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Graphs and coloring

Definition

A graph is a pair (V, E) where:
e V is a set of “points” called vertices.
e E is a set of "binary relations” (segments) between pairs
of vertices called edges.

Two vertices u, v are adjacent if (u, v) is an edge.

3/25



Graphs and coloring
Definition

A graph is a pair (V, E) where:
e V is a set of “points” called vertices.
e E is a set of "binary relations” (segments) between pairs
of vertices called edges.

Two vertices u, v are adjacent if (u, v) is an edge.

Coloring

A k-coloring is a function a : V — {1,..., k}.

3/25



Graphs and coloring

Definition

A graph is a pair (V, E) where:
e V is a set of “points” called vertices.
e E is a set of "binary relations” (segments) between pairs
of vertices called edges.

Two vertices u, v are adjacent if (u, v) is an edge.

Coloring

A proper k-coloring is a function o : V — {1,..., k}
where incident vertices receive distinct colors.

3/25



Graphs and coloring

Definition

A graph is a pair (V, E) where:
e V is a set of “points” called vertices.
e E is a set of "binary relations” (segments) between pairs
of vertices called edges.

Two vertices u, v are adjacent if (u, v) is an edge.

x@»

A proper k-coloring is a function o : V — {1,..., k}
where incident vertices receive distinct colors.

Coloring

3/25



Why coloring graphs?
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Why coloring graphs?
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One can notice that the resulting graph is planar, i.e. represented
in the plane without intersection of edges.
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Why coloring graphs? (I1)

Avoid interference in wireless networks.

Modelization of physical models (e.g. antiferromagnetics
Potts models).

Modelization of agents behavior in economy.

Partitionning the graph into sets sharing some common
behavior (clustering).
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Planar graphs

Definition (planar graph)]

A graph is planar if it can be represented
without any crossing edge in the plane.
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Planar graphs

Definition (planar gra ph)]

A graph is planar if it can be represented

? without any crossing edge in the plane.

Lemma: For any planar graph, there exists a straight line
representation.

Theorem (Wagner '37)]

A graph is planar if it does not “contain” one of these two graphs:

WOk
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Structure of graphs and colorings

Some graphs need an arbitrary number of colors to be properly
colored.
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Structure of graphs and colorings

Some graphs need an arbitrary number of colors to be properly
colored.

Folklore

Every planar graph can be colored with 6 colors.

Proof:
Euler formula: Every planar graph satisfies:
V-E+F=2

e We have F <2E/3.
e Using Euler formula, we obtain: E <3V — 6.
o As ) s degree(x) =2E <6V

= There is a vertex of degree at most 5.
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Coloring planar graphs

Conjecture

Every planar graph can be properly colored with 4 colors. ]
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Coloring planar graphs

Theorem (Appel, Haken ’76)]

Every planar graph can be properly colored with 4 colors. ]

o All the known proofs of this result are computer assisted.

e Why do we need a few number of colors? One reason could

be: no clique (e.g. set of vertices pairwise incident) of size at
least 5.

8/25



General lower and upper bounds on the
number of colors?

Definition (clique)

A clique of size k is a subset of k pairwise incident vertices. ]
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General lower and upper bounds on the
number of colors?

Definition (clique)

A clique of size k is a subset of k pairwise incident vertices.

Inequality:

Number of colors > size of a maximum clique.

Question

Let G be a graph with no triangle, can we color G
with a constant (101°%°?) number of colors? NO ! A
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Coloring larger classes of graphs

Which conditions ensure:

min. number of colors < function(size of the max. clique).
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Coloring larger classes of graphs

Which conditions ensure:

min. number of colors < function(size of the max. clique).

Perfect graphs (Chudnovsky et al. '03).

Maximal triangle-free graphs with no subdivision a given
graph H (B., Thomassé '12).

