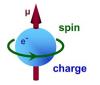
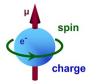
Fast transformations between colorings

Nicolas Bousquet

Cycles & Colorings 2022

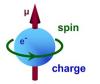


Spin is one of two types of angular momentum in quantum mechanic. [...] In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction".



Spin is one of two types of angular momentum in quantum mechanic. [...] In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction".

Usually, spins take their value in $\{+, -\}$, but sometimes the range is larger...

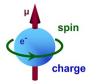


Spin is one of two types of angular momentum in quantum mechanic. [...] In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction".

Usually, spins take their value in $\{+, -\}$, but sometimes the range is larger...

A spin system is a set of spins given with :

- An integer *k* being the number of states.
- An interaction {0,1} (symmetric) matrix modelizing the interaction between spins.
 - 0 = no interaction = no link.
 - 1 = interaction = link.



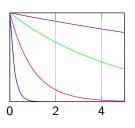
Spin is one of two types of angular momentum in quantum mechanic. [...] In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction".

Usually, spins take their value in $\{+,-\},$ but sometimes the range is larger...

A spin system is a set of spins given with :

- An integer *k* being the number of states.
- An interaction {0,1} (symmetric) matrix modelizing the interaction between spins.
 - 0 = no interaction = no link.
 - 1 = interaction = link.

A spin configuration is a function $f : S \to \{1, ..., k\}^n$. \Leftrightarrow A (non necessarily proper) graph coloring.

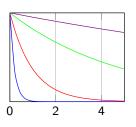


T = 5, 1, 0.2, 0.05

Antiferromagnetic Potts model $H(\sigma)$: number of monochromatic edges. = Edges with both endpoints of the same color.

Gibbs measure at fixed temperature T:

 $\nu_T(\sigma) = e^{-\frac{H(\sigma)}{T}}$



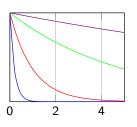
Gibbs measure at fixed temperature T:

T = 5, 1, 0.2, 0.05

$$\nu_{T}(\sigma) = e^{-\frac{H(\sigma)}{T}}$$

Remarks :

Free to rescale, ν_T = probability distribution ℙ on the colorings.



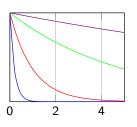
Gibbs measure at fixed temperature T:

T = 5, 1, 0.2, 0.05

$$\nu_{T}(\sigma) = e^{-\frac{H(\sigma)}{T}}$$

Remarks :

- Free to rescale, ν_T = probability distribution ℙ on the colorings.
- The probability \searrow if the number of monochrom. edges \nearrow .



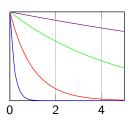
Gibbs measure at fixed temperature T:

T = 5, 1, 0.2, 0.05

$$\nu_{T}(\sigma) = e^{-\frac{H(\sigma)}{T}}$$

Remarks :

- Free to rescale, ν_T = probability distribution ℙ on the colorings.
- The probability \searrow if the number of monochrom. edges \nearrow .
- When $T \searrow$, $\mathbb{P}(c) \searrow$ if c has at least one monochr. edge.



Gibbs measure at fixed temperature T:

T = 5, 1, 0.2, 0.05

$$\nu_{T}(\sigma) = e^{-\frac{H(\sigma)}{T}}$$

Remarks :

- Free to rescale, ν_T = probability distribution ℙ on the colorings.
- The probability ∖ if the number of monochrom. edges ↗.
- When $T \searrow$, $\mathbb{P}(c) \searrow$ if c has at least one monochr. edge.

Definition (Glauber dynamics)

Limit of a k-state Potts model when $T \rightarrow 0$.

 \Rightarrow Only **proper** colorings have positive measure.

How to count / sample colorings?

How to sample colorings?

Let G be a graph. Let α be a coloring of G.

- Select a vertex *v* and a color *c* at random.
- Change the color of v for c if the coloring remains proper.
- Repeat until the coloring is "random".

How to count / sample colorings?

How to sample colorings?

