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First definitions

• ω the maximum size of a clique.

• α the maximum size of a stable set.

• χ the chromatic number.

• Pk : induced path on k vertices.

• Ck : induced cycle on k vertices.

• class = class closed under induced subgraphs.

• n : number of vertices of the graph.
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Chromatic number and stable sets

χ ≥ n
α .

Observation

A coloring is a partition of the vertex set into independent sets.

At least n
α colors are necessary since each color class has size at

most α.
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Chromatic number and stable sets

Chromatic number at most c
= Partition into c stable sets

⇓
Fractional chromatic number number at most c

(⇒ Existence of a stable set of size n
c ).

⇓
Existence of an empty bipartite graph of size n

2c .

Question :
Reverse of these implications ?

• First implication : FALSE.

• Second implication : we only have a polynomial clique or a
polynomial stable set.
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Chromatic number and cliques
Observation : We always have ω ≤ χ.
⇒ Existence of a reverse function ?

NO !

Answer (Erdős)

Proof : Using the “probabilistic method”

• Put every edge with probability p = n−
2
3 .

• For every k , the average size of a stable set is less than n
2k .

• The average number of triangle is less than n
6 .

⇒ After the deletion of n/2 vertices there remain a triangle free
graph with small stable sets.

A class is χ-bounded if χ ≤ f (ω).

Definition (χ-bounded)

Example : Graphs with no Pk are χ-bounded (Gyárfás ’87).
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5/25



Chromatic number and cliques
Observation : We always have ω ≤ χ.
⇒ Existence of a reverse function ?

NO !

Answer (Erdős)
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Gyarfás proof (for triangle-free graphs)
Take a vertex u.

• A connected component X of G \N(u) has chromatic number
at least χ− 1.

• Take v a vertex of N(u) with a neighbor in X .

• Restrict the graph to v ∪ X and repeat.

χ − 1

u

v

When the clique is unbounded, the function becomes exponential...
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χ-bounded classes

• Pk -free graphs

• Star-free graphs

• Disk graphs are χ-bounded.

• Perfect graphs

But for many classes we do not know if they are χ-bounded or not.

• Long hole-free graphs.

• Odd cycle-free graphs.

• Wheel-free graphs.

For χ-bounded classes of graphs, we try to find the best possible
function f .

A graph with no copy of Pk has chromatic number at most
Poly(k , ω).

Conjecture (Gyárfás ’87)
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Erdős-Hajnal and χ-boundedness

A graph with no copy of Pk has a clique or a stable set of size nε.

Conjecture (Erdős Hajnal ’89)

If a class C of graphs satisfies χ ≤ ωc then C has a polynomial
clique or stable set.

Folklore

Proof :

• Either ω ≥ n
1
2c ⇒ OK.

• Or ω ≤ n
1
2c ⇒ χ ≤ √n.

So there is a stable set of size
√
n.

⇒ Polynomial χ-bounded stronger than Erdős-Hajnal.
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Erdős-Hajnal conjecture

What is the value of max(ω, α) if some graph H is forbidden ?

α = n

α ≥ √n log n

α or ω are at least
√
n

α or ω are at least
√
n

For every H, there exists ε > 0 such that every H-free graph
satisfies max(α, ω) ≥ nε.

Conjecture (Erdős-Hajnal ’89)
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On the importance of H

Random graphs satisfy α, ω = O(log n).

Lemma (Grimmet, Mc Diarmid ’75)

Sketch of proof :
Probability that a set of size 2 log n is a clique ≈ (12)2 log

2 n

Number of such sets ≈ n2 log n = 22 log
2 n.

⇒ Average number of cliques ≈ 1.

Random graphs satisfy χ = O( n
log n ).

Lemma (Grimmet, Mc Diarmid ’75)
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Prime graphs

If the Erdős-Hajnal conjecture holds for every prime graph H,
then it holds for every graph.

Theorem (Alon, Pach, Solymosi)

Interesting prime graphs on 4 vertices : P4. X

Interesting prime graphs on 5 vertices : bull, P5, C5 and their
complements.

• Bull : Chudnovsky, Safra ’08. X
• P5,C5 : widely open.

⇒ What happens if we enforce stronger conditions...
Idea : forbid a graph and its complement.
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Erdős-Hajnal for paths and antipaths

Graphs with no P5 nor complement of P6 have the Erdős-Hajnal
property.

Theorem (Chudnovsky, Zwols ’11)

Graphs with no P5 nor complement of P7 have the Erdős-Hajnal
property.

Theorem (Chudnovsky, Seymour ’12)
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Erdős-Hajnal for paths and antipaths

Graphs with no Pk nor its complement have the Erdős-Hajnal
property.

Theorem (B., Lagoutte, Thomassé ’13)

Structure of the proof :

1 Extract a sparse or a dense linear subgraph.

2 The graph contains an empty (or complete) linear bipartite
subgraph.

3 Linear empty bipartite graph ⇒ polynomial clique / stable set.

sparse = degree of each vertex ≤ εn.
dense = degree of each vertex ≥ (1− ε)n.

Since the problem is the same up to complementation, we assume
that there is a linear sparse subgraph.
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property.

Theorem (B., Lagoutte, Thomassé ’13)
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Structure of the proof :

1 Extract a sparse or a dense linear subgraph.

2 The graph contains an empty (or complete) linear bipartite
subgraph.

3 Linear empty bipartite graph ⇒ polynomial clique / stable set.

sparse = degree of each vertex ≤ εn.
dense = degree of each vertex ≥ (1− ε)n.

