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Graph (globally) accepted ⇐⇒ all the vertices accept (consensus)

G satisfies P ⇐⇒ there exists an assignment of the certificates
such that G is accepted 2/14
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Certifying paths
... ... Path ? Cycle ?

Certificate : distance to a fixed endpoint.
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Size of the certificates : ⌈log n⌉
3/14



Certificate size

Lemma :
Any property can be certified with O(n2) bits.

θ(log n) θ∗(n) Ω∗(n2)

Planar Diameter 3 Non-trivial isomorphism
Bounded genus Non 3-colorability
Bd treewidth

Question : Which “space complexity” can exist ?

Partial answer : Any complexity between θ(log n) and θ∗(n2)

Question : What happens below log n ?
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Our main results

Certification with o(log log n) bits on anonymous paths ⇒ Cer-
tification with O(1) bits.

Theorem (B., Feuilloley, Zeitoun ’25+)

• Tight : Some properties need Ω(log log n) bits !
• Extension to trees (where n← diameter d)
• Holds for larger verification radius

Certification with o(log n) bits on anonymous cycles ⇒ Certifi-
cation with O(1) bits.

Theorem (B., Feuilloley, Zeitoun ’25+)

No gap :

• For caterpillars
• For trees (for d)
• For caterpillars (in d) for verification radius 2
• For labeled paths
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Paths & Automata
Lemma : Certify that a path has length i mod k can be done with
O(log k) certificates.

Proof
• Certify an orientation of the path.

• Check coherence locally.

Automata point of view :

0
(0,1)

(1,2)

(2,3)(3,4)

(4,0)

3

Informal statement
Certification with r bits ⇔ Automaton with 22r states.
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Gap for paths

Certification with o(log log n) bits on anonymous paths ⇒ Cer-
tification with O(1) bits.

Theorem (B., Feuilloley, Zeitoun ’25+)

Sketch of the proof :
Ak : Automaton that recognizes all the paths using ≤ k bits.

Lk : Language recognized using k bits but not k − 1.

⇔ Ak \ (∪k−1
i Ai )

⇔ Ak ∩ (∪k−1
i Ai )

Automaton for Lk :
• (Union) |Ai | ≤ 22i ⇒ | ∪k−1

i Ai | ≤ 22k .

• (Complementation) |∪k−1
i Ai | ≤ 22

2k
.

• (Intersection) Lk can be recognized with 22
2k

states.

Lk non empty ⇒ Lk accepts a word of size ≤ 22
2k

⇒ Lk empty if certification with less than o(log log n) bits.

Remark : Constant can be improved using Chrobak’s theorem
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Tightness

S = {n / n is the product of the i first prime (for some i)} can
be certified with O(log log n) bits.

Theorem

Sketch of the proof :
pi : i-th prime number

Fact :
ai :=

∏i
j=1 pi ≈ 2i log i and pi ≈ i log i .

False good idea :
1. k : smallest integer such that
pk |n and pk−1 ∤ n.
2. Certify n mod pk and pk−1.

Problem 1 : Might be too big
e.g. pk ≈

√
n.

Problem 2 : Might not exist.

2 3 5 7 · · ·11 13 pk−1 pk pk+1
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Main lemma

Lemma :
For n ≥ 3, n /∈ S iff :
1. n is odd or,

2. ∃pk ≤ pk+1 ≤ c log n such that pk+1|n and pk ∤ n or,

3. ∃pk ≤ c log n and m ≤ log n such that pk |n, pk+1 ∤ n and
n ̸= ak := Πk

i=1pi mod m
(Chinese remainder theorem)
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Gap for cycles

Certification with o(log n) bits on anonymous cycles ⇒ Certifi-
cation with O(1) bits.

Theorem (B., Feuilloley, Zeitoun ’25+)

What is different ?

Paths

0
(0,1)

(1,2)

(2,3)(3,4)

(4,0)

3

Cycles

(0,1)

(1,2)

(2,3)(3,4)

(4,0)
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Graph of certification

S : a property ⇔ Subset of N

Sk : Subset of S recognized with ≤ k bits.

Gk defined by

• Vertices : pairs of certificates of ≤ k bits ⇔ ≤ 22k vertices

• Edges : (a, b)− (b, c) if there exists an accepting run where
two adjacent vertices receive these certificates.

Remark :
n accepted with ≤ k bits (n ∈ Sk) ⇔ Cycle length n in Gk .
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Sketch of the proof

• d = gcd(cycles in (a conn. comp. of) Gk).

⇒ ∃ closed walk of length ≤ O(2O(k))
passing through all the cycles

• m ≥ 2Ω(k) and d |m ⇒ m ∈ Sk

• If n >> 2Ω(k) ⇒ ∃ many primes bet-
ween 2Ω(k) and n.

• If min. n ∈ Sk \ (∪i≤kSi ) is too large
w.r.t 2Ω(k) ⇒ Contradiction

Tool 1. (Generalized Bezout theorem) d = gcd(n1, . . . , nk). If
n ≥ max(ni )

2 and d |n then, n =
∑

aini where ai ≥ 0
Classic version : ∀n,m ∈ N, ∃a, b ∈ Z such that na + mb = gcd(n,m).

Tool 2. Prime numbers are “dense”
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No gap for caterpillar

No gap for caterpillars (in terms of n).
(For every f , there exists a property that can be certified with f (n) bits but not with o(f (n)))

Theorem (B., Feuilloley, Zeitoun 25+

Proof on an example :

• n =
∑k

i=0 2
2i

• Certified with log k bits
→ O(log log log n)

· · · · · ·

· · ·

22
0 − 1 22

1 − 1 22
2 − 1 22

k − 1

No certification with a constant number of bits :

a b c a c b b c d b a

Remark : We can close the gap between lower and upper bound.
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Open problems

Question.
What about between log log n and log n ?

We can find properties we can certify with functions “in the middle” but we cannot prove tightness of the LB.

Question.
Non-anonymous model ? Model where only v can see its ID ?

Question 2.
General graphs of bounded degree ?

Question 3.
What if nodes have access to an approximation of n ?
Very partial results

Thanks for your attention !
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