Cliques, stable sets and colorings

Nicolas Bousquet

(joint work with Marthe Bonamy, Aurélie Lagoutte and Stéphan Thomassé)

aboratoire nformatique Robotique Microélectronique Montpellier

2 Erdős-Hajnal

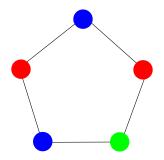
Erdős-Hajnal and χ -boundedness Paths and antipaths Cycles and anticycles

3 Separate cliques and stable sets

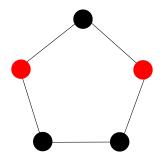
First definitions

- ω the maximum size of a clique.
- α the maximum size of a stable set.
- χ the chromatic number.
- P_k : induced path on k vertices.
- C_k : induced cycle on k vertices.
- class = class closed under induced subgraphs.
- *n* : number of vertices of the graph.

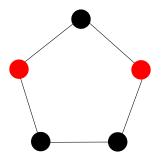
A coloring is a partition of the vertex set into independent sets.



A coloring is a partition of the vertex set into independent sets.



A coloring is a partition of the vertex set into independent sets. At least $\frac{n}{\alpha}$ colors are necessary since each color class has size at most α .



Chromatic number at most c= Partition into c stable sets

```
Chromatic number at most c
= Partition into c stable sets
\downarrow\downarrow
Fractional chromatic number number at most c
(\Rightarrow Existence of a stable set of size \frac{n}{c}).
```

```
Chromatic number at most c

= Partition into c stable sets

\downarrow \downarrow

Fractional chromatic number number at most c

(\Rightarrow Existence of a stable set of size \frac{n}{c}).

\downarrow \downarrow

Existence of an empty bipartite graph of size \frac{n}{2c}.
```

```
Chromatic number at most c

= Partition into c stable sets

\downarrow \downarrow

Fractional chromatic number number at most c

(\Rightarrow Existence of a stable set of size \frac{n}{c}).

\downarrow \downarrow

Existence of an empty bipartite graph of size \frac{n}{2c}.
```

Question :

Reverse of these implications?

- First implication : FALSE.
- Second implication : we only have a polynomial clique or a polynomial stable set.

Observation : We always have $\omega \leq \chi$.

 \Rightarrow Existence of a reverse function?

Observation : We always have $\omega \leq \chi$.

 \Rightarrow Existence of a reverse function?

Answer (Erdős)

NO !

Proof : Using the "probabilistic method"

Observation : We always have $\omega \leq \chi$.

 \Rightarrow Existence of a reverse function?

Answer (Erdős)

NO !

Proof : Using the "probabilistic method"

- Put every edge with probability $p = n^{-\frac{2}{3}}$.
- For every k, the average size of a stable set is less than $\frac{n}{2k}$.
- The average number of triangle is less than $\frac{n}{6}$.

Observation : We always have $\omega \leq \chi$.

 \Rightarrow Existence of a reverse function?

Answer (Erdős)

NO !

Proof : Using the "probabilistic method"

- Put every edge with probability $p = n^{-\frac{2}{3}}$.
- For every k, the average size of a stable set is less than $\frac{n}{2k}$.
- The average number of triangle is less than ⁿ/₆.

 \Rightarrow After the deletion of n/2 vertices there remain a triangle free graph with small stable sets.

Observation : We always have $\omega \leq \chi$.

 \Rightarrow Existence of a reverse function?

Answer (Erdős)

NO !

Proof : Using the "probabilistic method"

- Put every edge with probability $p = n^{-\frac{2}{3}}$.
- For every k, the average size of a stable set is less than $\frac{n}{2k}$.
- The average number of triangle is less than ⁿ/₆.

 \Rightarrow After the deletion of n/2 vertices there remain a triangle free graph with small stable sets.

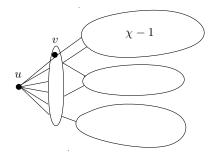
Definition (χ -bounded)

A class is χ -bounded if $\chi \leq f(\omega)$.

