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1 Chromatic number, independence number and clique number

The chromatic number χ(G) of G is the minimum number of colors needed to color properly G.
A coloring is proper if any pair of incident vertices receive distinct colors. All along the course,
we will only consider proper colorings and then we will omit the term "proper". A k-coloring
is a coloring using at most k colors.

An independent set is a set of pairwise not incident vertices in a graph. We denote by α(G)
the maximum size of an independent set in G.

A coloring is a partition into independent sets. We can formulate the coloring problem as
an ILP Variables xS for each stable set Constraints: ∀v,

∑
S|v⊆S xS ≥ 1 Fractional coloring =

fractional covering by stable sets.
Note that it ensures that that χ(G) ≥ |V (G)|

α(G) . It in particular implies that an induced odd
cycle is not 2-colorable. Since there exist 3-colorings of odd cycles, they are 3 colorable, i.e.
χ(C2k+1) = 3.

We have a natural lower bound on χ : ω, the clique number. The clique number ω(G) of G
is the maximum size of a clique in G

Q1? Do we always have χ(G) = ω(G)?
The answer is no, for instance on an odd cycle or on a wheel.

Q2? If not can we bound χ by a function of ω?
Again the answer is no ! A graph is triangle-free if it satisfies ω = 2.

Theorem 1. (Mycielski) There exist triangle-free graphs of arbitrarily large chromatic number.

Proof. The proof is by induction on k, the chromatic number. Let Gk be a triangle free graph of
chromatic number k. Let v1, . . . , vn its vertices.

We create n new vertices w1, . . . , wn such that viwj is an edge if and only if vjvi is an edge.
We finally create a new vertex z connected to w1, . . . , wn. Let us denote by Gk+1 the resulting
graph.

The following claim will be useful to conclude.

Claim 1. If G k-colorable and not (k-1) colorable, for each color i, there exists a vertex vi such that vi
has a neighbor of all the colors but i.

Proof. Otherwise, it is an easy exercise to check that one color can be eliminated.
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As a corollary of the claim, we know that all the colors 1, . . . , k have to appear onw1, . . . , wn.
And thus z, which is connected to all of them, have to receive another color, a contradiction.

There are many other constructions of such graphs, e.g. Blanche Descartes, Zykov, Erdos,
Borsuk...etc...

Q3? If not is it possible to bound χ by a function of ω in some graph classes? (ie if we add
restriction) This question interests researchers for more that 50 years.

Complexity

Theorem 2. The 3-coloring problem is NP-complete.

One can also ask what is the efficiency of the greedy algorithm to color a graph G. Let G
be a graph and σ and ordering of v1, . . . , vn of V (G). The greedy algorithm colors the vertices
v1, . . . , vn one after the other in the order σ and give the vi the smallest possible available color.
We denote by χg(G, σ) the number of colors used by the greedy algorithm with order sigma.

Remark 3. There exists an ordering σ such that χg(G, σ) = χ(G).

We left the proof as an exercise.
We denote by χg(G), the grundy coloring number of G, the maximum over all the orders σ

of χg(G, σ).

Theorem 4. χg(G) can be arbitrarily larger than χ(G). For instance on trees, χg is not necessarily
bounded while χ(T ) ≤ 2 for every tree T .

2 Graph classes

Coloring a graph is hard. A natural approach consists in trying to understand more carefully
our instance and try to use the underlying structure of the instance to derive a better algo-
rithm. For instance, on trees, the greedy algorithm migth perform arbitrarily bad but there
exist simple polynomial time algorithms that color T with two colors.

There exist many possible types of types of classes of graphs (ie of possible structure we
might ask). For instance graphs defined as intersection of geometric object, graph that does
not contain some subgraphs...etc...

Interval graphs. Interval graphs naturally appear in many applications, e.g. in scheduling.
Interval graphs are intersection graphs of intervals in the plane. In other words, we create a
vertex per interval and two vertices are linked by an edge if the corresponding interval inter-
sect.

Theorem 5. For every interval graph, we have χ(G) = ω(G). Moreover the proof is algorithmic and
provides in polynomial a χ(G)-coloring of G.

