Independent Set Reconfiguration via Token Sliding

Nicolas Bousquet

joint works with
Valentin Bartier, Marthe Bonamy, Clément Dallard, Kyle Lomer, Amer Mouawad and Moritz Mühlenthaler

December 2020
LIRİS

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

- Reconfiguration introduced for colorings, satisfiability problems, dominating sets, cliques, list colorings, bases of matroids, boolean formulas...

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

- Reconfiguration introduced for colorings, satisfiability problems, dominating sets, cliques, list colorings, bases of matroids, boolean formulas...
- Applications to random sampling, bioinformatics...etc...

Main questions

- Reachability problem. Given two configurations, is it possible to transform the one into the other?
- Connectivity problem. Given any pair of configurations, is it possible to transform the one into the other?
- Minimization. Given two configurations, what is the length of a shortest sequence?

Main questions

- Reachability problem. Given two configurations, is it possible to transform the one into the other?
- Connectivity problem. Given any pair of configurations, is it possible to transform the one into the other?
- Minimization. Given two configurations, what is the length of a shortest sequence?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, l_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Token Sliding

Definition (TS-sequence)

A TS-sequence I_{1}, \ldots, I_{ℓ} of independent sets is a sequence such that there exist $v \in I_{j+1}$ and $u \in I_{j}$ such that $I_{j+1}=I_{j} \cup\{v\} \backslash\{u\}$ and $u v$ is an edge.

Equivalent formulation :

We slide tokens along the edges in such a way the set remains an independent set at any step.

Genesis

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).

Genesis

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Genesis

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem for "dominos shaped" robots?

TS-Reachability

TS-Reachability

Input : A graph $G, k \in \mathbb{N}$, two independent sets I, J of size k.
Output: YES iff there exists a TS-sequence from $/$ to J.

Theorem (Hearn, Demaine '05)

TS-Reachability is PSPACE-complete even restricted to planar graphs of maximum degree at most 3 .

Graph classes

\rightarrow On which graph class is the problem polynomial ?

Graph classes

\rightarrow On which graph class is the problem polynomial ?
Polynomial time algorithms for :

- [Demaine et al.] Trees.
- [Kamiński, Medvedev, Milanič] Cographs.
- [Bonsma, Kamiński, Wrochna] Claw-free graphs.
- [Fox-Epstein et al.] Bipartite permutation graphs.

Graph classes

\rightarrow On which graph class is the problem polynomial ?
Polynomial time algorithms for :

- [Demaine et al.] Trees.
- [Kamiński, Medvedev, Milanič] Cographs.
- [Bonsma, Kamiński, Wrochna] Claw-free graphs.
- [Fox-Epstein et al.] Bipartite permutation graphs.

Question (Demaine et al.)

Can the TS-Reachability problem be decided on polynomial time on interval graphs? On chordal graphs?

Graph classes

\rightarrow On which graph class is the problem polynomial ?
Polynomial time algorithms for :

- [Demaine et al.] Trees.
- [Kamiński, Medvedev, Milanič] Cographs.
- [Bonsma, Kamiński, Wrochna] Claw-free graphs.
- [Fox-Epstein et al.] Bipartite permutation graphs.

Question (Demaine et al.)

Can the TS-REachability problem be decided on polynomial time on interval graphs? On chordal graphs?

Answers :

- [Bonamy, B. '18] YES on interval graphs.
- [Belmonte et al. '19] NO on split graphs.
(split graph $=V=V_{1} \cup V_{2}$ where V_{1} induces a clique and V_{2} a stable set)

Interval graphs

An interval graph is an intersection graph of intervals on the line. Remark :
A geometric representation can be obtained in polynomial time.

Interval graphs

An interval graph is an intersection graph of intervals on the line. Remark :
A geometric representation can be obtained in polynomial time.
The Leftmost Independent Set (LIS) satisfies :

- The LIS contains the leftmost vertex, i.e. the vertex x with minimum right-end.

Interval graphs

An interval graph is an intersection graph of intervals on the line. Remark :
A geometric representation can be obtained in polynomial time.
The Leftmost Independent Set (LIS) satisfies :

- The LIS contains the leftmost vertex, i.e. the vertex x with minimum right-end.
- $\operatorname{LIS}(G)=x \cup \operatorname{LIS}(G[V \backslash N[x]])$.