Let G be a graph. Let α be a coloring of G.

- Select a vertex v and a color c at random.
- Change the color of v for c if the coloring remains proper.
- Repeat until the coloring is "random".

How to count colorings? Let G be a graph. Let α be a coloring of G.

- The root of the tree is α .
- If the coloring α' where ν is colored c is not yet visited, add α' in the tree.
- Repeat in a BFS/DFS way.

How to count / sample colorings?

How to sample colorings?

Let G be a graph. Let α be a coloring of G.

- Select a vertex v and a color c at random.
- Change the color of v for c if the coloring remains proper.
- Repeat until the coloring is "random".

Configuration Graph $C_k(G)$:

- Vertices = Proper *k*-colorings of *G*.
- Edges between two colorings if they differ on exactly one vertex.

How to count colorings? Let G be a graph. Let α be a coloring of G.

- The root of the tree is α .
- If the coloring α' where ν is colored c is not yet visited, add α' in the tree.
- Repeat in a BFS/DFS way.

When does it work well?

• [Ergodicity] Is the configuration graph connected?

Actually not completely exact... We need another condition which is trivially correct in our case.

• [Mixing time] How many steps do we need to repeat until we get a "random" coloring?

A classical theorem ensures that if we have a rapid mixing, then we can approximate the counting

• [Compact representation] How do we know if a node was already visited or not?

Mixing time = number of steps needed to be "close" to the stationnary distribution.

 \Leftrightarrow Number of steps needed to guarantee that the solutions is sampled "almost" at random.

Mixing time = number of steps needed to be "close" to the stationnary distribution.

 \Leftrightarrow Number of steps needed to guarantee that the solutions is sampled "almost" at random.

A chain is rapidly mixing if its mixing time is polynomial (and even better $O(n \log n)$).

Mixing time = number of steps needed to be "close" to the stationnary distribution.

 \Leftrightarrow Number of steps needed to guarantee that the solutions is sampled "almost" at random.

A chain is rapidly mixing if its mixing time is polynomial (and even better $O(n \log n)$).

Mixing time and configuration graph?

• Diameter of the configuration graph = D \Rightarrow Mixing time $\ge 2 \cdot D$.

Mixing time = number of steps needed to be "close" to the stationnary distribution.

 \Leftrightarrow Number of steps needed to guarantee that the solutions is sampled "almost" at random.

A chain is rapidly mixing if its mixing time is polynomial (and even better $O(n \log n)$).

Mixing time and configuration graph?

- Diameter of the configuration graph = D \Rightarrow Mixing time $\ge 2 \cdot D$.
- Better lower bounds? Look at the connectivity of the configuration graph (e.g. bottleneck ratio).

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing ?

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.
- [Vigoda '00] Mixing time polynomial if $k = \frac{11}{6}\Delta$.

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.
- [Vigoda '00] Mixing time polynomial if $k = \frac{11}{6}\Delta$.
- [Chen, Delcourt, Moitra, Perarnau, Postle '18] Mixing time polynomial if $k = (\frac{11}{6} \epsilon)\Delta$.

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.
- [Vigoda '00] Mixing time polynomial if $k = \frac{11}{6}\Delta$.
- [Chen, Delcourt, Moitra, Perarnau, Postle '18] Mixing time polynomial if $k = (\frac{11}{6} \epsilon)\Delta$.

Conjecture

If $k \ge \Delta + 2$, the mixing time is $\mathcal{O}(n \log n)$.

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.
- [Vigoda '00] Mixing time polynomial if $k = \frac{11}{6}\Delta$.
- [Chen, Delcourt, Moitra, Perarnau, Postle '18] Mixing time polynomial if $k = (\frac{11}{6} \epsilon)\Delta$.

Conjecture

If $k \ge \Delta + 2$, the mixing time is $\mathcal{O}(n \log n)$.

To sum up :

If $k \ge \Delta + 2$, the random sampling / enumeration algorithms are working and otherwise, they are not working.

A vertex is frozen if all the colors appear in N[v]. A coloring is frozen if all the vertices are frozen.

