Recoloring sparse graphs

Nicolas Bousquet

Graphes @ Lyon

- Realocate the frequencies of the antennas.
- Condition : no interference at any time.
- Only one antenna reallocation at a time.

- Realocate the frequencies of the antennas.
- Condition : no interference at any time.
- Only one antenna reallocation at a time.

- Realocate the frequencies of the antennas.
- Condition : no interference at any time.
- Only one antenna reallocation at a time.

Formally

Definition (k-Reconfiguration graph $C_k(G)$ of G)

- Vertices : Proper *k*-colorings of *G*.
- Create an edge between any two *k*-colorings which differ on exactly one vertex.

All along the talk k denotes the number of colors.

Formally

Definition (*k*-Reconfiguration graph $C_k(G)$ of G)

- Vertices : Proper *k*-colorings of *G*.
- Create an edge between any two *k*-colorings which differ on exactly one vertex.

All along the talk k denotes the number of colors.

Remark

Two colorings equivalent up to color permutation are distinct.

• Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?

- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- Can we always transform a coloring into any other? Is the reconfiguration graph connected?

- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- Can we always transform a coloring into any other? Is the reconfiguration graph connected?
- If the answer is positive, how many steps do we need? What is the diameter of the reconfiguration graph?

- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- Can we always transform a coloring into any other? Is the reconfiguration graph connected?
- If the answer is positive, how many steps do we need? What is the diameter of the reconfiguration graph?
- Can we effiently find a short transformation (from an algorithmic point of view)?

Can we find a path between two vertices of the reconfiguration graph in polynomial time?

A spin configuration of G = (V, E) is a function $\sigma : V \rightarrow \{1, \dots, k\}$. (a graph coloring) $H(\sigma)$ is the number of monochromatic edges.

A spin configuration of G = (V, E) is a function σ : $V \rightarrow \{1, ..., k\}$. (a graph coloring) $H(\sigma)$ is the number of monochromatic edges. The Gibbs measure at temperature T is

$$u_T(\sigma) = rac{1}{\lambda} \cdot e^{-rac{H(\sigma)}{T}}$$

where λ is a normalization constant.

Definition

A spin configuration of G = (V, E) is a function $\sigma : V \to \{1, \dots, k\}$. (a graph coloring) $H(\sigma)$ is the number of monochromatic edges. The Gibbs measure at temperature T is

$$u_{T}(\sigma) = \frac{1}{\lambda} \cdot e^{-\frac{H(\sigma)}{T}}$$

where λ is a normalization constant.

 ν_T is a distribution measure of a *k*-state Potts model.

Definition

A spin configuration of G = (V, E) is a function $\sigma : V \to \{1, \dots, k\}$. (a graph coloring) $H(\sigma)$ is the number of monochromatic edges. The Gibbs measure at temperature T is

$$u_{T}(\sigma) = \frac{1}{\lambda} \cdot e^{-\frac{H(\sigma)}{T}}$$

where λ is a normalization constant.

 $\nu_{\mathcal{T}}$ is a distribution measure of a k-state Potts model.

Definition (Glauber dynamics)

Limit of a k-state Potts model when $T \rightarrow 0$.

In Glauber dynamics : only proper coloring have positive measure.

- At any time *t*, the state of any spin is modified under some probability rule (e.g. exponential rule).
- The probability that a spin state becomes *j* is

- At any time *t*, the state of any spin is modified under some probability rule (e.g. exponential rule).
- The probability that a spin state becomes *j* is

- At any time *t*, the state of any spin is modified under some probability rule (e.g. exponential rule).
- The probability that a spin state becomes *j* is

- At any time *t*, the state of any spin is modified under some probability rule (e.g. exponential rule).
- The probability that a spin state becomes *j* is

- At any time *t*, the state of any spin is modified under some probability rule (e.g. exponential rule).
- The probability that a spin state becomes *j* is

- At any time *t*, the state of any spin is modified under some probability rule (e.g. exponential rule).
- The probability that a spin state becomes *j* is

Mixing time

Given a Markov chain :

- Do we converge to the stationary distribution ? i.e. are we ergodic ?
- What is the speed of this convergence ? i.e. what is the mixing time ?

Mixing time

Given a Markov chain :

- Do we converge to the stationary distribution ? i.e. are we ergodic ?
- What is the speed of this convergence ? i.e. what is the mixing time ?

What is the link with recoloring?

