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Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach a fixed target position ?
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® Applications to random sampling, bioinformatics, discrete
geometry...etc...
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Main questions

® Reachability problem. Given two configurations, is it
possible to transform the one into the other?

® Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other?

® Minimization. Given two configurations, what is the length
of a shortest sequence ?
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® Reachability problem. Given two configurations, is it
possible to transform the one into the other?

® Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other?

® Minimization. Given two configurations, what is the length
of a shortest sequence ?

¢ Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Today : Reachability + Dominating Set Reconfiguration.
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Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that N[X] = V.
< A set of tokens whose (closed) neighborhood is V.
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Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that N[X] = V.
< A set of tokens whose (closed) neighborhood is V.

S, T are adjacent if T can be obtained from S by sliding a token
along an edge.

S ~» T if there is sequence of adjacent DS transforming S in T.

DOMINATING SET RECONFIGURATION (DSR)
Input : A graph G, two independent sets S, T.
Output : YES iff S~ T
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Our results |

Theorem (Bonamy, Dorbec, Ouvrard '20)]

DSR is PSPACE-complete even restrited to bipartite graphs, split
graphs and planar graphs.

5/9



Our results |

Theorem (Bonamy, Dorbec, Ouvrard '20)]

DSR is PSPACE-complete even restrited to bipartite graphs, split
graphs and planar graphs.

Question :
Does there exist a (hereditary) graph class for which minimum DS
is NP-complete and DSR is in P?

5/9



Our results |

Theorem (Bonamy, Dorbec, Ouvrard '20)]

DSR is PSPACE-complete even restrited to bipartite graphs, split
graphs and planar graphs.

Question :
Does there exist a (hereditary) graph class for which minimum DS
is NP-complete and DSR is in P?

Candidate : circle graphs.

Intersection of chords of a circle.

5/9



Our results |

Theorem (Bonamy, Dorbec, Ouvrard '20)]

DSR is PSPACE-complete even restrited to bipartite graphs, split
graphs and planar graphs.

Question :
Does there exist a (hereditary) graph class for which minimum DS
is NP-complete and DSR is in P?

Candidate : circle graphs.

Intersection of chords of a circle.

|Our result] PSPACE-complete on circle graphs.
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Our results Il

Theorem (Bonamy, Dorbec, Ouvrard ’20)]

There exists a transformation between any pair of dominating
sets for interval graphs.

The result is actually a bit more general.

circular arc graphs : intersection of arcs of a circle.

Question

Is DSR polynomial on circular-arc graphs? ]

[Our result] YES!
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Circular arc graphs

Theorem (B, Joffard)]

DSR is polynomial on circular-arc graphs.
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Circle graphs

Theorem (B., Joffard)]
DSR is PSPACE-complete on circle graphs. ]

Idea of the proof :

e [Gopalan et al. '09] SAT-Reconfiguration is
PSPACE-complete.

e [Keil '93] Reduction from SAT for MINIMUM DOMINATING
SET ON CIRCLE GRAPHS.

Main technicalities :

Minimum Dominating Sets (of size k) are rigid.

— We need to consider DS of size k + 1.

— Create gadgets to control the structure of these DS to
guarantee that there are still “close” from an assignment of the
SAT formula.

8/9



Conclusion

® Does there exist a (hereditary) graph class where minimum
DS is NP-complete and DSR is in P?

® Existence of FPT algorithms?
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Thanks for your attention !
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