
Independent Set Reconfiguration
via Token Sliding

Nicolas Bousquet

joint works with
Valentin Bartier, Marthe Bonamy, Clément Dallard, Kyle

Lomer, Amer Mouawad and Moritz Mühlenthaler

December 2020

1/21

Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach a fixed target position ?

• Reconfiguration introduced for colorings, satisfiability
problems, dominating sets, cliques, list colorings, bases of
matroids, boolean formulas...

• Applications to random sampling, bioinformatics...etc...

2/21

Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach a fixed target position ?

• Reconfiguration introduced for colorings, satisfiability
problems, dominating sets, cliques, list colorings, bases of
matroids, boolean formulas...

• Applications to random sampling, bioinformatics...etc...

2/21

Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach a fixed target position ?

• Reconfiguration introduced for colorings, satisfiability
problems, dominating sets, cliques, list colorings, bases of
matroids, boolean formulas...

• Applications to random sampling, bioinformatics...etc...

2/21

Main questions

• Reachability problem. Given two configurations, is it
possible to transform the one into the other ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

3/21

Main questions

• Reachability problem. Given two configurations, is it
possible to transform the one into the other ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

3/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

X

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Token Sliding

A TS-sequence I1, . . . , I` of independent sets is a sequence such
that there exist v ∈ Ij+1 and u ∈ Ij such that Ij+1 = Ij∪{v}\{u}
and uv is an edge.

Definition (TS-sequence)

Equivalent formulation :
We slide tokens along the edges in such a way the set remains an
independent set at any step.

4/21

Genesis

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots ?

5/21

Genesis

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots ?

5/21

Genesis

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots ?

5/21

TS-Reachability

TS-Reachability
Input : A graph G , k ∈ N, two independent sets I , J of size k .
Output : YES iff there exists a TS-sequence from I to J.

TS-Reachability is PSPACE-complete even restricted to pla-
nar graphs of maximum degree at most 3.

Theorem (Hearn, Demaine ’05)

6/21

Graph classes
→ On which graph class is the problem polynomial ?

Polynomial time algorithms for :

• [Demaine et al.] Trees.

• [Kamiński, Medvedev, Milanič] Cographs.

• [Bonsma, Kamiński, Wrochna] Claw-free graphs.

• [Fox-Epstein et al.] Bipartite permutation graphs.

Can the TS-Reachability problem be decided on polynomial
time on interval graphs ? On chordal graphs ?

Question (Demaine et al.)

Answers :

• [Bonamy, B. ’18] YES on interval graphs.

• [Belmonte et al. ’19] NO on split graphs.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2 a stable set)

7/21

Graph classes
→ On which graph class is the problem polynomial ?

Polynomial time algorithms for :

• [Demaine et al.] Trees.

• [Kamiński, Medvedev, Milanič] Cographs.

• [Bonsma, Kamiński, Wrochna] Claw-free graphs.

• [Fox-Epstein et al.] Bipartite permutation graphs.

Can the TS-Reachability problem be decided on polynomial
time on interval graphs ? On chordal graphs ?

Question (Demaine et al.)

Answers :

• [Bonamy, B. ’18] YES on interval graphs.

• [Belmonte et al. ’19] NO on split graphs.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2 a stable set)

7/21

Graph classes
→ On which graph class is the problem polynomial ?

Polynomial time algorithms for :

• [Demaine et al.] Trees.

• [Kamiński, Medvedev, Milanič] Cographs.

• [Bonsma, Kamiński, Wrochna] Claw-free graphs.

• [Fox-Epstein et al.] Bipartite permutation graphs.

Can the TS-Reachability problem be decided on polynomial
time on interval graphs ? On chordal graphs ?

Question (Demaine et al.)

Answers :

• [Bonamy, B. ’18] YES on interval graphs.

• [Belmonte et al. ’19] NO on split graphs.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2 a stable set)

7/21

Graph classes
→ On which graph class is the problem polynomial ?

Polynomial time algorithms for :

• [Demaine et al.] Trees.

• [Kamiński, Medvedev, Milanič] Cographs.

• [Bonsma, Kamiński, Wrochna] Claw-free graphs.

• [Fox-Epstein et al.] Bipartite permutation graphs.

Can the TS-Reachability problem be decided on polynomial
time on interval graphs ? On chordal graphs ?

Question (Demaine et al.)

Answers :

• [Bonamy, B. ’18] YES on interval graphs.

