
Local certification of/on sparse graph classes

Nicolas Bousquet

joint works with
Laurent Feuilloley Théo Pierron
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Disclaimer

All graphs are connected !
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3-coloring and LOCAL model

All the vertices have a unique ID.

Up to which distance do we have to look at to take a correct
decision ?

Question
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Certify the 3-coloring

?

If vertices receive as labels their colors, we can check the coloring
in the future by looking at vertices at distance 1 !
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Local certification

• Every node has a unique ID in [1, n]. (It can be O(nc ) (almost) for free)

• Every node has a certificate.

Certification algorithm

• Every node reads its certificate and the certificate of its
neighbors.

• Every node has an inifinite power of computation.

• Every node finally accepts or reject.

A property Π can be certified with f (n) bits when :

• If Π is positive, there exists a certificate assignment to the
nodes, each of size at most f (n), such that all the nodes
accept.

• If Π is negative, at least one node rejects for any possible
certificate assignment.
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What can be certified locally ?

Everything !

(with certificate of size O(n2))

Idea :
Give the entire graph with IDs to each vertex.

Questions :

• Can we improve Ω(n2) in general ?

• What is a decent lower bound ?
→ Ω(log n) (size of labels).
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What can’t be certified with small
certificate ?

[Göös, Suomela ’16] Non trivial automorphism

H1 H2

→ Ω(n2) bits are needed.

[Censor-Hillel et al. ’20] Diameter 2.
→ Ω(n) bits.
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Certifying spanning trees

[Korman et al. ’10] Spanning trees can be certified with O(log n)
rounds.

1. Every node receives its
parent ID (and the root its
own ID).
2. Every node receives its
distance (in the tree) to the
root.
3. Every node receives the
ID of the root.
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Research directions (I)
Which properties can be certified locally with O(log n) bits ?

• k-colorable graphs.

• [Feuilloley et al. ’20] Planar graphs.

• [Feuilloley et al., Esperet et al. ’21] Bounded genus.

• [Montealegre et al. ’21+] Interval and chordal graphs.

Question : (Feuilloley)
Is it possible to certify every H-minor free graph class with
O(log n) bits ?

• [B., Feuilloley, Pierron ’21] True if |H| ≤ 4.

• [Fraigniaud et al. ’21] True for planar H with O(log2 n)
certificate.

On the way :
Certification of 2 and 3-connectivity, block cut trees, development
of new tools...
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Research directions (II)

On which (certifiable) graph classes can we certify “many things”
locally ?
≈ Obtain an analogue of Courcelle’s theorem for certification.

• td(G ) ≤ k can be certified with O(k log n) bits.

• Every MSO formula can be certified with O(log n) bits on
bounded treedepth graphs.

Theorem (B, Feuilloley, Pierron ’21+)
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Certifying K4-minor free graphs (I)

If H is 2-connected :
Certification of 2-connected H-minor-free graphs with O(log(n))
bits
⇒ Certification of H-minor-free graphs with O(log n) bits.

Lemma (B., Feuilloley, Pierron)

(Idea of the) Proof :

• A model of H should belong to a
2-connected component.

• Certify the block cut tree.

• Certify that 2-connected
components are 2-connected.

• Give the H-certificate to each
2-connected component.
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K4-free graphs (II)

Ear decompositions ⇔ 2-connected.

• Start from a cycle

• Add new paths called ears

Certify ear decompositions.

• Certify the initial cycle and give
label 1 to these vertices.

• Certify the new path and give label
i to the vertices of the i-th ear.

The following are equivalent :
• G is a 2-connected K4-minor-free graph,

• G is a 2-connected series-parallel graphs,

• G has a nested ear decomposition.

Theorem (Eppstein)
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Question 1 - Next step ?

Certification of H-minor free graphs with O(log n) bits
⇒ Certification of (H + K1)-minor free graphs with O(log n)
bits ?

Question

Example :
Can we certify (vertex) minimally non planar graphs ?

Certity F -minor free graphs for any forest F ?

Question

[Fraigniaud et al. ’21] Certificate of size O(log2 n).
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Question 2 - SPQR trees partition

Source : wikipedia

• S node - Cycle of length at
least 3.

• P node - Multigraph with 2
vertices and ≥ 3 edges.

• Q node - Single real edge.

