Complexity Landscape for Local Certification

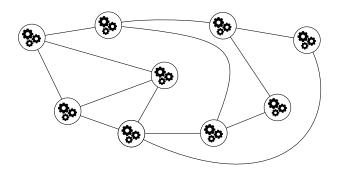
Nicolas Bousquet

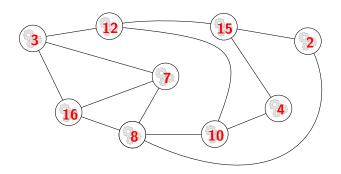
(Joint work with Laurent Feuilloley, Sébastien Zeitoun)

https://arxiv.org/abs/2505.20915

McGill, June, 2025

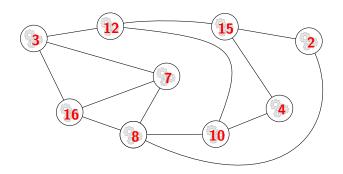
Context : distributed computing Model :graph, $\begin{cases} \text{ vertices} = \text{comp. units} \\ \text{ edges} = \text{com. channels} \end{cases}$





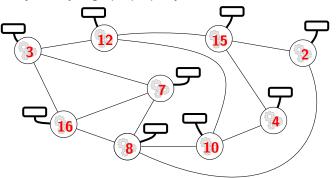
Context: distributed computing

Model:graph, $\begin{cases} \text{vertices} = \text{comp. units with unique ID} \in \{1, \dots, n^c\} \\ \text{edges} = \text{com. channels} \end{cases}$



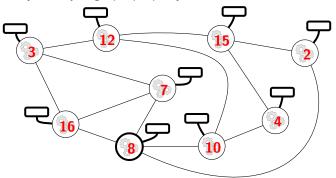
Context: distributed computing

Model :graph, $\begin{cases} \text{vertices} = \text{comp. units with unique ID} \in \{1, \dots, n^c\} \\ \text{edges} = \text{com. channels} \end{cases}$



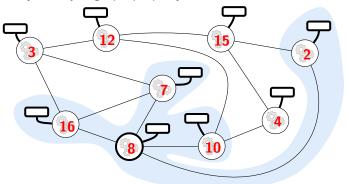
Context: distributed computing

Model:graph, $\begin{cases} \text{vertices} = \text{comp. units with unique ID} \in \{1, \dots, n^c\} \\ \text{edges} = \text{com. channels} \end{cases}$



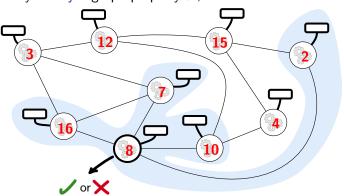
Context: distributed computing

Model: graph, $\begin{cases} \text{vertices} = \text{comp. units with unique ID} \in \{1, \dots, n^c\} \\ \text{edges} = \text{com. channels} \end{cases}$



Context: distributed computing

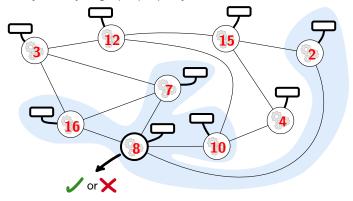
Model :graph, $\begin{cases} \text{vertices} = \text{comp. units with unique ID} \in \{1, \dots, n^c\} \\ \text{edges} = \text{com. channels} \end{cases}$



Context: distributed computing

Model :graph, $\begin{cases} \text{ vertices } = \text{comp. units with unique ID} \in \{1, \dots, n^c\} \\ \text{ edges } = \text{com. channels} \end{cases}$

Goal: verify locally a graph property \mathcal{P} , thanks to certificates

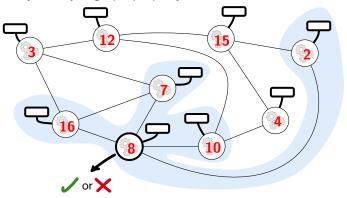


Graph (globally) accepted ←⇒ all the vertices accept (consensus)

