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Local certification
Context : distributed computing
vertices = comp. units with unique ID € {1,..., n¢}
edges = com. channels
Goal : verify locally a graph property P, thanks to certificates

Model :graph,

Graph (globally) accepted <= all the vertices accept (consensus)

G satisfies P <= there exists an assignment of the certificates
such that G is accepted 2/14
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Certifying paths
e O—O0—0—0—0— ++» —> Path? Cycle?

Certificate : distance to a fixed endpoint.

Size of the certificates : [log n]
3/14
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Certificate size

Lemma :
Any property can be certified with O(n?) bits.

6(log n) | *(n) | Q*(n?)
Planar Diameter 3 | Non-trivial isomorphism
Bounded genus Non 3-colorability

Bd treewidth

Question : Which “space complexity” can exist ?
Partial answer : Any complexity between (log n) and 6*(n?)

Question : What happens below logn?
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Theorem (B., Feuilloley, Zeitoun '25+)]

Certification with o(log n) bits on anonymous cycles = Certifi-
cation with O(1) bits.

No gap :
® For caterpillars
® For trees (for d)
® For caterpillars (in d) for verification radius 2
e For labeled paths
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Paths & Automata

Lemma : Certify that a path has length / mod k can be done with
O(log k) certificates.

Proof 0 1 2 3 4 0 1 2 3
e Certify an orientation of the path. ®—¢—>¢—6—6—0—6 00

e Check coherence locally.

Automata point of view :

Informal statement

Certification with r bits < Automaton with 22" states.
6/14
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Gap for paths

Theorem (B., Feuilloley, Zeitoun '25+)]

Certification with o(log log n) bits on anonymous paths = Cer-
tification with O(1) bits.

Sketch of the proof :
Ay : Automaton that recognizes all the paths using < k bits.

Ly : Language recognized using k bits but not k — 1.
& A\ (UFTA) & AN (UFHA)
Automaton for Ly :
* (Union) |A;| < 2% = | UKt A;| < 2%,
* (Complementation) |UK™14;| < 22%
o (Intersection) Ly can be recognized with 22 states.

L non empty = L, accepts a word of size < 2%
= Ly empty if certification with less than o(loglog n) bits.

Remark : Constant can be improved using Chrobak’s theorem 14
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Tightness

Theorem

S = {n / nis the product of the i first prime (for some i)} can
be certified with O(loglog n) bits.

Sketch of the proof :
pi : I-th prime number

Fact :
ai = [[_y pi = 2i1ogi and p; ~ ilogi.

False good idea :

1. k : smallest integer such that
nand px_11n.

g.k|Certifypf1 rl’ntd pr and pg_1. 0606006000000

2 3 5 7 11 13 - pe-1 Pk Din

Problem 1 : Might be too big

e.g. px &~ \/n.
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Tightness

Theorem

S = {n / nis the product of the i first prime (for some i)} can
be certified with O(loglog n) bits.

Sketch of the proof :
pi : I-th prime number

Fact :
ai = [[_y pi = 2i1ogi and p; ~ ilogi.

False good idea :
1. k : smallest integer such that

pk|n and pg_1 1 n.
2. Certify n mod px and px_1.

Problem 1 : Might be too big
e.g. px &~ \/n.
Problem 2 : Might not exist.
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Main lemma

Lemma :
Forn>3, n¢ Siff:
1. nis odd or,

2. dpk < pr+1 < clog n such that pxy1|n and pg 1 nor,
3. 3pk < clogn and m < log n such that px|n, px+1 1t n and
n#ay=nk 1pi mod m

1=

(Chinese remainder theorem)
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Gap for cycles

Theorem (B., Feuilloley, Zeitoun '25+) ]

Certification with o(log n) bits on anonymous cycles = Certifi-
cation with O(1) bits.

What is different ?
Paths Cycles
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Graph of certification

S : a property <« subset of N
Sk : Subset of S recognized with < k bits.
G defined by
e Vertices : pairs of certificates of < k bits < < 22X vertices

® Edges : (a, b) — (b, c) if there exists an accepting run where
two adjacent vertices receive these certificates.

Remark :
n accepted with < k bits (n € Sx) < Cycle length n in Gi.
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o d—= ng(CyC|eS in (a conn. comp. of) gk)

= 3 closed walk of length < O(2°(F)
passing through all the cycles

e m>2% and dlm = me S

o If n >> 2K = 3 many primes bet-
ween 22K and n.

e If min. n € S, \ (Uj<«S;) is too large

wrt 2200 = Contradiction

Tool 1. (Generalized Bezout theorem) d = ged(ny, ..., nk). If
n > max(n;)? and d|n then, n = a;n; where a; > 0

Classic version : Vn, m € N, 3a, b € Z such that na + mb = gcd(n, m).

Tool 2. Prime numbers are “dense”
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No gap for caterpillar

Theorem (B., Feuilloley, Zeitoun 25v]

No gap for caterpillars (in terms of n).

(For every f, there exists a property that can be certified with f(n) bits but not with o(f(n)))

Proof on an example :

N = Zf(:() 22i » o 7-1 222“*.1 2‘”51
o Certified with log k bits V \If 'V‘ V
0 1 &

— O(logloglog n)

No certification with a constant number of bits :

Remark : We can close the gap between lower and upper bound.
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Question.
Non-anonymous model ? Model where only v can see its ID?

Question 2.
General graphs of bounded degree ?

Question 3.
What if nodes have access to an approximation of n?

Very partial results

Thanks for your attention!

14/14