Example : Graphs with no P_k are χ -bounded (Gyárfás '87).

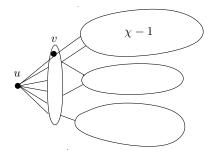
Take a vertex u.

 A connected component X of G \ N(u) has chromatic number at least χ − 1.



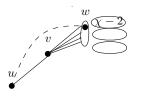
Take a vertex u.

- A connected component X of G \ N(u) has chromatic number at least χ − 1.
- Take v a vertex of N(u) with a neighbor in X.



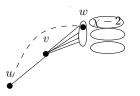
Take a vertex u.

- A connected component X of G \ N(u) has chromatic number at least χ − 1.
- Take v a vertex of N(u) with a neighbor in X.
- Restrict the graph to $v \cup X$ and repeat.



Take a vertex u.

- A connected component X of G \ N(u) has chromatic number at least χ − 1.
- Take v a vertex of N(u) with a neighbor in X.
- Restrict the graph to $v \cup X$ and repeat.



When the clique is unbounded, the function becomes exponential...

$\chi\text{-}\mathsf{bounded}$ classes

- P_k -free graphs
- Star-free graphs
- Disk graphs
- Perfect graphs

are χ -bounded.

$\chi\text{-}\mathsf{bounded}$ classes

- *P_k*-free graphs
- Star-free graphs
- Disk graphs

are χ -bounded.

Perfect graphs

But for many classes we do not know if they are χ -bounded or not.

- Long hole-free graphs.
- Odd cycle-free graphs.
- Wheel-free graphs.

χ -bounded classes

- *P_k*-free graphs
- Star-free graphs
- Disk graphs

are χ -bounded.

Perfect graphs

But for many classes we do not know if they are χ -bounded or not.

- Long hole-free graphs.
- Odd cycle-free graphs.
- Wheel-free graphs.

For χ -bounded classes of graphs, we try to find the best possible function f.

Conjecture (Gyárfás '87)

A graph with no copy of P_k has chromatic number at most $Poly(k, \omega)$.

1 χ -bounded classes

2 Erdős-Hajnal

Erdős-Hajnal and χ -boundedness Paths and antipaths Cycles and anticycles

3 Separate cliques and stable sets

Erdős-Hajnal and χ -boundedness

Conjecture (Erdős Hajnal '89)

A graph with no copy of P_k has a clique or a stable set of size n^{ϵ} .

Folklore

If a class ${\mathcal C}$ of graphs satisfies $\chi \leq \omega^c$ then ${\mathcal C}$ has a polynomial clique or stable set.

Erdős-Hajnal and χ -boundedness

Conjecture (Erdős Hajnal '89)

A graph with no copy of P_k has a clique or a stable set of size n^{ϵ} .

Folklore

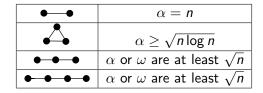
If a class $\mathcal C$ of graphs satisfies $\chi \leq \omega^c$ then $\mathcal C$ has a polynomial clique or stable set.

Proof :

- Either $\omega \ge n^{\frac{1}{2c}} \Rightarrow OK$. • Or $\omega \le n^{\frac{1}{2c}} \Rightarrow \chi \le \sqrt{n}$.
- Or $\omega \le n^{\frac{1}{2c}} \Rightarrow \chi \le \sqrt{n}$. So there is a stable set of size \sqrt{n} .
- \Rightarrow Polynomial χ -bounded stronger than Erdős-Hajnal.

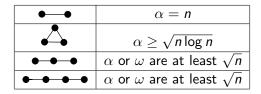
Erdős-Hajnal conjecture

What is the value of $max(\omega, \alpha)$ if some graph H is forbidden?



Erdős-Hajnal conjecture

What is the value of $max(\omega, \alpha)$ if some graph H is forbidden?



Conjecture (Erdős-Hajnal '89)

For every H, there exists $\epsilon > 0$ such that every H-free graph satisfies $\max(\alpha, \omega) \ge n^{\epsilon}$.

