Graphs - Coloring, partition and structure

Nicolas Bousquet

Ecole Centrale Lyon

Representation of discrete structures

A graph is a pair (V, E) where:

- V is a set of "points" called vertices.
- *E* is a set of "binary relations" (segments) between pairs of vertices called edges.

A graph is a pair (V, E) where:

- V is a set of "points" called vertices.
- *E* is a set of "binary relations" (segments) between pairs of vertices called edges.

A graph is a pair (V, E) where:

- V is a set of "points" called vertices.
- *E* is a set of "binary relations" (segments) between pairs of vertices called edges.

A graph is a pair (V, E) where:

- V is a set of "points" called vertices.
- *E* is a set of "binary relations" (segments) between pairs of vertices called edges.

One can notice that the resulting graph is planar, <u>i.e.</u> represented in the plane without intersection of edges.

Why coloring graphs? (II)

- Avoid interference in wireless networks.
- Modelization of physical models (e.g. antiferromagnetics Potts models).
- Modelization of agents behavior in economy.
- Partitionning the graph into sets sharing some common behavior (clustering).

Planar graphs

Definition (planar graph)

A graph is planar if it can be represented without any crossing edge in the plane.

Planar graphs

Definition (planar graph)

A graph is planar if it can be represented without any crossing edge in the plane.

Lemma: For any planar graph, there exists a straight line representation.

Planar graphs

Definition (planar graph)

A graph is planar if it can be represented without any crossing edge in the plane.

Lemma: For any planar graph, there exists a straight line representation.

Lemma

Some graphs need an arbitrary number of colors to be properly colored.

Lemma

Some graphs need an arbitrary number of colors to be properly colored.

Folklore

Every planar graph can be colored with 6 colors.

Proof:

Lemma

Some graphs need an arbitrary number of colors to be properly colored.

Folklore

Every planar graph can be colored with 6 colors.

Proof:

Euler formula: Every planar graph satisfies:

$$V-E+F=2.$$

Lemma

Some graphs need an arbitrary number of colors to be properly colored.

Folklore

Every planar graph can be colored with 6 colors.

Proof:

Euler formula: Every planar graph satisfies:

$$V-E+F=2.$$

- We have $F \leq 2E/3$.
- Using Euler formula, we obtain: $E \leq 3V 6$.
- As ∑_{x∈S} degree(x) = 2E < 6V
 ⇒ There is a vertex of degree at most 5.

Every planar graph can be properly colored with 4 colors.

Theorem (Appel, Haken '76)

Every planar graph can be properly colored with 4 colors.

Theorem (Appel, Haken '76)

Every planar graph can be properly colored with 4 colors.

• All the known proofs of this result are computer assisted.

Theorem (Appel, Haken '76)

Every planar graph can be properly colored with 4 colors.

- All the known proofs of this result are computer assisted.
- Why do we need a few number of colors? One reason could be: no clique (e.g. set of vertices pairwise incident) of size at least 5.

General lower and upper bounds on the number of colors?

Inequality:

Number of colors \geq size of a maximum clique.

General lower and upper bounds on the number of colors?

Inequality:

Number of colors \geq size of a maximum clique.

Question

Let G be a graph with no triangle, can we color G with a constant (10^{1000}) number of colors?

General lower and upper bounds on the number of colors?

Inequality:

Number of colors \geq size of a maximum clique.

Question

Let G be a graph with no triangle, can we color G with a constant (10^{1000}) number of colors? NO !

Coloring larger classes of graphs

Which conditions ensure:

min. number of colors \leq function(size of the max. clique).

Coloring larger classes of graphs

Which conditions ensure:

min. number of colors \leq function(size of the max. clique).

- Perfect graphs (Chudnovsky et al. '03).
- Maximal triangle-free graphs with no subdivision a given graph *H* (B., Thomassé '12).
- Graphs with no cycle with a fixed number of chords (Aboulker, B. '15).

• ...

• Algorithmic: compute the size of a maximum clique.

- Algorithmic: compute the size of a maximum clique.
- Polyhedral combinatorics: extended formulation (Lovász '90).

- Algorithmic: compute the size of a maximum clique.
- Polyhedral combinatorics: extended formulation (Lovász '90).
- Communication complexity: Yannakakis conjecture ('89). Partial results in (B., Lagoutte, Thomassé '14).

- Algorithmic: compute the size of a maximum clique.
- Polyhedral combinatorics: extended formulation (Lovász '90).
- Communication complexity: Yannakakis conjecture ('89). Partial results in (B., Lagoutte, Thomassé '14).
- Existence of special patterns in graphs: Erdős-Hajnal conjecture.

