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Representation of discrete structures
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Graphs and coloring

A graph is a pair (V ,E ) where:
• V is a set of “points” called vertices.

• E is a set of “binary relations” (segments) between pairs
of vertices called edges.

Definition

Two vertices u, v are adjacent if (u, v) is an edge.

A k-coloring is a function α : V → {1, . . . , k}.
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Why coloring graphs?

One can notice that the resulting graph is planar, i.e. represented
in the plane without intersection of edges.
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Why coloring graphs? (II)

• Avoid interference in wireless networks.

• Modelization of physical models (e.g. antiferromagnetics
Potts models).

• Modelization of agents behavior in economy.

• Partitionning the graph into sets sharing some common
behavior (clustering).
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Planar graphs

A graph is planar if it can be represented
without any crossing edge in the plane.

Definition (planar graph)

Lemma: For any planar graph, there exists a straight line
representation.

A graph is planar if it does not “contain” one of these two graphs:

Theorem (Wagner ’37)
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Structure of graphs and colorings

Some graphs need an arbitrary number of colors to be properly
colored.

Lemma

Every planar graph can be colored with 6 colors.

Folklore

Proof:

Euler formula: Every planar graph satisfies:

V − E + F = 2.

• We have F ≤ 2E/3.

• Using Euler formula, we obtain: E ≤ 3V − 6.
• As

∑
x∈S degree(x) = 2E < 6V

⇒ There is a vertex of degree at most 5.
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Coloring planar graphs

Every planar graph can be properly colored with 4 colors.

Conjecture

• All the known proofs of this result are computer assisted.

• Why do we need a few number of colors? One reason could
be: no clique (e.g. set of vertices pairwise incident) of size at
least 5.
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General lower and upper bounds on the
number of colors?

A clique of size k is a subset of k pairwise incident vertices.

Definition (clique)

Inequality:

Number of colors ≥ size of a maximum clique.

Let G be a graph with no triangle, can we color G
with a constant (101000?) number of colors?

Question
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Coloring larger classes of graphs

Which conditions ensure:

min. number of colors ≤ function(size of the max. clique).

• Perfect graphs (Chudnovsky et al. ’03).

• Maximal triangle-free graphs with no subdivision a given
graph H (B., Thomassé ’12).

• Graphs with no cycle with a fixed number of chords
(Aboulker, B. ’15).

• ...
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Related topics

• Algorithmic: compute the size of a maximum clique.

• Polyhedral combinatorics: extended formulation (Lovász ’90).

• Communication complexity: Yannakakis conjecture (’89).
Partial results in (B., Lagoutte, Thomassé ’14).

• Existence of special patterns in graphs: Erdős-Hajnal
conjecture.
Partial results in (B., Lagoutte, Thomassé, ’15).
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A more dynamic model?

• Realocate the frequencies of the antennas.

• Condition: no interference at any time.

• Only one antenna reallocation at a time.

12/25



A more dynamic model?

• Realocate the frequencies of the antennas.

• Condition: no interference at any time.

• Only one antenna reallocation at a time.

12/25



A more dynamic model?

• Realocate the frequencies of the antennas.

• Condition: no interference at any time.

• Only one antenna reallocation at a time.

12/25



A more dynamic model?

• Realocate the frequencies of the antennas.

• Condition: no interference at any time.

• Only one antenna reallocation at a time.

12/25



A more dynamic model?

• Realocate the frequencies of the antennas.

• Condition: no interference at any time.

• Only one antenna reallocation at a time.

12/25



A more dynamic model?

• Realocate the frequencies of the antennas.

• Condition: no interference at any time.

• Only one antenna reallocation at a time.

12/25



A more dynamic model?

• Realocate the frequencies of the antennas.

• Condition: no interference at any time.

• Only one antenna reallocation at a time.

12/25



Main questions (in the CS community)

• Given two colorings, can we transform the one into the other?

• Can we always transform any coloring into any other?

• If the answer is positive, how many steps do we need?

• Can we effiently find a short transformation (from an
algorithmic point of view)?

A few results:

• For planar graphs, any 8-coloring can be transformed into any
other in a polynomial number of steps. (B., Perarnau ’15).
Best lower bound: 7.

• Any (tw(G ) + 1)-coloring can be transformed into any other
within a quadratic number of steps (Bonamy, B. ’13).
Tight.

13/25



Main questions (in the CS community)

• Given two colorings, can we transform the one into the other?

• Can we always transform any coloring into any other?

• If the answer is positive, how many steps do we need?

• Can we effiently find a short transformation (from an
algorithmic point of view)?

A few results:

• For planar graphs, any 8-coloring can be transformed into any
other in a polynomial number of steps. (B., Perarnau ’15).
Best lower bound: 7.

• Any (tw(G ) + 1)-coloring can be transformed into any other
within a quadratic number of steps (Bonamy, B. ’13).
Tight.

13/25



Main questions (in the CS community)

• Given two colorings, can we transform the one into the other?