On the importance of H

Lemma (Grimmet, Mc Diarmid '75)

Random graphs satisfy $\alpha, \omega = \mathcal{O}(\log n)$.

On the importance of H

Lemma (Grimmet, Mc Diarmid '75)

Random graphs satisfy $\alpha, \omega = \mathcal{O}(\log n)$.

Sketch of proof :

Probability that a set of size $2 \log n$ is a clique $\approx (\frac{1}{2})^{2 \log^2 n}$ Number of such sets $\approx n^{2 \log n} = 2^{2 \log^2 n}$. \Rightarrow Average number of cliques ≈ 1 .

On the importance of H

Lemma (Grimmet, Mc Diarmid '75)

Random graphs satisfy $\alpha, \omega = \mathcal{O}(\log n)$.

Sketch of proof :

Probability that a set of size $2 \log n$ is a clique $\approx (\frac{1}{2})^{2 \log^2 n}$ Number of such sets $\approx n^{2 \log n} = 2^{2 \log^2 n}$. \Rightarrow Average number of cliques ≈ 1 .

Lemma (Grimmet, Mc Diarmid '75)

Random graphs satisfy $\chi = \mathcal{O}(\frac{n}{\log n})$.

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then it holds for every graph.

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then it holds for every graph.

Interesting prime graphs on 4 vertices : P_4 . \checkmark

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then it holds for every graph.

Interesting prime graphs on 4 vertices : P_4 . \checkmark

Interesting prime graphs on 5 vertices : bull, P_5 , C_5 and their complements.

- Bull : Chudnovsky, Safra '08. √
- *P*₅, *C*₅ : widely open.

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then it holds for every graph.

Interesting prime graphs on 4 vertices : P_4 . \checkmark

Interesting prime graphs on 5 vertices : bull, P_5 , C_5 and their complements.

- Bull : Chudnovsky, Safra '08. √
- *P*₅, *C*₅ : widely open.

 \Rightarrow What happens if we enforce stronger conditions... **Idea :** forbid a graph and its complement.

Erdős-Hajnal for paths and antipaths

Theorem (Chudnovsky, Zwols '11)

Graphs with no P_5 nor complement of P_6 have the Erdős-Hajnal property.

Theorem (Chudnovsky, Seymour '12)

Graphs with no P_5 nor complement of P_7 have the Erdős-Hajnal property.

Erdős-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé '13)

Graphs with no P_k nor its complement have the Erdős-Hajnal property.

Erdős-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé '13)

Graphs with no P_k nor its complement have the Erdős-Hajnal property.

Structure of the proof :

- 1 Extract a sparse or a dense linear subgraph.
- 2 The graph contains an empty (or complete) linear bipartite subgraph.
- **3** Linear empty bipartite graph \Rightarrow polynomial clique / stable set.

sparse = degree of each vertex $\leq \epsilon n$. dense = degree of each vertex $\geq (1 - \epsilon)n$.

Erdős-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé '13)

Graphs with no P_k nor its complement have the Erdős-Hajnal property.

Structure of the proof :

- 1 Extract a sparse or a dense linear subgraph.
- 2 The graph contains an empty (or complete) linear bipartite subgraph.
- **3** Linear empty bipartite graph \Rightarrow polynomial clique / stable set.

sparse = degree of each vertex $\leq \epsilon n$. dense = degree of each vertex $\geq (1 - \epsilon)n$.

Since the problem is the same up to complementation, we assume that there is a linear sparse subgraph.

Step 1 : sparse or dense subgraphs

Theorem (Rödl '86)

Every graph G satisfies one of the following conditions :

- G contains every graph on k vertices.
- G has a linear subset with average degree $\leq \epsilon$.
- G has a linear subset with average degree $\geq 1 \epsilon$.