• [Belmonte et al. ’19] NO on split graphs.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2 a stable set)

7/21

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :

• The LIS contains the leftmost vertex, i.e. the vertex x with
minimum right-end.
• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an independent set of size k can be transformed into
the LIS.

Today :

8/21

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :
• The LIS contains the leftmost vertex, i.e. the vertex x with

minimum right-end.

• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an independent set of size k can be transformed into
the LIS.

Today :

8/21

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :
• The LIS contains the leftmost vertex, i.e. the vertex x with

minimum right-end.
• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an independent set of size k can be transformed into
the LIS.

Today :

8/21

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :
• The LIS contains the leftmost vertex, i.e. the vertex x with

minimum right-end.
• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an independent set of size k can be transformed into
the LIS.

Today :

8/21

Interval graphs

An interval graph is an intersection graph of intervals on the line.
Remark :
A geometric representation can be obtained in polynomial time.

The Leftmost Independent Set (LIS) satisfies :
• The LIS contains the leftmost vertex, i.e. the vertex x with

minimum right-end.
• LIS(G) = x ∪ LIS(G [V \ N[x]]).

Decide if an independent set of size k can be transformed into
the LIS.

Today :

8/21

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

9/21

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

9/21

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

9/21

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.

• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

9/21

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

9/21

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

9/21

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

9/21

First try : Naive Method

I can be transformed into the LIS iff
• The leftmost vertex of x of I can be pushed to the

leftmost vertex y of LIS(G).

• I \ x can be transformed into LIS(G) \ y in G [V \ N[y]).

Lemma

Naive algorithm :

• Push the leftmost vertex of the independent set to the left
and check that it can be transformed into the leftmost vertex.
• Repeat in V \ N[y] for the remaining vertices.

Problem :
We might need to move vertices to the right to push the leftmost
vertex to the left.

9/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Second try

Repeat the following procedure

• Push the first vertex to the left.

• Push the independent set minus its first vertex to the right.

• If the leftmost vertex is the first vertex of the LIS, apply
induction (with k ← k − 1).

• Otherwise we can’t reach the LIS.

10/21

Questions

• Our algorithm is polynomial but does not guarantee a
polynomial transformation.
Question : Does there always exist a polynomial
transformation ?

general

perfect planar

chordal

interval split tree

Distance hereditary outerplanar

Bd. tw / pw / cw

Series - par.

PSPACE

P

Open

11/21

Questions

• Our algorithm is polynomial but does not guarantee a
polynomial transformation.
Question : Does there always exist a polynomial
transformation ?

general

perfect planar

chordal

interval split tree

Distance hereditary outerplanar

Bd. tw / pw / cw

Series - par.

PSPACE

P

Open

11/21

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

TS-Matching Reachability can be decided in polynomial
time.

Theorem (Ito et al. ’12)

TS-Reachability can be decided in polynomial
time in claw-free graphs.

Theorem (Bonsma, Kamiński, Wrochna ’14)

Question : For which H is TS-Independent Set Reconfiguration
polynomial on H-free graphs ?

12/21

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

TS-Matching Reachability can be decided in polynomial
time.

Theorem (Ito et al. ’12)

TS-Reachability can be decided in polynomial
time in claw-free graphs.

Theorem (Bonsma, Kamiński, Wrochna ’14)

Question : For which H is TS-Independent Set Reconfiguration
polynomial on H-free graphs ?

12/21

Matching Reconfiguration

A matching is a subset of edges that are pairwise endpoint disjoint.

TS-Matching Reachability can be decided in polynomial
time.

Theorem (Ito et al. ’12)

TS-Reachability can be decided in polynomial
time in claw-free graphs.

Theorem (Bonsma, Kamiński, Wrochna ’14)

Question : For which H is TS-Independent Set Reconfiguration
polynomial on H-free graphs ?

12/21

TS-Reachability is PSPACE-complete on H-free graphs for
every H which is not a subdivided claw.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof : a la Alekseev

• Subdivision of every edge of G twice ⇒ MIS increases by |E |.

• The same trick can be adapted in the reconfiguration setting.

• Start with a planar graph of
maximum degree 3.

• Repeat the subdivision
process |H| times.

⇒ No copy of H if H has
a vertex of degree ≥ 4 or a
cycle or two vertices of de-
gree ≥ 3.

13/21

TS-Reachability is PSPACE-complete on H-free graphs for
every H which is not a subdivided claw.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof : a la Alekseev

• Subdivision of every edge of G twice ⇒ MIS increases by |E |.