Interval graphs

An interval graph is an intersection graph of intervals on the line. Remark :
A geometric representation can be obtained in polynomial time.
The Leftmost Independent Set (LIS) satisfies :

- The LIS contains the leftmost vertex, i.e. the vertex x with minimum right-end.
- $\operatorname{LIS}(G)=x \cup \operatorname{LIS}(G[V \backslash N[x]])$.

Interval graphs

An interval graph is an intersection graph of intervals on the line. Remark :
A geometric representation can be obtained in polynomial time.
The Leftmost Independent Set (LIS) satisfies :

- The LIS contains the leftmost vertex, i.e. the vertex x with minimum right-end.
- $\operatorname{LIS}(G)=x \cup \operatorname{LIS}(G[V \backslash N[x]])$.

Today :

Decide if an independent set of size k can be transformed into the LIS.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \backslash x$ can be transformed into $\operatorname{LIS}(G) \backslash y$ in $G[V \backslash N[y])$.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \backslash x$ can be transformed into $\operatorname{LIS}(G) \backslash y$ in $G[V \backslash N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \backslash x$ can be transformed into $\operatorname{LIS}(G) \backslash y$ in $G[V \backslash N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \backslash x$ can be transformed into $\operatorname{LIS}(G) \backslash y$ in $G[V \backslash N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \backslash x$ can be transformed into $\operatorname{LIS}(G) \backslash y$ in $G[V \backslash N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.
- Repeat in $V \backslash N[y]$ for the remaining vertices.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \backslash x$ can be transformed into $\operatorname{LIS}(G) \backslash y$ in $G[V \backslash N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.
- Repeat in $V \backslash N[y]$ for the remaining vertices.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \backslash x$ can be transformed into $L I S(G) \backslash y$ in $G[V \backslash N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.
- Repeat in $V \backslash N[y]$ for the remaining vertices.

Problem :

We might need to move vertices to the right to push the leftmost vertex to the left.

First try : Naive Method

Lemma

I can be transformed into the LIS iff

- The leftmost vertex of x of I can be pushed to the leftmost vertex y of LIS(G).
- $I \backslash x$ can be transformed into $L I S(G) \backslash y$ in $G[V \backslash N[y])$.

Naive algorithm :

- Push the leftmost vertex of the independent set to the left and check that it can be transformed into the leftmost vertex.
- Repeat in $V \backslash N[y]$ for the remaining vertices.

Problem :

We might need to move vertices to the right to push the leftmost vertex to the left.

Second try

Repeat the following procedure

Second try

Repeat the following procedure

- Push the first vertex to the left.

Second try

Repeat the following procedure

- Push the first vertex to the left.

Second try

Repeat the following procedure

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.

Second try

Repeat the following procedure

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.

Second try

Repeat the following procedure

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.

Second try

Repeat the following procedure

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.

Second try

Repeat the following procedure

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.
- If the leftmost vertex is the first vertex of the LIS, apply induction (with $k \leftarrow k-1$).

Second try

Repeat the following procedure

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.
- If the leftmost vertex is the first vertex of the LIS, apply induction (with $k \leftarrow k-1$).

Second try

Repeat the following procedure

- Push the first vertex to the left.
- Push the independent set minus its first vertex to the right.
- If the leftmost vertex is the first vertex of the LIS, apply induction (with $k \leftarrow k-1$).
- Otherwise we can't reach the LIS.

Questions

- Our algorithm is polynomial but does not guarantee a polynomial transformation.
Question: Does there always exist a polynomial transformation?

Questions

- Our algorithm is polynomial but does not guarantee a polynomial transformation.
Question: Does there always exist a polynomial transformation?

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

Theorem (lto et al. '12)

TS-Matching Reachability can be decided in polynomial time.

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

Theorem (lto et al. '12)

TS-Matching Reachability can be decided in polynomial time.

Theorem (Bonsma, Kamiński, Wrochna '14)

TS-Reachability can be decided in polynomial time in claw-free graphs.

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

Theorem (lto et al. '12)

TS-Matching Reachability can be decided in polynomial time.