Mixing time

Given a Markov chain :

- Do we converge to the stationary distribution ? i.e. are we ergodic ?
- What is the speed of this convergence ? i.e. what is the mixing time ?

What is the link with recoloring?

Theorem

If the diameter of the reconfiguration graph is D then the mixing time is at least $2 \cdot D$.

Main question in Theoretical Physics

When is $G c(\Delta)$ -mixing in polynomial time?

Partial results :

• The chain is not ergodic if $c = \Delta + 1$ (e.g. cliques).

Main question in Theoretical Physics

When is G $c(\Delta)$ -mixing in polynomial time?

Partial results :

- The chain is not ergodic if $c = \Delta + 1$ (e.g. cliques).
- Best upper bound : $c = \frac{11}{6}\Delta$ (Vigoda).

Main question in Theoretical Physics

When is G $c(\Delta)$ -mixing in polynomial time?

Partial results :

- The chain is not ergodic if $c = \Delta + 1$ (e.g. cliques).
- Best upper bound : $c = \frac{11}{6}\Delta$ (Vigoda).

Conjecture

If $c \geq \Delta + 2$, the graph is *c*-mixing in polynomial time.

Conjecture (Cereceda)

The (k + 2)-recoloring diameter of any k-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda)

The (k + 2)-recoloring diameter of any k-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda)

The (k + 2)-recoloring diameter of any k-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda)

The (k + 2)-recoloring diameter of any k-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda)

The (k + 2)-recoloring diameter of any k-degenerate graph is $\mathcal{O}(n^2)$.

A graph is k-degenerate if there exists an order v_1, \ldots, v_n such that for every *i*, v_i has at most k neighbors after it in the order.

Theorem (Cereceda '07)

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Theorem (Cereceda '07)

The (k + 2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k + 1)^n$.
The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

The (k+2)-recoloring diameter of any k-degenerate graph is at most $n \cdot (k+1)^n$.

Lemma

- Delete a vertex of degree at most k.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

Number of recolorings?

When do we need to recolor the leftmost vertex?

• Each time a neighbor is recolored.

 $\Rightarrow k \cdot (k+1)^{n-1}$ recolorings.

Number of recolorings?

When do we need to recolor the leftmost vertex?

• Each time a neighbor is recolored.

 $\Rightarrow k \cdot (k+1)^{n-1}$ recolorings.

• In the last round : +1 recoloring.

The total number of recolorings is at most $(k+1)^n$.

Conjecture (Cereceda)

The (k+2)-reconfiguration graph of any k-degenerate graph has diameter at most $\mathcal{O}(n^2)$.

Conjecture (Cereceda)

The (k+2)-reconfiguration graph of any k-degenerate graph has diameter at most $\mathcal{O}(n^2)$.

Known on a few classes of graphs :

• Chordal graphs (Bonamy, Johnson, Lignos, Patel, Paulusma '11).

Conjecture (Cereceda)

The (k+2)-reconfiguration graph of any k-degenerate graph has diameter at most $\mathcal{O}(n^2)$.

Known on a few classes of graphs :

- Chordal graphs (Bonamy, Johnson, Lignos, Patel, Paulusma '11).
- Bounded treewidth graphs (Bonamy, B.'13).

Conjecture (Cereceda)

The (k+2)-reconfiguration graph of any k-degenerate graph has diameter at most $\mathcal{O}(n^2)$.

Known on a few classes of graphs :

- Chordal graphs (Bonamy, Johnson, Lignos, Patel, Paulusma '11).
- Bounded treewidth graphs (Bonamy, B.'13).
- Cographs (Bonamy, B.'14).
- Distance hereditary graphs (Bonamy, B.'14).

Conjecture (Cereceda)

The (k+2)-reconfiguration graph of any k-degenerate graph has diameter at most $\mathcal{O}(n^2)$.

Known on a few classes of graphs :

- Chordal graphs (Bonamy, Johnson, Lignos, Patel, Paulusma '11).
- Bounded treewidth graphs (Bonamy, B.'13).
- Cographs (Bonamy, B.'14).
- Distance hereditary graphs (Bonamy, B.'14).

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The quadratic lower bound is tight, e.g. on paths.

A chordal graph is a graph without chordless cycle of size \geq 4.

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

• Select a vertex whose neighborhood is a clique.

• Cliques are k-mixing in $\mathcal{O}(n)$.

A chordal graph is a graph without chordless cycle of size \geq 4.

