size k/2.

The proof of [1] simply consists in constructing a “weak” reduction from
Balanced Biclique to TJ-ISR on bipartite graphs with the following
properties:

• if we have a yes-instance of Balanced Biclique, then we have a
yes-instance of TJ-ISR and,

• if we have a yes-instance of TJ-ISR, then the original graph admits a
balanced biclique of size k/2.

A fixed-parameter tractable algorithm forTJ-ISR on bipartite graphs would
imply that we could distinguish in FPT-time graphs having balanced bi-
cliques of size k from graphs having balanced bicliques of size less than k/2,
a contradiction under Gap-ETH.

More open problems. Probably the most exciting research direction
is related to dense graph classes on which almost nothing is known. In
particular one might ask the following:

Question 88. Is TJ-ISR parameterized by k fixed-parameter tractable on
graphs of bounded semi-ladder index?

Question 89. Is TJ-ISR parameterized by k fixed-parameter tractable on
graphs of bounded cliquewidth (and, more generally, bounded twinwidth)?

We conclude this section with one more interesting open question. There
is a correlation between VC-dimension and complete bipartite subgraphs.
Namely, a Kh,h-free graph has VC-dimension at most O(h). Since the
TJ-ISR problem isW[1]-hard on general graphs and fixed-parameter tractable
on Kh,h-free graphs, one can naturally ask if this result can be extended
to graphs of bounded VC-dimension. We proved with Arnaud Mary and
Aline Parreau in [47] that TJ-ISR is polynomial-time solvable on graphs of
VC-dimension 1, NP-hard on graphs of VC-dimension 2, and W[1]-hard on
graphs of VC-dimension 3. The following question remains open:

Question 90. Is TJ-ISR parameterized by k fixed-parameter tractable on
graphs of VC-dimension 2?

4.5.3 Independent set reconfiguration under token sliding

Just like the token jumping variant, TS-ISR is W[1]-hard on general graphs.
It remains hard even when restricted to bipartite graphs or {C4, . . . , Cp}-
free graphs [4], for any p ≥ 4. Let us sketch for completion the simple

being satisfiable.
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proof for general graphs, which mimics the reduction for the token jump-
ing model. The reduction is from the Multicolored Independent Set
(MIS) problem, known to be W[1]-hard. In the Multicolored Indepen-
dent Set problem, we are given a graph consisting of k cliques of arbitrary
size and extra edges joining vertices from different cliques. The goal is to
find an independent set of size k which must intersect with each clique in
exactly one vertex (called a multicolored independent set). Given an in-
stance (G = (V1 ∪ . . . ∪ Vk, E), k) of Multicolored Independent Set,
we construct an instance (H, k, Is, It) of TS-ISR as follows. We first let
H = G+Kk+1,k+1. We let L = {l1, . . . , lk+1} and R = {r1, . . . , rl+1} denote
the two parts of the biclique. Finally, we add edges between {li, ri} and ev-
ery vertex in Vi, for i ∈ [k]. It is not hard to see that (G, k) is a yes-instance
of MIS if and only if (H, k + 1, L,R) is a yes-instance of TS-ISR; before
any token can slide to R we must have k tokens in G forming a multicolored
independent set.

Galactic graphs. While the parameterized complexity of TJ-ISR on
sparse classes of graphs is well-understood, the situation is quite different
for TS-ISR. Indeed, TS-ISR is more complicated than the token jumping
variant even in sparse classes of graphs because of what is called the bot-
tleneck effect [8]. Under the token jumping model, the existence of a large
independent set in the non-neighborhood of both the source and target inde-
pendent sets is enough to ensure the existence of a reconfiguration sequence
from Is to It. To the contrary, under the token sliding model, a small cut
might prevent us from finding such a transformation. Let us illustrate that
behavior on the simple example of a star to which we attach a long path.
If there are at least two tokens on the leaves of the star, none of the tokens
on leaves can slide. Consequently, we will not be able to move any token
from leaves of the star to the path even if the diameter of the graph and the
independence number of the graph are arbitrarily large.

In an ideal world, we would like to determine if there exist frozen tokens
(in the sense that they will never be able to slide) and remove them from
the graph. While it can be done efficiently for trees [63], this problem is
hard in general. So one needs to find another strategy. Let us return to the
example of the star to which a path is attached. One can easily notice that,
if the path is long enough, we can form an equivalent instance by reducing
its length. Note that by doing so we found (1) a large subset of vertices
which can be replaced by a smaller one to form an equivalent instance and,
(2) the resulting graph is in the same class (in this case, trees). In order
to prove the existence of a fixed-parameter tractable algorithm, one usually
wants to perform such reductions but, even if it is often easy to find a subset
of vertices that behave “nicely” (in the sense that we understand quite well
how the tokens behave in that subset), it is not always easy to reduce the size
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of the graph and obtain a resulting graph within the same class. Moreover,
the proofs are usually technical since, quite often, neither of the directions of
the equivalence are trivial to prove. To overcome this issue, a more general
version of TS-ISR was introduced on galactic graphs [9].

A galactic graph is a graph where V (G) is partitioned into two sets: the
planets and the black holes. In a galactic graph, the rules of the TS-ISR
game are slightly modified. When a token reaches a black hole, the token is
absorbed by the black hole. Since black holes are considered to make tokens
“disappear”, it is allowed for tokens to be assigned to adjacent vertices as
long as at least one of the vertices is a black hole. Furthermore, each black
hole is allowed to absorb up to k tokens. In addition, a black hole can
also project any of the tokens it previously absorbed onto any vertex in its
neighborhood, be it a planet or a black hole.

Why galactic graphs? At first glance, they might seem very artificial.
However, in practice, one often finds a large connected structure on which
one can prove that one can “hide” as many tokens as one wants. However,
it is usually complicated to prove the existence of a smaller structure with
the same property while staying in the same class (and even when we find
it, we may need to repeat similar proofs several times since the “contracted
structure” may have to be adapted to each graph class15). Shrinking all this
structure into a single vertex drastically simplifies this step as well as the
technicalities of the proofs. An important result one can prove using black
holes is the following:

Lemma 91 (Bartier, Bousquet, Mouawad [8]). Let G be a galactic graph
and Is, It be two independent sets of size k. If G contains a shortest path
P of length Ω(k) such that NG(V (P )) \ V (P ) does not contain any token of
Is ∪ It, then P can be contracted into a black hole.

Sketch of the proof. The main ingredient of the proof is the following: We
prove that if there is a reconfiguration sequence from Is to It then we can
find one where, at each step, the number of tokens in N(P ) is at most one.
To do so, we simply project on P every token that appears in N(P ) during
the sequence. To guarantee that such a projection exists, we have to prove
that when a token has to enter (or leave) on a vertex v in N(P ), then this
token is not adjacent to a vertex already in P . But since P is a shortest
path, every vertex in N(P ) is adjacent to at most 3 vertices of P . And
then we can slide the vertices of the independent set already in P along the
edges of P to be sure that they are not in the neighborhood of v. (A similar
argument holds when we want to allow a token to leave the black hole).