Proof. Let v be the vertex with the leftmost rightend. Let G′ be the graph without the vertex
v. By induction, G′ can be colored with ω(G′) colors. If ω(G′) < ω(G), then we have the right
to use one more color in G and we use it to color v. So let us assume that ω(G′) = ω(G). One
can remark that by definition of v, all the neighbors of v contain the point of the line which is
the rightend point of v. So N(v) ∪ v is a clique. And then N(v) has size at most ω(G) − 1. So
there exists a color that does not exist in the neighborhood of v and we can color v with this
color.
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Chordal graphs More generally, we can define chordal graphs. A graph is chordal if it does
not contain induced cycles of length at least 4. In other words, any cycle of length at least four
must contain a chord (an edge between two non consecutive vertices of the cycle). But there is
an alternative definition of chordal graphs: chordal graphs are intersection graphs of subtrees
of a tree. Note that it generalizes interval graphs since interval graphs are interection graphs
of subpaths of a path.

Theorem 6. For every chordal graph, we have χ = ω.

Another equivalent, but sometimes more easier to understand, definition of chordal graphs
is the following. For every chordal graph G, there exists a tree T such that, we can associate to
each node of the tree a subset of vertices of V (G) called bag such that:

• For every v ∈ V , the set of bags in which v appears is a (non empty) subtree of T .

• uv ∈ E(G) if and only if there exists a bag containing both u and v.

Such a tree is called a clique tree of G.
Exercise: Why is it equivalent with the other definition of chordal?

Proof of Theorem 6. By induction. Let T be a clique tree of G. Now let f be a leaf of T . If there
is no vertex included only in f , then all the vertices in the bag of f also appear in the bag of
its parent. And then we can delete the leaf of f . So there is x in the bag of f whose subtree is
reduced to the leaf.

All the neighbors of x are in the bag of f , which is a clique. So x has at most (ω − 1)
neighbors. So by induction G′ = G \ x can be colored and the coloring can be extended to x
since at most ω − 1 colors appear in the neighborhood of x.

Note that in both cases, we prove that there is a vertex of small degree and apply induction.
We can more generally do the following. A graph is d-degenerate if there exists an ordering of
V (G) v1, . . . , vn such that N(vi) has at most d neighbors in vi+1, . . . , vn. Since E ≤ 3V − 6, the
degeneracy of planar graphs is at most 5.

Lemma 7. Any d-degenerate graph is (d+ 1)-colorable.

Proof. We color the graph in the reverse order. Assume by induction that we have a coloring
of V \ v1. Then we can extend this coloring to v1 since v1 has at most d neighbors and there are
d+ 1 colors.

Perfect graphs We have just seen two classes of graphs that satisfy χ = ω. What can we
say about these graphs in general? These graphs received a considerable attention and are
called perfect graphs. A graph G is perfect if any induced subgraph of G satisfies χ(G) = ω(G).
A graph H is an induced subgraph of G if there exists |H| vertices of G whose restriction to
give exactly H (not H plus some edges !). Berge conjectured in the 50ies that perfect graphs
are graphs that do not contain induced odd cycles (called holes) or induced odd anticycles
(complement of odd cycles - called antiholes).

Remark 8. The condition are necessary.

A proof was provided in 2004 by Chudnovsky, Robertson, Seymour, Thomas. The proof
-long and complicated- is too complicated to be explained in this lecture...

Theorem 9 (Perfect Graph Theorem). Perfect graphs are graphs without odd holes and odd antiholes.
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χ-boundedness Gyárfás defined in 1987 the notion of χ-boundedness. A class G of graphs is
χ-bounded (with binding function f ) if, for every graph G ∈ G, we have χ(G) ≤ f(ω(G)). Note
that perfect graphs are χ-bounded with f = id as well as disk graphs.

We can ask a couple of questions. First, are all the intersection graphs chi-bounded? The
answer is negative. Intersection of segments in the plane are NOT chi-bounded.

Let us denote by Pt the path on t vertices. Gyárfás proved the following:

Theorem 10 (Gyárfás). Pt-free graphs are χ-bounded.

Proof. Let us prove it in the case of triangle-free graphs (ie ω = 2). Let us prove by induction
that if χ = t, there is a path of length at least t/2.

Let x be a vertex of G. Let G′ = G \ N [x]. Since N(x) is edge-less (otherwise there would
be a triangle), the graph G′ satisfies χ(G′) ≥ χ(G)− 2. So there exists a connected component
C of chromatic number χ(G) − 2. Now let y in N(x) with a neighbor in C. By induction on
H = G[C]∪ y, there exists a path of length (χ− 2)/2, which completes the proof since this path
can be extended to x.

In general it can be extended to any possible value of clique, but the function is exponential
in ω. Proving the existence of a polynomial function is a widely open problem.