Partial results in (B., Lagoutte, Thomassé, '15).

A more dynamic model?

- Realocate the frequencies of the antennas.
- Condition: no interference at any time.
- Only one antenna reallocation at a time.

A more dynamic model?

- Realocate the frequencies of the antennas.
- Condition: no interference at any time.
- Only one antenna reallocation at a time.

A more dynamic model?

- Realocate the frequencies of the antennas.
- Condition: no interference at any time.
- Only one antenna reallocation at a time.

• Given two colorings, can we transform the one into the other?

- Given two colorings, can we transform the one into the other?
- Can we always transform any coloring into any other?

- Given two colorings, can we transform the one into the other?
- Can we always transform any coloring into any other?
- If the answer is positive, how many steps do we need?

- Given two colorings, can we transform the one into the other?
- Can we always transform any coloring into any other?
- If the answer is positive, how many steps do we need?
- Can we effiently find a short transformation (from an algorithmic point of view)?

- Given two colorings, can we transform the one into the other?
- Can we always transform any coloring into any other?
- If the answer is positive, how many steps do we need?
- Can we effiently find a short transformation (from an algorithmic point of view)?

A few results:

- For planar graphs, any 8-coloring can be transformed into any other in a polynomial number of steps. (B., Perarnau '15). Best lower bound: 7.
- Any (tw(G) + 1)-coloring can be transformed into any other within a quadratic number of steps (Bonamy, B. '13). Tight.

Motivations (in the physics comminity)

• Obtain a 'random' coloring of a graph.

Motivations (in the physics comminity)

- Obtain a 'random' coloring of a graph.
- Obtain lower bounds on the mixing time of the Markov chain where
 - Elements are colorings.
 - There is a positive probability transition between two colorings if one can transform into the other by recoloring a single vertex.

Anti-ferromagnetic Potts Model A spin configuration of G = (V, E) is a function $\sigma : V \rightarrow \{1, \dots, k\}$. (a graph coloring)

Anti-ferromagnetic Potts Model

A spin configuration of G = (V, E) is a function σ : $V \rightarrow \{1, \ldots, k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

e spin charge

Anti-ferromagnetic Potts Model

A spin configuration of G = (V, E) is a function σ : $V \rightarrow \{1, \ldots, k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a *k*-state Potts model when $T \rightarrow 0$. \Leftrightarrow All the *k*-colorings of *G*.

e spin charge

Anti-ferromagnetic Potts Model A spin configuration of G = (V, E) is a function $\sigma : V \rightarrow \{1, \dots, k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a *k*-state Potts model when $T \rightarrow 0$. \Leftrightarrow All the *k*-colorings of *G*.

The physicists want to:

- Find the mixing time of Markov chains on Glauber dynamics.
- Generate all the possible states of a Glauber dynamics.

e spin charge

Anti-ferromagnetic Potts Model A spin configuration of G = (V, E) is a function $\sigma : V \rightarrow \{1, \dots, k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a *k*-state Potts model when $T \rightarrow 0$. \Leftrightarrow All the *k*-colorings of *G*.

The physicists want to:

- Find the mixing time of Markov chains on Glauber dynamics. We need to recolor only one vertex at a time.
- Generate all the possible states of a Glauber dynamics. We have no constraint on the method.

Let *a*, *b* be two colors.

Let a, b be two colors.

• A connected component of the graph induced by the vertices colored by *a* or *b* is a Kempe chain.

Let a, b be two colors.

- A connected component of the graph induced by the vertices colored by *a* or *b* is a Kempe chain.
- Permuting the colors of a Kempe chain is a Kempe change.

Let a, b be two colors.

- A connected component of the graph induced by the vertices colored by *a* or *b* is a Kempe chain.
- Permuting the colors of a Kempe chain is a Kempe change.

Let *a*, *b* be two colors.

- A connected component of the graph induced by the vertices colored by *a* or *b* is a Kempe chain.
- Permuting the colors of a Kempe chain is a Kempe change.

Remark: If a component is reduced to a single vertex, then the Kempe change consists in recoloring one vertex. \Rightarrow Kempe changes generalize single vertex recolorings.

Two colorings are Kempe-equivalent if one can transform one into the other via a sequence of Kempe changes.

Two colorings are Kempe-equivalent if one can transform one into the other via a sequence of Kempe changes.

