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First definitions

w the maximum size of a clique.
« the maximum size of a stable set.

X the chromatic number.

Py : induced path on k vertices.
Ck : induced cycle on k vertices.
class = class closed under induced subgraphs.

n : number of vertices of the graph.
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Chromatic number and stable sets

Observation

X> 5. ]

A coloring is a partition of the vertex set into independent sets.

3/25



Chromatic number and stable sets

Observation

X> 5. ]

A coloring is a partition of the vertex set into independent sets.

3/25



Chromatic number and stable sets

Observation

X> 5. ]

A coloring is a partition of the vertex set into independent sets.

At least - colors are necessary since each color class has size at
most a.
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Chromatic number and stable sets

Chromatic number at most ¢
= Partition into ¢ stable sets
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4

Existence of an empty bipartite graph of size 4+~
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Chromatic number and stable sets

Chromatic number at most ¢
= Partition into c stable sets
!
Fractional chromatic number number at most ¢
(= Existence of a stable set of size ).

4

Existence of an empty bipartite graph of size 4+~

2c”
Question :

Reverse of these implications ?

e First implication : FALSE.

e Second implication : we only have a polynomial clique or a
polynomial stable set.
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Chromatic number and cliques

Observation : We always have w < y.
= Existence of a reverse function?
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e Put every edge with probability p = n7s.
e For every k, the average size of a stable set is less than 7.
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e The average number of triangle is less than .
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Chromatic number and cliques

Observation : We always have w < y.
= Existence of a reverse function?

Answer (Erdé’)s)]
NO ! ]

Proof : Using the “probabilistic method”
e Put every edge with probability p = n7s.
e For every k, the average size of a stable set is less than 7.
e The average number of triangle is less than g.

= After the deletion of n/2 vertices there remain a triangle free

graph with small stable sets.

Definition (x-bounded) |

A class is x-bounded if y < f(w). ]

Example : Graphs with no Py are x-bounded (Gyérfas '87).
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Gyarfas proof (for triangle-free graphs)
Take a vertex u.

e A connected component X of G\ N(u) has chromatic number
at least y — 1.
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Gyarfas proof (for triangle-free graphs)

Take a vertex u.

e A connected component X of G\ N(u) has chromatic number
at least y — 1.

e Take v a vertex of N(u) with a neighbor in X.
e Restrict the graph to v U X and repeat.

When the clique is unbounded, the function becomes exponential...
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Py ~free graphs
Star-free graphs
Disk graphs
Perfect graphs

x-bounded classes

are x-bounded.
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x-bounded classes

Py ~free graphs

Star-free graphs

Disk graphs are x-bounded.

Perfect graphs

But for many classes we do not know if they are y-bounded or not.

e Long hole-free graphs.
e Odd cycle-free graphs.
e Wheel-free graphs.
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x-bounded classes

Py ~free graphs

Star-free graphs

Disk graphs are x-bounded.

Perfect graphs

But for many classes we do not know if they are y-bounded or not.

e Long hole-free graphs.
e Odd cycle-free graphs.
e Wheel-free graphs.

For x-bounded classes of graphs, we try to find the best possible
function f.

Conjecture (Gyarfas '87)]

A graph with no copy of P, has chromatic number at most
Poly(k,w).
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@® Erdés-Hajnal
Erdds-Hajnal and x-boundedness
Paths and antipaths
Cycles and anticycles

8/25



Erdds-Hajnal and y-boundedness

Conjecture (Erdés Hajnal '89)]

A graph with no copy of Py has a clique or a stable set of size n°. ]

Folklore

If a class C of graphs satisfies x < w® then C has a polynomial
clique or stable set.
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Erdds-Hajnal and y-boundedness

Conjecture (Erdés Hajnal '89)]

A graph with no copy of Py has a clique or a stable set of size n°. ]

Folklore

If a class C of graphs satisfies x < w® then C has a polynomial
clique or stable set.

Proof :
e Either w > nae = OK.

° Orwgni = x < +/n.
So there is a stable set of size /n.
= Polynomial x-bounded stronger than Erd6s-Hajnal.
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Erdés-Hajnal conjecture

What is the value of max(w, «) if some graph H is forbidden ?

*—o a=n

A a > +/nlogn
e—e—e | (orw are at least \/n
e e | o orw are at least \/n
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Erdés-Hajnal conjecture

What is the value of max(w, «) if some graph H is forbidden ?

