Independent Set Reconfiguration via Token Sliding

Nicolas Bousquet

joint works with Valentin Bartier, Marthe Bonamy, Clément Dallard, Kyle Lomer, Amer Mouawad and Moritz Mühlenthaler

December 2020

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position?

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position?

• Reconfiguration introduced for colorings, satisfiability problems, dominating sets, cliques, list colorings, bases of matroids, boolean formulas...

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question:

Giving my current position, can I reach a fixed target position?

- Reconfiguration introduced for colorings, satisfiability problems, dominating sets, cliques, list colorings, bases of matroids, boolean formulas...
- Applications to random sampling, bioinformatics...etc...

Main questions

- **Reachability problem.** Given two configurations, is it possible to transform the one into the other?
- **Connectivity problem.** Given any pair of configurations, is it possible to transform the one into the other?
- **Minimization.** Given two configurations, what is the length of a shortest sequence?

Main questions

- **Reachability problem.** Given two configurations, is it possible to transform the one into the other?
- **Connectivity problem.** Given any pair of configurations, is it possible to transform the one into the other?
- **Minimization.** Given two configurations, what is the length of a shortest sequence?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_ℓ of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Definition (TS-sequence)

A TS-sequence I_1, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_j$ such that $I_{j+1} = I_j \cup \{v\} \setminus \{u\}$ and uv is an edge.

Equivalent formulation :

Genesis

 [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

Genesis

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Genesis

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem for "dominos shaped" robots ?

TS-Reachability

TS-Reachability

Input : A graph G, $k \in \mathbb{N}$, two independent sets I, J of size k. **Output** : YES iff there exists a TS-sequence from I to J.

Theorem (Hearn, Demaine '05)

TS-REACHABILITY is PSPACE-complete even restricted to planar graphs of maximum degree at most 3.

 \rightarrow On which graph class is the problem polynomial ?

 \rightarrow On which graph class is the problem polynomial ?

Polynomial time algorithms for :

- [Demaine et al.] Trees.
- [Kamiński, Medvedev, Milanič] Cographs.
- [Bonsma, Kamiński, Wrochna] Claw-free graphs.
- [Fox-Epstein et al.] Bipartite permutation graphs.

 \rightarrow On which graph class is the problem polynomial ?

Polynomial time algorithms for :

- [Demaine et al.] Trees.
- [Kamiński, Medvedev, Milanič] Cographs.
- [Bonsma, Kamiński, Wrochna] Claw-free graphs.
- [Fox-Epstein et al.] Bipartite permutation graphs.

Question (Demaine et al.)

Can the ${\rm TS-REACHABILITY}$ problem be decided on polynomial time on interval graphs? On chordal graphs?

 \rightarrow On which graph class is the problem polynomial?

Polynomial time algorithms for :

- [Demaine et al.] Trees.
- [Kamiński, Medvedev, Milanič] Cographs.
- [Bonsma, Kamiński, Wrochna] Claw-free graphs.
- [Fox-Epstein et al.] Bipartite permutation graphs.

Question (Demaine et al.)

Can the ${\rm TS-REACHABILITY}$ problem be decided on polynomial time on interval graphs? On chordal graphs?

Answers :

- [Bonamy, B. '18] YES on interval graphs.
- [Belmonte et al. '19] NO on split graphs.

(split graph = $V = V_1 \cup V_2$ where V_1 induces a clique and V_2 a stable set)

An interval graph is an intersection graph of intervals on the line. **Remark :**

A geometric representation can be obtained in polynomial time.

An interval graph is an intersection graph of intervals on the line. **Remark :**

A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

• The LIS contains the leftmost vertex, i.e. the vertex *x* with minimum right-end.

An interval graph is an intersection graph of intervals on the line. **Remark :**

A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

- The LIS contains the leftmost vertex, i.e. the vertex *x* with minimum right-end.
- $LIS(G) = x \cup LIS(G[V \setminus N[x]]).$

An interval graph is an intersection graph of intervals on the line. **Remark :**

A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

- The LIS contains the leftmost vertex, i.e. the vertex *x* with minimum right-end.
- $LIS(G) = x \cup LIS(G[V \setminus N[x]]).$

An interval graph is an intersection graph of intervals on the line. **Remark :**

A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

- The LIS contains the leftmost vertex, i.e. the vertex *x* with minimum right-end.
- $LIS(G) = x \cup LIS(G[V \setminus N[x]]).$

Today :

Decide if an independent set of size k can be transformed into the LIS.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \setminus x$ can be transformed into $LIS(G) \setminus y$ in $G[V \setminus N[y])$.
Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \setminus x$ can be transformed into $LIS(G) \setminus y$ in $G[V \setminus N[y])$.