Theorem (Bonamy, Johnson, Lignos, Patel, Paulusma '11)

The diameter of the k-reconfiguration graph of any chordal graph is $\mathcal{O}(n^2)$ if $k \ge \chi(G) + 1$.

Remark : $\chi(G) = \text{degeneracy } +1.$

Proof :

- Cliques are k-mixing in $\mathcal{O}(n)$.
- We can find the two vertices that have to be identified using the clique-tree.

Theorem (Bonamy, B.)

The (tw(G)+2)-reconfiguration graph of G has diameter $\mathcal{O}(n^2)$.

Theorem (Bonamy, B.)

The (tw(G)+2)-reconfiguration graph of G has diameter $\mathcal{O}(n^2)$.

Structure of the proof :

 G has a chordal super-graph where every maximal clique is of size tw(G) + 1.

Theorem (Bonamy, B.)

The (tw(G)+2)-reconfiguration graph of G has diameter $\mathcal{O}(n^2)$.

Structure of the proof :

- G has a chordal super-graph where every maximal clique is of size tw(G) + 1.
- Transform the coloring into a proper coloring of the chordal super-graph.

Theorem (Bonamy, B.)

The (tw(G)+2)-reconfiguration graph of G has diameter $\mathcal{O}(n^2)$.

Structure of the proof :

- G has a chordal super-graph where every maximal clique is of size tw(G) + 1.
- Transform the coloring into a proper coloring of the chordal super-graph.
- We can recolor chordal graphs!
Bounded treewidth graphs

Theorem (Bonamy, B.)

The (tw(G)+2)-reconfiguration graph of G has diameter $\mathcal{O}(n^2)$.

Structure of the proof :

- G has a chordal super-graph where every maximal clique is of size tw(G) + 1.
- Transform the coloring into a proper coloring of the chordal super-graph.
- We can recolor chordal graphs!

Key argument :

- Peel the graph according to a tree decomposition.
- "Interactions" between remaining vertices and deleted vertices are reduced to the vertices of a leaf of a tree decomposition.
 ⇒ Recoloring a vertex has a limited impact on the graph.

Beyond tree decompositions

Problem : All these proofs are based on tree-decompositions.

Beyond tree decompositions

Problem : All these proofs are based on tree-decompositions.

 \Rightarrow What about planar graphs?

Beyond tree decompositions

Problem : All these proofs are based on tree-decompositions.

 \Rightarrow What about planar graphs?

Theorem (B., Perarnau '14)

If the maximum average degree of G is at most $d - \epsilon$ then the diameter of the (d + 1)-reconfiguration graph is polynomial.

Maximum average degree = maximum density of a subgraph of G.

$$mad(G) = \max_{S \subseteq V} \left(\frac{\text{number of edges induced by } S}{|S|} \right)$$

General framework

We want to recolor the graph from α to β .

General framework :

General framework

We want to recolor the graph from α to β .

General framework :

- Transform α into a $\chi(G)$ coloring.
- Transform β into a $\chi(G)$ coloring.
- Transform one χ(G) coloring into the other.

General framework

We want to recolor the graph from α to β .

General framework :

- Transform α into a $\chi(G)$ coloring.
- Transform β into a $\chi(G)$ coloring.
- Transform one χ(G) coloring into the other.

Standard method :

- Eliminate one color from the current coloring.
- Use this additional color to color a well-chosen stable set.
- Apply induction with $\chi(G) 1$.

Low degree partition

Lemma

If G has maximum average degree at most $d - \epsilon$ then a linear fraction of the vertices has degree at most d - 1.

Lemma

If G has maximum average degree at most $d - \epsilon$ then a linear fraction of the vertices has degree at most d - 1.

Corollary (layer partition)

We can partition the vertex set of every graph of $mad < d - \epsilon$ into $\mathcal{O}(\log n)$ sets V_1, \ldots, V_j such that for every *i* and every $v_i \in V_i$: $|N(v_i) \cap \bigcup_{i=1}^{j} V_i| \le d-1$

Lemma

If G has maximum average degree at most $d - \epsilon$ then a linear fraction of the vertices has degree at most d - 1.

Corollary (layer partition)

We can partition the vertex set of every graph of $mad < d - \epsilon$ into $\mathcal{O}(\log n)$ sets V_1, \ldots, V_j such that for every *i* and every $v_i \in V_i$: $|N(v_i) \cap \bigcup_{i=1}^{j} V_i| \le d-1$

Lemma

If G has maximum average degree at most $d - \epsilon$ then a linear fraction of the vertices has degree at most d - 1.