Graphs with no cycle with a fixed number of chords
(Aboulker, B. '15).
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Related topics

e Algorithmic: compute the size of a maximum clique.
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Related topics

Algorithmic: compute the size of a maximum clique.
Polyhedral combinatorics: extended formulation (Lovész '90).

Communication complexity: Yannakakis conjecture ('89).
Partial results in (B., Lagoutte, Thomassé '14).

Existence of special patterns in graphs: Erd6s-Hajnal
conjecture.
Partial results in (B., Lagoutte, Thomassé, '15).
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A more dynamic model?

e Realocate the frequencies of the antennas.
e Condition: no interference at any time.

e Only one antenna reallocation at a time.

SO AN

12/25



A more dynamic model?

e Realocate the frequencies of the antennas.
e Condition: no interference at any time.

e Only one antenna reallocation at a time.

SO A

12/25



A more dynamic model?

e Realocate the frequencies of the antennas.
e Condition: no interference at any time.

e Only one antenna reallocation at a time.

SO A

12/25



Main questions (in the CS community)

e Given two colorings, can we transform the one into the other?
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Main questions (in the CS community)

Given two colorings, can we transform the one into the other?

Can we always transform any coloring into any other?

If the answer is positive, how many steps do we need?

Can we effiently find a short transformation (from an
algorithmic point of view)?

A few results:

e For planar graphs, any 8-coloring can be transformed into any
other in a polynomial number of steps. (B., Perarnau '15).
Best lower bound: 7.

e Any (tw(G) + 1)-coloring can be transformed into any other
within a quadratic number of steps (Bonamy, B. '13).

Tight.
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Motivations (in the physics comminity)

e Obtain a 'random’ coloring of a graph.
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Motivations (in the physics comminity)

e Obtain a 'random’ coloring of a graph.
e Obtain lower bounds on the mixing time of the Markov chain
where

e Elements are colorings.
e There is a positive probability transition between two colorings

if one can transform into the other by recoloring a single
vertex.
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Anti-ferromagnetic Potts Model
A spin configuration of G = (V,E) is a func-
I-l‘ tiono : V — {1,... k}. (a graph coloring)
spin

y
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Anti-ferromagnetic Potts Model
A spin configuration of G = (V,E) is a func-
tiono : V — {1,... k}. (a graph coloring)

Probability that a configuration appears is
inversely proportional to the number of
monochromatic edges divided by the tempera-
ture of the system.
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Anti-ferromagnetic Potts Model

A spin configuration of G = (V,E) is a func-
I-l‘ tiono : V —{1,...,k}. (a graph coloring)
spin

oY Probability that a configuration appears is

kP) inversely proportional to the number of

| charge monochromatic edges divided by the tempera-
ture of the system.

Definition (Glauber dynamics)]

Limit of a k-state Potts model when T — 0.
< All the k-colorings of G.

The physicists want to:
e Find the mixing time of Markov chains on Glauber dynamics.
We need to recolor only one vertex at a time.

e Generate all the possible states of a Glauber dynamics.

We have no constraint on the method.
15/25



Kempe chains

Let a, b be two colors.
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Kempe chains

Let a, b be two colors.

e A connected component of the graph induced by the vertices
colored by a or b is a Kempe chain.

e Permuting the colors of a Kempe chain is a Kempe change.
Remark: If a component is reduced to a single vertex, then the

Kempe change consists in recoloring one vertex.
= Kempe changes generalize single vertex recolorings.
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Two colorings are Kempe-equivalent if one can transform one into
the other via a sequence of Kempe changes.
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Two colorings are Kempe-equivalent if one can transform one into
the other via a sequence of Kempe changes.

Theorem (Bonamy, B., Feghali, Johnson '15)]

All the k-colorings of a connected k-regular graph with k > 4
are Kempe equivalent.

Consequence in physics: Close the study
of the Wang-Swendsen-Koteky algorithm for
Glauber dynamics on triangular lattices.
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Graph partitionning

Definition (independent set)]

An independent set is a subset of vertices that does not induce
any edge.
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Graph partitionning

Definition (independent set)]

An independent set is a subset of vertices that does not induce
any edge.