Context: distributed computing

Model :graph, $\begin{cases} \text{vertices} = \text{comp. units with unique ID} \in \{1, \dots, n^c\} \\ \text{edges} = \text{com. channels} \end{cases}$

Goal: verify locally a graph property \mathcal{P} , thanks to certificates

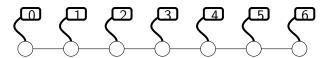


Graph (globally) accepted ←⇒ all the vertices accept (consensus)

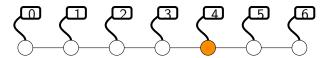
G satisfies $\mathcal{P} \Longleftrightarrow$ there exists an assignment of the certificates such that G is accepted

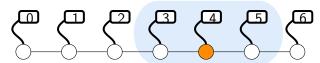
 \cdots Path? Cycle?

 $\cdots \longrightarrow$ Path? Cycle?

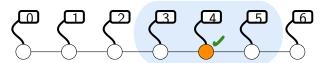


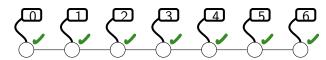


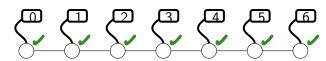


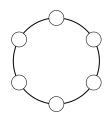


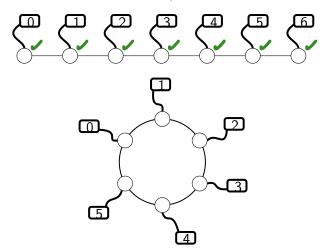


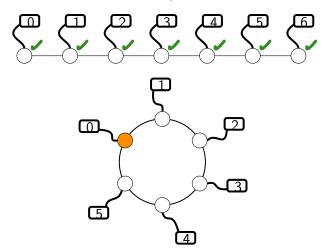


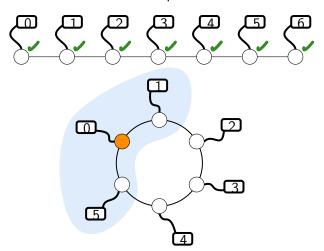


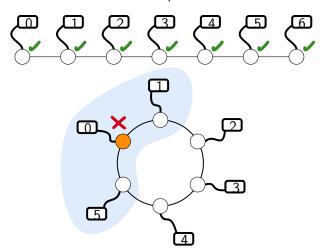


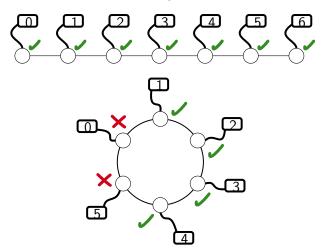




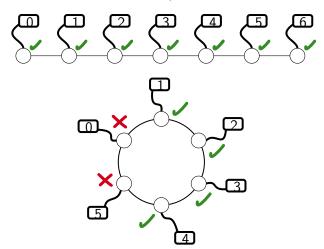








Certificate: distance to a fixed endpoint.



Size of the certificates : $\lceil \log n \rceil$

Lemma:

Any property can be certified with $O(n^2)$ bits.

Lemma:

Any property can be certified with $O(n^2)$ bits.

$\theta(\log n)$	$\theta^*(n)$	$\Omega^*(n^2)$
Planar	Diameter 3	Non-trivial isomorphism
Bounded genus Bd treewidth		Non 3-colorability

Lemma:

Any property can be certified with $O(n^2)$ bits.

$\theta(\log n)$	$\theta^*(n)$	$\Omega^*(n^2)$
Planar	Diameter 3	Non-trivial isomorphism
Bounded genus		Non 3-colorability
Bd treewidth		

Question: Which "space complexity" can exist?

Lemma:

Any property can be certified with $O(n^2)$ bits.

$\theta(\log n)$	$\theta^*(n)$	$\Omega^*(n^2)$
Planar	Diameter 3	Non-trivial isomorphism
Bounded genus		Non 3-colorability
Bd treewidth		

Question: Which "space complexity" can exist?