Corollary (layer partition)

We can partition the vertex set of every graph of $mad < d - \epsilon$ into $\mathcal{O}(\log n)$ sets V_1, \ldots, V_j such that for every i and every $v_i \in V_i$: $|N(v_i) \cap \bigcup_{l=i}^{j} V_l| \le d-1$

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

- Select a vertex of color in the largest possible layer.
- Recolor it without recoloring any vertex of a largest (or equal) layer.
- Repeat until there is a vertex of color •.

Counting trick

Lemma

This recoloring process eliminates color • in a polynomial number of steps.

How much recolorings do we need to recolor the vertex • ?

Counting trick

Lemma

This recoloring process eliminates color • in a polynomial number of steps.

How much recolorings do we need to recolor the vertex • ?

• The degree of a vertex can be arbitrarily large ⇒ we cannot extract any bound *a priori*.

Counting trick

Lemma

This recoloring process eliminates color • in a polynomial number of steps.

How much recolorings do we need to recolor the vertex • ?

- The degree of a vertex can be arbitrarily large ⇒ we cannot extract any bound *a priori*.
- But each vertex has degree at most (d 1) in larger layers.
 So its recoloring is asked a bounded number of times.

• So if a vertex • is recolored...

- So if a vertex is recolored...
- ... it is "called" by another vertex which has to be recolored...
- ... itself "called" by another vertex which has to be recolored...

- So if a vertex is recolored...
- ... it is "called" by another vertex which has to be recolored...
- ... itself "called" by another vertex which has to be recolored...
- ... until we find the vertex •.

- So if a vertex is recolored...
- ... it is "called" by another vertex which has to be recolored...
- ... itself "called" by another vertex which has to be recolored...
- ... until we find the vertex •.

Number of recolorings of • :

- A vertex can be called by at most d-1 vertices.
- There are log *n* layers.

- So if a vertex is recolored...
- ... it is "called" by another vertex which has to be recolored...
- ... itself "called" by another vertex which has to be recolored...
- ... until we find the vertex •.

Number of recolorings of • :

- A vertex can be called by at most d-1 vertices.
- There are log *n* layers.

 $\Rightarrow k^{\log n} = Poly(n)$ recolorings for •.

- So if a vertex is recolored...
- ... it is "called" by another vertex which has to be recolored...
- ... itself "called" by another vertex which has to be recolored...
- ... until we find the vertex •.

Number of recolorings of • :

- A vertex can be called by at most d-1 vertices.
- There are log *n* layers.

 $\Rightarrow k^{\log n} = Poly(n)$ recolorings for \bullet .

Since this equation holds for every vertex, the total number of recoloring needed to modify the color of • is polynomial.

Revolution or evolution?

Treewidth proof :

• Select a small degree vertex v and delete it.

Max. Average degree proof :

• Select a (high degree) vertex v and keep it.

Revolution or evolution?

Treewidth proof :

- Select a small degree vertex v and delete it.
- To extend a recoloring sequence of G – v to G, for each vertex has to be recolored a small number of times.

Max. Average degree proof :

- Select a (high degree) vertex v and keep it.
- To recolor v, we need to perform a polynomial number of recolorings in total.

Revolution or evolution?

Treewidth proof :

- Select a small degree vertex v and delete it.
- To extend a recoloring sequence of G – v to G, for each vertex has to be recolored a small number of times.
- The set of recolorings is limited since a property has to be satisfied for each vertex.

Max. Average degree proof :

- Select a (high degree) vertex v and keep it.
- To recolor *v*, we need to perform a polynomial number of recolorings in total.
- Consequence : The set of recolorings is wider since a global property has to be satisfied.
Revolution or evolution?

Treewidth proof :

- Select a small degree vertex v and delete it.
- To extend a recoloring sequence of G – v to G, for each vertex has to be recolored a small number of times.
- The set of recolorings is limited since a property has to be satisfied for each vertex.
- Proof based on a tree decomposition :
 ⇒ Smaller classes, bette

 \Rightarrow Smaller classes, better bounds.

Max. Average degree proof :

- Select a (high degree) vertex v and keep it.
- To recolor *v*, we need to perform a polynomial number of recolorings in total.
- Consequence : The set of recolorings is wider since a global property has to be satisfied.
- Proof based on a decomposition ordering : ⇒ Larger classes, weaker bounds.

The maximum average degree of planar graphs is < 6.