Naive algorithm :

• Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \setminus x$ can be transformed into $LIS(G) \setminus y$ in $G[V \setminus N[y])$.

Naive algorithm :

• Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \setminus x$ can be transformed into $LIS(G) \setminus y$ in $G[V \setminus N[y])$.

Naive algorithm :

• Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \setminus x$ can be transformed into $LIS(G) \setminus y$ in $G[V \setminus N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.
- Repeat in $V \setminus N[y]$ for the remaining vertices.

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \setminus x$ can be transformed into $LIS(G) \setminus y$ in $G[V \setminus N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.
- Repeat in $V \setminus N[y]$ for the remaining vertices.

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \setminus x$ can be transformed into $LIS(G) \setminus y$ in $G[V \setminus N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.
- Repeat in $V \setminus N[y]$ for the remaining vertices.

Problem :

We might need to move vertices to the right to push the leftmost vertex to the left.

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \setminus x$ can be transformed into $LIS(G) \setminus y$ in $G[V \setminus N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.
- Repeat in $V \setminus N[y]$ for the remaining vertices.

Problem :

We might need to move vertices to the right to push the leftmost vertex to the left.

Repeat the following procedure

• Push the first vertex to the left.

Repeat the following procedure

• Push the first vertex to the left.

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.
- If the leftmost vertex is the first vertex of the LIS, apply induction (with k ← k − 1).

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.
- If the leftmost vertex is the first vertex of the LIS, apply induction (with k ← k − 1).

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.
- If the leftmost vertex is the first vertex of the LIS, apply induction (with k ← k − 1).
- Otherwise we can't reach the LIS.

Questions

 Our algorithm is polynomial but does not guarantee a polynomial transformation.
Question : Does there always exist a polynomial transformation?

Questions

• Our algorithm is polynomial but does not guarantee a polynomial transformation.

Question : Does there always exist a polynomial transformation ?

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

Theorem (Ito et al. '12)

 $TS\mbox{-}Matching\ Reachability\ \mbox{can}\ be\ decided\ in\ polynomial\ time.$

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

Theorem (Ito et al. '12)

 $TS\mbox{-}Matching\ Reachability\ can be decided in polynomial time.$

Theorem (Bonsma, Kamiński, Wrochna '14)

TS-REACHABILITY can be decided in polynomial time in claw-free graphs.

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

Theorem (Ito et al. '12)

 $TS\mbox{-}Matching\ Reachability\ \mbox{can}\ be\ decided\ in\ polynomial\ time.$

Theorem (Bonsma, Kamiński, Wrochna '14)

 $TS\mbox{-}REACHABILITY$ can be decided in polynomial time in claw-free graphs.

Question : For which *H* is TS-Independent Set Reconfiguration polynomial on *H*-free graphs?

TS-REACHABILITY is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

TS-REACHABILITY is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev

• Subdivision of every edge of G twice \Rightarrow MIS increases by |E|.

TS-REACHABILITY is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev

• Subdivision of every edge of G twice \Rightarrow MIS increases by |E|.

TS-REACHABILITY is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev

- Subdivision of every edge of G twice \Rightarrow MIS increases by |E|.
- The same trick can be adapted in the reconfiguration setting.

TS-REACHABILITY is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev

- Subdivision of every edge of G twice \Rightarrow MIS increases by |E|.
- The same trick can be adapted in the reconfiguration setting.

- Start with a planar graph of maximum degree 3.
- Repeat the subdivision process |H| times.

⇒ No copy of H if H has a vertex of degree ≥ 4 or a cycle or two vertices of degree ≥ 3.

Input : A graph G, two independent sets I, J of maximum size. **Output** : YES iff there exists a TS-sequence from I to J.

14/21

TS_m-Reachability

Input : A graph G, two independent sets I, J of maximum size. **Output** : YES iff there exists a TS-sequence from I to J.