The key argument of the proof of Lemma 91 is that long shortest paths
(and more generally blackholes) can swallow tokens in their neighborhood.

15e.g. an edge contraction keeps a planar graph while it is not stable for graphs of
maximum degree ∆.
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Even better, we can easily prove that if there is a vertex v in the neighbor-
hood of a blackhole b such that v has no token on its neighborhood, then b
can swallow v, i.e. v and b can be contracted. Using these rules, together
with other simple rules, one can prove the following:

Theorem 92 (Bartier, Bousquet, Mouawad [8]). TS-ISR is fixed-parameter
tractable parameterized by k +∆, where ∆ is the maximum degree of G.

Sketch of the proof. The proof consists in showing that, after applying black
holes reduction rules, the graph has bounded size (in ∆ and k) and we can
conclude using a brute force algorithm. If the graph has bounded diameter
then the conclusion indeed follows (since the maximum degree is bounded).
So we can assume that there exists a long shortest path. Since every token
is adjacent to at most 3 vertices on that path, there exists a long path with
no token on its neighborhood, and this part can be reduced using a black
hole.

The key argument to conclude is that even if the graph does not have
bounded degree (black holes might have large degree), the classical vertices
(called planets) still have bounded degree. And using simple reduction rules
one can prove that the number of planets (and of blackholes) is bounded by
a function of ∆.

We insist on the fact that the trick of the proof then consists in con-
sidering a more general problem that allows us to easily reduce the graph
while (almost) staying in the class. It is (as far as I know) the first time
this type of idea was used in reconfiguration and really allowed us to reduce
the complexity of proof. Theorem 92 implies in particular that TS-ISR is
fixed-parameter tractable on classes of graphs of bounded degree (and on
classes of graphs of bounded bandwidth). To extend results to more general
classes of graphs, we need more tools.

Types. A surprisingly hard question is the following: Let G be a graph,
Is, It be two independent sets of size k and X be a subset of vertices such
that G−X contains many connected components. Is it possible to remove
one of the components while preserving the existence of a transformation
from Is to It?

Since a token might perform an arbitrarily long walk in a component, it
is not simple to prove that one of these components can be deleted to form
an equivalent instance. With Valentin Bartier and Amer Mouawad, we
introduced in [9] the notion of types of walks in a component H of G−X.
The intuition behind the proof is that in a walk W of a token t in H, we can
find a subset of important vertices x1, . . . , xr, called conflict vertices, such
that we can express W as x1P1x2P2 . . . , Pr−1xr, where Pi is the path of W
linking xi to xi+1. Then, in the walk W performed by t, the only important
information is N(xi) ∩X and ∪u∈PiN(u) ∩X. Thus, if we can prove that
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the number of conflict vertices in every walk W is bounded with respect to
k and |X|, the (potentially unbounded length of) information contained in
a walk W can be summarized in f(k, |X|) neighborhoods in X. We proved
that the following holds:

Lemma 93 (Bartier, Bousquet, Mouawad [9]). Let G be a graph, X be a
subset of vertices, and Is, It be two independent sets of G of size k. Let S
be a transformation from Is to It that minimizes the number of token slides
involving a vertex of X. Almost all the components H of G − X are well-
behaved, i.e., the number of conflict vertices of a walk of a token t in H is
bounded by a function of k and |X|.

The proof requires showing that if a walk W of a token t in H has
too many conflict vertices, then we should have, at some point, projected a
token t′ ̸= t on a component of G−X where we can mimic the behavior of
the walk W of t in order to decrease the number of token slides involving a
vertex of X. Since, we can determine the well-behaved components of G−X
in FPT-time and since the number of types of walks is bounded, if G −X
contains too many components, we can safely remove one of them.

To remove a component H of G \X, one needs to prove that the token
slides we can perform in H can also be performed in another component H ′

of G \X. Let v be a vertex of H and assume that there is a token t that is
projected on v at some point of the reconfiguration sequence, meaning that
the token t is moved from a vertex of X to v. This token may stay a few
steps on v, move to some other vertex w of H, and so on until it eventually
goes back to X. Let this sequence of vertices (allowing duplicate consecutive
vertices) be denoted by v1 = v, v2, . . . , vr. We call this sequence the journey
of v.

If we can perform the same journey16 on a component H ′, then we keep
the existence of a transformation even if H is removed. However, the length
of that journey might be arbitrarily long and then we are not sure that H ′

exists even if V \X contains arbitrarily many connected components.
However, one can wonder what is really important in the sequence v =

v1, v2, . . . , vr? Why do we go from v1 to vr? Why so many steps in the
journey if r is large? To answer these questions, we distinguish two cases.

First, suppose that in the reconfiguration sequence, the token t was
projected from X to v, performed the journey without having to “wait” at
any step (so no duplicate consecutive vertices in the journey), and then was
moved to a vertex x′ ∈ X. In that case, the journey can be summarized as
(1) a vertex whose neighborhood in X is N(v) ∩X, (2) a path that avoids
the vertices Y of X with a token and, (3) a vertex whose neighborhood in
X is the neighborhood in X of the last vertex vr of the journey of v. If a

16Let us forget about tokens on V (G)\X on this outline and only consider edges between
the token t and tokens in X.
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component H ′ contains a path with these properties (of any possible length,
shorter or longer) then we can replace the journey of v in H by a journey
in H ′.

Though, we might not be able to go “directly” from v1 = v to vr. In-
deed, at some point in the sequence, there might be a vertex vi1 whose
neighborhood in X currently contains a token. This token will eventually
move (since the initial journey with t in H is valid), which will then allow
the token t to go further on the journey. But then again, either we can reach
the final vertex vr or the token t will have to wait on another vertex vi2 for
some token on X to move, and so on (until the end of the journey). We say
that there are conflicts during the journey17.

So we can now compress the journey as a path from v1 to vi1 , then
from vi1 to vi2 (together with the neighborhood in X of these paths), as
we explained above. So we can compress a journey into a sequence whose
length is essentially the number of conflicts. Bartier et al. proved in [8]
that, if there exists a transformation, there exists a transformation where
journeys have few conflicts. So the number of types of relevant journeys we
can perform in each component is bounded. And then, if there are too many
components, one can prove that one of them can be removed since the types
of journeys we can perform in them can actually be performed in others.

Applications and open questions. Using these ingredients, i.e., galactic
graphs and types, Bartier et al. [8] proved that TS-ISR is fixed-parameter
tractable on graphs of bounded degree, planar graphs, and chordal graphs of
bounded clique number. The main ingredient of these proofs entails proving
that, using the multi-component reduction described as well as additional
reduction rules, we can reduce the maximum degree to f(k). Then Theo-
rem 92 ensures thatTS-ISR is fixed-parameter tractable for all these classes.
Note that the idea of reducing the degree has also been used in [4] to obtain
fixed-parameter tractable algorithms for TS-ISR on graphs with girth con-
straints. The authors in [6] also used these ingredients to show that TS-ISR
is fixed-parameter tractable on graphs of girth five or more (the problem is
W[1]-hard on graphs of girth four or less [4]).

Natural next questions to consider are the following:

Question 94. Is TS-ISR parameterized by k fixed-parameter tractable on
graphs of bounded treewidth? On minor-free graphs? On d-degenerate graphs?