Step 1 : sparse or dense subgraphs Theorem (Rödl '86)

Every graph G satisfies one of the following conditions :

- G contains every graph on k vertices.
- G has a linear subset with average degree $\leq \epsilon$.
- G has a linear subset with average degree $\geq 1 \epsilon$.

Sketch of the proof :

- Apply Szemerédi's regularity lemma.
- Consider the graph of the partitions given by the Lemma.
- By Turán, there is a large clique which is "homogeneous", i.e. which only contains ϵ' -regular pairs.
- Every edge of this clique is of type : ϵ , 1ϵ , other.
- By Ramsey, there is a monochromatic clique : the conclusion depends on the color of the clique.

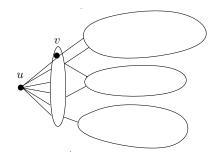
Step 2 : adaptation of the Gyárfás' proof Method : Grow a path from any vertex *u*.

Step 2 : adaptation of the Gyárfás' proof

Method : Grow a path from any vertex *u*.

Consider a sparse graph. Take a vertex u.

• If no component of $G \setminus N(u)$ has size at least $(1 - \epsilon)n$, then conclude.

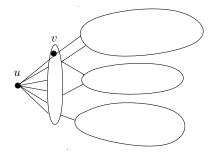


Step 2 : adaptation of the Gyárfás' proof

Method : Grow a path from any vertex *u*.

Consider a sparse graph. Take a vertex *u*.

- If no component of $G \setminus N(u)$ has size at least $(1 \epsilon)n$, then conclude.
- Otherwise a connected component X of $G \setminus N(u)$ has size at least $(1 \epsilon)n$.
- Take v a vertex of N(u) with a neighbor in X.

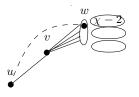


Step 2 : adaptation of the Gyárfás' proof

Method : Grow a path from any vertex *u*.

Consider a sparse graph. Take a vertex *u*.

- If no component of $G \setminus N(u)$ has size at least $(1 \epsilon)n$, then conclude.
- Otherwise a connected component X of G \ N(u) has size at least (1 − ε)n.
- Take v a vertex of N(u) with a neighbor in X.
- Restrict the graph to $v \cup X$ and repeat.



Step 3 : empty bipartite graph implies Erdős-Hajnal

Lemma (Alon et al., Fox and Pach)

Every graph with an empty or a complete bipartite graph of linear size contains a cograph of size n^{ϵ} .

Step 3 : empty bipartite graph implies Erdős-Hajnal

Lemma (Alon et al., Fox and Pach)

Every graph with an empty or a complete bipartite graph of linear size contains a cograph of size n^{ϵ} .

Proof :

Find a cograph of polynomial size.

- Find an empty or complete bipartite graph of size *cn*.
- Apply induction on each part for finding a cograph of size $(\frac{n}{c})^{\epsilon}$.
- Disjoint union or join : cograph of size $2(\frac{n}{c})^{\epsilon}$.

Step 3 : empty bipartite graph implies Erdős-Hajnal

Lemma (Alon et al., Fox and Pach)

Every graph with an empty or a complete bipartite graph of linear size contains a cograph of size n^{ϵ} .

Proof :

Find a cograph of polynomial size.

- Find an empty or complete bipartite graph of size *cn*.
- Apply induction on each part for finding a cograph of size $(\frac{n}{c})^{\epsilon}$.
- Disjoint union or join : cograph of size $2(\frac{n}{c})^{\epsilon}$.
- \Rightarrow Every cograph has a clique or a stable set of size \sqrt{n} .

Erdős-Hajnal for cycles and anticycles

Conjecture (Gyárfás)

Graphs with no cycle of length at least k are χ -bounded.

Erdős-Hajnal for cycles and anticycles

Conjecture (Gyárfás)

Graphs with no cycle of length at least k are χ -bounded.

Theorem (Bonamy, B., Thomassé '13)

Graphs with no cycles of length at least k nor their complements have the Erdős-Hajnal property.

