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Spin systems

Spin is one of two types of angular mo-
mentum in quantum mechanic. [...]
In some ways, spin is like a vector quan-
tity ; it has a definite magnitude, and it
has a “direction”.

Usually, spins take their value in {+,−}, but sometimes the range
is larger...

A spin system is a set of spins given with :

• An integer k being the number of states.
• An interaction {0, 1} (symmetric) matrix

modelizing the interaction between spins.
• 0 = no interaction = no link.
• 1 = interaction = link.

A spin configuration is a function f : S → {1, . . . , k}n.
⇔ A (non necessarily proper) graph coloring.
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Antiferromagnetic Potts model

0 2 4

T = 5, 1, 0.2, 0.05

H(σ) : number of monochromatic edges.
=
Edges with both endpoints of the same
color.

Gibbs measure at fixed temperature T :

νT (σ) = e−
H(σ)
T

Remarks :
• Free to rescale, νT = probability distribution P on the

colorings.

• The probability ↘ if the number of monochrom. edges ↗.
• When T ↘, P(c)↘ if c has at least one monochr. edge.

Limit of a k-state Potts model when T → 0.
⇒ Only proper colorings have positive measure.

Definition (Glauber dynamics)

3/20



Antiferromagnetic Potts model

0 2 4

T = 5, 1, 0.2, 0.05

H(σ) : number of monochromatic edges.
=
Edges with both endpoints of the same
color.

Gibbs measure at fixed temperature T :

νT (σ) = e−
H(σ)
T

Remarks :
• Free to rescale, νT = probability distribution P on the

colorings.

• The probability ↘ if the number of monochrom. edges ↗.
• When T ↘, P(c)↘ if c has at least one monochr. edge.

Limit of a k-state Potts model when T → 0.
⇒ Only proper colorings have positive measure.

Definition (Glauber dynamics)

3/20



Antiferromagnetic Potts model

0 2 4

T = 5, 1, 0.2, 0.05

H(σ) : number of monochromatic edges.
=
Edges with both endpoints of the same
color.

Gibbs measure at fixed temperature T :

νT (σ) = e−
H(σ)
T

Remarks :
• Free to rescale, νT = probability distribution P on the

colorings.
• The probability ↘ if the number of monochrom. edges ↗.

• When T ↘, P(c)↘ if c has at least one monochr. edge.

Limit of a k-state Potts model when T → 0.
⇒ Only proper colorings have positive measure.

Definition (Glauber dynamics)

3/20



Antiferromagnetic Potts model

0 2 4

T = 5, 1, 0.2, 0.05

H(σ) : number of monochromatic edges.
=
Edges with both endpoints of the same
color.

Gibbs measure at fixed temperature T :

νT (σ) = e−
H(σ)
T

Remarks :
• Free to rescale, νT = probability distribution P on the

colorings.
• The probability ↘ if the number of monochrom. edges ↗.
• When T ↘, P(c)↘ if c has at least one monochr. edge.

Limit of a k-state Potts model when T → 0.
⇒ Only proper colorings have positive measure.

Definition (Glauber dynamics)

3/20



Antiferromagnetic Potts model

0 2 4

T = 5, 1, 0.2, 0.05

H(σ) : number of monochromatic edges.
=
Edges with both endpoints of the same
color.

Gibbs measure at fixed temperature T :

νT (σ) = e−
H(σ)
T

Remarks :
• Free to rescale, νT = probability distribution P on the

colorings.
• The probability ↘ if the number of monochrom. edges ↗.
• When T ↘, P(c)↘ if c has at least one monochr. edge.

Limit of a k-state Potts model when T → 0.
⇒ Only proper colorings have positive measure.

Definition (Glauber dynamics)

3/20



How to count / sample colorings ?

How to sample colorings ?
Let G be a graph. Let α be a
coloring of G .

• Select a vertex v and a
color c at random.

• Change the color of v for
c if the coloring remains
proper.

• Repeat until the coloring
is “random”.

How to count colorings ?
Let G be a graph. Let α be a
coloring of G .

• The root of the tree is α.

• If the coloring α′ where
v is colored c is not yet
visited, add α′ in the
tree.

• Repeat in a BFS/DFS
way.

Configuration Graph Ck(G ) :

• Vertices = Proper k-colorings of G .

• Edges between two colorings if they differ on exactly one
vertex.
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When does it work well ?

• [Ergodicity] Is the configuration graph connected ?
Actually not completely exact... We need another condition which is trivially correct in our case.

• [Mixing time] How many steps do we need to repeat until we
get a “random” coloring ?
A classical theorem ensures that if we have a rapid mixing, then we can approximate the counting

• [Compact representation] How do we know if a node was
already visited or not ?
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Mixing time

Mixing time = number of steps needed to be “close” to the
stationnary distribution.
⇔ Number of steps needed to guarantee that the solutions is
sampled “almost” at random.

