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A first example

• Realocate the frequencies of the antennas.

• Condition : no interference at any time.

• Only one antenna reallocation at a time.
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Formally

• Vertices : Proper k-colorings of G .

• Create an edge between any two k-colorings which differ
on exactly one vertex.

Definition (k-Reconfiguration graph Ck(G ) of G )

All along the talk k denotes the number of colors.

Remark
Two colorings equivalent up to color permutation are distinct.

6=
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Main questions

• Given two colorings, can we transform the one into the other ?
Given two vertices of the reconfiguration graph, are they in
the same connected component ?

• Can we always transform a coloring into any other ?
Is the reconfiguration graph connected ?

• If the answer is positive, how many steps do we need ?
What is the diameter of the reconfiguration graph ?

• Can we effiently find a short transformation (from an
algorithmic point of view) ?
Can we find a path between two vertices of the
reconfiguration graph in polynomial time ?
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Anti-ferromagnetic Potts Model

A spin configuration of G = (V ,E ) is a function
σ : V → {1, . . . , k}. (a graph coloring)

H(σ) is the number of monochromatic edges.

The Gibbs measure at temperature T is

νT (σ) =
1

λ
· e−

H(σ)
T

where λ is a normalization constant.

νT is a distribution measure of a k-state Potts model.

Definition

Limit of a k-state Potts model when T → 0.

Definition (Glauber dynamics)

In Glauber dynamics : only proper coloring have positive measure.
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Evolution of Glauber dynamics

• At any time t, the state of any spin is modified under some
probability rule (e.g. exponential rule).

• The probability that a spin state becomes j is
1

number of states that does not appear in the neighborhood of the spin .

Proba = 0 Proba = 1/2 Proba = 1/2
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Mixing time

Given a Markov chain :

• Do we converge to the stationary distribution ? i.e. are we
ergodic ?

• What is the speed of this convergence ? i.e. what is the mixing
time ?

What is the link with recoloring ?

If the diameter of the reconfiguration graph is D then the mixing
time is at least 2 · D.

Theorem
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Main question in Theoretical Physics

When is G c(∆)-mixing in polynomial time ?

Partial results :

• The chain is not ergodic if c = ∆ + 1 (e.g. cliques).

• Best upper bound : c = 11
6 ∆ (Vigoda).

If c ≥ ∆ + 2, the graph is c-mixing in polynomial time.

Conjecture
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Main question in CS

The (k + 2)-recoloring diameter of any k-degenerate graph is
O(n2).

Conjecture (Cereceda)

A graph is k-degenerate if there exists an order v1, . . . , vn such
that for every i , vi has at most k neighbors after it in the order.

The (k + 2)-recoloring diameter of any k-degenerate graph is at
most n · (k + 1)n.

Theorem (Cereceda ’07)
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Proof scheme

The (k + 2)-recoloring diameter of any k-degenerate graph is at
most n · (k + 1)n.

Theorem (Cereceda ’07)

Any (k + 2)-coloring can be transformed into any other by reco-
loring at most (k + 1)n times each vertex.

Lemma

• Delete a vertex of degree at most k.
• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.
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Number of recolorings ?

When do we need to recolor the leftmost vertex ?

• Each time a neighbor is recolored.

(k + 1)n−1

(k + 1)n−1

(k + 1)n−1

⇒ k · (k + 1)n−1 recolorings.

• In the last round : +1 recoloring.

The total number of recolorings is at most (k + 1)n.
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On specific classes of graphs

The (k +2)-reconfiguration graph of any k-degenerate graph has
diameter at most O(n2).

Conjecture (Cereceda)

Known on a few classes of graphs :

• Chordal graphs (Bonamy, Johnson, Lignos, Patel,
Paulusma ’11).

• Bounded treewidth graphs (Bonamy, B.’13).

• Cographs (Bonamy, B.’14).

• Distance hereditary graphs (Bonamy, B.’14).

The quadratic lower bound is tight, e.g. on paths.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma ’11)
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Chordal graphs
A chordal graph is a graph without chordless cycle of size ≥ 4.

The diameter of the k-reconfiguration graph of any chordal graph
is O(n2) if k ≥ χ(G ) + 1.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma ’11)

Remark : χ(G ) = degeneracy +1.

Proof :

• Select a vertex whose neighborhood is a clique.

•
• Cliques are k-mixing in O(n).
• We can find the two vertices that have to be identified using

the clique-tree.
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Bounded treewidth graphs

The (tw(G )+2)-reconfiguration graph of G has diameter O(n2).

Theorem (Bonamy, B.)

Structure of the proof :

• G has a chordal super-graph where every maximal clique is of
size tw(G ) + 1.

• Transform the coloring into a proper coloring of the chordal
super-graph.

• We can recolor chordal graphs !

Key argument :

• Peel the graph according to a tree decomposition.

• “Interactions” between remaining vertices and deleted vertices
are reduced to the vertices of a leaf of a tree decomposition.
⇒ Recoloring a vertex has a limited impact on the graph.
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Beyond tree decompositions

Problem : All these proofs are based on tree-decompositions.