Erdős-Hajnal for cycles and anticycles

Conjecture (Gyárfás)

Graphs with no cycle of length at least k are χ -bounded.

Theorem (Bonamy, B., Thomassé '13)

Graphs with no cycles of length at least k nor their complements have the Erdős-Hajnal property.

Structure of the proof

- 1 Extract a sparse or a dense linear subgraph.
- 2 The graph contains an empty (or complete) linear bipartite subgraph.
- **3** Linear empty bipartite graph \Rightarrow polynomial clique / stable set.

Remark :

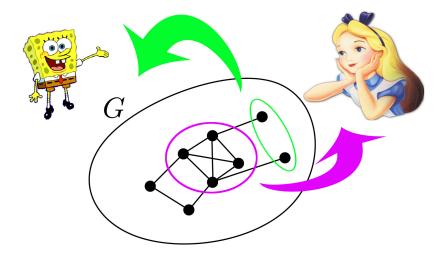
Steps 1 and 3 hold as in the case of paths. But Step 2 is more involved...

1 χ -bounded classes

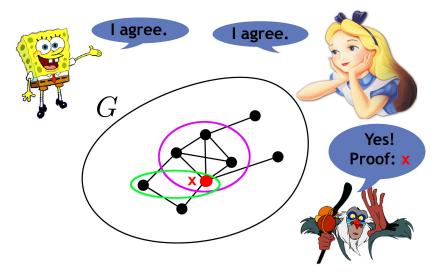
2 Erdős-Hajnal

Erdős-Hajnal and χ -boundedness Paths and antipaths Cycles and anticycles

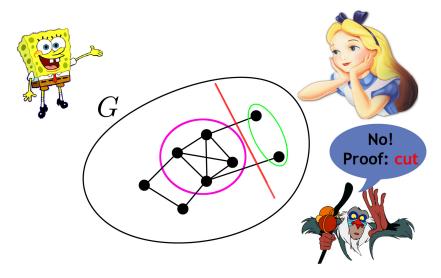
3 Separate cliques and stable sets



Clique vs Independent Set Problem : Non-det. version



Clique vs Independent Set Problem : Non-det. version



Goal

Find a CS-separator : a family of cuts separating all the pairs Clique-Stable set.

Goal

Find a CS-separator : a family of cuts separating all the pairs Clique-Stable set.

Theorem (Yannakakis '91)

Non-deterministic communication complexity = log m where m is the minimal size of a CS-separator. If $m = n^c$, then complexity= $O(\log n)$.

Goal

Find a CS-separator : a family of cuts separating all the pairs Clique-Stable set.

Theorem (Yannakakis '91)

Non-deterministic communication complexity = log m where m is the minimal size of a CS-separator. If $m = n^c$, then complexity= $O(\log n)$.

Idea : Covering the Clique - Stable Set matrix with monochromatic rectangles.

CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size $\mathcal{O}(n^{\log n})$.

CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size $\mathcal{O}(n^{\log n})$.

Question

Does there exists for all graph G on n vertices a CS-separator of size poly(n)?

CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size $\mathcal{O}(n^{\log n})$.

Question

Does there exists for all graph G on n vertices a CS-separator of size poly(n)?

Lower bound There are some graphs with no CS-separator of size less than $n^{2-\epsilon}$.

Theorem (B., Lagoutte, Thomassé)

There is a $\mathcal{O}(n^{5+\epsilon})$ CS-separator for random graphs.

Theorem (B., Lagoutte, Thomassé)

There is a $\mathcal{O}(n^{5+\epsilon})$ CS-separator for random graphs.

Proof :

Let p be the probability of an edge. \Rightarrow Draw randomly a partition (A, B).

A vertex v is in A with probability p and is in B otherwise.

 \Rightarrow Draw $\mathcal{O}(n^{5+\epsilon})$ such partitions.

W.h.p. there is a partition which separates C, S.

Theorem (B., Lagoutte, Thomassé)

There is a $\mathcal{O}(n^{5+\epsilon})$ CS-separator for random graphs.