Theorem (Bonsma, Kamiński, Wrochna '14)

TS-Reachability can be decided in polynomial time in claw-free graphs.

Question : For which H is TS-Independent Set Reconfiguration polynomial on H-free graphs?

Theorem (Bartier, B., Mühlenthaler '20+)
TS-Reachability is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Theorem (Bartier, B., Mühlenthaler '20+)

TS-Reachability is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev

- Subdivision of every edge of G twice \Rightarrow MIS increases by $|E|$.

Theorem (Bartier, B., Mühlenthaler '20+)

TS-Reachability is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev

- Subdivision of every edge of G twice \Rightarrow MIS increases by $|E|$.

Theorem (Bartier, B., Mühlenthaler '20+)

TS-Reachability is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev

- Subdivision of every edge of G twice \Rightarrow MIS increases by $|E|$.
- The same trick can be adapted in the reconfiguration setting.

Theorem (Bartier, B., Mühlenthaler '20t)

TS-Reachability is PSPACE-complete on H-free graphs for every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev

- Subdivision of every edge of G twice \Rightarrow MIS increases by $|E|$.
- The same trick can be adapted in the reconfiguration setting.

- Start with a planar graph of maximum degree 3.
- Repeat the subdivision process $|H|$ times.
\Rightarrow No copy of H if H has a vertex of degree ≥ 4 or a cycle or two vertices of degree ≥ 3.
TS_{m}-Reachability
Input : A graph G, two independent sets I, J of maximum size.
Output : YES iff there exists a TS-sequence from $/$ to J.

TS ${ }_{m}$-Reachability
Input : A graph G, two independent sets I, J of maximum size.
Output : YES iff there exists a TS-sequence from $/$ to J.
Theorem (Bartier, B., Mühlenthaler '20+)
TS_{m}-Reachability can be decided in polynomial time in fork-free graphs.

TS_{m}-Reachability
Input: A graph G, two independent sets I, J of maximum size.
Output : YES iff there exists a TS-sequence from $/$ to J.
Theorem (Bartier, B., Mühlenthaler '20+)
TS_{m}-Reachability can be decided in polynomial time in fork-free graphs.

Sketch of the proof :

- If a vertex has at least 3 tokens in its neighborhood \rightarrow Delete it.

TS_{m}-Reachability
Input : A graph G, two independent sets I, J of maximum size.
Output: YES iff there exists a TS-sequence from $/$ to J.
Theorem (Bartier, B., Mühlenthaler '20+)
TS_{m}-Reachability can be decided in polynomial time in fork-free graphs.

Sketch of the proof :

- If a vertex has at least 3 tokens in its neighborhood \rightarrow Delete it.
- Prove that we can reduce to claw-free
 graphs.
TS_{m}-Reachability
Input : A graph G, two independent sets I, J of maximum size.
Output : YES iff there exists a TS-sequence from $/$ to J.
Theorem (Bartier, B., Mühlenthaler '20+)
TS_{m}-Reachability can be decided in polynomial time in fork-free graphs.

Sketch of the proof :

- If a vertex has at least 3 tokens in its neighborhood \rightarrow Delete it.
- Prove that we can reduce to claw-free
 graphs.

Questions :

- Complexity of TS-REACHABILITY on fork-free graphs?

Last case to completely characterize the complexity of TS-REACHABILITY on connected graphs.
TS_{m}-Reachability
Input : A graph G, two independent sets I, J of maximum size.
Output : YES iff there exists a TS-sequence from $/$ to J.
Theorem (Bartier, B., Mühlenthaler '20+)
TS_{m}-Reachability can be decided in polynomial time in fork-free graphs.

Sketch of the proof :

- If a vertex has at least 3 tokens in its neighborhood \rightarrow Delete it.
- Prove that we can reduce to claw-free
 graphs.

Questions :

- Complexity of TS-REACHABILITY on fork-free graphs?

Last case to completely characterize the complexity of TS-REACHABILITY on connected graphs.

- A few non connected graphs (on which we are currently working on).

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot \operatorname{Poly}(n)$.

Very few is known on the parameterized complexity for TS-Reachability.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot \operatorname{Poly}(n)$.

