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1 Introduction to parameterized algorithm

1.1 FPT algorithms

Let Π be a problem. Let I be an instance of Π and k be an integer. An algorithm A is FPT if it
runs in time f(k) · P (n) where P is a polynomial function.

Various parameters are considered in the litterature, in these lectures, we will concentrate
on two main parameters: the solution size and the so-called treewidth of your graph.

The goal of FPT algorithms (and of the parameterized complexity in general) consists in
trying to limit the combinatorial explosion to some parameter (hopefully small). If the function
f is “decent” and we are given an instance with a small parameter, then the algorithm might
be particularly efficient !

Vertex Cover. Let us provide an FPT algorithm for Vertex Cover. Let G be a graph and k be
the solution size. Let e = (u, v) be an edge of G. Since we are looking for a vertex cover, we
know that u or v have to be in the vertex cover (maybe both). We hen consider two subinstances
(G \ u, k − 1) and (G \ v, k − 1). We apply inductively the algorithm on these two cases.

We claim that the complexity is O(P (n) · 2k). Indeed, the complexity of the algorithm is
given by f(k, n) ≤ 2f(k − 1, n). One can easily check that the function f satisfies the above
conditions.

In order to see it in another (very useful for more complex problems) way, let us define the
concept of branching tree. It is a way of evaluating the complexity of an FPT algorithm.

• Each node corresponds to an instance considered in our algorithm.

• We set an arc between two instances I, I ′ if I ′ is considered as a call from I .

Lemma 1. If:

• The width of the tree is ≤ g(k)

• The depth of the tree is ≤ h(k)

• Each leaf can be decided in FPT time f(n, k)

• Each subinstance can be computed f(n, k)

then the problem is FPT and its running time is ′∗(g(k)h(k) · f(n, k)).
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Better algorithm for Vertex Cover? One can ask if a better algorithm can be found for VC.
The answer is positive. Let us consider the following branching rule: if G admits a vertex v of
degree at least 3, then we branch of the instance (G \ v, k − 1) and (G \N [v], k − |N(v)|).

We claim that when this rule is no long applicable then the resulting instance can be decided
in polynomial time. A careful analysing of the running time of this algorithm (by counting the
number of nodes of the branching tree) guarantees that we have a running time of O∗(21.47k).

1.2 Kernalization.

A kernel of an instance (I, k) of a parameterized problem is an instance (I ′, k′) that can be
computed in polynomial time from (I, k) and such that:

• (I, k) is positive if and only if (I ′, k′) is positive and,

• k′ ≤ f(k) for some function f (that does not depend on the input).

• |I| ≤ g(k) for some function g (that does not depend on the input).

A kernel is polynomial if both f and g are polynomial function. In most of the existing kernel
algorithms, k′ ≤ k (the value of the parameter is usually decreasing).

Theorem 2. A problem admits a FPT algorithm if and only if it admits a kernel.

Proof. If a problem admits a kernel, then it indeed admits a FPT algorithm. We first compute
a kernel in time P (n, k) and then decide the problem on an instance of size f(k), which can be
done in a time that does not depend on n anymore.

Let us now prove the contrary. Assume that there exists an FPT algorithm running in time
f(k) ·P (n). Now we consider two cases, either n ≤ f(k) and then the FPT algorithm is actually
a polynomial time algorithm. So we can now assume that n ≥ f(k). Then, in particular, the
whole instance is a kernel of size at most f(k), which completes the proof.

So we mainly focus on trying to find polynomial kernels. Let us briefly describe the main
ingredient used to obtain kernels, namely “reduction rules”. A reduction rule consists in find-
ing in the graph a “structure” that can be remplaced by another one which is “simpler” (usu-
ally simpler means smaller, but it might also mean structurally simpler). Usually, in order to
prove that a problem admits a polynomial kernel, we need two steps:

1. Find some reduction rules (that can be applied in polynomial time) and prove their cor-
rectness.

2. Prove that when no reduction rule can be applied, the size of the instance is bounded by
P (k) (or that otherwise the instance is negative / positive).

Vertex Cover.
Let us first start with the following reduction rule:
Reduction Rule 1. If a vertex has degree more than k, then delete it and reduce by k by 1.

Lemma 3. If Reduction Rule 1 is no longer appliable either G has size at most k2 or the instance is
negative.
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The proof is left as an exercise.
Can we do better? The answer is positive using LP. You (may) know that extremal points

of the Vertex Cover polynomial are semi-integral. In other words, all the fractional solutions
of the MVC problem have value in {0, 12 , 1}. It leads to the following reduction rule:
Reduction Rule 2. Find an optimal solution of the fractional relaxation of the MVC. Delete all
the vertices with value 0 and 1. And decrease the value of the parameter by the number of
vertices with value 1.

Lemma 4. • The resulting instance is equivalent to the original one.

• The resulting instance has size at most 2k.

d-Hitting Set Let us consider a problem generalizing vertex cover, called the Hitting Set
problem. Let H = (V,E) be a hypergraph. A hypergraph is a d-hypergraph if all the hy-
peredges have size at most d. A hitting set of a hypergraph is a subset S of vertices such that
for every hyperedge e, e ∩ S is not empty. (Why does it generalizes vertex cover?). In what
follows our goal consists in proving that the Hitting Set problem in d-hypergraphs admits a
polynomial kernel.

Exercise 5. Generalize the Reduction Rule 1.1 for d-Hitting Set.

2 Classical methods

2.1 Color Coding.

Done with Louis Esperet.

2.2 Iterative compression

This method was introduced by Reed at al. (to find odd cycle transversal). We illustrate it on
the problem of feedback vertex set problem. A feedback vertex set is a subset of vertices X
such that the graph induced by V \X is acyclic.

Let us now introduce the key notion of iterative compression.