*—o a=n

A a > +/nlogn
e—e—e | (orw are at least \/n
e e | o orw are at least \/n

Conjecture (Erdés-Hajnal '89)]

For every H, there exists ¢ > 0 such that every H-free graph
satisfies max(a, w) > n°.
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On the importance of H

Lemma (Grimmet, Mc Diarmid ’75)]

Random graphs satisfy o, w = O(log n). ]
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Probability that a set of size 2log n is a clique ~ (%)2'°g2”
Number of such sets ~ n2logn = 2log’n

= Average number of cliques ~ 1.
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On the importance of H

Lemma (Grimmet, Mc Diarmid ’75)]

Random graphs satisfy o, w = O(log n). ]

Sketch of proof :

Probability that a set of size 2log n is a clique ~ (%)2'°g2”
Number of such sets ~ n2logn = 2log’n

= Average number of cliques ~ 1.

Lemma (Grimmet, Mc Diarmid ’75)]

log n

Random graphs satisfy x = O(=2-). ]
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Prime graphs

Theorem (Alon, Pach, Solymosi)]

If the Erdés-Hajnal conjecture holds for every prime graph H,
then it holds for every graph.
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Prime graphs

Theorem (Alon, Pach, Solymosi)]

If the Erdés-Hajnal conjecture holds for every prime graph H,
then it holds for every graph.

Interesting prime graphs on 4 vertices : Pj.

Interesting prime graphs on 5 vertices : bull, P5, Cs and their
complements.

e Bull : Chudnovsky, Safra '08.

e Ps, Cs : widely open.

= What happens if we enforce stronger conditions...
Idea : forbid a graph and its complement.
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Erdés-Hajnal for paths and antipaths

Theorem (Chudnovsky, Zwols '11)]

Graphs with no Ps nor complement of Pg have the Erdés-Hajnal
property.

Theorem (Chudnovsky, Seymour '12)]

Graphs with no Ps nor complement of P; have the Erdés-Hajnal
property.
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Erdés-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé ’13)]

Graphs with no Pk nor its complement have the Erdds-Hajnal
property.
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Erdés-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé ’13)]

Graphs with no Pk nor its complement have the Erdds-Hajnal
property.

Structure of the proof :
@ Extract a sparse or a dense linear subgraph.

@® The graph contains an empty (or complete) linear bipartite
subgraph.

© Linear empty bipartite graph = polynomial clique / stable set.

sparse = degree of each vertex < en.
dense = degree of each vertex > (1 — €)n.
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Erdés-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé ’13)]

Graphs with no Pk nor its complement have the Erdds-Hajnal
property.

Structure of the proof :
@ Extract a sparse or a dense linear subgraph.

@® The graph contains an empty (or complete) linear bipartite
subgraph.

© Linear empty bipartite graph = polynomial clique / stable set.

sparse = degree of each vertex < en.
dense = degree of each vertex > (1 — €)n.

Since the problem is the same up to complementation, we assume

that there is a linear sparse subgraph.
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Step 1 : sparse or dense subgraphs
Theorem (Radl '86)]

Every graph G satisfies one of the following conditions :
e G contains every graph on k vertices.

e G has a linear subset with average degree < e.

e G has a linear subset with average degree > 1 — ¢.
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Step 1 : sparse or dense subgraphs
Theorem (Radl '86)]

Every graph G satisfies one of the following conditions :
e G contains every graph on k vertices.

e G has a linear subset with average degree < e.

e G has a linear subset with average degree > 1 — ¢.

Sketch of the proof :

e Apply Szemerédi's regularity lemma.

Consider the graph of the partitions given by the Lemma.

e By Turdn, there is a large clique which is “homogeneous”, i.e.

which only contains ¢-regular pairs.

Every edge of this clique is of type : €, 1 — ¢, other.

By Ramsey, there is a monochromatic clique : the conclusion
depends on the color of the clique.
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Step 2 : adaptation of the Gyarfas’ proof

Method : Grow a path from any vertex u.
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e Otherwise a connected component X of G \ N(u) has size at
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Step 3 : empty bipartite graph implies
Erdés-Hajnal

Lemma (Alon et al., Fox and Pach)]

Every graph with an empty or a complete bipartite graph of linear
size contains a cograph of size n°.
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size contains a cograph of size n°.

Proof :
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e Find an empty or complete bipartite graph of size cn.

e Apply induction on each part for finding a cograph of size
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e Disjoint union or join : cograph of size 2(2)“.
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Step 3 : empty bipartite graph implies
Erdés-Hajnal

Lemma (Alon et al., Fox and Pach)]

Every graph with an empty or a complete bipartite graph of linear

size contains a cograph of size n°.

