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Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach a fixed target position ?

• Applications to random sampling, bioinformatics, discrete
geometry...etc...
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Main questions

• Reachability problem. Given two configurations, is it
possible to transform the one into the other ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Today : Reachability + Dominating Set Reconfiguration.
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Dominating Set Reconfiguration
A dominating set is a subset X of vertices such that N[X ] = V .
⇔ A set of tokens whose (closed) neighborhood is V .

S ,T are adjacent if T can be obtained from S by sliding a token
along an edge.

S  T if there is sequence of adjacent DS transforming S in T .

Dominating Set Reconfiguration (DSR)
Input : A graph G , two independent sets S ,T .
Output : YES iff S  T
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Our results I

DSR is PSPACE-complete even restrited to bipartite graphs, split
graphs and planar graphs.

Theorem (Bonamy, Dorbec, Ouvrard ’20)

Question :
Does there exist a (hereditary) graph class for which minimum DS
is NP-complete and DSR is in P ?

Candidate : circle graphs.
Intersection of chords of a circle.

[Our result] PSPACE-complete on circle graphs.
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Our results II

There exists a transformation between any pair of dominating
sets for interval graphs.

Theorem (Bonamy, Dorbec, Ouvrard ’20)

The result is actually a bit more general.

circular arc graphs : intersection of arcs of a circle.

Is DSR polynomial on circular-arc graphs ?

Question

[Our result] YES !
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Circular arc graphs

DSR is polynomial on circular-arc graphs.

Theorem (B., Joffard)

Idea of the proof :

• If S ∩ T 6= ∅ → YES.

Step 1. “Cut” the circle using a common vertex → Interval graph.

Step 2. Use the interval result of [Bonamy, Dorbec, Ouvrard]

• Otherwise, try to “shift” vertices to obtain a non-empty
intersection.
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Circle graphs

DSR is PSPACE-complete on circle graphs.

Theorem (B., Joffard)

Idea of the proof :

• [Gopalan et al. ’09] SAT-Reconfiguration is
PSPACE-complete.

• [Keil ’93] Reduction from SAT for Minimum Dominating
Set on Circle Graphs.

Main technicalities :
Minimum Dominating Sets (of size k) are rigid.
→ We need to consider DS of size k + 1.
→ Create gadgets to control the structure of these DS to
guarantee that there are still “close” from an assignment of the
SAT formula.
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Conclusion

• Does there exist a (hereditary) graph class where minimum
DS is NP-complete and DSR is in P ?

• Existence of FPT algorithms ?

Thanks for your attention !
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