Lemma 6 (Reed et al.). Let (Π, k) be an hereditary1 parameterized problem.
Let DISJOINT Π be the problem where the instance consists in a solution of Π of size (k + 1) plus a
solution of S of Π of size at most (k + 1). And the goal is to find a solution of Π of size k disjoint from
S.

Let (I, k) be an instance of Π. If DISJOINT Π admits an FPT algorithm running in time ak · nc

then Π admits an FPT algorithm running in time ak+1) · nc+1.

Proof. Let us prove it by induction on the size of the instance. (For simplicity, let us assume
that the instance is a graph). Let Gi be the current instance and Si be a solution of Gi of size
at most k. If such a solution does not exist, the hereditary property ensures that the whole
instance is negative and we can output no. So let Si be a solution of Gi. Now let us add a new
element vi+1. Si ∪ vi+1 is still a solution of Gi+1.

Now let us try to find a solution of Gi+1 of size k. We branch over all the possible intersec-
tion of the solution S′ with Si∪vi+1. In the branches corresponding to S′∩ (Si∪vi+1) 6= ∅, then
by induction there is a running time of at most ak−`nc if the intersection has size ` (indeed we

1Hereditary means here that if S if a solution for Π then it is a solution for “smaller” instances.
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reduced the parameter by ` and we are looking for a solution disjoint from what remain). So
for all these branches, the total running time is at most

k∑
`=1

(
k + 1

`

)
ak−`nc ≤ ((a + 1)k − 1) · nc

And finally by assumption, the last instance can be solved in time f(k)·nc (since it is an instance
of DISJOINT Π.

Let us now illustrate it on the problem of FVS.

Lemma 7. The problem DISJOINT FEEDBACK VERTEX SET can be decided in time TODO.

The rest of this part is devoted to prove the lemma.
Let I = (G, k, S) be an instance of DISJOINT FEEDBACK VERTEX SET where G is a graph, k

is a parameter and S is a solution of size at most k + 1. Note that we can assume G[S] induces
a forest since otherwise, the instance I is a no instance.

So from now on we can assume that S induces a forest. We now consider the following two
reduction rules:
Reduction 1. If there exists a vertex v ∈ V of degree two with one neighbor of x in S and one
neighbor y in V \ S then return the instance (G, k, S ∪ {v}).
Proof: If there is a solution containing x, then it is also a solution if we replace x by y. So if
there exists a solution, there exists a solution that does not contain x and then the new instance
has a solution.
Reduction 2. If there exists a vertex v ∈ V incident to two vertices of S in the same connected
component of G[S], then return the instance (G \ v, k − 1, S).
Proof: We are looking for a solution that does not contain any vertex v of S. And there exists
a cycle containing only vertices of S plus v so if we want to eliminate this cycle, we need to
select v.
Branching Rule 3. If there exists a vertex v ∈ V incident to two vertices of S in distinct
component of G[S] then branch over the instances (G \ v, k − 1, S) and (G, k, S ∪ v).
Proof: The proof is trivial. Either v is in the solution and we are in the first case, or it is not in
the solution and we are in the second case.

Using these reduction and branching rules, we can prove the following

Lemma 8. Disjoint FVS admits an FPT algorithm running in time O(2k+ccnc) where cc denotes the
number of connected component of S in the original instance and c is a universal constant.

Proof. We prove it by induction on n + k. Let G be an instance of size n where k is the value
of the parameter and cc the number of connected component induced by S. Note that since S
is a solution, G \ S is a solution. So G \ S induces a forest. Let v be a leaf of this forest. Either
Reduction 1 or Reduction 2 can be applied, and then, by induction we have an algorithm
running in time at most P (n) + f(k, n− 1, cc) and then the conclusion holds (note that in both
cases, the number of connected component in S did not decrease). So we can assume that
none of the two reduction rules apply. Note that if v has no neighbor in S, then we can delete
it since it is in no cycle. So we can assume that d(v) ≥ 3 and v has at least two neighbors
in S. So we can apply Branching Rule 3. By induction, the problem can be decided in time
P (n) + f(k − 1, n − 1, cc) + f(k, n − 1, cc − 1). By induction, the running time is at most:
O(2k−12cc + 2k2cc−1)nc) = O(2k+ccnc) and then the conclusion holds.

Since cc ≤ k in our case, we get a O∗(4k) algorithm to compute a Disjoint FVS if S has size
at most k + 1.
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3 Lower bounds

3.1 For polynomial kernels

An OR-distillation for a problem Π is an algorithm such that:

• has an input a sequence (x1, . . . , xt) of instance of Π

• has running time Poly(
∑
|xi|)

• returns an instance y of Π such that y ∈ Π if and only if there exists an i sucht that xi ∈ Π
(and |y| = P (

∑
|xi|)).

The OR-distillation are unlikely to happen because of the following result:

Theorem 9. If an NP-complete problem admits an OR-distillation then coNP ⊆ NP/Poly.

An OR-composition for a problem Π is an algorithm such that:

• has an input a sequence (x1, k), . . . , (xt, k) of parameterized instance of Π

• has running time Poly(
∑
|xi|+ k)

• returns an instance (y, k′) of Π such that y ∈ Π if and only if there exists an i sucht that
xi ∈ Π (and |y| = P (

∑
|xi|)) and k′ is polynomial in k.

Theorem 10. If an NP-complete problem Π admits an OR-composition and a polynomial kernel pa-
rameterized by k, then Π admits an OR-distillation.

Proof. Consider the OR-composition. Kernalize it. We can prove that it corresponds to an
OR-distillation.

Applications.

Theorem 11. Longest Path does not admit a polynomial kernel (unless coNP ⊆ NP/poly).

3.2 For FPT algorithms

4 Treewidth

5 Treewidth and FPT algorithm
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