• Can we always transform any coloring into any other?

• If the answer is positive, how many steps do we need?

• Can we effiently find a short transformation (from an
algorithmic point of view)?

A few results:

• For planar graphs, any 8-coloring can be transformed into any
other in a polynomial number of steps. (B., Perarnau ’15).
Best lower bound: 7.

• Any (tw(G ) + 1)-coloring can be transformed into any other
within a quadratic number of steps (Bonamy, B. ’13).
Tight.

13/25



Main questions (in the CS community)

• Given two colorings, can we transform the one into the other?

• Can we always transform any coloring into any other?

• If the answer is positive, how many steps do we need?

• Can we effiently find a short transformation (from an
algorithmic point of view)?

A few results:

• For planar graphs, any 8-coloring can be transformed into any
other in a polynomial number of steps. (B., Perarnau ’15).
Best lower bound: 7.

• Any (tw(G ) + 1)-coloring can be transformed into any other
within a quadratic number of steps (Bonamy, B. ’13).
Tight.

13/25



Main questions (in the CS community)

• Given two colorings, can we transform the one into the other?

• Can we always transform any coloring into any other?

• If the answer is positive, how many steps do we need?

• Can we effiently find a short transformation (from an
algorithmic point of view)?

A few results:

• For planar graphs, any 8-coloring can be transformed into any
other in a polynomial number of steps. (B., Perarnau ’15).
Best lower bound: 7.

• Any (tw(G ) + 1)-coloring can be transformed into any other
within a quadratic number of steps (Bonamy, B. ’13).
Tight.

13/25



Motivations (in the physics comminity)

• Obtain a ’random’ coloring of a graph.

• Obtain lower bounds on the mixing time of the Markov chain
where

• Elements are colorings.
• There is a positive probability transition between two colorings

if one can transform into the other by recoloring a single
vertex.
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Anti-ferromagnetic Potts Model
A spin configuration of G = (V ,E ) is a func-
tion σ : V → {1, . . . , k}. (a graph coloring)

Probability that a configuration appears is
inversely proportional to the number of
monochromatic edges divided by the tempera-
ture of the system.

Limit of a k-state Potts model when T → 0.
⇔ All the k-colorings of G .

Definition (Glauber dynamics)

The physicists want to:

• Find the mixing time of Markov chains on Glauber dynamics.

We need to recolor only one vertex at a time.

• Generate all the possible states of a Glauber dynamics.

We have no constraint on the method.
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Kempe chains

Let a, b be two colors.

• A connected component of the graph induced by the vertices
colored by a or b is a Kempe chain.

• Permuting the colors of a Kempe chain is a Kempe change.

Remark: If a component is reduced to a single vertex, then the
Kempe change consists in recoloring one vertex.
⇒ Kempe changes generalize single vertex recolorings.
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Two colorings are Kempe-equivalent if one can transform one into
the other via a sequence of Kempe changes.

All the k-colorings of a connected k-regular graph with k ≥ 4
are Kempe equivalent.

Theorem (Bonamy, B., Feghali, Johnson ’15)

Consequence in physics: Close the study
of the Wang-Swendsen-Koteký algorithm for
Glauber dynamics on triangular lattices.
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Graph partitionning

An independent set is a subset of vertices that does not induce
any edge.

Definition (independent set)

A proper coloring is a partition of the vertices into independent
sets.
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Graph partitionning

Clique partitions have many applications:

• In the theoretical world: a point from which we can start.

• In machine learning.

• Communities in social network.

• Big data.
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Coalition games

• A set I of n agents.

• A superadditive valuation function v : 2n → N. (the money

generated by the coalition S if agents of S decide to work on their

own project)

Coalition game

Distribute money to the agents in such a way, for every coalition
S , the money distributed to agents of S is at least v(S).
⇒ No coalition wishes to leave the grand coalition.

Goal
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Core

The core of the coalition game is the set of payoff vectors x
satisfying the following constraints:∑

i∈I xi = v(I ) The money we can distribute

∑
i∈S xi ≥ v(S) ∀S ⊆ I No coalition can benefit by deviating

xi ≥ 0 ∀i ∈ I Non-negative salary

Definition (core)

Problem: The core is usually empty !

• Which conditions ensure that the core is not empty?

•

⇒ New bounds on some relaxations of the core (B., Li, Vetta).
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Planar triangulations 1

 Associate to each internal vertex three incident edges and
deduce a 3-orientation.

1Thanks to Vincent Despré for his slides on this section.
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Bijection

Using this red tree, the pla-
nar graph can be encoded us-
ing 3, 25 · n bits. (Poulalhon,
Schaeffer ’03)

⇒ OPTIMAL !

A similar result exists on the torus.

Theorem (Despré, Gonçalves, Levesque ’15)

Question: what about higher genus?
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Other topics related to my work

• VC-dimension.

• Spectrum auctions.

• Flow-cuts problems.

• Voronoi diagram and Delaunay triangulations.

Thanks for your attention
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