A vertex is frozen if all the colors appear in N[v]. A coloring is frozen if all the vertices are frozen.

Remarks :

• Frozen colorings ⇒ The Sampling algorithm cannot generate all the graphs.

A vertex is frozen if all the colors appear in N[v]. A coloring is frozen if all the vertices are frozen.

Remarks :

- Frozen colorings ⇒ The Sampling algorithm cannot generate all the graphs.
- For any Δ, there exist graphs with frozen (Δ + 1)-colorings.
 (even triangle-free graphs)

A vertex is frozen if all the colors appear in N[v]. A coloring is frozen if all the vertices are frozen.

Remarks :

- Frozen colorings ⇒ The Sampling algorithm cannot generate all the graphs.
- For any Δ , there exist graphs with frozen $(\Delta + 1)$ -colorings.

(even triangle-free graphs)

Theorem (Feghali, Johnson and Paulusma '17)

The $(\Delta + 1)$ -configuration graph consists in :

- Isolated vertices (=frozen vertices).
- At most one connected component of size ≥ 2 (of diameter O(n²)).

1 What is the size of the non-frozen component compared to frozen vertices ?

• What is the size of the non-frozen component compared to frozen vertices?

2 What is the mixing time on the non-frozen component?

• What is the size of the non-frozen component compared to frozen vertices?

- **2** What is the mixing time on the non-frozen component?
- 3 Is the diameter of the non-frozen component really quadratic?

• What is the size of the non-frozen component compared to frozen vertices?

[Bonamy, B., Perarnau'21] The probability that a coloring selected at random is frozen is $\leq \left(\frac{6}{7}\right)^{n/\Delta}$.

- **2** What is the mixing time on the non-frozen component?
- 3 Is the diameter of the non-frozen component really quadratic?

• What is the size of the non-frozen component compared to frozen vertices?

[Bonamy, B., Perarnau'21] The probability that a coloring selected at random is frozen is $\leq \left(\frac{6}{7}\right)^{n/\Delta}$.

- What is the mixing time on the non-frozen component? [Bonamy, B., Perarnau'21] It can be at least Ω(n²/Δ).
- 3 Is the diameter of the non-frozen component really quadratic?

• What is the size of the non-frozen component compared to frozen vertices?

[Bonamy, B., Perarnau'21] The probability that a coloring selected at random is frozen is $\leq \left(\frac{6}{7}\right)^{n/\Delta}$.

- What is the mixing time on the non-frozen component? [Bonamy, B., Perarnau'21] It can be at least Ω(n²/Δ).
- 3 Is the diameter of the non-frozen component really quadratic?

Theorem (B., Feuilloley, Heinrich, Rabie '22+)

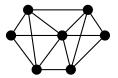
We can transform any non-frozen $(\Delta + 1)$ -coloring into any other in $f(\Delta) \cdot n$ steps.

Distance between colorings

Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

A graph is *d*-degenerate if there exists an ordering v_1, \ldots, v_n such that for every i, $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \le d$.



Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

A graph is *d*-degenerate if there exists an ordering v_1, \ldots, v_n such that for every i, $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \le d$.

Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

A graph is *d*-degenerate if there exists an ordering v_1, \ldots, v_n such that for every i, $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \le d$.

Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

A graph is *d*-degenerate if there exists an ordering v_1, \ldots, v_n such that for every i, $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \le d$.

Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

A graph is *d*-degenerate if there exists an ordering v_1, \ldots, v_n such that for every i, $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \le d$.

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

The (d + 2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

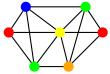
- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

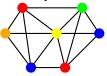
The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

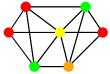
- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

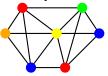




The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

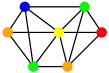
- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

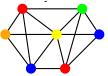




The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

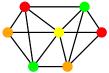
- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

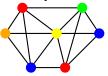




The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

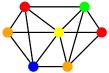
- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

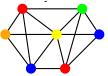




The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

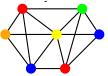
- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.