17Actually, there might exist another type of conflict we do not explain in this outline
for simplicity.
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4.6 Diameter of the configuration graph and short-
est transformations

Shortest transformations. In general, it has been proven that (unsur-
prisingly) it is not possible to approximate within a sublogarithmic-factor,
unless P = NP, the length of a shortest transformation between two max-
imum independent sets even restricted to line graphs [40]. (Recall that
deciding the existence of a transformation can be decided in polynomial
time for line graphs).

There is a line of research trying to determine in which graph classes
it is possible to find a shortest transformation in polynomial time. In the
Token Sliding variant, Hoang et al. proved in [94] that it is the case in
spiders18. Similar results have been proven for some subclasses of chordal
graphs such as proper interval graphs, trivially perfect graphs, caterpillars
in [136]. (Recall that since all these classes are chordal, we know that there
is a simple optimal solution in the token jumping variant).

Diameter of the configuration graph. While most of the works for
the reconfiguration of independent sets are algorithmic, there are few results
providing upper bounds on the diameter of the configuration graph of the
k-independent sets. Demaine et al. proved in [63] that, when there exists
a transformation, a transformation of quadratic length exists for TS-ISR
in trees. Briański et al. proved in [50] that, when it exists, there exists a
TS-transformation of length at most O(k · n2) in an interval graph. They
moreover proved that there exist interval graphs and pairs of independent
sets for which a shortest transformation between these independent sets has
length at least Ω(k2 · n) (which gives an asymptotically tight bound when
k = Ω(n)). As far as I know, the following is open:

Question 95. For any fixed k, can a connected component of GTS(G, k)
have diameter superlinear when G is an interval graph? A chordal graph?

Even in general, it is not clear how to find non linear transformations.
Brianski et al. [50] mentioned that “[they] are not aware of any example
giving a superlinear lower bound on the length of a reconfiguration sequence
when the number of tokens is constant - even on the class of all graphs.
Specifically, the case k = 2 remains open”.

Let D(n, k) be the maximum diameter of a connected component of
GTJ(G, k) over all the graphs G on n vertices. With Bastien Durain, Théo
Pierron and Stéphan Thomassé we answered that question and proved that
the following holds. The lower bound construction also holds for Token
Sliding since independent sets are of maximum size in the construction.

18Spiders are also called subdivided stars and form a subclass of trees.
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Theorem 96 (Bousquet, Durain, Pierron, Thomassé [37]). The following
holds:

1. A connected component of GTJ(G, k) has diameter at most
(

n
k−1

)
.

2. D(n, 2) = n− 2.

3. For every k ≥ 3, D(n, k) = o(nk−1).

4. D(n, 3) = Ω(n2/eO(
√
logn)).

5. For every k, D(n, k) = Ω(n2⌊k/3⌋/eOk(logn)).

Sketch of the proof. (1) The proof of this first point holds easily when we
remark that we can label the edges of the configuration graph with inde-
pendent sets of size k− 1 corresponding to the intersection between the two
independent sets associated to the endpoints of the edge. The conclusion
follows from the fact that, in a shortest transformation, there is no repetition
of labels (otherwise we can find a shortcut).

(2) The proof is inspired from the upper bound proof of the (6, 3)-problem
and is based on an application of the hypergraph removal lemma. A hy-
pergraph H is (s, t)-free if no set of s vertices of H contains at least t
hyperedges. The (6, 3)-problem (or Ruzsa–Szemerédi problem) asks for the
maximum number of hyperedges in a (6, 3)-free n-vertex 3-uniform hyper-
graph. The so-called (6, 3)-theorem of Ruzsa-Szemerédi [120] ensures this
value is o(n2).

Let us give an idea of the proof for k = 3. We assume by contradiction
that there exists a graph G and two independent sets I, J such that the
length of a shortest transformation P between I and J has length Ω(n2).
We consider the 3-hypergraph restricted to the odd independent sets in P .
The (6, 3)-theorem ensures that there exists a subset of 6 vertices containing
3 independent sets in the sequence. We prove that in such a case, it would
be possible to find a shortcut in P .

(3) Assume that n is a prime integer and let us denote by v0, . . . , vn−1 the
vertices of the graph. The idea of the proof consists in starting from a clique
and little by little removing edges. The goal is to remove edges to create
almost linearly many paths in the configuration graph of linear length while
keeping these paths complete to each other in the configuration graph (i.e.
we do not want to be able to pass through an independent set of a path to
another by changing a vertex).

In order to create a path of linear length, one can do the following:
select an integer p and, for every vertex vi, remove the edges vivi+p and
vivi+2p (where all the indices have to be understood modulo n). One can
easily remark that this gives a cycle of independent sets of size 3, namely:
(0, p, 2p) (p, 2p, 3p) (2p, 3p, 4p)... So we can create n−1 such cycles for every
integer p.
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The involved part of the proof consists in showing that there exists an
almost linear subcollection of these cycles that remain independent of each
other (i.e. there is no edge between them in the configuration graph). To
do so, we restrict the collection of paths to a subset of integers p that form
a set S of integers with no arithmetic progression of size 3 and such that
all the integers of S have value 1 mod 4. A well known result of number
theory [11] ensures that there exists such a set of density at least 1/eO(logn).
Using these conditions, we can easily prove that the independent sets of size
3 are exactly the ones described above and two independent sets of size 3
are adjacent only if the condition above is satisfied.

We finally use a last trick consisting of adding a linear number of vertices
which permits to glu these cycles19 together in order to obtain the claimed
diameter.

(4) To illustrate the technique, let us give a sketch of a (false) proof providing
an intuition of the proof. Let G be a graph such that GTS(G, k) has diameter
R. Then, we can construct a graph G′ on |V (G)| + 7 vertices such that
GTS(G

′, k + 2) has diameter larger than 2R. The graph G′ consists of a
copy of G plus 7 vertices X which induce a antipath. Let A,B be two
independent sets of G at distance R. We connect the first and last vertices
of X to V (G)\A and we connect the 4-th vertex of X to V (G)\B. The idea
is that in order to move the leftmost vertex of X to the rightmost vertex,
we should perform the transformation from A to B in G (in order to reach
the fourth vertex) and move it back to A in order to reach the last vertex.
In some sense in order to pass through the fourth vertex, we have to pay a
toll (a transformation from A to B).

The proof of (4) consists in proving that the structure of the construction
of (3) is strong enough to replace the antipath in the construction above by
the graph of (3).

Note that the value n/eO(
√
logn) corresponds to the largest known asymp-

totic size for a subset of [1, n] without arithmetic progressions of length 3 [11].
Any improvement of this bound would also imply an improvement of the
bound of Theorem 96(3). Note that the best bound for the (6, 3)-problem
also has this order of magnitude [120].

Let us finish this part with the following very exciting question we did
not succeed to solve:

Conjecture 97.
D(n, 4) ≥ n3−o(1).

The only best lower bound is given by Theorem 96 which is subquadratic.
More generally one can wonder what is the diameter ofD(n, k) for any k ≥ 5.