• R node - 3-connected graph
that is not S or P.

Question : Certification of SPQR-trees

• Certifying S,P,Q,R components X

• Deal with “iterated” false edges ?
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Question 3 - K5-minor free graphs

K5-minor free graphs ⇔ 3-sums of planar graphs and Wagner
graph.

Theorem (Wagner ‘’37)

• Certifying planar graphs and Wagner graphs X

• Gluing on cliques in a tree like structure X

• We can remove edges of the cliques afterwards ?

Remark : A similar result for K3,3-graphs exist.
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Monadic Second Order logic
First order (FO) :

• Quantifies on vertices

• Predicate → adjacency

∀x∀y , (x = y) ∨ (x − y) ∨ ∃z(x − z ∧ z − y)

Monadic second order :

• Quantifies on sets of vertices (MSO1) and edges (MSO2)

• Predicates → adjacency + membership

∃V1∃V2,

∀v , (v ∈ V1)⇔ ¬(v ∈ V2)

∧ ∀v∀w , v − w ⇒ (v ∈ V1 ⇔ w ∈ V2)

• Excluding a minor is MSO1

• Hamiltonian cycle is MSO2
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Certifying MSO formulas

Every MSO formula can be decided in FPT time parameterized
by the treewidth.

Theorem (Courcelle, informal)

Ultimate goal :
Every MSO formula can be certified with O(log n) bits on bounded
treewidth graphs.
But...

• Certify bounded treewidth graphs is open...

Issue 1 - Diameter of the bags is arbitrary.
Issue 2 - A vertex can belong to a lot of bags of the tree decomposition.

• ... And even if we assume that we have bounded treewidth,
not clear how to do it !

[Fraigniaud et al. ’21]

• 3-approximation of tw in O(log2 n) bits.

• MSO-certification on bounded treewidth
graphs with O(log2 n) bits.
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One step back : Treedepth

Find a (rooted) tree T on |V (G )| vertices such that each edge of
G links a vertex with an ancestor.
td(G ) = minimum depth of such a T

1

2

3 4

1

2

3

4

Bounded treedepth ⇒ No long path
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Zoology of depths

tw(G ) ≤ pw(G ) ≤ td(G )

Advantages of treedepth :

• Diameter is bounded.

• [Gajarský, Hlinený ’16] For every graph of bounded
schrubdepth we can construct a kernel that satisfies the same
FO formulas.
And bounded schrubdepth ⇒ Bounded treedepth.

• For bounded schrubdepth graphs, (informally) FO = MSO.
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Certification of treedepth

td(G ) ≤ k can be certified with O(k log n) bits.

Theorem (B, Feuilloley, Pierron ’21+)

1

2

3 4

5

6 7 8

Certificate :

• List of ancestors
• Subtree rooted in a node connected to an ancestor for the

graph below v for every v .
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MSO certification

Every MSO formula can be certified with O(log n) bits on boun-
ded treedepth graphs.

Theorem

• Existence of a (constructive and easy to certify) kernel for FO
formulas on bounded treedepth graphs.
Existence already guaranteed for [Gajarský and Hlinený ’16] on bounded schrubdepth graphs.

→ Prove that it is a kernel with Ehrenfeucht-Fraissé games.
→ Prove that we can certify this kernel.
• FO and MSO are equivalent for bounded treedepth.

≥ k
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→ Prove that it is a kernel with Ehrenfeucht-Fraissé games.
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Extension to treewidth

• 3-approximation of tw in O(log2 n) bits.

• MSO-certification on bounded treewidth graphs with
O(log2 n) bits.

Theorem [Fraigniaud et al. ’21+]

Sketch of the proof :

• [Bodlaender] There exists a tree-decomposition of depth at
most O(log n) where bags have size at most 3k + 2.

• We can assume that the subtree below a node is connected.

• We can assume that the set of “important” bags a vertex
belong to is logarithmic.

→ With techniques of the same flavour ⇒ O(log2 n) certificates.
The proof technique for MSO seem a bit different.
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Can we go further ?

Can we certify
• treewidth ? A minor-approximation ?

Probably easier than H-minor free graphs.

• schrub-depth ?
Generalization of treedepth to dense graphs.

• ∆-freeness ?
Detecting a ∆ is “complicated” in the CONGEST model.

Thanks for your attention !
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