• The same trick can be adapted in the reconfiguration setting.

• Start with a planar graph of
maximum degree 3.

• Repeat the subdivision
process |H| times.

⇒ No copy of H if H has
a vertex of degree ≥ 4 or a
cycle or two vertices of de-
gree ≥ 3.

13/21

TS-Reachability is PSPACE-complete on H-free graphs for
every H which is not a subdivided claw.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof : a la Alekseev

• Subdivision of every edge of G twice ⇒ MIS increases by |E |.

• The same trick can be adapted in the reconfiguration setting.

• Start with a planar graph of
maximum degree 3.

• Repeat the subdivision
process |H| times.

⇒ No copy of H if H has
a vertex of degree ≥ 4 or a
cycle or two vertices of de-
gree ≥ 3.

13/21

TS-Reachability is PSPACE-complete on H-free graphs for
every H which is not a subdivided claw.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof : a la Alekseev

• Subdivision of every edge of G twice ⇒ MIS increases by |E |.
• The same trick can be adapted in the reconfiguration setting.

• Start with a planar graph of
maximum degree 3.

• Repeat the subdivision
process |H| times.

⇒ No copy of H if H has
a vertex of degree ≥ 4 or a
cycle or two vertices of de-
gree ≥ 3.

13/21

TS-Reachability is PSPACE-complete on H-free graphs for
every H which is not a subdivided claw.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof : a la Alekseev

• Subdivision of every edge of G twice ⇒ MIS increases by |E |.
• The same trick can be adapted in the reconfiguration setting.

• Start with a planar graph of
maximum degree 3.

• Repeat the subdivision
process |H| times.

⇒ No copy of H if H has
a vertex of degree ≥ 4 or a
cycle or two vertices of de-
gree ≥ 3.

13/21

TSm-Reachability
Input : A graph G , two independent sets I , J of maximum size.
Output : YES iff there exists a TS-sequence from I to J.

TSm-Reachability can be decided in poly-
nomial time in fork-free graphs.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof :

• If a vertex has at least 3 tokens in its
neighborhood → Delete it.

• Prove that we can reduce to claw-free
graphs.

Questions :

• Complexity of TS-Reachability on fork-free graphs ?
Last case to completely characterize the complexity of TS-Reachability on

connected graphs.

• A few non connected graphs (on which we are currently working on).

14/21

TSm-Reachability
Input : A graph G , two independent sets I , J of maximum size.
Output : YES iff there exists a TS-sequence from I to J.

TSm-Reachability can be decided in poly-
nomial time in fork-free graphs.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof :

• If a vertex has at least 3 tokens in its
neighborhood → Delete it.

• Prove that we can reduce to claw-free
graphs.

Questions :

• Complexity of TS-Reachability on fork-free graphs ?
Last case to completely characterize the complexity of TS-Reachability on

connected graphs.

• A few non connected graphs (on which we are currently working on).

14/21

TSm-Reachability
Input : A graph G , two independent sets I , J of maximum size.
Output : YES iff there exists a TS-sequence from I to J.

TSm-Reachability can be decided in poly-
nomial time in fork-free graphs.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof :

• If a vertex has at least 3 tokens in its
neighborhood → Delete it.

• Prove that we can reduce to claw-free
graphs.

Questions :

• Complexity of TS-Reachability on fork-free graphs ?
Last case to completely characterize the complexity of TS-Reachability on

connected graphs.

• A few non connected graphs (on which we are currently working on).

14/21

TSm-Reachability
Input : A graph G , two independent sets I , J of maximum size.
Output : YES iff there exists a TS-sequence from I to J.

TSm-Reachability can be decided in poly-
nomial time in fork-free graphs.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof :

• If a vertex has at least 3 tokens in its
neighborhood → Delete it.

• Prove that we can reduce to claw-free
graphs.

Questions :

• Complexity of TS-Reachability on fork-free graphs ?
Last case to completely characterize the complexity of TS-Reachability on

connected graphs.

• A few non connected graphs (on which we are currently working on).

14/21

TSm-Reachability
Input : A graph G , two independent sets I , J of maximum size.
Output : YES iff there exists a TS-sequence from I to J.

TSm-Reachability can be decided in poly-
nomial time in fork-free graphs.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof :

• If a vertex has at least 3 tokens in its
neighborhood → Delete it.

• Prove that we can reduce to claw-free
graphs.

Questions :
• Complexity of TS-Reachability on fork-free graphs ?

Last case to completely characterize the complexity of TS-Reachability on

connected graphs.

