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Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach a fixed target position ?
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A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach a fixed target position ?

® Reconfiguration introduced for colorings, satisfiability
problems, dominating sets, cliques, list colorings, bases of
matroids, boolean formulas...

e Applications to random sampling, bioinformatics...etc...
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Main questions

® Reachability problem. Given two configurations, is it
possible to transform the one into the other?

e Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other?

® Minimization. Given two configurations, what is the length
of a shortest sequence ?
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Main questions

Reachability problem. Given two configurations, is it
possible to transform the one into the other?

Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other?

Minimization. Given two configurations, what is the length
of a shortest sequence ?

Algorithmics. Can we efficiently solve these questions? (In
polynomial time, FPT-time...).
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Token Sliding

Definition (TS—sequence)]

A TS-sequence I1,..., I, of independent sets is a sequence such
that there exist v € /i1 and u € /; such that /11 = [U{v}\{u}
and uv is an edge.
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Genesis

® [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -
Motion of rectangular robots in a grid.
= PSPACE-complete (but they need large robots).
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Genesis

® [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -
Motion of rectangular robots in a grid.
= PSPACE-complete (but they need large robots).

e [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots?
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TS-Reachability

TS-Reachability
Input : A graph G, k € N, two independent sets /, J of size k.
Output : YES iff there exists a TS-sequence from [ to J.

Theorem (Hearn, Demaine '05)]

TS-REACHABILITY is PSPACE-complete even restricted to pla-
nar graphs of maximum degree at most 3.
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Graph classes
— On which graph class is the problem polynomial 7

Polynomial time algorithms for :
e [Demaine et al.| Trees.
o [Kaminski, Medvedev, Milani¢| Cographs.
e [Bonsma, Kaminski, Wrochnal| Claw-free graphs.
o |[Fox-Epstein et al.| Bipartite permutation graphs.

Question (Demaine et al.)]

Can the TS-REACHABILITY problem be decided on polynomial
time on interval graphs? On chordal graphs?

Answers :
e [Bonamy, B. '18] YES on interval graphs.
e [Belmonte et al. "19] NO on split graphs.

(split graph = V = Vj U V, where V; induces a clique and V5 a stable set)
7/21



Interval graphs
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An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.
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Interval graphs

— e &seseee

An interval graph is an intersection graph of intervals on the line.
Remark :

A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

® The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.

o LIS(G) = x U LIS(G[V \ N[x])).

Decide if an independent set of size k can be transformed into
the LIS.
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First try : Naive Method

I can be transformed into the LIS iff
® The leftmost vertex of x of / can be pushed to the
leftmost vertex y of LIS(G).

® |\ x can be transformed into LIS(G) \ y in G[V \ N[y]).
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Second try
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Repeat the following procedure

10/21



Second try

C=o=—— >

Repeat the following procedure
® Push the first vertex to the left.

10/21



Second try

o-< —

Repeat the following procedure
® Push the first vertex to the left.

10/21



Second try

Co—— >

Repeat the following procedure
® Push the first vertex to the left.

® Push the independent set minus its first vertex to the right.

10/21



Second try

Co——=>

Repeat the following procedure
® Push the first vertex to the left.

® Push the independent set minus its first vertex to the right.

10/21



Second try

- —

Repeat the following procedure
® Push the first vertex to the left.

® Push the independent set minus its first vertex to the right.

10/21



Second try

- —

Repeat the following procedure
® Push the first vertex to the left.

® Push the independent set minus its first vertex to the right.

10/21



Second try

Repeat the following procedure
® Push the first vertex to the left.

® Push the independent set minus its first vertex to the right.

® |f the leftmost vertex is the first vertex of the LIS, apply
induction (with k < k — 1).
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Second try

— >

Repeat the following procedure
® Push the first vertex to the left.

® Push the independent set minus its first vertex to the right.

® |f the leftmost vertex is the first vertex of the LIS, apply
induction (with k < k — 1).

e QOtherwise we can't reach the LIS.
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Questions

® Qur algorithm is polynomial but does not guarantee a
polynomial transformation.
Question : Does there always exist a polynomial
transformation ?
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Questions

® Qur algorithm is polynomial but does not guarantee a
polynomial transformation.
Question : Does there always exist a polynomial
transformation ?

PSPACE

Open
Bd. tw / pw / cw
[chordal] [Distance hereditary| [outerplanan]

interval
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Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

Theorem (lto et al. '12)]

TS-MATCHING REACHABILITY can be decided in polynomial
time.
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Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

/iTheorem (Ito et al. '12)]

TS-MATCHING REACHABILITY can be decided in polynomial

time.
|\

,iTheorem (Bonsma, Kamirski, Wrochna '14)]

TS-REACHABILITY can be decided in polynomial
time in claw-free graphs.