Since the problem is the same up to complementation, we assume
that there is a linear sparse subgraph.

13/25



Step 1 : sparse or dense subgraphs

Every graph G satisfies one of the following conditions :
• G contains every graph on k vertices.

• G has a linear subset with average degree ≤ ε.
• G has a linear subset with average degree ≥ 1− ε.

Theorem (Rödl ’86)

Sketch of the proof :

• Apply Szemerédi’s regularity lemma.

• Consider the graph of the partitions given by the Lemma.

• By Turán, there is a large clique which is “homogeneous”, i.e.
which only contains ε′-regular pairs.

• Every edge of this clique is of type : ε, 1− ε, other.

• By Ramsey, there is a monochromatic clique : the conclusion
depends on the color of the clique.
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Step 2 : adaptation of the Gyárfás’ proof
Method : Grow a path from any vertex u.

Consider a sparse graph. Take a vertex u.

• If no component of G \ N(u) has size at least (1− ε)n, then
conclude.

• Otherwise a connected component X of G \ N(u) has size at
least (1− ε)n.

• Take v a vertex of N(u) with a neighbor in X .
• Restrict the graph to v ∪ X and repeat.

u

v
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Step 3 : empty bipartite graph implies
Erdős-Hajnal

Every graph with an empty or a complete bipartite graph of linear
size contains a cograph of size nε.

Lemma (Alon et al., Fox and Pach)

Proof :
Find a cograph of polynomial size.

• Find an empty or complete bipartite graph of size cn.

• Apply induction on each part for finding a cograph of size
(nc )ε.

• Disjoint union or join : cograph of size 2(nc )ε.

⇒ Every cograph has a clique or a stable set of size
√
n.
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Erdős-Hajnal for cycles and anticycles

Graphs with no cycle of length at least k are χ-bounded.

Conjecture (Gyárfás)

Graphs with no cycles of length at least k nor their complements
have the Erdős-Hajnal property.

Theorem (Bonamy, B., Thomassé ’13)

Structure of the proof

1 Extract a sparse or a dense linear subgraph.
2 The graph contains an empty (or complete) linear bipartite

subgraph.
3 Linear empty bipartite graph ⇒ polynomial clique / stable set.

Remark :
Steps 1 and 3 hold as in the case of paths. But Step 2 is more
involved...
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Erdős-Hajnal for cycles and anticycles

Graphs with no cycle of length at least k are χ-bounded.

Conjecture (Gyárfás)
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Clique vs Independent Set Problem
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Clique vs Independent Set Problem :
Non-det. version
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Clique vs Independent Set Problem

Find a CS-separator : a family of cuts separating all the pairs
Clique-Stable set.

Goal

Non-deterministic communication complexity = logm
where m is the minimal size of a CS-separator.
If m = nc , then complexity=O(log n).

Theorem (Yannakakis ’91)

Idea : Covering the Clique - Stable Set matrix with monochromatic
rectangles.
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CL-IS problem : Bounds

There is a Clique-Stable separator of size O(nlog n).

Upper bound

Does there exists for all graph G on n vertices a CS-separator of
size poly(n) ?

Question

There are some graphs with no CS-separator of size less than
n2−ε.

Lower bound
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Partial results : Random graphs

There is a O(n5+ε) CS-separator for random graphs.

Theorem (B., Lagoutte, Thomassé)

Proof :
Let p be the probability of an edge. ⇒ Draw randomly a partition
(A,B).
A vertex v is in A with probability p and is in B otherwise.
⇒ Draw O(n5+ε) such partitions.
W.h.p. there is a partition which separates C , S .

Let H be a split graph. There is a polynomial CS-separator for
H-free graphs.

Theorem

Idea : O(|H|) vertices of the clique “simulate” the pair C,S.
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Proof :
Let p be the probability of an edge. ⇒ Draw randomly a partition
(A,B).
A vertex v is in A with probability p and is in B otherwise.
⇒ Draw O(n5+ε) such partitions.
W.h.p. there is a partition which separates C , S .

Let H be a split graph. There is a polynomial CS-separator for
H-free graphs.

Theorem

Idea : O(|H|) vertices of the clique “simulate” the pair C,S.

22/25



Partial results : Random graphs

There is a O(n5+ε) CS-separator for random graphs.

Theorem (B., Lagoutte, Thomassé)
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Theorem (B., Lagoutte, Thomassé)
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The case of Pk , Pk-free graphs

There is a polynomial CS-separator for Pk , Pk -free graphs.

Theorem

Proof :
• There exists a linear empty (or a complete) bipartite graph

(A,B). Let C be the remaining vertices.
• Extend partitions of A∪C by putting B on the stable set side.
• Extend partitions of B ∪C by putting A on the stable set side.

A

C

K

B

S
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Conclusion

Does P5 and/or C5 have the Erdős-Hajnal property ?

Questions

• Lokshtanov, Vatshelle, Villanger : find maximum stable set in
polynomial time in P5-free graphs.
The proof is based on a “chordalisation” of the P5-free graph.

• It suffices to show that dense P5-free graphs have a
polynomial clique or stable set.

Graphs with no long cycle are χ-bounded.

Conjecture (Gyárfás ’87)

Open even for triangle-free graphs.

Find a class of graphs with linear empty bipartite graphs (for
every induced subgraph) but with no linear stable set.

Question

24/25



Conclusion

Does P5 and/or C5 have the Erdős-Hajnal property ?
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Thanks for your attention
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