Very few is known on the parameterized complexity for TS-Reachability.

- TS-Reachability is PSPACE-complete for graphs of bounded treewidth / pathwidth / bandwidth / cliquewidth. No hope for a Courcelle like theorem.
- No real understanding on what happens even on very sparse graphs...

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot \operatorname{Poly}(n)$.

Very few is known on the parameterized complexity for TS-Reachability.

- TS-Reachability is PSPACE-complete for graphs of bounded treewidth / pathwidth / bandwidth / cliquewidth. No hope for a Courcelle like theorem.
- No real understanding on what happens even on very sparse graphs...

Two research directions :

- Consider sparse graph classes (e.g. $|E| \leq c|V|)$.
- Consider graph classes with "girth" restriction.

Restrictions on the possible cycles

 [Lokshtanov, Mouawad '19] TS-Reachability is PSPACE-complete on bipartite graphs.
Restrictions on the possible cycles

[Lokshtanov, Mouawad '19] TS-Reachability is
PSPACE-complete on bipartite graphs.
Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)
TS-REAChABILITY is W[1]-hard (very likely not FPT) parameterized by k on bipartite graphs.

Restrictions on the possible cycles

[Lokshtanov, Mouawad '19] TS-Reachability is
PSPACE-complete on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-Reachability is W[1]-hard (very likely not FPT) parameterized by k on bipartite graphs.

Proof by picture :

Restrictions on the possible cycles

[Lokshtanov, Mouawad '19] TS-Reachability is

PSPACE-complete on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-REAChABILITY is W[1]-hard (very likely not FPT) parameterized by k on bipartite graphs.

Proof by picture :

Restrictions on the possible cycles

[Lokshtanov, Mouawad '19] TS-Reachability is
PSPACE-complete on bipartite graphs.
Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)
TS-REACHABILITY is W[1]-hard (very likely not FPT) parameterized by k on bipartite graphs.

Proof by picture :

Restrictions on the possible cycles

[Lokshtanov, Mouawad '19] TS-Reachability is
PSPACE-complete on bipartite graphs.
Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)
TS-REACHABILITY is W[1]-hard (very likely not FPT) parameterized by k on bipartite graphs.

Proof by picture :

Restrictions on the possible cycles

[Lokshtanov, Mouawad '19] TS-Reachability is

PSPACE-complete on bipartite graphs.
Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)
TS-REAChABILITY is W[1]-hard (very likely not FPT) parameterized by k on bipartite graphs.

Proof by picture :

Larger girth

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-Reachability is FPT on C_{4}-free bipartite graphs.

Larger girth

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-Reachability is FPT on C_{4}-free bipartite graphs.

High level idea :

- Bound the degree of the graph.
- [Fox Epstein et al.] Determine the frozen tokens is in P.
- [Fox Epstein et al.] Any reachable vertex can be reached via a sequence all the tokens but ≤ 1 slide \leq once.
\Rightarrow If IS at large distance, we can reach it.

Which cycles are important?
C_{4} ?

Which cycles are important?
 $\mathrm{C}_{4} ? \rightarrow \mathrm{NO}$!

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-Reachability is $\mathrm{W}[1]$-hard parameterized by k on graphs with no induced C_{4}, \ldots, C_{p} for $p \in \mathbb{N}$.

Which cycles are important?

$$
\mathrm{C}_{4} ? \rightarrow \mathrm{NO}!
$$

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-Reachability is $\mathrm{W}[1]$-hard parameterized by k on graphs with no induced C_{4}, \ldots, C_{p} for $p \in \mathbb{N}$.

High level idea :

- [Bonnet et al. '19] MIS is W[1]-hard on graphs with no induced C_{4}, \ldots, C_{p} for $p \in \mathbb{N}$.
- "Gadgetize" from this construction to obtain the reconfiguration counterpart.

Which cycles are important?

$$
\mathrm{C}_{4} ? \rightarrow \mathrm{NO}!
$$

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20)

TS-Reachability is $\mathrm{W}[1]$-hard parameterized by k on graphs with no induced C_{4}, \ldots, C_{p} for $p \in \mathbb{N}$.

