TS-Reconfiguration of Dominating Sets in circle and circular-arc graphs

Nicolas Bousquet

joint work with
Alice Joffard

FCT 2021

Lẹís
Cirs

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

- Applications to random sampling, bioinformatics, discrete geometry...etc...

Main questions

- Reachability problem. Given two configurations, is it possible to transform the one into the other?
- Connectivity problem. Given any pair of configurations, is it possible to transform the one into the other?
- Minimization. Given two configurations, what is the length of a shortest sequence?

Main questions

- Reachability problem. Given two configurations, is it possible to transform the one into the other?
- Connectivity problem. Given any pair of configurations, is it possible to transform the one into the other?
- Minimization. Given two configurations, what is the length of a shortest sequence?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Main questions

- Reachability problem. Given two configurations, is it possible to transform the one into the other?
- Connectivity problem. Given any pair of configurations, is it possible to transform the one into the other?
- Minimization. Given two configurations, what is the length of a shortest sequence?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Today : Reachability + Dominating Set Reconfiguration.

Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that $N[X]=V$. $\Leftrightarrow A$ set of tokens whose (closed) neighborhood is V.

Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that $N[X]=V$. $\Leftrightarrow A$ set of tokens whose (closed) neighborhood is V.
S, T are adjacent if T can be obtained from S by sliding a token along an edge.

Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that $N[X]=V$. $\Leftrightarrow A$ set of tokens whose (closed) neighborhood is V.
S, T are adjacent if T can be obtained from S by sliding a token along an edge.
$S \rightsquigarrow T$ if there is sequence of adjacent DS transforming S in T.

Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that $N[X]=V$. $\Leftrightarrow A$ set of tokens whose (closed) neighborhood is V.
S, T are adjacent if T can be obtained from S by sliding a token along an edge.
$S \rightsquigarrow T$ if there is sequence of adjacent DS transforming S in T.

Dominating Set Reconfiguration (DSR) Input : A graph G, two independent sets S, T.
Output: YES iff $S \rightsquigarrow T$

Our results I

Theorem (Bonamy, Dorbec, Ouvrard '20)

DSR is PSPACE-complete even restrited to bipartite graphs, split graphs and planar graphs.

Our results I

Theorem (Bonamy, Dorbec, Ouvrard '20)

DSR is PSPACE-complete even restrited to bipartite graphs, split graphs and planar graphs.

Question :

Does there exist a (hereditary) graph class for which minimum DS is NP-complete and DSR is in P ?

Our results I

Theorem (Bonamy, Dorbec, Ouvrard '20)

DSR is PSPACE-complete even restrited to bipartite graphs, split graphs and planar graphs.

Question :

Does there exist a (hereditary) graph class for which minimum DS is NP-complete and DSR is in P ?

Candidate : circle graphs. Intersection of chords of a circle.

Our results I

Theorem (Bonamy, Dorbec, Ouvrard '20)

DSR is PSPACE-complete even restrited to bipartite graphs, split graphs and planar graphs.

Question :

Does there exist a (hereditary) graph class for which minimum DS is NP-complete and DSR is in P ?

Candidate : circle graphs. Intersection of chords of a circle.

[Our result] PSPACE-complete on circle graphs.

Our results II

Theorem (Bonamy, Dorbec, Ouvrard '20)

There exists a transformation between any pair of dominating sets for interval graphs.

The result is actually a bit more general.

Our results II

Theorem (Bonamy, Dorbec, Ouvrard '20)

There exists a transformation between any pair of dominating sets for interval graphs.

The result is actually a bit more general.
circular arc graphs: intersection of arcs of a circle.

Our results II

Theorem (Bonamy, Dorbec, Ouvrard '20)

There exists a transformation between any pair of dominating sets for interval graphs.

The result is actually a bit more general.
circular arc graphs: intersection of arcs of a circle.

Question

Is DSR polynomial on circular-arc graphs?

Our results II

Theorem (Bonamy, Dorbec, Ouvrard '20)

There exists a transformation between any pair of dominating sets for interval graphs.

The result is actually a bit more general.
circular arc graphs: intersection of arcs of a circle.

Question

Is DSR polynomial on circular-arc graphs?

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

- Otherwise, try to "shift" vertices to obtain a non-empty intersection.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

- Otherwise, try to "shift" vertices to obtain a non-empty intersection.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

- Otherwise, try to "shift" vertices to obtain a non-empty intersection.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

- Otherwise, try to "shift" vertices to obtain a non-empty intersection.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

- Otherwise, try to "shift" vertices to obtain a non-empty intersection.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

- Otherwise, try to "shift" vertices to obtain a non-empty intersection.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

- Otherwise, try to "shift" vertices to obtain a non-empty intersection.

Circular arc graphs

Theorem (B., Joffard)
DSR is polynomial on circular-arc graphs.

Idea of the proof :

- If $S \cap T \neq \emptyset \rightarrow$ YES.

Step 1. "Cut" the circle using a common vertex \rightarrow Interval graph.
Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

- Otherwise, try to "shift" vertices to obtain a non-empty intersection.

Circle graphs

Theorem (B., Joffard)
DSR is PSPACE-complete on circle graphs.

Circle graphs

Theorem (B., Joffard)
DSR is PSPACE-complete on circle graphs.

Idea of the proof :

- [Gopalan et al. '09] SAT-Reconfiguration is PSPACE-complete.

Circle graphs

Theorem (B., Joffard)

DSR is PSPACE-complete on circle graphs.

Idea of the proof :

- [Gopalan et al. '09] SAT-Reconfiguration is PSPACE-complete.
- [Keil '93] Reduction from SAT for Minimum Dominating Set on Circle Graphs.

Circle graphs

Theorem (B., Joffard)

DSR is PSPACE-complete on circle graphs.

Idea of the proof :

- [Gopalan et al. '09] SAT-Reconfiguration is PSPACE-complete.
- [Keil '93] Reduction from SAT for Minimum Dominating Set on Circle Graphs.

Main technicalities :
Minimum Dominating Sets (of size k) are rigid.

Circle graphs

Theorem (B., Joffard)

DSR is PSPACE-complete on circle graphs.

Idea of the proof :

- [Gopalan et al. '09] SAT-Reconfiguration is PSPACE-complete.
- [Keil '93] Reduction from SAT for Minimum Dominating Set on Circle Graphs.

Main technicalities :
Minimum Dominating Sets (of size k) are rigid.
\rightarrow We need to consider DS of size $k+1$.

Circle graphs

Theorem (B., Joffard)

DSR is PSPACE-complete on circle graphs.

Idea of the proof :

- [Gopalan et al. '09] SAT-Reconfiguration is PSPACE-complete.
- [Keil '93] Reduction from SAT for Minimum Dominating Set on Circle Graphs.

Main technicalities :
Minimum Dominating Sets (of size k) are rigid.
\rightarrow We need to consider DS of size $k+1$.
\rightarrow Create gadgets to control the structure of these DS to guarantee that there are still "close" from an assignment of the SAT formula.

Conclusion

- Does there exist a (hereditary) graph class where minimum DS is NP-complete and DSR is in P?
- Existence of FPT algorithms?

Conclusion

- Does there exist a (hereditary) graph class where minimum DS is NP-complete and DSR is in P?
- Existence of FPT algorithms?

Thanks for your attention!