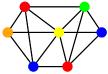
The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

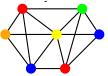
- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.



The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

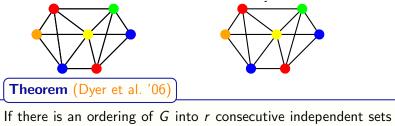




The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

Induction type technique :

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.



 S_1, \ldots, S_r such that $d(S_i) \le d$ in $G[S_{i+}]$. Then the (d+2)-recoloring diameter of G is at most $2^r n$.

Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Idea of the proof.

• Represent a coloring c as a sequence of \uparrow and \rightarrow .

Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Idea of the proof.

- Represent a coloring *c* as a sequence of \uparrow and \rightarrow .
- If $c(v_{i+1}) c(v_i) = 1 \mod 3$ then \uparrow .
- If $c(v_{i+1}) c(v_i) = -1 \mod 3$ then \rightarrow .

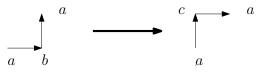
Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Idea of the proof.

- Represent a coloring c as a sequence of \uparrow and \rightarrow .
- If $c(v_{i+1}) c(v_i) = 1 \mod 3$ then \uparrow .
- If $c(v_{i+1}) c(v_i) = -1 \mod 3$ then \rightarrow .

What is the modification of a color change?



Remark.

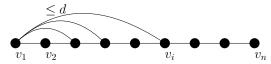
The area under the curve is not modified by 1 or -1.

Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

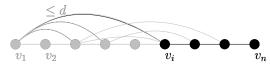
Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is $\mathcal{O}(n^{d+1})$.



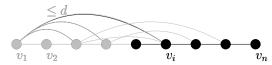
Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.



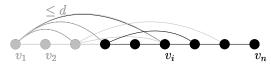
Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.



Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.



Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is $\mathcal{O}(n^{d+1})$.

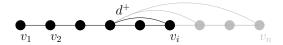


• Ingredient 1 : Look at it in the other direction.

Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is $\mathcal{O}(n^{d+1})$.

Sketch of the proof :

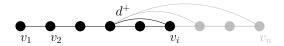


• Ingredient 1 : Look at it in the other direction.

• Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.

Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is $\mathcal{O}(n^{d+1})$.

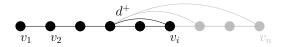


- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Sketch of the proof :



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

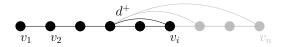
Open problem :

Prove the Cerededa's conjecture for d = 2

Theorem (B., Heinrich '22)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is $\mathcal{O}(n^{d+1})$.

Sketch of the proof :



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

Open problem :

Prove the Cerededa's conjecture for d = 2... and $\Delta = 4$!

[Feghali, Johnson, Paulusma '17] d = 2 and $\Delta = 3$ is true.

Linear transformations

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !

Linear transformations

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !
- Current proof techniques fails.

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !
- Current proof techniques fails.

When does there exist a linear transformation?

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !
- Current proof techniques fails.

When does there exist a linear transformation? [B., Perarnau '16] (2d + 2) colors for *d*-degnerate graphs.

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !
- Current proof techniques fails.

When does there exist a linear transformation? [B., Perarnau '16] (2d + 2) colors for *d*-degnerate graphs. [Bartier, B., Heinrich '21] 5 colors for tw = 2.

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !
- Current proof techniques fails.

When does there exist a linear transformation?

[B., Perarnau '16] (2d + 2) colors for *d*-degnerate graphs. [Bartier, B., Heinrich '21] 5 colors for tw = 2. [Dvořák, Feghali '22+] 10 colors for planar graphs.

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !
- Current proof techniques fails.

When does there exist a linear transformation?

[B., Perarnau '16] (2d + 2) colors for *d*-degnerate graphs. [Bartier, B., Heinrich '21] 5 colors for tw = 2. [Dvořák, Feghali '22+] 10 colors for planar graphs. [Bartier, B. '19] $\omega + 4$ colors for chordal graphs.

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !
- Current proof techniques fails.

When does there exist a linear transformation?