Disk graphs A (unit) Disk Graph is an intersection graphs of (unit) Disks in the plane. These
graphs can for instance model wireless networks or systems of antennas in telecommunication.

Theorem 11. Every unit disk graph (resp disk graph) satisties: χ ≤ 3ω(G) (resp. 6ω(G)).

Proof. Take the leftmost vertex. Partition the neighborhood of x into at most 3 cliques. Since
each of these cliques have degree at most ω, the leftmost vertex has at most 3ω neighbors. So a
coloring of G \ x can be extended to x.

Conjecture 12. Every unit disk graph (resp disk graph) satisties: χ ≤ 3/2ω(G) (resp. 3ω(G)).

Planar graphs Planar graphs are graphs that can be drawn in the plane without crossing
edges.

Lemma 13 (Euler formula). For every planar graph, we have:

V − E + F = 2.

Corollary 14. E ≤ 3V − 6

In particular, it implies that planar graphs are 5-degenerate, so planar graphs can be colored
with 6 colors. Note that it is exactly the proof technique we used to prove that interval graphs
can be colored with ω colors. We actually proved that they are (ω−1)-degenerate and then can
be colored with ω colors.

Is this bound can be improved? Yes !

Theorem 15. Every planar graph is 5-colorable.

Sketch of the proof. By induction. If G has less than 5 vertices the conclusion holds. So G has
more than five vertices. By the corollary, there exists a vertex v of degree at most 5. Let G′ =
G \ v and c be a coloring of G′. If a color does not appear in the neighborhood of v in G, the
conclusion holds. So the five neighbors v1, . . . , v5 of v are colored with colors 1, . . . , 5.
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A the Kempe chain (c, v) (where v is a vertex and c a color) is the component of v restricted
to the vertices colored c and c(v). A Kempe change is the exchange of the colors of the vertices
in the Kempe chain. Note that the resulting coloring is proper.

Now for every i, j ≤ 5, consider the Kempe chain (vi, j) in the graph G′. If it does not
contain vj , then we perform the Kempe change and the color i does not appear anymore in the
neighborhood of v and then v can be colored with i.

We claim that it is actually impossible. Indeed, assume that in the plane v1, . . . , v5 appear in
this order. Then an alternating path (1, 3) in the component (v1, 3) plus the vertex v is a cycle.
And v2 is “in” this cycle and v4 is “out”. So there cannot be a path colored (c(v2), c(v4) between
v2 and v4, and then the conclusion holds.

Theorem 16 ((Appel, Haken)). Any planar graph is 4-colorable.

It is the first computer assisted proof in the history (as far as I know !). We still do not know
any proof that can be checked by human beings !

Not covered - Graph minors It is sometimes interesting to define classes of graphs with their
sets of forbidden subgraphs. For instance forests are cycle-free graphs, chordal graphs are
graphs without induced cycles of length at least 4. How can we define planar graphs? First
there are two natural obstructions.

Remark 17. K5 is not planar.

Proof. Use the corollary to get a contradiction.

A graph H is a minor of G is H can be obtained G by:

• vertex deletion, and

• edge deletion, and

• edge contraction.

For example a forest is a graph that does not contain K3 as a minor.
Another possible definition of minors is the following. For every vertex h of H , we can

associate a subset Vh of V such that:

• For every h ∈ H , Vh is connected.

• For every h, h′ ∈ H , Vh and Vh′ are disjoint.

• For every edge hh′ ∈ E(H), there exists v ∈ Vh and w ∈ Vh′ such that vw ∈ E(G).

Theorem 18 ((Kuratowski)). A graph is planar if it does not contain K5 or K3,3 as a minor.

Minor closed classes are usually “simple” classes of graphs in the sense that many hard
problems become simpler on graphs excluding a minor. There is a very famous conjecture
about coloring of minor free graphs:

Conjecture 19. Every Kt-free graphs can be colored with (t− 1) colors.

True for t = 2 (independent sets are 1-colorable), t = 3 (forests are 2-colorable), t = 4 and
t = 5 (a long proof based using a as blackbox the 4-colorabily of planar graphs).

But we know that a function exists...

Lemma 20. Every Kt-minor free graph has at most Ctn edges.

Asymptotically (for large n and t, we know that this function is of order O(t log tn).
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Lecture 4 - Ramsey Theory One can ask the following question: is it true that, if the graph is
large enough, the graph contains some structure in it? The Ramsey theorem gurantees that it
is true.