Proof :
Find a cograph of polynomial size.
e Find an empty or complete bipartite graph of size cn.

e Apply induction on each part for finding a cograph of size
(2)"
e Disjoint union or join : cograph of size 2(2)“.
= Every cograph has a clique or a stable set of size \/n.
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Erdés-Hajnal for cycles and anticycles

Conjecture (Gy3 rfés)]

Graphs with no cycle of length at least k are x-bounded. ]
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Erdés-Hajnal for cycles and anticycles

,iConjecture (Gya rfés)]

Graphs with no cycle of length at least k are x-bounded.

|\ J

,iTheorem (Bonamy, B., Thomassé '13)]

Graphs with no cycles of length at least k nor their complements
have the Erdés-Hajnal property.

Structure of the proof

@ Extract a sparse or a dense linear subgraph.

@® The graph contains an empty (or complete) linear bipartite

subgraph.

© Linear empty bipartite graph = polynomial clique / stable set.
Remark :
Steps 1 and 3 hold as in the case of paths. But Step 2 is more
involved...
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© Separate cliques and stable sets
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Clique vs Independent Set Problem

18/25



Clique vs Independent Set Problem :
Non-det. version
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Clique vs Independent Set Problem :
Non-det. version

P ! \
[ PPN
U =

G ®©
>

N7
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Clique vs Independent Set Problem

Find a CS-separator : a family of cuts separating all the pairs
Clique-Stable set.
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where m is the minimal size of a CS-separator.
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Clique vs Independent Set Problem

Find a CS-separator : a family of cuts separating all the pairs
Clique-Stable set.

Theorem (Yannakakis '91)]

Non-deterministic communication complexity = log m
where m is the minimal size of a CS-separator.
If m = n€, then complexity=0O(log n).

Idea : Covering the Clique - Stable Set matrix with monochromatic
rectangles.
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CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size O(n'°&"). ]
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CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size O(n'°&"). ]

Question

Does there exists for all graph G on n vertices a CS-separator of
size poly(n)?

Lower bound

There are some graphs with no CS-separator of size less than
2—e
n-"¢.
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Partial results : Random graphs

Theorem (B., Lagoutte, Thomassé)]

There is a O(n°t€) CS-separator for random graphs. ]
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Let p be the probability of an edge. = Draw randomly a partition
(A, B).
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Partial results : Random graphs

Theorem (B., Lagoutte, Thomassé)]

There is a O(n°t€) CS-separator for random graphs. ]

Proof :

Let p be the probability of an edge. = Draw randomly a partition
(A, B).

A vertex v is in A with probability p and is in B otherwise.

= Draw O(n®T€) such partitions.

W.h.p. there is a partition which separates C, S.

Let H be a split graph. There is a polynomial CS-separator for
H-free graphs.

Idea : O(|H|) vertices of the clique “simulate” the pair C,S.
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The case of Py, Pi-free graphs

Theorem
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23/25



The case of Py, Pi-free graphs

Theorem

There is a polynomial CS-separator for Py, Pj-free graphs. ]

Proof :
e There exists a linear empty (or a complete) bipartite graph
(A, B). Let C be the remaining vertices.
e Extend partitions of AU C by putting B on the stable set side.
e Extend partitions of BU C by putting A on the stable set side.

23/25



The case of Py, Pi-free graphs

Theorem

There is a polynomial CS-separator for Py, Pj-free graphs. ]

Proof :
e There exists a linear empty (or a complete) bipartite graph
(A, B). Let C be the remaining vertices.
e Extend partitions of AU C by putting B on the stable set side.
e Extend partitions of BU C by putting A on the stable set side.

23/25



The case of Py, Pi-free graphs

Theorem

There is a polynomial CS-separator for Py, Pj-free graphs. ]

Proof :
e There exists a linear empty (or a complete) bipartite graph
(A, B). Let C be the remaining vertices.
e Extend partitions of AU C by putting B on the stable set side.
e Extend partitions of BU C by putting A on the stable set side.

A
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Conclusion

Questions

Does Ps and/or Cs have the Erdés-Hajnal property ? ]

o Lokshtanov, Vatshelle, Villanger : find maximum stable set in
polynomial time in Ps-free graphs.
The proof is based on a “chordalisation” of the Ps-free graph.
e |t suffices to show that dense Ps-free graphs have a
polynomial clique or stable set.

,iConjecture (Gyarfas '87)]

Graphs with no long cycle are x-bounded.

Open even for triangle-free graphs.

Question

Find a class of graphs with linear empty bipartite graphs (for
every induced subgraph) but with no linear stable set.
L J  24/25




Thanks for your attention
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