Partial answer : Any complexity between $\theta(\log n)$ and $\theta^*(n^2)$

Lemma:

Any property can be certified with $O(n^2)$ bits.

$\theta(\log n)$	$\theta^*(n)$	$\Omega^*(n^2)$
Planar	Diameter 3	Non-trivial isomorphism
Bounded genus		Non 3-colorability
Bd treewidth		

Question: Which "space complexity" can exist?

Partial answer: Any complexity between $\theta(\log n)$ and $\theta^*(n^2)$

Question: What happens below $\log n$?

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

• Tight : Some properties need $\Omega(\log \log n)$ bits!

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

- Tight : Some properties need $\Omega(\log \log n)$ bits!
- Extension to trees (where $n \leftarrow \text{diameter } d$)

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

- Tight : Some properties need $\Omega(\log \log n)$ bits!
- Extension to trees (where $n \leftarrow \text{diameter } d$)
- Holds for larger verification radius

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

- Tight : Some properties need $\Omega(\log \log n)$ bits!
- Extension to trees (where n ← diameter d)
- Holds for larger verification radius

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log n)$ bits on anonymous cycles \Rightarrow Certification with O(1) bits.

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

- Tight : Some properties need $\Omega(\log \log n)$ bits!
- Extension to trees (where n ← diameter d)
- Holds for larger verification radius

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log n)$ bits on anonymous cycles \Rightarrow Certification with O(1) bits.

No gap:

• For caterpillars

```
Theorem (B., Feuilloley, Zeitoun '25+)
```

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

- Tight : Some properties need $\Omega(\log \log n)$ bits!
- Extension to trees (where n ← diameter d)
- Holds for larger verification radius

```
Theorem (B., Feuilloley, Zeitoun '25+)
```

Certification with $o(\log n)$ bits on anonymous cycles \Rightarrow Certification with O(1) bits.

No gap:

- For caterpillars
- For trees (for *d*)

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

- Tight : Some properties need $\Omega(\log \log n)$ bits!
- Extension to trees (where n ← diameter d)
- Holds for larger verification radius

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log n)$ bits on anonymous cycles \Rightarrow Certification with O(1) bits.

No gap:

- For caterpillars
- For trees (for d)
- For caterpillars (in d) for verification radius 2

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

- Tight : Some properties need $\Omega(\log \log n)$ bits!
- Extension to trees (where n ← diameter d)
- Holds for larger verification radius

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log n)$ bits on anonymous cycles \Rightarrow Certification with O(1) bits.

No gap:

- For caterpillars
- For trees (for d)
- For caterpillars (in d) for verification radius 2
- For labeled paths

Lemma: Certify that a path has length $i \mod k$ can be done with $O(\log k)$ certificates.

Lemma: Certify that a path has length $i \mod k$ can be done with $O(\log k)$ certificates.

Proof

• Certify an orientation of the path. •

Lemma: Certify that a path has length $i \mod k$ can be done with $O(\log k)$ certificates.

Proof 0 1 2 0 1 2 0 1

• Certify an orientation of the path.

Lemma: Certify that a path has length $i \mod k$ can be done with $O(\log k)$ certificates.

Proof

- Certify an orientation of the path.
- Check coherence locally.

Lemma: Certify that a path has length $i \mod k$ can be done with $O(\log k)$ certificates.

Proof

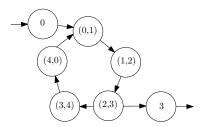
- 0 1 2 3 4 0 1 2 3
- Certify an orientation of the path.
- Check coherence locally.

Lemma: Certify that a path has length $i \mod k$ can be done with $O(\log k)$ certificates.

Proof

- Certify an orientation of the path.
- Check coherence locally.

Automata point of view:

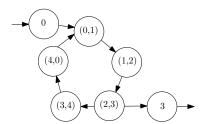


Lemma: Certify that a path has length $i \mod k$ can be done with $O(\log k)$ certificates.