Theorem (Bartier, B., Mühlenthaler '20+)

 $\mathrm{TS}_m\text{-}\mathrm{REACHABILITY}$ can be decided in polynomial time in fork-free graphs.

Input : A graph G, two independent sets I, J of maximum size. **Output** : YES iff there exists a TS-sequence from I to J.

Theorem (Bartier, B., Mühlenthaler '20+)

 TS_m -REACHABILITY can be decided in polynomial time in fork-free graphs.

Sketch of the proof :

• If a vertex has at least 3 tokens in its neighborhood \rightarrow Delete it.

Input : A graph G, two independent sets I, J of maximum size. **Output** : YES iff there exists a TS-sequence from I to J.

Theorem (Bartier, B., Mühlenthaler '20+)

 TS_m -REACHABILITY can be decided in polynomial time in fork-free graphs.

Sketch of the proof :

- If a vertex has at least 3 tokens in its neighborhood \rightarrow Delete it.
- Prove that we can reduce to claw-free graphs.

Input : A graph G, two independent sets I, J of maximum size. **Output** : YES iff there exists a TS-sequence from I to J.

Theorem (Bartier, B., Mühlenthaler '20+)

 TS_m -REACHABILITY can be decided in polynomial time in fork-free graphs.

Sketch of the proof :

- If a vertex has at least 3 tokens in its neighborhood \rightarrow Delete it.
- Prove that we can reduce to claw-free graphs.

Questions :

• Complexity of TS-REACHABILITY on fork-free graphs? Last case to completely characterize the complexity of TS-REACHABILITY on connected graphs.

Input : A graph G, two independent sets I, J of maximum size. **Output** : YES iff there exists a TS-sequence from I to J.

Theorem (Bartier, B., Mühlenthaler '20+)

 TS_m -REACHABILITY can be decided in polynomial time in fork-free graphs.

Sketch of the proof :

- If a vertex has at least 3 tokens in its neighborhood \rightarrow Delete it.
- Prove that we can reduce to claw-free graphs.

Questions :

- Complexity of TS-REACHABILITY on fork-free graphs? Last case to completely characterize the complexity of TS-REACHABILITY on connected graphs.
- A few non connected graphs (on which we are currently working on).

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

Very few is known on the parameterized complexity for ${\rm TS-REACHABILITY}.$

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

Very few is known on the parameterized complexity for ${\rm TS-REACHABILITY}.$

- TS-REACHABILITY is PSPACE-complete for graphs of bounded treewidth / pathwidth / bandwidth / cliquewidth. No hope for a Courcelle like theorem.
- No real understanding on what happens even on very sparse graphs...

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

Very few is known on the parameterized complexity for ${\rm TS-REACHABILITY}.$

- TS-REACHABILITY is PSPACE-complete for graphs of bounded treewidth / pathwidth / bandwidth / cliquewidth. No hope for a Courcelle like theorem.
- No real understanding on what happens even on very sparse graphs...

Two research directions :

- Consider sparse graph classes $(e.g. |E| \le c|V|)$.
- Consider graph classes with "girth" restriction.
Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-REACHABILITY is W[1]-hard (very likely not FPT) parameterized by k on bipartite graphs.

Proof by picture :

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

Larger girth

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-REACHABILITY is FPT on C_4 -free bipartite graphs.

Larger girth

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-REACHABILITY is FPT on C_4 -free bipartite graphs.

High level idea :

- Bound the degree of the graph.
- [Fox Epstein et al.] Determine the frozen tokens is in P.
- [Fox Epstein et al.] Any reachable vertex can be reached via a sequence all the tokens but ≤ 1 slide ≤ once.
- \Rightarrow If IS at large distance, we can reach it.

Which cycles are important? C_4 ?

Which cycles are important? $C_4 ? \rightarrow NO!$

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-REACHABILITY is W[1]-hard parameterized by k on graphs with no induced C_4, \ldots, C_p for $p \in \mathbb{N}$.

Which cycles are important? $C_4 ? \rightarrow NO!$

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-REACHABILITY is W[1]-hard parameterized by k on graphs with no induced C_4, \ldots, C_p for $p \in \mathbb{N}$.

High level idea :

- [Bonnet et al. '19] MIS is W[1]-hard on graphs with no induced C₄,..., C_p for p ∈ N.
- "Gadgetize" from this construction to obtain the reconfiguration counterpart.

