From auctions to graph coloring

Nicolas Bousquet

Journées du G-SCOP 2017

1/17

2011-2014 : Thèse en théorie et algorithmique des graphes à Montpellier.

2014-2015 :

Post-doctorat en théorie des jeux économiques à Montréal.

2015-2016 : ATER en combinatoire et théorie des graphes à Lyon.

What is an auction?

Auctions today

Ad auctions.

Google YAHOO!

 \approx 150 billions a year.

Spectrum auctions.

 $\approx 40/50$ billions a year.

Auctions today

pprox 150 billions a year.

 $\approx 40/50$ billions a year.

Ad auctions : when you access a website, an immediate auction is organized to sell ad slots on the webpage.

Auctions today

 \approx 150 billions a year.

 $\approx 40/50$ billions a year.

Ad auctions : when you access a website, an immediate auction is organized to sell ad slots on the webpage.

Spectrum auctions : a seller (the state) sells frequencies to telecommunication companies trying to maximizing the revenue (of the state) and, if possible global welfare.

Let's design an auction !

Your valuation : 1000\$. **Opponent's valuation :** Between 950\$ and 1000\$.

Item + discount

Item + no discount

Let's design an auction !

Your valuation : 1000\$. Opponent's valuation : Between 950\$ and 1000\$.

First price auction

The bidder with the higher price has the item and he pays the price he announces for the item.

Efficency?

You bid 1000\$ and your opponent bids 950\$.

Efficency?

You bid 1000\$ and your opponent bids 950\$.

You bid 970\$ and your opponent bids 980\$.

Efficency?

You bid 1000\$ and your opponent bids 950\$.

You bid 970\$ and your opponent bids 980\$.

Even worse from the seller ! He does not maximize his profit !

Truthfulness and efficiency

An auction is truthful if no bidder has any incentive to lie. (His welfare can only decrease if he is lying on his valuation)

Informal claim

A truthful auction is "better" (for both sellers and buyers).

Truthfulness and efficiency

An auction is truthful if no bidder has any incentive to lie. (His welfare can only decrease if he is lying on his valuation)

[Informal claim]

A truthful auction is "better" (for both sellers and buyers).

The ultimate goal :

Design the best possible truthful auction...

... that can be explained to human beings...

... and whose "proof" is simple otherwise they won't trust you.

A truthful auction

Your valuation : 1000\$. Opponent's valuation : Between 950\$ and 1000\$.

Item + discount

Item + no discount

A truthful auction

Your valuation : 1000\$. Opponent's valuation : Between 950\$ and 1000\$.

A truthful auction

Your valuation : 1000\$. Opponent's valuation : Between 950\$ and 1000\$.

 \Rightarrow This auction is truthful !

Proof on an example

You bid 1000\$ and your opponent bids 950\$.

Proof on an example

You bid 1000\$ and your opponent bids 950\$.

The seller maximizes his profit (under reasonable conditions).

Specificities :

• The bidders discover their own valuations' functions.

Specificities :

- The bidders discover their own valuations' functions.
- Valuation functions admit complementarities.

Specificities :

- The bidders discover their own valuations' functions.
- Valuation functions admit complementarities.

How best to allocate bandwidth dates back 100 years. Since the 1990s, auctions have become the standard way to allocate bandwidth.

Two main auctions used worldwide :

- SMRA (Simultaneous Multi-Round Auction).
- CCA (Combinatorial Clock Auction).

10/17

Clock Auctions

Clock auctions : the prices are initially set to zero

At t = 0, the price of every item is 0.

Clock Auctions

Clock auctions : the prices are initially set to zero and, periods after periods, prices are updated.

At t = 0, the price of every item is 0.
While all the bids are not "somehow" disjoint : Each bidder bids on her favorite set.
If an item is in several bids, its price increases.

Clock Auctions

Clock auctions : the prices are initially set to zero and, periods after periods, prices are updated.

At t = 0, the price of every item is 0. While all the bids are not "somehow" disjoint : Each bidder bids on her favorite set. If an item is in several bids, its price increases. Return the "best possible" allocation.

SMRA and CCA

Item vs package bidding :

- Package bidding in the CCA : all or nothing bid at price p(S).
 ⇒ The bidder receives either all or none of the items.
- Item bidding in the SMRA : a bid for S at price p(S) is the union of single item bids for s at price p(s) for s ∈ S.
 ⇒ The bidder can be allocated a subset of her bid.

SMRA and CCA

Item vs package bidding :

- Package bidding in the CCA : all or nothing bid at price p(S).
 ⇒ The bidder receives either all or none of the items.
- Item bidding in the SMRA : a bid for S at price p(S) is the union of single item bids for s at price p(s) for s ∈ S.
 ⇒ The bidder can be allocated a subset of her bid.

Advantage of package bidding :

No exposure problem \Rightarrow the allocation is individually rational.

SMRA and CCA

Item vs package bidding :

- Package bidding in the CCA : all or nothing bid at price p(S).
 ⇒ The bidder receives either all or none of the items.
- Item bidding in the SMRA : a bid for S at price p(S) is the union of single item bids for s at price p(s) for s ∈ S.
 ⇒ The bidder can be allocated a subset of her bid.

Advantage of package bidding :

No exposure problem \Rightarrow the allocation is individually rational.

Drawback :

No market clearing \Rightarrow usually market clearing helps for finding guarantees.

Our results

These auctions :

• Work well in practice...

Our results

These auctions :

- Work well in practice...
- ... But we do not theoretically understand why !

Our results

These auctions :

- Work well in practice...
- ... But we do not theoretically understand why !

Theorem (B., Cai, Hunkenschröder, Vetta)

The CCA has a polylogarithmic guarantee (under technical assumptions). Almost tight.

New auctions

- Buy TV and audio useless frequencies.
- Sell them back to telecommunication companies.

New auctions

- Buy TV and audio useless frequencies.
- Sell them back to telecommunication companies.

First auction of that type (April 2017) :

- 19.8 billions of revenue.
- More than 200 companies bought or sold frequencies.
- Second-highest grossing spectrum auction in FCC history.

A problem

(Problem)

Coloring a graph is NP-hard and hard to approximate.

A problem

Problem

Coloring a graph is NP-hard and hard to approximate.

What can we do?

Use the structure of the graph to derive efficient (approximation) algorithm to color graphs.

Conclusion

Questions

• Why is it working?

Understand the shape of valuation functions.

- Improve the "truthfulness process" of spectrum auctions. Implementations are messy...
- Improve coloring algorithms on geometric classes.

Hard problems open for decades.

Conclusion

Questions

• Why is it working?

Understand the shape of valuation functions.

- Improve the "truthfulness process" of spectrum auctions. Implementations are messy...
- Improve coloring algorithms on geometric classes.

Hard problems open for decades.

Thanks for your attention !