Proof

- Certify an orientation of the path.
- Check coherence locally.

Automata point of view:



Informal statement

Certification with r bits \Leftrightarrow Automaton with 2^{2r} states.

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

Sketch of the proof:

 A_k : Automaton that recognizes all the paths using $\leq k$ bits.

 \mathcal{L}_k : Language recognized using k bits but not k-1.

$$\Leftrightarrow \mathcal{A}_k \setminus (\cup_i^{k-1} \mathcal{A}_i)$$

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

Sketch of the proof:

 A_k : Automaton that recognizes all the paths using $\leq k$ bits.

 \mathcal{L}_k : Language recognized using k bits but not k-1.

$$\Leftrightarrow \mathcal{A}_k \setminus (\cup_i^{k-1} \mathcal{A}_i) \Leftrightarrow \mathcal{A}_k \cap (\overline{\cup_i^{k-1} \mathcal{A}_i})$$

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

Sketch of the proof:

 A_k : Automaton that recognizes all the paths using $\leq k$ bits.

 \mathcal{L}_k : Language recognized using k bits but not k-1.

$$\Leftrightarrow \mathcal{A}_k \setminus (\cup_i^{k-1} \mathcal{A}_i) \Leftrightarrow \mathcal{A}_k \cap (\overline{\cup_i^{k-1} \mathcal{A}_i})$$

Automaton for \mathcal{L}_k :

- (Union) $|\mathcal{A}_i| \leq 2^{2i} \Rightarrow |\cup_i^{k-1} \mathcal{A}_i| \leq 2^{2k}$.
- (Complementation) $|\overline{\bigcup_{i=1}^{k-1} A_i}| \leq 2^{2^{2k}}$.
- (Intersection) \mathcal{L}_k can be recognized with $2^{2^{2k}}$ states.

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

Sketch of the proof:

 A_k : Automaton that recognizes all the paths using $\leq k$ bits.

 \mathcal{L}_k : Language recognized using k bits but not k-1.

$$\Leftrightarrow \mathcal{A}_k \setminus (\cup_i^{k-1} \mathcal{A}_i) \Leftrightarrow \mathcal{A}_k \cap (\overline{\cup_i^{k-1} \mathcal{A}_i})$$

Automaton for \mathcal{L}_k :

- (Union) $|\mathcal{A}_i| \leq 2^{2i} \Rightarrow |\cup_i^{k-1} \mathcal{A}_i| \leq 2^{2k}$.
- (Complementation) $|\overline{\bigcup_{i=1}^{k-1} A_i}| \leq 2^{2^{2k}}$.
- (Intersection) \mathcal{L}_k can be recognized with $2^{2^{2k}}$ states.

 \mathcal{L}_k non empty $\Rightarrow \mathcal{L}_k$ accepts a word of size $\leq 2^{2^{2k}}$

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

Sketch of the proof:

 A_k : Automaton that recognizes all the paths using $\leq k$ bits.

 \mathcal{L}_k : Language recognized using k bits but not k-1.

$$\Leftrightarrow \mathcal{A}_k \setminus (\cup_i^{k-1} \mathcal{A}_i) \Leftrightarrow \mathcal{A}_k \cap (\overline{\cup_i^{k-1} \mathcal{A}_i})$$

Automaton for \mathcal{L}_k :

- (Union) $|\mathcal{A}_i| \leq 2^{2i} \Rightarrow |\cup_i^{k-1} \mathcal{A}_i| \leq 2^{2k}$.
- (Complementation) $|\overline{\bigcup_{i}^{k-1}\mathcal{A}_{i}}| \leq 2^{2^{2k}}$.
- (Intersection) \mathcal{L}_k can be recognized with $2^{2^{2k}}$ states.

 \mathcal{L}_k non empty $\Rightarrow \mathcal{L}_k$ accepts a word of size $\leq 2^{2^{2k}}$

 $\Rightarrow \mathcal{L}_k$ empty if certification with less than $o(\log \log n)$ bits.