19That we can easily cut in order to get paths instead.



Chapter 5

Other reconfiguration
problems

Many other reconfiguration problems have been studied in the last 15 years.
The goal is not to give an extensive survey of all of them. I prefered focusing
only on a few of them who would probably deserve their own chapter in an
ideal world where the amount of time devoted to writing a habilitation is
infinite.

5.1 Reconfiguration and matroids

There is a natural relation between reconfiguration and matroids. A matroid
can be seen as an object generalizing both spanning trees of graphs and
linearly independent families of a vector space (among others). Formally,
a matroid M is a pair (X, I) where X is a set called the ground set and
I is a set of subsets of X (called independent sets) satisfying the following
property:

1. The empty set is independent, i.e. ∅ ∈ I.

2. (Hereditary property) Every subset of an independent set is indepen-
dent, i.e. for every I ∈ I and J ⊆ I, we have J ∈ I.

3. (Exchange property) For every I, J ∈ I such that |I| > |J |, there
exists i ∈ I such that J ∪ {i} ∈ I.

The exchange property ensures that all the inclusion-wise maximal inde-
pendent sets have the same size (and are then maximum). An independent
set of maximum size of a matroid M is called a base of M. Note that, for
linearly-independent families of vectors, the exchange property is known as
incomplete base theorem. And for spanning trees it simply says that, for
every non-connected forest F and every spanning tree T of a graph G, one
can indeed add an edge of T in F without creating any cycle.

98
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We say that two bases B,B′ of a matroid are adjacent if they differ on
exactly two elements, that is |B \ B′| = |B′ \ B| = 1. One can now wonder
if there exists a (TJ)-reconfiguration sequence from A to B. Given two sets
A,B, we define the symmetric difference ∆(A,B) as the set (A\B)∪(B\A).
We denote by d(A,B) := |∆(A,B)|/2. It is well known there always exists
a transformation between two bases A,B of a matroid using d(A,B) steps
via an iterative application of the exchange property:

Lemma 98. Let M be a matroid and I, J be two bases of M. One can
transform I into J via a sequence of at most d(I, J) exchanges.

Proof. Let A,B be two bases. Let a ∈ A \B and A′ = A \ a. The exchange
property ensures that there exists an element b ∈ B such that A′ ∪ b is
independent. Thus, in one step, we can reduce the symmetric difference
between the two bases by 2 and the conclusion follows by induction.

One can then naturally wonder what happens if we consider generaliza-
tion of matroids.

Matroid intersection. Let M1 and M2 be two matroids on the same
ground set. We can define the intersection of M1 and M2 denoted by
M1 ∩ M2 as the subsets X such that X is both independent in M1 and
M2. We can similarly define the intersection of three or more matroids.

One can naturally wonder if, using the exchange rule, we can always
transform any independent set ofM1∩M2 into any other using the exchange
rule. The answer is negative. Intersection of two matroids generalizes many
natural problems such as maximum matchings, maximum weight matchings
in bipartite graphs and arborescences in directed graphs. Edmonds proved
that the largest independent set in the intersection of two matroids can be
computed in polynomial time.

One can then naturally ask the following question:

Question 99. Can Matroid Intersection Reconfiguration be de-
cided in polynomial time when we consider the intersection of two matroids?
More?

As far as I know, this question is still open for two matroids. When we
consider the intersection of at least 3 matroids, Mülenthaler proved1 that
the following holds:

Theorem 100 (Mülenthaler). Matroid Intersection Reconfigura-
tion is PSPACE-complete when we consider the intersection of three ma-
troids.

1private communication.
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One can now wonder when a transformation exists. White conjectured
more that 40 years ago that the following holds:

Conjecture 101 (White [133]). For every matroid M, there exists a re-
configuration sequence between any pair of bases in the intersection of the
matroid M and its dual2.

The conjecture is known to be true since 1985 for graphic matroids [73]
(spanning trees) and it has been very recently extended to regular ma-
troids [14] or union of arborescences [105]. For an up to date complete
bibliography on the conjecture, the reader is for instance referred to the
introduction of these two papers.

Parity matroid reconfiguration. Let M = (X, I) be a matroid. Sup-
pose that the ground set X of M is partitioned into pairs, called lines. In
other words, every v ∈ S has a unique mate v̄ such that {v, v̄} is a line. Let
us denote by L the set of lines. A set T ⊆ L of lines is called an (indepen-
dent) parity set if

⋃
ℓ∈T ℓ ∈ I, where we denote I(T ) :=

⋃
ℓ∈T ℓ. In other

words, it is a set of lines such that the union of the elements belonging to
these lines is an independent set of the matroid M.

The problem of finding an independent parity set of maximum cardinal-
ity is called the Matroid Parity problem [108]. Matroid parity generalizes in
particular the matroid intersection problem. This problem can be solved in
polynomial time for linear matroids [114], while it requires an exponential
number of independence oracle calls in the general case.

We consider the problem of the reconfiguration of independent parity
sets, which we call Matroid Parity Reconfiguration. We say that two
independent parity sets I and I ′ are adjacent if there exist a line ℓ in I and
a line ℓ′ in I ′ such that I ′ = (I \ ℓ) ∪ ℓ′. Contrary to Matroid Recon-
figuration, it is not always possible to find a transformation between any
pair of parity sets. Actually, Matroid Parity Reconfiguration is hard
in general. Indeed, since a reduction in [126] gives an exact correspondence
between the independent sets of size k of a given graph and the independent
parity sets of a Matroid Parity instance, Matroid Parity Reconfigu-
ration is PSPACE-complete since Independent Set Reconfiguration
also is [90]. One can then ask the following:

Question 102. When can Matroid Parity Reconfiguration be de-
cided in polynomial time?

A simple case we were able to solve is when parity sets are not maximum.

Theorem 103 (Bousquet, Hommelsheim, Kobayashi, Mülenthaler and Suzuki [42]).
Matroid Parity Reconfiguration is always positive when we transform

2The dual of M has the ground set of M and I is an independent set of the dual if
and only if M has a base such that M∩ I = ∅.
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a non maximum independent parity set into another. In other words, it is
always possible to transform a non-maximum parity set any other.

So the problem remains open only for maximum parity sets. Note that
this behavior is quite different with Independent Set Reconfiguration which
is usually simpler in the maximum case, at least from restricted instances
(as we have already discussed in Chapter 4).

In the rest of this section, we focus on a particular case of parity matroids:
feedback vertex set on subcubic graphs. A feedback vertex set of a graph
is a subset of vertices whose deletion leaves in an acyclic graph. Deciding
whether a graph has a feedback vertex set of a given size is an NP-complete
problem even for planar graphs of maximum degree four [127]. Interestingly,
for graphs of maximum degree at most three, also called subcubic graphs,
a minimum Feedback Vertex Set can be computed in polynomial time by a
reduction to a tractable special case of the Matroid Parity problem [114, 130].
Despite a lot of work, we were not able to solve the following question which
is a particular case of Question 102:

Conjecture 104. TJ-Feedback Vertex Set Reconfiguration (FVSR)
on subcubic graphs can be decided in polynomial time.