A chain is rapidly mixing if its mixing time is polynomial (and even
better O(n log n)).

Mixing time and configuration graph ?
• Diameter of the configuration graph = D
⇒ Mixing time ≥ 2 · D.

• Better lower bounds ? Look at the connectivity of the
configuration graph (e.g. bottleneck ratio).
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Main question in Statistical Physics

How many colors (in terms of the maximum degree ∆)
do we need to ensure that the chain is rapidly mixing ?

Known results :

• The chain is not always ergodic if k ≤ ∆ + 1 (e.g. cliques).

• The chain is ergodic if k ≥ ∆ + 2.

• [Vigoda ’00] Mixing time polynomial if k = 11
6 ∆.

• [Chen, Delcourt, Moitra, Perarnau, Postle ’18] Mixing time
polynomial if k = ( 11

6 − ε)∆.

If k ≥ ∆ + 2, the mixing time is O(n log n).

Conjecture

To sum up :
If k ≥ ∆ + 2, the random sampling / enumeration algorithms are
working and otherwise, they are not working.
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End of story ?

A vertex is frozen if all the colors appear in N[v ].
A coloring is frozen if all the vertices are frozen.

Remarks :

• Frozen colorings ⇒ The Sampling algorithm cannot generate
all the graphs.

• For any ∆, there exist graphs with frozen (∆ + 1)-colorings.
(even triangle-free graphs)

The (∆ + 1)-configuration graph consists in :
• Isolated vertices (=frozen vertices).

• At most one connected component of size ≥ 2 (of
diameter O(n2)).

Theorem (Feghali, Johnson and Paulusma ’17)
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Can we go further ?

1 What is the size of the non-frozen component compared to
frozen vertices ?

[Bonamy, B., Perarnau’21] The probability that a coloring selected at random is

frozen is ≤ ( 6
7

)n/∆.

2 What is the mixing time on the non-frozen component ?

[Bonamy, B., Perarnau’21] It can be at least Ω(n2/∆).

3 Is the diameter of the non-frozen component really quadratic ?

We can transform any non-frozen (∆+1)-coloring into any other
in f (∆) · n steps.

Theorem (B., Feuilloley, Heinrich, Rabie ’22+)
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Distance between colorings

The (d + 2)-recoloring diameter of any d-degenerate graph is
O(n2).

Conjecture (Cereceda ’08)

A graph is d-degenerate if there exists an ordering v1, . . . , vn such
that for every i , |N(vi ) ∩ {vi+1, . . . , vn}| ≤ d .

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)
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Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :
• Delete a vertex of degree at most d .
• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

If there is an ordering of G into r consecutive independent sets
S1, . . . ,Sr such that d(Si ) ≤ d in G [Si+].
Then the (d + 2)-recoloring diameter of G is at most 2rn.

Theorem (Dyer et al. ’06)
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S1, . . . ,Sr such that d(Si ) ≤ d in G [Si+].
Then the (d + 2)-recoloring diameter of G is at most 2rn.
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Why quadratic ?

The configuration graph of 3-colorings of Pn has diameter Ω(n2).

Theorem (Bonamy et al. ’11)

Idea of the proof.

• Represent a coloring c as a sequence of ↑ and →.

• If c(vi+1)− c(vi ) = 1 mod 3 then ↑.
• If c(vi+1)− c(vi ) = −1 mod 3 then →.

What is the modification of a color change ?

a b

a

a

c a

Remark.
The area under the curve is not modified by 1 or −1.
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Cereceda’s conjecture (cont.)

The (d + 2)-recoloring diameter of any d-degenerate graph is
O(nd+1).

Theorem (B., Heinrich ’22)

Sketch of the proof :

≤ d

v1 v2 vnvi

• Ingredient 1 : Look at it in the other direction.
• Ingredient 2 : List coloring where |L| ≥ d+ + 2.
• Ingredient 3 : Notion of full color (to apply induction).

Open problem :
Prove the Cerededa’s conjecture for d = 2

... and ∆ = 4 !
[Feghali, Johnson, Paulusma ’17] d = 2 and ∆ = 3 is true.
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Linear transformations

Why looking for it ?

• Necessary condition for (almost) linear mixing time.

• Best we can hope for !

• Current proof techniques fails.

When does there exist a linear transformation ?
[B., Perarnau ’16] (2d + 2) colors for d-degnerate graphs.
[Bartier, B., Heinrich ’21] 5 colors for tw = 2.
[Dvǒrák, Feghali ’22+] 10 colors for planar graphs.
[Bartier, B. ’19] ω + 4 colors for chordal graphs.