⇒ What about planar graphs ?

If the maximum average degree of G is at most d − ε then the
diameter of the (d + 1)-reconfiguration graph is polynomial.

Theorem (B., Perarnau ’14)

Maximum average degree = maximum density of a subgraph of G .

mad(G ) = max
S⊆V

(number of edges induced by S

|S |
)
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General framework

We want to recolor the graph from α to β.

General framework :

• Transform α into a χ(G ) coloring.

• Transform β into a χ(G ) coloring.

• Transform one χ(G ) coloring into the
other.

Standard method :

• Eliminate one color from the current coloring.

• Use this additional color to color a well-chosen stable set.

• Apply induction with χ(G )− 1.
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Low degree partition

If G has maximum average degree at most d − ε then a linear
fraction of the vertices has degree at most d − 1.

Lemma

We can partition the vertex set of every graph of mad < d − ε
into O(log n) sets V1, . . . ,Vj such that for every i and every
vi ∈ Vi :

|N(vi ) ∩
j⋃

k=i

Vi | ≤ d − 1

Corollary (layer partition)

V1

V3

V2
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Eliminate a color (idea)

• Select a vertex of color • in the largest possible layer.

• Recolor it without recoloring any vertex of a largest (or equal)
layer.

• Repeat until there is a vertex of color •.
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Counting trick

This recoloring process eliminates color • in a polynomial number
of steps.

Lemma

How much recolorings do we need to recolor the vertex • ?

• The degree of a vertex can be arbitrarily large ⇒ we cannot
extract any bound a priori.

• But each vertex has degree at most (d − 1) in larger layers.
So its recoloring is asked a bounded number of times.
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Counting trick (2)

• So if a vertex • is recolored...

• ... it is “called” by another vertex which has to be recolored...

• ... itself “called” by another vertex which has to be recolored...

• ... until we find the vertex •.
Number of recolorings of • :

• A vertex can be called by at most d − 1 vertices.

• There are log n layers.

⇒ k log n = Poly(n) recolorings for •.

Since this equation holds for every vertex, the total number of
recoloring needed to modify the color of • is polynomial.
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Revolution or evolution ?
Treewidth proof :

• Select a small degree vertex
v and delete it.

• To extend a recoloring
sequence of G − v to G , for
each vertex has to be
recolored a small number of
times.

• The set of recolorings is
limited since a property has
to be satisfied for each
vertex.

• Proof based on a tree
decomposition :
⇒ Smaller classes, better
bounds.

Max. Average degree proof :

• Select a (high degree)
vertex v and keep it.

• To recolor v , we need to
perform a polynomial
number of recolorings in
total.
.

• Consequence : The set of
recolorings is wider since a
global property has to be
satisfied.

• Proof based on a
decomposition ordering :
⇒ Larger classes, weaker
bounds.
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Link with planar graphs ?

The maximum average degree of planar graphs is < 6.

The k-recoloring diameter of any planar graph is polynomial if
k ≥ 8.

Corollary (B., Perarnau ’14)

Remark :
Cereceda’s conjecture claims that it must be true for k = 7.

• There exist planar graphs such that
mad(G )→ 6.

• We need mad(G ) < 6− ε to obtain this layer
partition.
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Lower bound

Similarly, we can show

The k-recoloring diameter of any triangle-free planar graph is
polynomial if k ≥ 6.

Corollary (B., Perarnau ’14)
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Maximum degree
We know that :

• If k = ∆ + 2, recoloring is always possible (degen. ≤ ∆).

• If k = ∆ + 1, recoloring may not be possible (e.g. cliques).

But in practice, if we take two colorings, we can recolor the
one into the other right ?

A coloring is frozen if none of the vertices of the graph can be
recolored.

Definition (frozen coloring)

One can recolor any non-frozen (∆ + 1)-coloring of G into any
other (in O(n2) steps).

Theorem (Feghali, Johnson, Paulusma ’14)
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Structure of the (∆ + 1)-colorings
So the (∆ + 1)-reconfiguration graph consists in :

• (Maybe) one component of size at least two.

• And frozen colorings (i.e. isolated vertices).

What we imagine : A huge component and a few frozen colorings.

The number of non-frozen coloring is exponentially larger (in
n −∆) compared to the number of frozen colorings.

Theorem (B., Perarnau ’15)

If two (∆ + 1) colorings are chosen at random, then one can
recolor the first into the second with probability→ 1 if n→ +∞.

Corollary
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Conclusion

• Solve the Cereceda conjecture.

• Extend / improve recoloring results to other graph classes.

• Existence of a k-reconfiguration graph with bounded but
exponential diameter.

• When does the diameter become linear ?

Other types of reconfiguration problems :

• Stable sets : applications to discrete fields in
mathematics.

• Recolorings via Kempe chains : natural
extension of recolorings.

Thanks for your attention !
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