[B., Perarnau '16] (2d + 2) colors for *d*-degnerate graphs. [Bartier, B., Heinrich '21] 5 colors for tw = 2. [Dvořák, Feghali '22+] 10 colors for planar graphs. [Bartier, B. '19] $\omega + 4$ colors for chordal graphs.

Proof techniques :

Induction + Stronger conditions based on structural properties.

Why looking for it?

- Necessary condition for (almost) linear mixing time.
- Best we can hope for !
- Current proof techniques fails.

When does there exist a linear transformation?

[B., Perarnau '16] (2d + 2) colors for *d*-degnerate graphs. [Bartier, B., Heinrich '21] 5 colors for tw = 2. [Dvořák, Feghali '22+] 10 colors for planar graphs. [Bartier, B. '19] $\omega + 4$ colors for chordal graphs.

Proof techniques :

- Induction + Stronger conditions based on structural properties.
- Local transformations.

Theorem (B., Feuilloley, Heinrich, Rabie '22+)

We can transform any non-frozen $(\Delta+1)$ -coloring into any other in $f(\Delta) \cdot n$ steps.

Theorem (B., Feuilloley, Heinrich, Rabie '22+)

We can transform any non-frozen $(\Delta+1)$ -coloring into any other in $f(\Delta) \cdot n$ steps.

Sketch of the proof :

Step 1. Local Warming. x, y ∈ V s.t. d(x, y) = 7 and x is unfrozen.

 \rightarrow We can unfreeze x and y by only recoloring vertices in B(x, 6).

Theorem (B., Feuilloley, Heinrich, Rabie '22+)

We can transform any non-frozen $(\Delta + 1)$ -coloring into any other in $f(\Delta) \cdot n$ steps.

Sketch of the proof :

Step 1. Local Warming. x, y ∈ V s.t. d(x, y) = 7 and x is unfrozen.

 \rightarrow We can unfreeze x and y by only recoloring vertices in B(x, 6).

Step 2. Global Warming. Let *I* be an independent set at distance *r* ≥ 14.

 \rightarrow We can unfreeze I in O(n) steps (as long as ≥ 1 vertex is non-frozen).

Theorem (B., Feuilloley, Heinrich, Rabie '22+)

We can transform any non-frozen $(\Delta + 1)$ -coloring into any other in $f(\Delta) \cdot n$ steps.

Sketch of the proof :

Step 1. Local Warming. x, y ∈ V s.t. d(x, y) = 7 and x is unfrozen.

 \rightarrow We can unfreeze x and y by only recoloring vertices in B(x, 6).

Step 2. Global Warming. Let *I* be an independent set at distance *r* ≥ 14.

 \rightarrow We can unfreeze I in O(n) steps (as long as ≥ 1 vertex is non-frozen).

• **Step 3.** Recolor *G* into a coloring where *V* \ *B*(*I*,7) is colored with the target coloring.

Theorem (B., Feuilloley, Heinrich, Rabie '22+)

We can transform any non-frozen $(\Delta + 1)$ -coloring into any other in $f(\Delta) \cdot n$ steps.

Sketch of the proof :

Step 1. Local Warming. x, y ∈ V s.t. d(x, y) = 7 and x is unfrozen.

 \rightarrow We can unfreeze x and y by only recoloring vertices in B(x, 6).

Step 2. Global Warming. Let *I* be an independent set at distance *r* ≥ 14.

 \rightarrow We can unfreeze *I* in O(n) steps (as long as ≥ 1 vertex is non-frozen).

- Step 3. Recolor *G* into a coloring where *V* \ *B*(*I*,7) is colored with the target coloring.
- Step 4. Recolor B(I,7) with the target coloring (with almost no recoloring $V \setminus B(I,7)$).

Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

Sketch of the proof : P : min. path from x to y

Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

Sketch of the proof : P : min. path from x to y

Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

- *P* : min. path from *x* to *y*
- Recolor vertices of the path to unfreeze the last vertex.