Theorem 21. For every k, there exists an integer R(k) such that for every n ≥ n0 and every edge-
coloring of Kn with 2 colors, there exists a subset X of k vertices such that the edges of the subgraph
induced by X is a monochromatic clique.

The integerR(k) is called the Ramsey number of order k. It is sometimes denoted byR(k, k)
(we will understand why a bit later).

Theorem 22.
R(k) ≤ 4k

Proof. In order to prove it, let us prove that every edge coloring of Kn with 2 colors contains
a monochromatic clique of size (almost) log n/2. Let G be a clique. Let S be a set initialized
as the empty set. Let x1 be a vertex. Add x1 to S. Since the edges of G are colored with 2
colors, either half of the edges incident to x1 are colored 1 or half of the edges incident to x1
are colored 2. Wlog assume that it is 1. Let Xi be the set of neighbors y of x such that x1y is
colored i. Since X1 ∪X2 = V \ x, X1 contains half of the vertices of G (almost). Let G2 be the
restriction of G to the vertices of X1. Repeat this operation until the graph is the empty graph.

We claim that at the end of the algorithm the size of S is ≈ log n vertices. Indeed, at each
step, we extract one vertex and repeat on a graph of size at least n(G)/2. So the number of
repetition is of order log n.

Now, for each extracted vertex xi and for every j, j′ > i, we have that xixj and xixj′ are
of the same color. Indeed by definition, we have at the end of step i restricted the graph to
the neighbors of xi such that the color of the edge to reach them is the same. We say that xi is
extracted with color r if we have restricted the graph to the neighbors colored r. At least half
of the vertices of S are extracted with the same color r in {1, 2}.

It is easy to check that these vertices induce a monochromatic clique.

Let us now prove that we are not far from the tight bound:

Theorem 23. For every k ≥ 3, we have:

R(k) ≥
√
2
k

Proof. The proof is a “probabilistic” proof. It means that we will “count” the average number of
monochromatic clique on a clique of size n if the colors of the edges are chosen independently
at random with probability 1/2. If the expected value is less than one it means that there
exists at least a graph that does not contain any monochromatic clique. Indeed, using Markov’
Lemma we have: E( number of monochromatc Kk) ≤ PG contains at least Kk/1.

Now let Kn be a clique on n vertices and for every edge, let us color with color 1 with
probability 1/2 and with color 2 with probability 1/2. Let X be a set of k vertices.

P(X is monochromatic ) = 2 · (1
2
)k(k−1)/2

So, by union bound, the average number of monochromatic Kk is at most

mathbbE(Number of monochromatic Kk) ≤
(
n

k

)
· P(X is monochromatic )

≤
(
n

k

)
· 2 · (1

2
)k(k−1)/2
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Since
(
n
k

)
≤ nk/k!, if n ≤ 2k/2, we have:

mathbbE(Number of monochromatic Kk) ≤
2k

2

k!
· 2/2k2 · 2k/2

≤ 2k/2+1

k!
< 1

which concludes the proof since the last inequality holds as long as k ≥ 3.

Variants We can do a lot of variants of Ramsey theorems, for instance using more colors, or
to desequilibrate the size of the target monochromatic cliques..

Theorem 24. For every k1, . . . , k`, there exists an integer R(k1, . . . , k`) such that for every n ≥ n0
and every edge-coloring of Kn with ` colors, there exists a subset X of vertices such that the edges of the
subgraph induced by X is a monochromatic clique of color i and of size ki for some i ≤ `.

Exercice: Adapt the proof to prove it. Which function do you obtain?

Applications

Theorem 25. If n > R(k), any graph on n vertices admits a clique or a stable set on k vertices.

Proof. Color edges with color 1 and non edges with color 2.

There are many other applications of Ramsey theory to various fields. For instance the
following Schur theorem:

Theorem 26 (Schur theorem). Let [|1, n|] be the set of integers between 1 and n. Let us color the
integers with colors of [|1, n|] with k colors. If n ≥ n0, there exists three integers x, y, z colored with
the same color such that x+ y = z.

Proof. Consider the clique on n vertices where the edge ij with j > i is colored with the color
of j − i. If n ≥ R(3, 3, . . . , 3), then G contains a monochromatic clique of size 3. Let x, y, z be
the three vertices with x < y < z. We claim that z − x, z − y and y − x are colored the same in
the original instance and (y − x) + (z − y) = z − x, which completes the proof.
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