Proof techniques :

• Induction + Stronger conditions based on structural
properties.

• Local transformations.
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At the beginning of the talk

We can transform any non-frozen (∆+1)-coloring into any other
in f (∆) · n steps.

Theorem (B., Feuilloley, Heinrich, Rabie ’22+)

Sketch of the proof :
• Step 1. Local Warming. x , y ∈ V s.t. d(x , y) = 7 and x is

unfrozen.
→ We can unfreeze x and y by only recoloring vertices in
B(x , 6).

• Step 2. Global Warming. Let I be an independent set at
distance r ≥ 14.
→ We can unfreeze I in O(n) steps (as long as ≥ 1 vertex is non-frozen).
• Step 3. Recolor G into a coloring where V \ B(I , 7) is colored

with the target coloring.
• Step 4. Recolor B(I , 7) with the target coloring (with almost no

recoloring V \ B(I , 7)).
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Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :

• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.

• If a vertex of N(P) is unfrozen,
start the path from it.

• If a vertex of N(P) is unfrozen
at the end, use it to defreeze x .

• We can change the path !

x y

16/20



Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :
• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.

• If a vertex of N(P) is unfrozen,
start the path from it.

• If a vertex of N(P) is unfrozen
at the end, use it to defreeze x .

• We can change the path !

x y

16/20



Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :
• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.

• If a vertex of N(P) is unfrozen,
start the path from it.

• If a vertex of N(P) is unfrozen
at the end, use it to defreeze x .

• We can change the path !

x y

16/20



Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :
• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.

• If a vertex of N(P) is unfrozen,
start the path from it.

• If a vertex of N(P) is unfrozen
at the end, use it to defreeze x .

• We can change the path !

x y

16/20



Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :
• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.

• If a vertex of N(P) is unfrozen,
start the path from it.

• If a vertex of N(P) is unfrozen
at the end, use it to defreeze x .

• We can change the path !

x y

16/20



Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :
• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.

• If a vertex of N(P) is unfrozen,
start the path from it.

• If a vertex of N(P) is unfrozen
at the end, use it to defreeze x .

• We can change the path !

x y

16/20



Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :
• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.

• If a vertex of N(P) is unfrozen,
start the path from it.

• If a vertex of N(P) is unfrozen
at the end, use it to defreeze x .

• We can change the path !

x y

16/20



Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :
• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.

• If a vertex of N(P) is unfrozen,
start the path from it.

• If a vertex of N(P) is unfrozen
at the end, use it to defreeze x .

• We can change the path !

x y

16/20



Local Warming

Let x , y ∈ V s.t. d(x , y) = 7 and x is unfrozen.
We can unfreeze x and y by only recoloring vertices in B(x , 6).

Lemma (Local Warming Lemma)

Sketch of the proof :
• P : min. path from x to y

• Recolor vertices of the path to
unfreeze the last vertex.
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Global Warming

Let I be an independent set at distance 28. It is possible to
unfreeze all the vertices of I in O(n) steps (if ≥ 1 vertex is non-frozen).

Lemma (Global Warming Lemma)

Sketch of the proof :

• We can assume that one
vertex of I is non frozen.

• Using Local Warming
defreeze the border vertex.

• Recolor vertices along the
path to defreeze a second
vertex of I .

• Using a BFS defreeze the
vertices one after another
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Combining the ingredients

We can recolor G into a coloring where V \ B(I , 7) is colored
with the target coloring.

Next step

≤ 21

≤ ∆ − 1

G [V \ B(I , 7)] can be partitionned into 21∆ independent sets.

⇒ (Cereceda’s Lemma.) G [V \ B(I , 7)] can be recolored into the
target coloring in at most f (∆) · n steps.

⇒ Obtain a coloring of G where V \ B(I , 7) is colored as in the
target coloring.
(Using again local warming, trust me)
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Last step

Recolor B(x , 7) for every x ∈ I without modifying the rest of the
coloring.

Last step

Idea of the proof :

• If B(x , 7) contains a vertex of degree ∆− 1 or two neighbors
in V \ B(x , 7) colored the same : X

• Twist the target coloring to be sure that this property holds.
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Conclusion

Open problems :
• Can we remove the dependancy on ∆ ?

• Does there exist c < 2, a ∈ N such
that (cd + a)-colorings of a
d-degenerate graph have linear
diameter ?
[B., Perarnau] True for c = 2.

• Smallest k such that k-colorings of a
planar graph have linear diameter ?
[Dvǒrák, Feghali] k ≤ 10.

[Feghali] Quasi-linear if k ≤ 8.

• Develop tools to prove lower bounds !
e.g. planar graphs with 6 colors ?

Thanks for your attention !
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