Lemma (Local Warming Lemma)

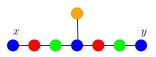
Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

- *P* : min. path from *x* to *y*
- Recolor vertices of the path to unfreeze the last vertex.

Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

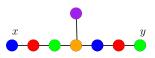
- P : min. path from x to y
- Recolor vertices of the path to unfreeze the last vertex.
- If a vertex of *N*(*P*) is unfrozen, start the path from it.



Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

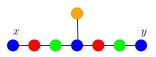
- P : min. path from x to y
- Recolor vertices of the path to unfreeze the last vertex.
- If a vertex of *N*(*P*) is unfrozen, start the path from it.



Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

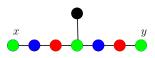
- P : min. path from x to y
- Recolor vertices of the path to unfreeze the last vertex.
- If a vertex of *N*(*P*) is unfrozen, start the path from it.



Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

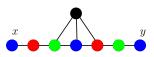
- *P* : min. path from x to y
- Recolor vertices of the path to unfreeze the last vertex.
- If a vertex of *N*(*P*) is unfrozen, start the path from it.
- If a vertex of N(P) is unfrozen at the end, use it to defreeze x.



Lemma (Local Warming Lemma)

Let $x, y \in V$ s.t. d(x, y) = 7 and x is unfrozen. We can unfreeze x and y by only recoloring vertices in B(x, 6).

- P : min. path from x to y
- Recolor vertices of the path to unfreeze the last vertex.
- If a vertex of N(P) is unfrozen, start the path from it.
- If a vertex of N(P) is unfrozen at the end, use it to defreeze x.
- We can change the path !

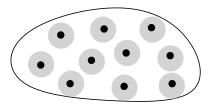


Lemma (Global Warming Lemma)

Let *I* be an independent set at distance 28. It is possible to unfreeze all the vertices of *I* in O(n) steps (if ≥ 1 vertex is non-frozen).

Lemma (Global Warming Lemma)

Let *I* be an independent set at distance 28. It is possible to unfreeze all the vertices of *I* in O(n) steps (if ≥ 1 vertex is non-frozen).

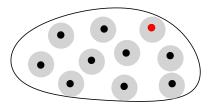


Lemma (Global Warming Lemma)

Let *I* be an independent set at distance 28. It is possible to unfreeze all the vertices of *I* in O(n) steps (if ≥ 1 vertex is non-frozen).

Sketch of the proof :

• We can assume that one vertex of *I* is non frozen.

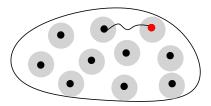


Lemma (Global Warming Lemma)

Let *I* be an independent set at distance 28. It is possible to unfreeze all the vertices of *I* in O(n) steps (if ≥ 1 vertex is non-frozen).

Sketch of the proof :

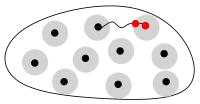
• We can assume that one vertex of *I* is non frozen.



Lemma (Global Warming Lemma)

Let *I* be an independent set at distance 28. It is possible to unfreeze all the vertices of *I* in O(n) steps (if ≥ 1 vertex is non-frozen).

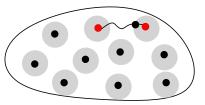
- We can assume that one vertex of *I* is non frozen.
- Using Local Warming defreeze the border vertex.



Lemma (Global Warming Lemma)

Let *I* be an independent set at distance 28. It is possible to unfreeze all the vertices of *I* in O(n) steps (if ≥ 1 vertex is non-frozen).

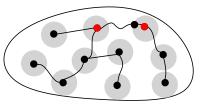
- We can assume that one vertex of *I* is non frozen.
- Using Local Warming defreeze the border vertex.
- Recolor vertices along the path to defreeze a second vertex of *I*.



Lemma (Global Warming Lemma)

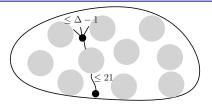
Let *I* be an independent set at distance 28. It is possible to unfreeze all the vertices of *I* in O(n) steps (if ≥ 1 vertex is non-frozen).