Theorem (Bonamy, B., Feghali, Johnson '15)

All the k-colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

Consequence in physics: Close the study of the Wang-Swendsen-Koteký algorithm for Glauber dynamics on triangular lattices.

• • •

•

Definition (independent set)

An independent set is a subset of vertices that does not induce any edge.

Definition (independent set)

An independent set is a subset of vertices that does not induce any edge.

A proper coloring is a partition of the vertices into independent sets.

Clique partitions have many applications:

- In the theoretical world: a point from which we can start.
- In machine learning.
- Communities in social network.
- Big data.

Coalition games

Coalition game

- A set *I* of *n* agents.
- A superadditive valuation function v : 2ⁿ → N. (the money generated by the coalition S if agents of S decide to work on their own project)

Coalition games

Coalition game

- A set *I* of *n* agents.
- A superadditive valuation function v : 2ⁿ → N. (the money generated by the coalition S if agents of S decide to work on their own project)

Goal

Distribute money to the agents in such a way, for every coalition S, the money distributed to agents of S is at least v(S). \Rightarrow No coalition wishes to leave the grand coalition.

Definition (core)

The core of the coalition game is the set of payoff vectors ${\bf x}$ satisfying the following constraints:

 $\sum_{i \in I} x_i = v(I)$ The money we can distribute

 $x_i \geq 0$ $\forall i \in I$ Non-negative salary

Definition (core)

The core of the coalition game is the set of payoff vectors ${\bf x}$ satisfying the following constraints:

 $\begin{array}{ll} \sum_{i\in I} x_i = v(I) & \qquad \text{The money we can distribute} \\ \sum_{i\in S} x_i \geq v(S) & \qquad \forall S\subseteq I & \text{No coalition can benefit by deviating} \\ & \qquad x_i \geq 0 & \qquad \forall i\in I & \text{Non-negative salary} \end{array}$

Definition (core)

The core of the coalition game is the set of payoff vectors ${\bf x}$ satisfying the following constraints:

 $\begin{array}{ll} \sum_{i\in I} x_i = v(I) & \qquad \text{The money we can distribute} \\ \sum_{i\in S} x_i \geq v(S) & \qquad \forall S\subseteq I & \text{No coalition can benefit by deviating} \\ & \qquad x_i \geq 0 & \qquad \forall i\in I & \text{Non-negative salary} \end{array}$

Problem: The core is usually empty !

- Which conditions ensure that the core is not empty?
- Relax the definition of core.

Definition (core)

The core of the coalition game is the set of payoff vectors ${\bf x}$ satisfying the following constraints:

 $\begin{array}{ll} \sum_{i \in I} x_i = v(I) & \qquad \text{The money we can distribute} \\ \sum_{i \in S} x_i \geq v(S) & \qquad \forall S \subseteq I & \text{No coalition can benefit by deviating} \\ & \quad x_i \geq 0 & \qquad \forall i \in I & \text{Non-negative salary} \end{array}$

Problem: The core is usually empty !

- Which conditions ensure that the core is not empty?
- Relax the definition of core.
- \Rightarrow New bounds on some relaxations of the core (B., Li, Vetta).

Planar triangulations $^{\rm 1}$

¹Thanks to Vincent Despré for his slides on this section.

 \rightsquigarrow Associate to each internal vertex three incident edges and deduce a 3-orientation.

Bijection

Using this red tree, the planar graph can be encoded using $3, 25 \cdot n$ bits. (Poulalhon, Schaeffer '03)

Using this red tree, the planar graph can be encoded using $3, 25 \cdot n$ bits. (Poulalhon, Schaeffer '03)

 $\Rightarrow \mathsf{OPTIMAL} \; !$

Using this red tree, the planar graph can be encoded using $3, 25 \cdot n$ bits. (Poulalhon, Schaeffer '03)

 \Rightarrow OPTIMAL !

Theorem (Despré, Gonçalves, Levesque '15)

A similar result exists on the torus.

Using this red tree, the planar graph can be encoded using $3, 25 \cdot n$ bits. (Poulalhon, Schaeffer '03)

 \Rightarrow OPTIMAL !

Theorem (Despré, Gonçalves, Levesque '15)

A similar result exists on the torus.

Question: what about higher genus?

Other topics related to my work

- VC-dimension.
- Spectrum auctions.
- Flow-cuts problems.
- Voronoi diagram and Delaunay triangulations.

Other topics related to my work

- VC-dimension.
- Spectrum auctions.
- Flow-cuts problems.
- Voronoi diagram and Delaunay triangulations.

Thanks for your attention