Together with Yusuke Kobayashi, Felix Hommelsheim, Moritz Mülenthaler
and Akira Suzuki we were able to prove that the configuration graph of the
feedback vertex sets is connected as long as G is a cubic K3,3-minor free
graph. And we also proved that the problem TJ-FVSR becomes PSPACE-
complete as long as the maximum degree is at least 4.

Theorem 105 (Bousquet, Hommelsheim, Kobayashi, Mülenthaler, Suzuki [42]).
TJ-FVSR is always positive for subcubic K3,3-minor free graphs.

Sketch of the proof. The proof follows from a simple but nice argument. Let
G be a graph and X be a feedback vertex set of G. Let x be a vertex of
X. Then one can easily prove (depending on the number of connected
components of G′ := G[V \ (X − x)]) the following property (⋆): we can
remove the vertex x from the feedback vertex set, the set of vertices that
can replace x is exactly:

• either a single vertex yx (if G′ has a single connected component),

• or all the vertices of a cycle C (if G′ has two components),

• or all the vertices of the graph (minus X) otherwise.

We moreover show that since G is K3,3-minor free then yx and yx′ should
be different for any pair of vertices x, x′ ∈ X.

The goal now simply consists in proving that we can either find a greedy
move (we can reduce the symmetric difference between the source and target
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FVS X and X ′) or we can find a detour-greedy move meaning that we can
move a vertex of the source and target FVS to the same vertex.

One can remark that if we are in the first two cases of (⋆) then we indeed
have a greedy move. So we can assume that, for every x ∈ X and x′ ∈ X,
we are in the third case. If yx = yx′ for some x ∈ X and x′ ∈ X then we
indeed have a detour greedy move. And we can prove that it has to hold
since a cubic graph has at less than 4|X| vertices.

One can wonder if this statement can be generalized further. The answer
is negative since it does not hold for K3,3: the configuration graph is not
connected (it is not possible to move the FVS consisting of two vertices on
the left side to the FVS consisting of two vertices on the right side).

Other generalizations of matroids There are many other ways to re-
lax matroid constraints, and in particular spanning trees (that are graphic
matroids). One of them is to ask for more combinatorial structure on their
shape. We explored this direction in two articles with Takehiro Ito, Yusuke
Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki and Kunihiro Wasa
in [43, 44]. In these two articles we studied the complexity of the transforma-
tion between two spanning trees via flips when we moreover add conditions
on the intermediate trees, for instance on their minimum or maximum de-
grees, on their number of leaves or on their diameter.

I will not mention these results in detail (many intersecting research
directions have not been explored at all). I will only mention one open
problem we were not able to solve that is surprisingly simple:

Conjecture 106. Hamiltonian Path Reconfiguration is PSPACE-
complete.

In the Hamiltonian Path Reconfiguration problem, we are given
a graph G and two hamiltonian paths of G. The goal is to determine if
we can transform the first into the second while keeping hamiltonian paths
all along the transformation. At each step, we can remove an edge of the
current path P and add a new edge that belongs to G.

It is known that Hamiltonian Cycle Reconfiguration is PSPACE-
complete. At first glance, one may think that it should (almost) directly
imply the hardness for the path version. However, the path version is, when
we think about it, much harder than its cycle counterpart. Indeed, in the
cycle version, we are authorized to replace a pair of edges by another one.
In other words, a flip for the hamiltonian cycle problem consists in removing
two edges and adding two others that form a C4 altogether. This operation
is natural when one wants to keep the degree of the underlying structure (a
similar flip operation was introduced in [21] for perfect matchings).

On the contrary, for Hamiltonian Path Reconfiguration, we are
(informally speaking) allowed to change one edge at a time. We claim that
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it makes the problem much harder to manipulate. Indeed, imagine now
that we want to design a hardness reduction from NCL to Hamoltonian
Path Reconfiguration. We have to create AND and OR gadgets and,
usually in the reductions, a single step modification can be interpreted as a
modification within a gadget that “flips” an edge (or does nothing).

In the reduction from NCL to Hamiltonian Cycle Reconfigura-
tion, the graph is built in order to ensure that every possible edge flip will
be within a gadget. Rephrased differently, there are many pairs of edges in
the hamiltonian cycle but most of them do not induce a C4 and the ones that
belong to a C4 lie in the same gadgets (which ensures that we can interpret
in a coherent way this flip in the NCL instance).

For Hamiltonian Path Reconfiguration, the reduction should be
quite different. Indeed we cannot flip any pair of edges but only choose one
of them. Indeed, in order to keep a path, the created edge has to be attached
to one of the endpoints of the current hamiltonian path. This operation is
highly non local (the endpoint has no reason to belong to the gadget where
we want to perform a flip in the NCL transformation for instance); thus the
construction of a hardness proof seems much more complicated.

Note that it is not even known if Hamiltonian Path Reconfigura-
tion is NP-hard.

5.2 Dominating set reconfiguration

In this section, we will simply briefly overview some results on dominating
set reconfiguration. In particular, I will not explain most of the proof tech-
niques used to obtain the results in that chapter as I did for recoloring or
independent set reconfiguration.

A dominating set of a graph G is a subset of vertices X such that all
the vertices of V are either in X or adjacent to a vertex of X. As for
independent set reconfiguration, we can see the vertices of the dominating
set as tokens. We can naturally define three reconfiguration rules leading to
three models. In the Token Sliding model, the reconfiguration step consists
in sliding a token along an edge of the graph. In the Token Jumping model,
the reconfiguration step consists in moving a token somewhere else in the
graph. In the TAR-model, we are allowed to remove or add a vertex to the
dominating set at each step. As for Independent Set Reconfiguration, the
TAR and TJ models have been proven to be equivalent. However, in order
to prove structural results it is often easier to manipulate the TAR model
than its TJ counterpart.

For dominating set reconfiguration both structural and algorithmic as-
pects of reconfiguration have been studied. Let us slightly discuss both of
them and mention a few open problems in this area.
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5.2.1 Structural aspects of DSR

Recall that two dominating sets X,Y are TAR-adjacent if their symmetric
difference has size one, that it |X \ Y | = 1 or |Y \X| = 1. In other words,
Y can be obtained from X by removing or adding exactly one vertex. One
can indeed always transform a dominating set Ds into another one Dt if we
do not bound the size of the intermediate solutions: we first add one by one
all the vertices in Dt \Ds to Ds, and then remove vertices of Ds \Dt one by
one.

Let G = (V,E) be a graph, and k be an integer. The k-TAR-DS-
configuration graph, denoted by GTAR(G, k), is the graph whose vertices are
the dominating sets of G of size at most k, with the TAR-adjacency defined
above. There exists a reconfiguration sequence between two dominating
sets Ds and Dt both of size at most k with threshold k on the size of the
dominating sets all along the transformation if and only if there is a path in
GTAR(G, k) between Ds and Dt.