Which cycles are important? $C_4 ? \rightarrow NO!$

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-REACHABILITY is W[1]-hard parameterized by k on graphs with no induced C_4, \ldots, C_p for $p \in \mathbb{N}$.

High level idea :

- [Bonnet et al. '19] MIS is W[1]-hard on graphs with no induced C₄,..., C_p for p ∈ N.
- "Gadgetize" from this construction to obtain the reconfiguration counterpart.

Questions :

- TS-REACHABILITY on graphs of girth ≥ 5 ? $\geq \ell$ for some fixed ℓ ?
- TS-REACHABILITY on even hole free graphs? It would imply chordal graphs.

(Bartier, B., Dallard, Lomer, Mouawad '20+)

(Bartier, B., Dallard, Lomer, Mouawad '20+)

Hammer # 1 : If $\exists X$ "small" and $G[V \setminus X]$ contains many components, the graph can be reduced.

(Bartier, B., Dallard, Lomer, Mouawad '20+)

Hammer # 1 : If $\exists X$ "small" and $G[V \setminus X]$ contains many components, the graph can be reduced.

Hammer # 2: If G contains a long geodesic path, then the graph can be reduced.

(Bartier, B., Dallard, Lomer, Mouawad '20+)

Hammer # 1 : If $\exists X$ "small" and $G[V \setminus X]$ contains many components, the graph can be reduced.

Hammer # 2 : If G contains a long geodesic path, then the graph can be reduced.

Hammer # 3 : If $\exists X$ "small" with no token on X and $G[V \setminus X]$ contains a long geodesic path, then the graph can be reduced.

(Bartier, B., Dallard, Lomer, Mouawad '20+)

Hammer # 1 : If $\exists X$ "small" and $G[V \setminus X]$ contains many components, the graph can be reduced.

Hammer # 2: If G contains a long geodesic path, then the graph can be reduced.

Hammer # 3 : If $\exists X$ "small" with no token on X and $G[V \setminus X]$ contains a long geodesic path, then the graph can be reduced.

Consequences : FPT algorithms for

- Bounded degree graphs.
- Planar graphs.
- Graphs of treewidth ≤ 4.
- Graphs of bounded treedepth.

What's next

For sparse graphs :

- Graphs of bounded treewidth?
- Graph nowhere dense?
- *K*_{*l*,*l*}-free graphs?

For dense graphs :

- Chordal graphs?
- Split graphs?

Another model : Token Jumping (TJ)

 \Leftrightarrow a token can jump anywhere else in the graph.

Another model : Token Jumping (TJ)

 \Leftrightarrow a token can jump anywhere else in the graph.

- Most of the results of this talk holds in the TJ-model.
- Much simpler on sparse graphs (cograph, bounded expansion, $K_{\ell,\ell}$ -free...).

Another model : Token Jumping (TJ)

 \Leftrightarrow a token can jump anywhere else in the graph.

- Most of the results of this talk holds in the TJ-model.
- Much simpler on sparse graphs (cograph, bounded expansion, $K_{\ell,\ell}$ -free...).

Questions :

• TJ-REACHABILITY in *P* on *P*₅-free graphs? Potential maximum cliques?

Another model : Token Jumping (TJ)

 \Leftrightarrow a token can jump anywhere else in the graph.

- Most of the results of this talk holds in the TJ-model.
- Much simpler on sparse graphs (cograph, bounded expansion, $K_{\ell,\ell}$ -free...).

Questions :

- TJ-REACHABILITY in *P* on *P*₅-free graphs? Potential maximum cliques?
- TJ-REACHABILITY FPT on bipartite graphs? ([Lokshtanov, Mouawad '19] The problem only is NP-complete and not PSPACE complete)

Another model : Token Jumping (TJ)

 \Leftrightarrow a token can jump anywhere else in the graph.

- Most of the results of this talk holds in the TJ-model.
- Much simpler on sparse graphs (cograph, bounded expansion, $K_{\ell,\ell}$ -free...).

Questions :

- TJ-REACHABILITY in *P* on *P*₅-free graphs? Potential maximum cliques?
- TJ-REACHABILITY FPT on bipartite graphs? ([Lokshtanov, Mouawad '19] The problem only is NP-complete and not PSPACE complete)

Thanks for your attention !