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log \log n)$ bits on anonymous paths \Rightarrow Certification with O(1) bits.

Sketch of the proof:

 A_k : Automaton that recognizes all the paths using $\leq k$ bits.

 \mathcal{L}_k : Language recognized using k bits but not k-1.

$$\Leftrightarrow \mathcal{A}_k \setminus (\cup_i^{k-1} \mathcal{A}_i) \Leftrightarrow \mathcal{A}_k \cap (\overline{\cup_i^{k-1} \mathcal{A}_i})$$

Automaton for \mathcal{L}_k :

- (Union) $|\mathcal{A}_i| \leq 2^{2i} \Rightarrow |\cup_i^{k-1} \mathcal{A}_i| \leq 2^{2k}$.
- (Complementation) $|\overline{\bigcup_{i=1}^{k-1} A_i}| \leq 2^{2^{2k}}$.
- (Intersection) \mathcal{L}_k can be recognized with $2^{2^{2k}}$ states.

 \mathcal{L}_k non empty $\Rightarrow \mathcal{L}_k$ accepts a word of size $\leq 2^{2^{2k}}$

 $\Rightarrow \mathcal{L}_k$ empty if certification with less than $o(\log \log n)$ bits.

Remark: Constant can be improved using Chrobak's theorem

Theorem

 $S = \{n \mid n \text{ is the product of the } i \text{ first prime (for some } i)\}$ can be certified with $O(\log \log n)$ bits.

Theorem

 $S = \{n \mid n \text{ is the product of the } i \text{ first prime (for some } i)\}$ can be certified with $O(\log \log n)$ bits.

Sketch of the proof:

 p_i : i-th prime number

Fact:

$$a_i := \prod_{j=1}^i p_i \approx 2^{i \log i}$$
 and $p_i \approx i \log i$.

Theorem

 $S = \{n \mid n \text{ is the product of the } i \text{ first prime (for some } i)\}$ can be certified with $O(\log \log n)$ bits.

Sketch of the proof:

p_i: *i*-th prime number

Fact:

 $a_i := \prod_{i=1}^i p_i \approx 2^{i \log i}$ and $p_i \approx i \log i$.

False good idea:

- 1. k: smallest integer such that $p_k|n$ and $p_{k-1} \nmid n$.
- 2. Certify $n \mod p_k$ and p_{k-1} .

Theorem

 $S = \{n \mid n \text{ is the product of the } i \text{ first prime (for some } i)\}$ can be certified with $O(\log \log n)$ bits.

Sketch of the proof:

 p_i : i-th prime number

Fact:

 $a_i := \prod_{i=1}^i p_i \approx 2^{i \log i}$ and $p_i \approx i \log i$.

False good idea:

- 1. k: smallest integer such that $p_k|n$ and $p_{k-1} \nmid n$.
- 2. Certify $n \mod p_k$ and p_{k-1} .

Theorem

 $S = \{n \mid n \text{ is the product of the } i \text{ first prime (for some } i)\}$ can be certified with $O(\log \log n)$ bits.

Sketch of the proof:

p_i: i-th prime number

Fact:

 $a_i := \prod_{j=1}^i p_i \approx 2^{i \log i}$ and $p_i \approx i \log i$.

False good idea:

- 1. k: smallest integer such that $p_k|n$ and $p_{k-1} \nmid n$.
- 2. Certify $n \mod p_k$ and p_{k-1} .

Problem 1 : Might be too big

e.g. $p_k pprox \sqrt{n}$.

Theorem

 $S = \{n \mid n \text{ is the product of the } i \text{ first prime (for some } i)\}$ can be certified with $O(\log \log n)$ bits.

Sketch of the proof:

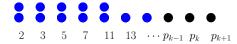
p_i: i-th prime number

Fact:

$$a_i := \prod_{j=1}^i p_i \approx 2^{i \log i}$$
 and $p_i \approx i \log i$.