A proper coloring is a partition of the vertices into independent
sets.
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Graph partitionning

Clique partitions have many applications:
e In the theoretical world: a point from which we can start.
e In machine learning.
e Communities in social network.
e Big data.

19/25



Coalition games

Coalition game]

e A set | of n agents.
e A superadditive valuation function v : 27 — N. (the money
generated by the coalition S if agents of S decide to work on their

own project)
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Coalition games

Coalition game]

e A set | of n agents.

e A superadditive valuation function v : 27 — N. (the money
generated by the coalition S if agents of S decide to work on their

own project)

Distribute money to the agents in such a way, for every coalition
S, the money distributed to agents of S is at least v(S).
= No coalition wishes to leave the grand coalition.
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Core

’lDefinition (core) )

The core of the coalition game is the set of payoff vectors x

satisfying the following constraints:

>icrxi = v(I)

X,'ZO

Viel

The money we can distribute

Non-negative salary

N
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Core

iDefinition (core)]

The core of the coalition game is the set of payoff vectors x
satisfying the following constraints:

N

Ziel xi = v(l) The money we can distribute
Zies xi > v(S) VS C | No coalition can benefit by deviating
x; >0 Vi € I Non-negative salary
|\ J

Problem: The core is usually empty !
e Which conditions ensure that the core is not empty?
e Relax the definition of core.

= New bounds on some relaxations of the core (B., Li, Vetta).
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Planar triangulations

Thanks to Vincent Despré for his slides on this section.
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Thanks to Vincent Despré for his slides on this section.
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1

Planar triangulations

Euler: v—e+f =2 e = 3v—6
Triangulation : 3f =2¢ — (e—3) = 3(v-—3)
€int = 3Vint

~+ Associate to each internal vertex three incident edges and
deduce a 3-orientation.

!Thanks to Vincent Despré for his slides on this section.

22/25



Encoding a planar graph

o

JA

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

/A

23/25



Encoding a planar graph

o

7N

23/25



Encoding a planar graph

o

7N

23/25



Encoding a planar graph

o

7N

23/25



Encoding a planar graph

o

7N

23/25



Encoding a planar graph

o

N

23/25



Encoding a planar graph

o

7N

23/25



Encoding a planar graph

o

N

23/25



Encoding a planar graph

o

7N

23/25



Encoding a planar graph

o

7N

23/25



Encoding a planar graph

o

A\

23/25



Encoding a planar graph

o

A\

23/25



Encoding a planar graph

o

23/25



Encoding a planar graph

i)

23/25



Bijection

24/25



Bijection

24/25



Bijection

Using this red tree, the pla-
nar graph can be encoded us-
ing 3,25 - n bits. (Poulalhon,
Schaeffer '03)

24/25



Bijection

Using this red tree, the pla-
nar graph can be encoded us-
ing 3,25 - n bits. (Poulalhon,
Schaeffer '03)

= OPTIMAL!

24/25



Bijection

Using this red tree, the pla-
nar graph can be encoded us-
ing 3,25 - n bits. (Poulalhon,
Schaeffer '03)

= OPTIMAL!

Theorem (Despré, Gongalves, Levesque '15)

A similar result exists on the torus. J

24/25



Bijection

Using this red tree, the pla-
nar graph can be encoded us-
ing 3,25 - n bits. (Poulalhon,
Schaeffer '03)

= OPTIMAL!

Theorem (Despré, Gongalves, Levesque '15)

A similar result exists on the torus. J

Question: what about higher genus?
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Other topics related to my work

VC-dimension.

e Spectrum auctions.

Flow-cuts problems.

Voronoi diagram and Delaunay triangulations.
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e Spectrum auctions.

Flow-cuts problems.

Voronoi diagram and Delaunay triangulations.

Thanks for your attention
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