High level idea :

- [Bonnet et al. '19] MIS is W[1]-hard on graphs with no induced C_{4}, \ldots, C_{p} for $p \in \mathbb{N}$.
- "Gadgetize" from this construction to obtain the reconfiguration counterpart.

Questions :

- TS-REACHABILITY on graphs of girth ≥ 5 ? $\geq \ell$ for some fixed ℓ ?
- TS-Reachability on even hole free graphs?

It would imply chordal graphs.

On going work

(Bartier, B., Dallard, Lomer, Mouawad '20+)

On going work

(Bartier, B., Dallard, Lomer, Mouawad '20+)
Hammer \# 1 : If $\exists X$ "small" and $G[V \backslash X]$ contains many components, the graph can be reduced.

On going work

(Bartier, B., Dallard, Lomer, Mouawad '20+)
Hammer \# 1 : If $\exists X$ "small" and $G[V \backslash X]$ contains many components, the graph can be reduced.

Hammer \# 2 : If G contains a long geodesic path, then the graph can be reduced.

On going work

(Bartier, B., Dallard, Lomer, Mouawad '20+)
Hammer \# 1 : If $\exists X$ "small" and $G[V \backslash X]$ contains many components, the graph can be reduced.

Hammer \# 2 : If G contains a long geodesic path, then the graph can be reduced.

Hammer \# 3: If $\exists X$ "small" with no token on X and $G[V \backslash X]$ contains a long geodesic path, then the graph can be reduced.

On going work

(Bartier, B., Dallard, Lomer, Mouawad '20+)
Hammer \# 1 : If $\exists X$ "small" and $G[V \backslash X]$ contains many components, the graph can be reduced.

Hammer \# 2 : If G contains a long geodesic path, then the graph can be reduced.

Hammer \# 3: If $\exists X$ "small" with no token on X and $G[V \backslash X]$ contains a long geodesic path, then the graph can be reduced.

Consequences: FPT algorithms for

- Bounded degree graphs.
- Planar graphs.
- Graphs of treewidth ≤ 4.
- Graphs of bounded treedepth.

What's next

For sparse graphs :

- Graphs of bounded treewidth ?
- Graph nowhere dense?
- $K_{\ell, \ell^{-}}$free graphs?

For dense graphs :

- Chordal graphs?
- Split graphs?

Conclusion

Another model : Token Jumping (TJ)
\Leftrightarrow a token can jump anywhere else in the graph.

Conclusion

Another model : Token Jumping (TJ)
\Leftrightarrow a token can jump anywhere else in the graph.

- Most of the results of this talk holds in the TJ-model.
- Much simpler on sparse graphs (cograph, bounded expansion, $K_{\ell, \ell}-$ free...).

Conclusion

Another model : Token Jumping (TJ)
\Leftrightarrow a token can jump anywhere else in the graph.

- Most of the results of this talk holds in the TJ-model.
- Much simpler on sparse graphs (cograph, bounded expansion, $K_{\ell, \ell}-$ free...).

Questions :

- TJ-Reachability in P on P_{5}-free graphs?

Potential maximum cliques?

Conclusion

Another model : Token Jumping (TJ)
\Leftrightarrow a token can jump anywhere else in the graph.

- Most of the results of this talk holds in the TJ-model.
- Much simpler on sparse graphs (cograph, bounded expansion, $K_{\ell, \ell}-$ free...).

Questions :

- TJ-Reachability in P on P_{5}-free graphs?

Potential maximum cliques?

- TJ-Reachability FPT on bipartite graphs?
([Lokshtanov, Mouawad '19] The problem only is NP-complete and not PSPACE complete)

Conclusion

Another model : Token Jumping (TJ)
\Leftrightarrow a token can jump anywhere else in the graph.

- Most of the results of this talk holds in the TJ-model.
- Much simpler on sparse graphs (cograph, bounded expansion, $K_{\ell, \ell}-$ free...).

Questions :

- TJ-Reachability in P on P_{5}-free graphs?

Potential maximum cliques?

- TJ-Reachability FPT on bipartite graphs?
([Lokshtanov, Mouawad '19] The problem only is NP-complete and not PSPACE complete)

Thanks for your attention!