False good idea:

- 1. k: smallest integer such that $p_k|n$ and $p_{k-1} \nmid n$.
- 2. Certify $n \mod p_k$ and p_{k-1} .



Problem 1 : Might be too big e.g. $p_k \approx \sqrt{n}$.

Problem 2: Might not exist.

Main lemma

Lemma:

For $n \ge 3$, $n \notin S$ iff:

- 1. *n* is odd or,
- 2. $\exists p_k \leq p_{k+1} \leq c \log n$ such that $p_{k+1} | n$ and $p_k \nmid n$ or,

Main lemma

Lemma:

For $n \ge 3$, $n \notin S$ iff:

- 1. *n* is odd or,
- 2. $\exists p_k \leq p_{k+1} \leq c \log n$ such that $p_{k+1} | n$ and $p_k \nmid n$ or,
- 3. $\exists p_k \leq c \log n$ and $m \leq \log n$ such that $p_k | n, p_{k+1} \nmid n$ and $n \neq a_k := \prod_{i=1}^k p_i \mod m$

(Chinese remainder theorem)

Gap for cycles

Theorem (B., Feuilloley, Zeitoun '25+)

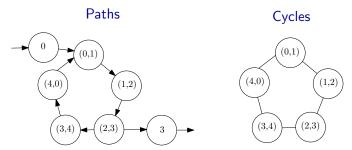
Certification with $o(\log n)$ bits on anonymous cycles \Rightarrow Certification with O(1) bits.

Gap for cycles

Theorem (B., Feuilloley, Zeitoun '25+)

Certification with $o(\log n)$ bits on anonymous cycles \Rightarrow Certification with O(1) bits.

What is different?



Graph of certification

 $S: a property \Leftrightarrow \mathsf{Subset} \ \mathsf{of} \ \mathbb{N}$

 S_k : Subset of S recognized with $\leq k$ bits.

Graph of certification

S: a property \Leftrightarrow Subset of $\mathbb N$

 S_k : Subset of S recognized with $\leq k$ bits.

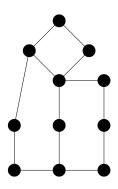
 G_k defined by

- Vertices : pairs of certificates of $\leq k$ bits $\Leftrightarrow \leq 2^{2k}$ vertices
- Edges : (a, b) (b, c) if there exists an accepting run where two adjacent vertices receive these certificates.

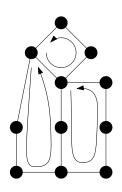
Remark:

n accepted with $\leq k$ bits $(n \in S_k) \Leftrightarrow$ Cycle length n in G_k .

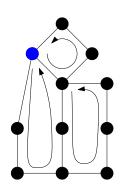
• $d = \gcd(\text{cycles in (a conn. comp. of) } \mathcal{G}_k).$



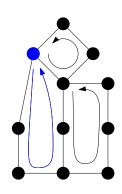
- $d = \gcd(\text{cycles in } (\text{a conn. comp. of}) \ \mathcal{G}_k).$
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles



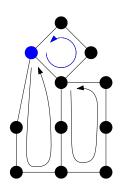
- $d = \gcd(\text{cycles in } (\text{a conn. comp. of}) \ \mathcal{G}_k).$
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles



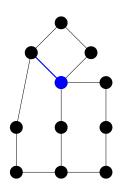
- $d = \gcd(\text{cycles in } (\text{a conn. comp. of}) \ \mathcal{G}_k).$
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles



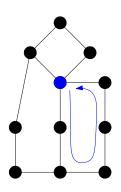
- $d = \gcd(\text{cycles in } (\text{a conn. comp. of}) \ \mathcal{G}_k).$
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles



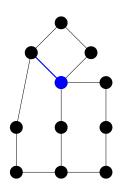
- $d = \gcd(\text{cycles in (a conn. comp. of) } \mathcal{G}_k)$.
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles



- $d = \gcd(\text{cycles in } (\text{a conn. comp. of}) \ \mathcal{G}_k).$
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles

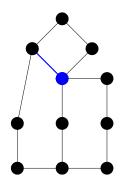


- $d = \gcd(\text{cycles in (a conn. comp. of) } \mathcal{G}_k)$.
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles



• $d = \gcd(\text{cycles in } (\text{a conn. comp. of}) \ \mathcal{G}_k).$

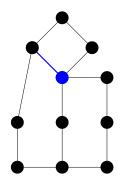
 $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles



Tool 1. (Generalized Bezout theorem) $d = gcd(n_1, ..., n_k)$. If $n \ge \max(n_i)^2$ and d|n then, $n = \sum a_i n_i$ where $a_i \ge 0$

Classic version : $\forall n, m \in \mathbb{N}$, $\exists a, b \in \mathbb{Z}$ such that $na + mb = \gcd(n, m)$.

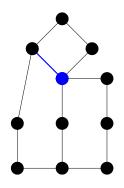
- $d = \gcd(\operatorname{cycles in}_{(a \text{ conn. comp. of})} \mathcal{G}_k).$
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles
- $m \geq 2^{\Omega(k)}$ and $d|m \Rightarrow m \in S_k$



Tool 1. (Generalized Bezout theorem) $d = gcd(n_1, ..., n_k)$. If $n \ge \max(n_i)^2$ and d|n then, $n = \sum a_i n_i$ where $a_i \ge 0$

Classic version : $\forall n, m \in \mathbb{N}$, $\exists a, b \in \mathbb{Z}$ such that $na + mb = \gcd(n, m)$.

- $d = \gcd(\text{cycles in } (\text{a conn. comp. of}) \ \mathcal{G}_k).$ $\Rightarrow \exists \text{ closed walk of length } \leq O(2^{O(k)})$ passing through all the cycles
- $m \ge 2^{\Omega(k)}$ and $d|m \Rightarrow m \in S_k$
- If $n >> 2^{\Omega(k)} \Rightarrow \exists$ many primes between $2^{\Omega(k)}$ and n.

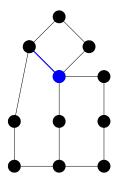


Tool 1. (Generalized Bezout theorem) $d = gcd(n_1, ..., n_k)$. If $n \ge \max(n_i)^2$ and d|n then, $n = \sum a_i n_i$ where $a_i \ge 0$

Classic version : $\forall n, m \in \mathbb{N}, \exists a, b \in \mathbb{Z} \text{ such that } na + mb = \gcd(n, m).$

Tool 2. Prime numbers are "dense"

- $d = \gcd(\text{cycles in } (\text{a conn. comp. of}) \ \mathcal{G}_k).$
- $\Rightarrow \exists$ closed walk of length $\leq O(2^{O(k)})$ passing through all the cycles
- $m \ge 2^{\Omega(k)}$ and $d|m \Rightarrow m \in S_k$
- If $n >> 2^{\Omega(k)} \Rightarrow \exists$ many primes between $2^{\Omega(k)}$ and n.
- If min. $n \in S_k \setminus (\bigcup_{i \le k} S_i)$ is too large w.r.t $2^{\Omega(k)} \Rightarrow$ Contradiction



Tool 1. (Generalized Bezout theorem) $d = gcd(n_1, ..., n_k)$. If $n \ge \max(n_i)^2$ and d|n then, $n = \sum a_i n_i$ where $a_i \ge 0$

Classic version : $\forall n, m \in \mathbb{N}$, $\exists a, b \in \mathbb{Z}$ such that $na + mb = \gcd(n, m)$.

Tool 2. Prime numbers are "dense"

Theorem (B., Feuilloley, Zeitoun 25+

No gap for caterpillars (in terms of n).

(For every f, there exists a property that can be certified with f(n) bits but not with o(f(n)))

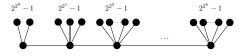
Theorem (B., Feuilloley, Zeitoun 25+

No gap for caterpillars (in terms of n).