Haas and Seyffarth proved in [84] that being reconfigurable in the TAR-
model is not a monotone property, which means that if GTAR(G, k) is con-
nected then GTAR(G, k + 1) is not necessarily connected. Indeed, let us
denote by K1,n the star graph on n + 1 vertices. They observed that, for
every n ≥ 3, GTAR(K1,n, k) is connected if 1 ≤ k ≤ n− 1 but that Rn(K1,n)
is not since the dominating set of size n which contains all the degree-one
vertices is frozen, i.e. it is an isolated vertex in GTAR(K1,n, n). They then
asked what is the smallest integer d0 such that GTAR(G, k) is connected, for
any k ≥ d0.

Haas and Seyffarth identified a parameter of interest for that question
which is Γ(G) the maximum size of a dominating set which is minimal by
inclusion. In particular Haas and Seyffarth proved that, for every k ≥
Γ(G) + 1, if GTAR(G, k) then GTAR(G, k + 1) also is. Another parameter of
interest is γ(G) which is the minimum size of a dominating set. Haas and
Seyffarth proved in [84] that the following holds:

Lemma 107 ([84]). Let G be a graph with at least two independent edges.
If k ≥ min{n− 1,Γ(G) + γ(G)} then GTAR(G, k) is connected.

Sketch of the proof. The idea of the proof consists in proving that, since
every dominating set of size larger than Γ(G) is not minimal by inclusion,
we can reduce its size to get at least γ free tokens3. Now one can easily
prove that, using these additional tokens we can reach any dominating set
of size γ which completes the proof.

Haas and Seyffarth also showed in [84] that this value can be lowered to
Γ(G) + 1 if G is bipartite or chordal. This result is tight since Γ(K1,n) = n.

3We say that we have a free token if the size of the current dominating set is smaller
than k.
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Figure 5.1: An example of graph where GTAR(G,Γ(G)+1) is not connected.

This result is tight since K1,n is bipartite and chordal and GTAR(K1,n, k)
is not connected. One can then naturally wonder if GTAR(G,Γ(G) + 1) is
connected for every graph (a natural way to prove it would be to mimic
the proof of Lemma 107 to reduce the symmetric difference). Suzuki et
al. [128] answered negatively this question by constructing an infinite fam-
ily of graphs for which GTAR(G,Γ(G) + 1) is not connected even for planar
graphs (see Figure 5.1 for an example of a (non-planar) counter-example).
On the positive side, we proved with Alice Joffard and Paul Ouvrard that
GTAR(G,Γ(G) + 3) is connected for planar graphs. The only case that re-
mains open is Γ(G) + 2 for which the following has been conjectured:

Conjecture 108 (Bousquet, Joffard, Ouvrard [46]). For every planar graph
G, GTAR(G,Γ(G) + 2) is connected.

Mynhardt et al. [118] strengthened the construction of Suzuki et al. by
constructing an infinite collection of graphs with arbitrary Γ ≥ 3, arbitrary
domination number in the range 1 ≤ γ ≤ Γ−1 and for which GTAR(G,Γ(G)+
γ(G)− 1) is not connected for every G in this collection. So Lemma 107 is
optimal and cannot be improved in general.

We will describe a slightly weaker construction (also in [118]) which will
also allow us to derive other bounds later (see Figure 5.2 for an illustration).
They also constructed an infinite family of graphs Gℓ,r (with ℓ ≥ 3 and
1 ≤ r ≤ ℓ − 1) for which 2Γ(Gℓ,r) − 1 tokens are necessary to guarantee
the connectivity of the TAR-DS-configuration graph. Let us describe their
construction when r = ℓ − 1. The graph Gℓ,ℓ−1 contains ℓ − 1 cliques

C1, C2, . . . , Cℓ−1 called inner cliques, each of size ℓ. We denote by cji the
j-th vertex of the clique Ci. We then add a new clique C0 of size ℓ, called
the outer clique and we add a new vertex u0 adjacent to all the vertices of
C0 (hence, C0 can be seen as a clique of size ℓ+ 1). For every 1 ≤ i ≤ ℓ− 1
and for every 1 ≤ j ≤ ℓ, we add an edge between cji and cj0. This completes
the construction of Gℓ,ℓ−1. Mynhardt et al. [118] showed that Γ(Gℓ,ℓ−1) = ℓ.
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Figure 5.2: The graph G3,2

On the positive side, Haas and Seyffarth [85] proved that if k = Γ(G) +
α(G)− 1 (where α(G) is the size of a maximum independent set of G), then
GTAR(G, k) is connected. To obtain this result, they proved that all the
independent dominating sets of G are in the same connected component of
GTAR(G,Γ(G)+1). With Alice Joffard and Paul Ouvrard, we showed in [46]
that if k = Γ(G)+α(G)− 1, then GTAR(G, k) has actually linear diameter4.
It contrasts in particular with a result of Suzuki et al. [128] who provided
an infinite family of graphs G for which GTAR(G, γ + 1) has exponential
diameter.

We showed in [46] that GTAR(G, k) is connected and has linear diameter
for some ”minor sparse classes”5. In particular, we obtained as a corollary
that GTAR(G, k) is connected and has linear diameter for Kℓ-minor free
graphs as long as k ≥ Γ(G) + O(ℓ

√
log ℓ). The gap between the lower and

upper bound is not completely closed since the only lower bound we know
is Γ(G)+ ℓ−4 We also studied the dependency on the treewidth and proved
that the following holds:

Theorem 109 (Bousquet, Joffard, Ouvrard [46]). GTAR(G,Γ(G)+tw(G)+
1) has linear diameter.

This bound is tight up to an additive constant factor using the construc-
tion of Mynhardt et al. [118] described above. Indeed, one can easily show
that GTAR(Gℓ,ℓ−1, 2ℓ− 2) is not connected and that Gℓ,ℓ−1 has treewidth ℓ.
So GTAR(G,Γ(G) + tw(G)− 2) is not necessarily connected.

The pathwidth of Gℓ,ℓ−1 is at most 2ℓ−1. However, it is not clear if and
how we can obtain a better upper bound for bounded pathwidth graphs. To
sum up GTAR(G, k) is not necessarily connected if k < Γ(G)+pw(G)/2+O(1)
and is connected if k > Γ(G) + pw(G) + 1. The following question is still
open:

4The induction based proof of [85] does not provide a linear diameter.
5For a formal definition, we refer the reader to [46].
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Question 110 (Bousquet, Joffard, Ouvrard [46]). Is the k-TAR-DS-configuration
graph connected when k ≥ Γ(G) + pw(G)/2 +O(1)?

5.2.2 Algorithmic aspects of DSR

Haddadan et al. [86] studied the algorithmic complexity of TJ-DSR problem.
They proved that, given a graph G, two dominating sets Ds and Dt of G and
an integer k ≥ max{|Ds|, |Dt|}, it is PSPACE-complete to decide whether
there exists a path in GTJ(G, k) between Ds and Dt. Actually, this problem
remains PSPACE-complete even restricted to bipartite graphs or split graphs.
On the other hand, they proved that this problem can be decided in linear
time if the input graph is a tree, an interval graph or a cograph.