Corollary (B., Perarnau '14)

The *k*-recoloring diameter of any planar graph is polynomial if $k \ge 8$.

The maximum average degree of planar graphs is < 6.

Corollary (B., Perarnau '14)

The *k*-recoloring diameter of any planar graph is polynomial if $k \ge 8$.

Remark :

Cereceda's conjecture claims that it must be true for k = 7.

The maximum average degree of planar graphs is < 6.

Corollary (B., Perarnau '14)

The *k*-recoloring diameter of any planar graph is polynomial if $k \ge 8$.

Remark :

Cereceda's conjecture claims that it must be true for k = 7.

- There exist planar graphs such that mad(G) → 6.
- We need mad(G) < 6 − ε to obtain this layer partition.

Lower bound

Lower bound

Similarly, we can show

Corollary (B., Perarnau '14)

The k-recoloring diameter of any triangle-free planar graph is polynomial if $k \ge 6$.

Maximum degree

We know that :

- If $k = \Delta + 2$, recoloring is always possible (degen. $\leq \Delta$).
- If $k = \Delta + 1$, recoloring may not be possible (e.g. cliques).

Maximum degree

We know that :

- If $k = \Delta + 2$, recoloring is always possible (degen. $\leq \Delta$).
- If $k = \Delta + 1$, recoloring may not be possible (e.g. cliques).

But in practice, if we take two colorings, we can recolor the one into the other right?

Maximum degree

We know that :

- If $k = \Delta + 2$, recoloring is always possible (degen. $\leq \Delta$).
- If $k = \Delta + 1$, recoloring may not be possible (e.g. cliques).

But in practice, if we take two colorings, we can recolor the one into the other right?

Definition (frozen coloring)

A coloring is frozen if none of the vertices of the graph can be recolored.

Theorem (Feghali, Johnson, Paulusma '14)

One can recolor any non-frozen ($\Delta + 1$)-coloring of G into any other (in $\mathcal{O}(n^2)$ steps).

So the ($\Delta+1)\text{-reconfiguration}$ graph consists in :

- (Maybe) one component of size at least two.
- And frozen colorings (i.e. isolated vertices).

So the ($\Delta+1)\text{-reconfiguration}$ graph consists in :

- (Maybe) one component of size at least two.
- And frozen colorings (i.e. isolated vertices).

What we imagine : A huge component and a few frozen colorings.

So the ($\Delta+1)\text{-reconfiguration}$ graph consists in :

- (Maybe) one component of size at least two.
- And frozen colorings (i.e. isolated vertices).

What we imagine : A huge component and a few frozen colorings.

Theorem (B., Perarnau '15)

The number of non-frozen coloring is exponentially larger (in $n - \Delta$) compared to the number of frozen colorings.

So the ($\Delta+1)\text{-reconfiguration}$ graph consists in :

- (Maybe) one component of size at least two.
- And frozen colorings (i.e. isolated vertices).

What we imagine : A huge component and a few frozen colorings.

Theorem (B., Perarnau '15)

The number of non-frozen coloring is exponentially larger (in $n - \Delta$) compared to the number of frozen colorings.

Corollary

If two $(\Delta + 1)$ colorings are chosen at random, then one can recolor the first into the second with probability $\rightarrow 1$ if $n \rightarrow +\infty$.

Conclusion

- Solve the Cereceda conjecture.
- Extend / improve recoloring results to other graph classes.
- Existence of a *k*-reconfiguration graph with bounded but exponential diameter.
- When does the diameter become linear?

Conclusion

- Solve the Cereceda conjecture.
- Extend / improve recoloring results to other graph classes.
- Existence of a *k*-reconfiguration graph with bounded but exponential diameter.
- When does the diameter become linear?

Other types of reconfiguration problems :

\triangleleft	\triangleleft	<
J	Ŷ	4
		H
	V	

- Stable sets : applications to discrete fields in mathematics.
- Recolorings via Kempe chains : natural extension of recolorings.

Conclusion

- Solve the Cereceda conjecture.
- Extend / improve recoloring results to other graph classes.
- Existence of a *k*-reconfiguration graph with bounded but exponential diameter.
- When does the diameter become linear?

Other types of reconfiguration problems :

\sim	\sim	3	
L	R	L	-
-		H	1
	J		

- Stable sets : applications to discrete fields in mathematics.
- Recolorings via Kempe chains : natural extension of recolorings.

Thanks for your attention !