Proof :

Let p be the probability of an edge. \Rightarrow Draw randomly a partition (A, B).

A vertex v is in A with probability p and is in B otherwise.

 \Rightarrow Draw $\mathcal{O}(n^{5+\epsilon})$ such partitions.

W.h.p. there is a partition which separates C, S.

Theorem

Let H be a split graph. There is a polynomial CS-separator for H-free graphs.

Theorem (B., Lagoutte, Thomassé)

There is a $\mathcal{O}(n^{5+\epsilon})$ CS-separator for random graphs.

Proof :

Let p be the probability of an edge. \Rightarrow Draw randomly a partition (A, B).

A vertex v is in A with probability p and is in B otherwise.

 \Rightarrow Draw $\mathcal{O}(n^{5+\epsilon})$ such partitions.

W.h.p. there is a partition which separates C, S.

Theorem

Let H be a split graph. There is a polynomial CS-separator for H-free graphs.

Idea : $\mathcal{O}(|\mathcal{H}|)$ vertices of the clique "simulate" the pair C,S.

Theorem

There is a polynomial CS-separator for P_k , $\overline{P_k}$ -free graphs.

Theorem

There is a polynomial CS-separator for P_k , $\overline{P_k}$ -free graphs.

Proof :

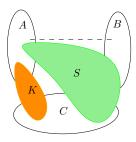
- There exists a linear empty (or a complete) bipartite graph (*A*, *B*). Let *C* be the remaining vertices.
- Extend partitions of $A \cup C$ by putting B on the stable set side.
- Extend partitions of $B \cup C$ by putting A on the stable set side.

Theorem

There is a polynomial CS-separator for P_k , $\overline{P_k}$ -free graphs.

Proof :

- There exists a linear empty (or a complete) bipartite graph (*A*, *B*). Let *C* be the remaining vertices.
- Extend partitions of $A \cup C$ by putting B on the stable set side.
- Extend partitions of $B \cup C$ by putting A on the stable set side.

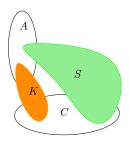


Theorem

There is a polynomial CS-separator for P_k , $\overline{P_k}$ -free graphs.

Proof :

- There exists a linear empty (or a complete) bipartite graph (*A*, *B*). Let *C* be the remaining vertices.
- Extend partitions of $A \cup C$ by putting B on the stable set side.
- Extend partitions of $B \cup C$ by putting A on the stable set side.



1 χ -bounded classes

2 Erdős-Hajnal

Erdős-Hajnal and χ -boundedness Paths and antipaths Cycles and anticycles

3 Separate cliques and stable sets

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

 Lokshtanov, Vatshelle, Villanger : find maximum stable set in polynomial time in P₅-free graphs. The proof is based on a "chordalisation" of the P₅-free graph.

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

- Lokshtanov, Vatshelle, Villanger : find maximum stable set in polynomial time in P₅-free graphs. The proof is based on a "chordalisation" of the P₅-free graph.
- It suffices to show that dense *P*₅-free graphs have a polynomial clique or stable set.

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

- Lokshtanov, Vatshelle, Villanger : find maximum stable set in polynomial time in P₅-free graphs. The proof is based on a "chordalisation" of the P₅-free graph.
- It suffices to show that dense P₅-free graphs have a polynomial clique or stable set.

Conjecture (Gyárfás '87)

Graphs with no long cycle are χ -bounded.

Open even for triangle-free graphs.

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

- Lokshtanov, Vatshelle, Villanger : find maximum stable set in polynomial time in P₅-free graphs. The proof is based on a "chordalisation" of the P₅-free graph.
- It suffices to show that dense P₅-free graphs have a polynomial clique or stable set.

Conjecture (Gyárfás '87)

Graphs with no long cycle are χ -bounded.

Open even for triangle-free graphs.

Question

Find a class of graphs with linear empty bipartite graphs (for every induced subgraph) but with no linear stable set.

Thanks for your attention