On general graphs, TJ-DSR is W[2]-hard parameterized by solution size
k plus the length of a reconfiguration sequence ℓ [117]. When parameterized
by ℓ alone the problem is fixed-parameter tractable on any class where first-
order model-checking is fixed-parameter tractable, the most general known
cases being nowhere dense classes [82] and classes of bounded twinwidth
(assuming a contraction sequence is also given as part of the input) [30].
To demonstrate why, we formulate the TJ-DSR problem as follows. We
encode the instance (G, k,Ds, Dt) as a colored graph, where the vertices
of Ds and Dt are marked by two unary predicates, so that they become
accessible to first-order logic. First-order logic now existentially quantifies
the at most ℓ vertices that are changed in a reconfiguration sequence of
length ℓ. Now, it remains to verify that the vertices marked with the first
predicate modified by the quantified changes form a dominating set. We
note that fixed-parameter tractability using first-order model-checking for
parameter ℓ also holds for ISR-TJ, ISR-TS, and DSR-TS.

Unfortunately, the approach via first-order model-checking does not im-
mediately help us to deal with the parameter k. For the parameter ℓ, we can
find a fixed sentence expressing the existence of a reconfiguration sequence
of length ℓ. However, when restricted to the parameter k alone, because
reconfiguration sequences can be arbitrarily long, it is not possible to state
the existence of such a sequence in first-order logic.

Instead, the key tool to tackle TJ-DSR is based on the notion of dom-
ination cores. A k-domination core in a graph G is a subset Y ⊆ V (G)
such that every set of size at most k dominating Y also dominates the whole
graph (see Figure 5.3).

For a graph G, we fix source and target dominating sets Ds and Dt of
size k and a k-domination core Y . We let R denote a set containing one
vertex from each projection class of CY . We call a vertex inR a representative
of its class.

Let H be the graph induced by the vertices of Y ∪Ds ∪Dt ∪R. Observe
that NG(v) ∩ Y = NH(v) ∩ Y for all v ∈ V (H). For v ∈ V (G), let vH = v
if v ∈ Ds ∪Dt ∪ Y and otherwise let vH be the vertex of R representing the
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Figure 5.3: A graph with a dominating set of size 2 and a 2-domination
core marked by a light-blue box. The only way to dominate the core by 2
vertices is to pick vertices u and v.

projection class of v. For w ∈ V (H) \ (Y ∪Ds ∪Dt) fix an arbitrary vertex
wG ∈ V (G) with NH(w) ∩ Y = NG(wG) ∩ Y .

Lemma 111. If DG ⊆ V (G) is a dominating set of G, then DH = {vH : v ∈
DG} is a dominating set of H. Conversely, if DH ⊆ V (H) is a dominating
set of size at most k of H, then DG = {wG : w ∈ D} is a dominating set
of G.

The first statement of the lemma follows from H being an induced sub-
graph of G. For the second statement, since DH dominates H, it in particu-
lar dominates Y in H. Because H is an induced subgraph of G, the set DG

dominates Y also in G. By definition of a k-domination core, DG dominates
G.

The use of k-domination cores for TJ-DSR is now immediate.

Lemma 112. There exists a reconfiguration sequence from Ds to Dt in G
if and only if there exists a reconfiguration sequence from Ds to Dt in H.

Since there are at most 2|C| different projection classes, it follows that the
graphH is small in relation to |C|. Even better bounds can be achieved when
the VC-dimension of the graph class under consideration is bounded [123,
124].

Lemma 113. The graph H has at most 2k+|C|+2|C| vertices. Furthermore,
when the VC-dimension of G is bounded by d, then H has at most O(k+|C|d)
vertices.

Now it is easy to derive fixed-parameter tractable algorithms for all
classes of graphs that admit small domination cores.

Theorem 114. Assume C is a class of graphs such that for every G ∈ C
and for every k ∈ N there exists a polynomial-time computable k-domination
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core of size f(k), for some computable function f . Then TJ-DSR is fixed-
parameter tractable on C with parameter k.
Furthermore, when f is a polynomial function and C has bounded VC-
dimension, then TJ-DSR admits a polynomial kernel on C.

Domination cores were first introduced by Dawar and Kreutzer [62] in
their study of the Distance-r Dominating Set problem on nowhere dense
classes. When k is the size of a minimum dominating set, then linear k-
domination cores (i.e. cores of size O(k)) are known to exist on classes with
bounded expansion [64] and polynomial (and in fact almost linear) cores
exist on nowhere dense classes [106, 69]. When k is not minimum, in all
of these cases k-domination cores are known to be of polynomial size. The
most general classes of graphs known to admit domination cores are semi-
ladder-free classes [72]. These classes include biclique-free classes, on which
the cores are of polynomial size (with the exponent depending on the size
of the excluded biclique) and which have bounded VC-dimension. Their use
for reconfiguration was first observed in [112].

Corollary 115. TJ-DSR is fixed-parameter tractable on every semi-ladder-
free class of graphs. TJ-DSR admits a polynomial kernel on every biclique-
free class of graphs.

Question 116. Does TJ-DSR admit a linear kernel on planar graphs?

The methods based on domination cores are in fact limited to classes
with bounded co-matching index (which in particular have bounded semi-
ladder index). It is easily seen that the graph consisting of two cliques A,B
of size n such that the edges between A and B induce a co-matching has
a dominating set of size 2 but does not contain a non-trivial 2-domination
core. For example, while it is known that the Dominating Set problem
parameterized by k is fixed-parameter tractable on every class of bounded
clique-width it is not known whether this is true for TJ-DSR.

Question 117. Is TJ-DSR parameterized by k fixed-parameter tractable
on graphs of bounded clique-width?

The results of this section naturally generalize to the distance-r version
of Dominating Set. Observe that for r ≥ 2 the rth powers of classes with
unbounded degree contain arbitrarily large cliques. However, for example
powers of nowhere dense graphs still have bounded semi-ladder index [72],
and hence, TJ-DSR is fixed-parameter tractable on powers of nowhere dense
classes. One can obtain almost linear kernels when the underlying nowhere
dense graph is given, or equivalently, when considering the reconfiguration
variant of the Distance-r Dominating Set problem on nowhere dense
classes [125].
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Token Sliding variant. As for Independent Set Reconfiguration, the slid-
ing model is much harder to deal with than its jumping counterpart. As a
consequence, TS-DSR has not been widely studied. Let us however mention
a few results on the topic. When we consider TS-DSR we have to decide if
several tokens can be on the same vertex at the same time (which cannot
happen for ISR and can be avoided for TJ-DSR). All the results on the
topic, as far as we know, authorize this. In other words, dominating sets are
seen as multisets of vertices.

Bonamy et al. [25] proved that TS-DSR is PSPACE-complete, even re-
stricted to split, bipartite or bounded treewidth graphs. They also provide
polynomial time algorithms for cographs and dually chordal graphs (which
contain interval graphs). We extended these result to circular interval graph
with Alice Joffard in [45]. We also proved in [45] that TS-DSR is PSPACE-
complete on circle graphs which gives the first class where the maximum
dominating set problem is NP-complete but its TS-reconfiguration coun-
terpart is polynomial. The parameterized compelxity of TS-DSR remains
widely unexplored due to its complexity compared to its jumoing counter-
part.