(For every f, there exists a property that can be certified with f(n) bits but not with o(f(n)))

Proof on an example:

$$\bullet \ n = \sum_{i=0}^k 2^{2^i}$$



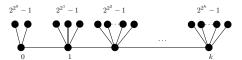
Theorem (B., Feuilloley, Zeitoun 25+

No gap for caterpillars (in terms of n).

(For every f, there exists a property that can be certified with f(n) bits but not with o(f(n)))

Proof on an example:

- $n = \sum_{i=0}^{k} 2^{2^i}$
- Certified with log *k* bits
- $\rightarrow O(\log \log \log n)$



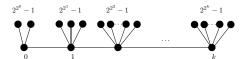
Theorem (B., Feuilloley, Zeitoun 25+

No gap for caterpillars (in terms of n).

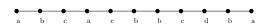
(For every f, there exists a property that can be certified with f(n) bits but not with o(f(n)))

Proof on an example:

- $n = \sum_{i=0}^{k} 2^{2^i}$
- Certified with log *k* bits
- $\rightarrow O(\log \log \log n)$



No certification with a constant number of bits:



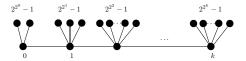
Theorem (B., Feuilloley, Zeitoun 25+

No gap for caterpillars (in terms of n).

(For every f, there exists a property that can be certified with f(n) bits but not with o(f(n)))

Proof on an example:

- $n = \sum_{i=0}^{k} 2^{2^i}$
- Certified with log *k* bits
- $\rightarrow O(\log \log \log n)$



No certification with a constant number of bits:

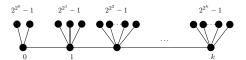
Theorem (B., Feuilloley, Zeitoun 25+

No gap for caterpillars (in terms of n).

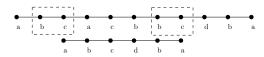
(For every f, there exists a property that can be certified with f(n) bits but not with o(f(n)))

Proof on an example:

- $n = \sum_{i=0}^{k} 2^{2^i}$
- Certified with log k bits
- $\rightarrow O(\log \log \log n)$



No certification with a constant number of bits :



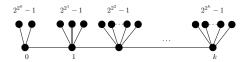
Theorem (B., Feuilloley, Zeitoun 25+

No gap for caterpillars (in terms of n).

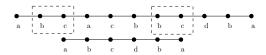
(For every f, there exists a property that can be certified with f(n) bits but not with o(f(n)))

Proof on an example:

- $n = \sum_{i=0}^{k} 2^{2^i}$
- Certified with log k bits
- $\rightarrow O(\log \log \log n)$



No certification with a constant number of bits:



Remark: We can close the gap between lower and upper bound.

Question.

What about between $\log \log n$ and $\log n$?

We can find properties we can certify with functions "in the middle" but we cannot prove tightness of the LB.

Question.

What about between $\log \log n$ and $\log n$?

We can find properties we can certify with functions "in the middle" but we cannot prove tightness of the LB.

Question.

Non-anonymous model? Model where only v can see its ID?

Question.

What about between $\log \log n$ and $\log n$?

We can find properties we can certify with functions "in the middle" but we cannot prove tightness of the LB.

Question.

Non-anonymous model? Model where only v can see its ID?

Question 2.

General graphs of bounded degree?

Question.

What about between $\log \log n$ and $\log n$?

We can find properties we can certify with functions "in the middle" but we cannot prove tightness of the LB.

Question.

Non-anonymous model? Model where only v can see its ID?

Question 2.

General graphs of bounded degree?

Question 3.

What if nodes have access to an approximation of n?

Very partial results

Question.

What about between $\log \log n$ and $\log n$?

We can find properties we can certify with functions "in the middle" but we cannot prove tightness of the LB.

Question.

Non-anonymous model? Model where only v can see its ID?

Question 2.

General graphs of bounded degree?

Question 3.

What if nodes have access to an approximation of n?

Very partial results

Thanks for your attention!