- We can assume that one vertex of *I* is non frozen.
- Using Local Warming defreeze the border vertex.
- Recolor vertices along the path to defreeze a second vertex of *I*.
- Using a BFS defreeze the vertices one after another



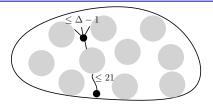
Next step

We can recolor G into a coloring where $V \setminus B(I,7)$ is colored with the target coloring.



Next step

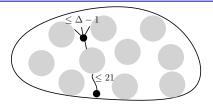
We can recolor G into a coloring where $V \setminus B(I,7)$ is colored with the target coloring.



 $G[V \setminus B(I,7)]$ can be partitionned into 21 Δ independent sets.

Next step

We can recolor G into a coloring where $V \setminus B(I,7)$ is colored with the target coloring.

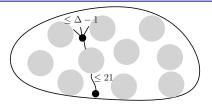


 $G[V \setminus B(I,7)]$ can be partitionned into 21 Δ independent sets.

 \Rightarrow (Cereceda's Lemma.) $G[V \setminus B(I,7)]$ can be recolored into the target coloring in at most $f(\Delta) \cdot n$ steps.

Next step

We can recolor G into a coloring where $V \setminus B(I,7)$ is colored with the target coloring.



 $G[V \setminus B(I,7)]$ can be partitionned into 21 Δ independent sets.

 $\Rightarrow (Cereceda's Lemma.) \ G[V \setminus B(I,7)] \text{ can be recolored into the target coloring in at most } f(\Delta) \cdot n \text{ steps.}$

 \Rightarrow Obtain a coloring of G where $V \setminus B(I,7)$ is colored as in the target coloring.

(Using again local warming, trust me)

Last step

Last step

Recolor B(x,7) for every $x \in I$ without modifying the rest of the coloring.

Idea of the proof :

Last step

Last step

Recolor B(x,7) for every $x \in I$ without modifying the rest of the coloring.

Idea of the proof :

 If B(x,7) contains a vertex of degree Δ − 1 or two neighbors in V \ B(x,7) colored the same : √

Last step

Last step

Recolor B(x,7) for every $x \in I$ without modifying the rest of the coloring.

Idea of the proof :

- If B(x, 7) contains a vertex of degree Δ − 1 or two neighbors in V \ B(x, 7) colored the same : √
- Twist the target coloring to be sure that this property holds.

Open problems : • Can we remove the dependancy on Δ ?

Open problems :

- Can we remove the dependancy on Δ ?
- Does there exist c < 2, a ∈ N such that (cd + a)-colorings of a d-degenerate graph have linear diameter ?

```
[B., Perarnau] True for c = 2.
```

Open problems :

- Can we remove the dependancy on Δ ?
- Does there exist c < 2, a ∈ N such that (cd + a)-colorings of a d-degenerate graph have linear diameter?

[B., Perarnau] True for c = 2.

Smallest k such that k-colorings of a planar graph have linear diameter?
 [Dvořák, Feghali] k ≤ 10.
 [Feghali] Quasi-linear if k ≤ 8.

Open problems :

- Can we remove the dependancy on Δ ?
- Does there exist c < 2, a ∈ N such that (cd + a)-colorings of a d-degenerate graph have linear diameter?

[B., Perarnau] True for c = 2.

Smallest k such that k-colorings of a planar graph have linear diameter?
 [Dvořák, Feghali] k ≤ 10.
 [Feghali] Quasi-linear if k ≤ 8.

Develop tools to prove lower bounds !

e.g. planar graphs with 6 colors?

Open problems :

- Can we remove the dependancy on Δ ?
- Does there exist c < 2, a ∈ N such that (cd + a)-colorings of a d-degenerate graph have linear diameter?

[B., Perarnau] True for c = 2.

Smallest k such that k-colorings of a planar graph have linear diameter?
 [Dvořák, Feghali] k ≤ 10.
 [Feghali] Quasi-linear if k ≤ 8.

Develop tools to prove lower bounds !

e.g. planar graphs with 6 colors?

Thanks for your attention !