Chapter 6

Conclusion

In this manuscript, we overviewed existing results on Graph Recoloring via
single vertex vertices (Chapter 3) and on Independent Set Reconfiguration
under the token sliding and token jumping models (Chapter 4). We also
briefly discussed some results on (Generalizations of) Matroid Reconfigura-
tion and Dominating Set Reconfiguration (Chapter 5).

Let us conclude this manuscript with some open problems. I will first
recall some class of questions already mentioned before that I find partic-
ularly interesting and challenging. Then I will discuss questions that were
not yet discussed (or at least not too much) in this manuscript and which,
I think, are both challenging and exciting for the future of reconfiguration1.

Already mentioned open problems. All along the manuscript, we
mention a lot of open problems which are more or less difficult. Repeat-
ing all of them does not really make sense. I would like to mention two
types of questions that are particularly interesting in my opinion. First,
there remain many exciting structural questions related to the diameter of
configuration graphs. And, in particular, finding upper bounds on the num-
ber of colors that ensure configuration graphs to be of linear diameter. I
think that these questions are interesting since answering them probably
needs to introduce new proof techniques or to understand more precisely
recent proof techniques. Another question of interest, which is probably
the most studied question in graph recoloring, is the Cereceda’s conjecture
(Conjecture 9).

The second type of questions I would like to mention are algorithmic.
As we saw in Chapter 4, while the parameterized complexity of the ISR is
quite well understood in the TJ model, it is very poorly understood in the
TS model. In particular, it would be interesting to understand it better
for sparse graph classes where the problem is known to be FPT on planar

1The interested reader can indeed find a lot of other exciting questions all along the
manuscript.
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graphs [8] but where very few is known for larger classes. It really contrasts
with the TJ-model where the problem is FPT on biclique-free graphs [47].
And we can make the same remark for dominating set reconfiguration! There
also remains a lot of interesting questions for Token Jumping, especially for
dense classes where almost no reconfiguration results have been obtained so
far.

Lower bounds. All along this manuscript, we surveyed a lot of different
proof techniques that had permitted us to provide efficient algorithms or
upper bounds on the diameter of the configuration graph. Unfortunately,
very few techniques permit to obtain non trivial lower bounds on the diam-
eter of configuration graphs (with the exception of Theorems 10 and 96).
Note that we know that configuration graphs must then have exponential
diameter since the reachability problems are usually PSPACE-complete to
decide2. However, very few constructions where the configuration graph is
superpolynomial have been exhibited.

For graph coloring, Bonsma and Cereceda gave a construction in [31] of a
graph where the shortest transformation between two colorings is exponen-
tial. (We did the same in Theorem 96 for independent set reconfiguration.)
However, in that example of [31], the configuration graph is not connected.
As far as I know, there does not exist any construction that ensures that
the following holds:

Question 118. Give a (or as many as possible) graph G and an integer
k such that k-coloring configuration graph G(G, k) is connected but has a
super-polynomial diameter.

If we are interested in a bit more fine-grained combinatorial results on
the diameter, it would be interesting to find a graph such that the following
holds:

Question 119. Give a (or as many as possible) graph G of degree at most
f(d) such that G(G, d + 2) has super-linear diameter (where d denotes the
degeneracy of the graph).

Positive answers to these questions might help us to understand the
shape of bad examples which (i) can be useful to provide upper bounds
by showing that they are indeed the worst examples and (ii) can be useful
to design gadgets for hardness results for instance. More generally, any
construction giving lower bounds in reconfiguration is interesting since we
definitively lack them!

2The fact that they are not in NP ensures that the shortest transformation is unlikely
to be polynomial.
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The curse of connectivity in reconfiguration. As we have already
seen, reconfiguration problems are much harder in the Token Sliding model
than in the Token Jumping model due to the bottleneck effect that prevents
us for making simple moves even when the graph is very large. Using galactic
graphs, we were able to give the first FPT algorithms for reconfiguration
problems for TS-ISR but, in many graph classes, deciding if TS-ISR or
TS-DSR is still open while FPT algorithms clearly exist for their jumping
counterparts. Deciding if TS-ISR is really harder on these graph classes or
if designing an FPT algorithm simply is more complicated is, by itself, an
interesting question.

But we would like to discuss a related question here. When one wants
to design algorithms for connected dominating set reconfiguration even on
simple graph classes we end up with problems similar to the ones that we
have for token sliding (in the sense that the structures and cases that block
reductions are very similar). Actually, when we try to reduce the size of the
instances, we face a challenging problem. Assume that the graph contains
a long path of vertices of low degree only connected to high degree vertices.
One would like to remove some of these vertices of the graph. Indeed, many
of them have the same neighborhood in the set of really important vertices
(that is vertices of large degree) and then, in terms of domination, some
of them are redundant. However, we cannot simply remove these vertices
since we might use this path in order to connect some other vertices (maybe
the leftmost and rightmost vertices of the path really are important and
the others are only there to ensure that we can slide the token from the
left to the right vertex). So one can think that it may be a good idea to
contract this path but unfortunately we cannot because the vertices of the
path might not have the same neighborhood outside and we might create
solutions while they do not exist.

For connected dominating sets exactly the same type of situations occur
and we cannot neither delete vertices (we might break the existence of a
connected dominating set using the contracted vertex) nor contract edges
(it would allow us to use one less vertex).

It raises the following questions:

Question 120. • Is TS-DSR simpler, harder or incomparable with TJ-
Connected Dominating Set Reconfiguration?

• Is TS-Connected Dominating Set Reconfiguration hard (pa-
rameterized by k) on a sparse graph class such as bounded treewidth?
minor-free graphs?

Since in the second problem we have a double connectivity condition, it
might be simpler to design reduction rules to prove hardness results (which
in turn might give us some further ideas for other problems).
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Dense graph classes. All the results of parameterized complexity ob-
tained and presented in this manuscript for both ISR and DSR have been ob-
tained on sparse graph classes such as planar, minor closed or even bounded
expansion. No result, positive or negative is known on their dense counter-
parts. For instance:

Question 121. • Is TJ-ISR FPT when parameterized by k on graphs
of bounded clique-width?

• Is TJ-DSR FPT when parameterized by k on graphs of bounded twin-
width?

Proof techniques used for sparse classes usually consist in proving that
if we have a large enough part of the graph that is far from tokens (or
behave the same with respect to these tokens), then we can reduce that
part. One of the reasons why we can reduce it (for ISR) is that it contains
an insanely large independent set and then we have many similar choices to
move a token in that section which allows us to remove redundancy. Such a
technique indeed does not work for dense graph classes since a large fraction
of the vertices does not necessarily contain a large indpeendent set. However
if the large degree vertices behave “well-enough”, it is likely that some part
of the graph can be deleted again.
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reconfiguration of matchings. In Graph-Theoretic Concepts in Com-
puter Science - 45th International Workshop, WG 2019, Vall de Núria,
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nation de graphes et problèmes de reconfiguration). PhD thesis, Uni-
versity of Lyon, France, 2020.

[101] M. Kaminski, P. Medvedev, and M. Milanic. Complexity of indepen-
dent set reconfigurability problems. Theor. Comput. Sci., 439:9–15,
2012.
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