(.

Question : For which H is TS-Independent Set Reconfiguration
polynomial on H-free graphs?
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Theorem (Bartier, B., Miihlenthaler '20+)]

TS-REACHABILITY is PSPACE-complete on H-free graphs for
every H which is not a subdivided claw.
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Theorem (Bartier, B., Miihlenthaler '20+)]

TS-REACHABILITY is PSPACE-complete on H-free graphs for
every H which is not a subdivided claw.

Sketch of the proof : a la Alekseev
® Subdivision of every edge of G twice = MIS increases by |E].

® The same trick can be adapted in the reconfiguration setting.

® Start with a planar graph of = No copy of H if H has
maximum degree 3. a vertex of degree > 4 or a

® Repeat the subdivision cycle or two vertices of de-
process |H| times. gree > 3.
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Input : A graph G, two independent sets /, J of maximum size.
Output : YES iff there exists a TS-sequence from [ to J.
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TS,,-Reachability
Input : A graph G, two independent sets /, J of maximum size.
Output : YES iff there exists a TS-sequence from [ to J.

Theorem

TS,,-REACHABILITY can be decided in poly-
nomial time in fork-free graphs.

Sketch of the proof :

® |f a vertex has at least 3 tokens in its
neighborhood — Delete it.

® Prove that we can reduce to claw-free
graphs.

Questions :
® Complexity of TS-REACHABILITY on fork-free graphs?
Last case to completely characterize the complexity of T'S-REACHABILITY on
connected graphs.

® A few non connected graphs (on which we are currently working on).
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Parameterized complexity

A problem [ parameterized by k is FPT if it can be decided in
f(k) - Poly(n).

Very few is known on the parameterized complexity for
TS-REACHABILITY.
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Parameterized complexity

A problem [ parameterized by k is FPT if it can be decided in
f(k) - Poly(n).

Very few is known on the parameterized complexity for
TS-REACHABILITY.

® TS-REACHABILITY is PSPACE-complete for graphs of
bounded treewidth / pathwidth / bandwidth / cliquewidth.

No hope for a Courcelle like theorem.

® No real understanding on what happens even on very sparse
graphs...

Two research directions :
o Consider sparse graph classes (eg. |£] < c|v)).

® Consider graph classes with “girth” restriction.
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Restrictions on the possible cycles
[Lokshtanov, Mouawad '19] TS-REACHABILITY is
PSPACE-complete on bipartite graphs.
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Restrictions on the possible cycles

[Lokshtanov, Mouawad '19] TS-REACHABILITY is
PSPACE-complete on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)]

TS-REACHABILITY is W([1]-hard (very likely not FPT) parameterized
by k on bipartite graphs.

Proof by picture : E‘_’Ek Zomplete
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Larger girth
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Larger girth

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)]

TS-REACHABILITY is FPT on (C4-free bipartite graphs. ]

High level idea :
® Bound the degree of the graph.
e [Fox Epstein et al.| Determine the frozen tokens is in P.

e [Fox Epstein et al.| Any reachable vertex can be reached via a
sequence all the tokens but < 1 slide < once.

= If IS at large distance, we can reach it.
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Which cycles are important ?
Cy7?
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Which cycles are important ?
G 7?7 — NO!

Theorem (Bartier, B., Dallard, Lomer, Mouawad '20) |

TS-REACHABILITY is W[1]-hard parameterized by k on graphs
with no induced Cy, ..., C, for p € N.

High level idea :
e [Bonnet et al. '19] MIS is W[1]-hard on graphs with no
induced (4, ..., C, for p € N.
® “Gadgetize” from this construction to obtain the
reconfiguration counterpart.
Questions :
® TS-REACHABILITY on graphs of girth > 57 > 7 for some
fixed £7
¢ TS-REACHABILITY on even hole free graphs?

It would imply chordal graphs.
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Hammer # 1 : If 3X “small” and G[V \ X]
contains many components, the graph can be
reduced.

Hammer # 2 : If G contains a long geodesic
. path, then the graph can be reduced.

> Hammer # 3 : If 3X “small” with no token
X and G[V \ X] contains a long geodesic
path, then the graph can be reduced.

Consequences : FPT algorithms for

® Bounded degree graphs.

® Planar graphs.

® Graphs of treewidth < 4.

® Graphs of bounded treedepth.
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What's next

For sparse graphs :
® Graphs of bounded treewidth ?
® Graph nowhere dense ?
® Ky -free graphs?
For dense graphs :
® Chordal graphs?
e Split graphs?
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< a token can jump anywhere else in the graph.
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Thanks for your attention !
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