• A few non connected graphs (on which we are currently working on).

14/21

TSm-Reachability
Input : A graph G , two independent sets I , J of maximum size.
Output : YES iff there exists a TS-sequence from I to J.

TSm-Reachability can be decided in poly-
nomial time in fork-free graphs.

Theorem (Bartier, B., Mühlenthaler ’20+)

Sketch of the proof :

• If a vertex has at least 3 tokens in its
neighborhood → Delete it.

• Prove that we can reduce to claw-free
graphs.

Questions :
• Complexity of TS-Reachability on fork-free graphs ?

Last case to completely characterize the complexity of TS-Reachability on

connected graphs.

• A few non connected graphs (on which we are currently working on).
14/21

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in
f (k) · Poly(n).

Very few is known on the parameterized complexity for
TS-Reachability.

• TS-Reachability is PSPACE-complete for graphs of
bounded treewidth / pathwidth / bandwidth / cliquewidth.
No hope for a Courcelle like theorem.

• No real understanding on what happens even on very sparse
graphs...

Two research directions :

• Consider sparse graph classes (e.g. |E | ≤ c|V |).

• Consider graph classes with “girth” restriction.

15/21

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in
f (k) · Poly(n).

Very few is known on the parameterized complexity for
TS-Reachability.

• TS-Reachability is PSPACE-complete for graphs of
bounded treewidth / pathwidth / bandwidth / cliquewidth.
No hope for a Courcelle like theorem.

• No real understanding on what happens even on very sparse
graphs...

Two research directions :

• Consider sparse graph classes (e.g. |E | ≤ c|V |).

• Consider graph classes with “girth” restriction.

15/21

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in
f (k) · Poly(n).

Very few is known on the parameterized complexity for
TS-Reachability.

• TS-Reachability is PSPACE-complete for graphs of
bounded treewidth / pathwidth / bandwidth / cliquewidth.
No hope for a Courcelle like theorem.

• No real understanding on what happens even on very sparse
graphs...

Two research directions :

• Consider sparse graph classes (e.g. |E | ≤ c|V |).

• Consider graph classes with “girth” restriction.

15/21

Restrictions on the possible cycles
[Lokshtanov, Mouawad ’19] TS-Reachability is
PSPACE-complete on bipartite graphs.

TS-Reachability is W[1]-hard (very likely not FPT) parameterized
by k on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

Proof by picture :

V

V

V

V

V

V

V

V
antimatch.

bip. incid.

k

16/21

Restrictions on the possible cycles
[Lokshtanov, Mouawad ’19] TS-Reachability is
PSPACE-complete on bipartite graphs.

TS-Reachability is W[1]-hard (very likely not FPT) parameterized
by k on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

Proof by picture :

V

V

V

V

V

V

V

V
antimatch.

bip. incid.

k

16/21

Restrictions on the possible cycles
[Lokshtanov, Mouawad ’19] TS-Reachability is
PSPACE-complete on bipartite graphs.

TS-Reachability is W[1]-hard (very likely not FPT) parameterized
by k on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

Proof by picture :

V

V

V

V

V

V

V

V
antimatch.

bip. incid.

k

16/21

Restrictions on the possible cycles
[Lokshtanov, Mouawad ’19] TS-Reachability is
PSPACE-complete on bipartite graphs.

TS-Reachability is W[1]-hard (very likely not FPT) parameterized
by k on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

Proof by picture :

V

V

V

V

V

V

V

V
antimatch.

bip. incid.

k

k k

k k

complete

16/21

Restrictions on the possible cycles
[Lokshtanov, Mouawad ’19] TS-Reachability is
PSPACE-complete on bipartite graphs.

TS-Reachability is W[1]-hard (very likely not FPT) parameterized
by k on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

Proof by picture :
k k

k k

complete

V

V

V

V

16/21

Restrictions on the possible cycles
[Lokshtanov, Mouawad ’19] TS-Reachability is
PSPACE-complete on bipartite graphs.

TS-Reachability is W[1]-hard (very likely not FPT) parameterized
by k on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

Proof by picture :
k k

k k

complete

V

V

V

V

16/21

Restrictions on the possible cycles
[Lokshtanov, Mouawad ’19] TS-Reachability is
PSPACE-complete on bipartite graphs.

TS-Reachability is W[1]-hard (very likely not FPT) parameterized
by k on bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

Proof by picture :
k k

k k

complete

antimatch.

bip. incid.

16/21

Larger girth

TS-Reachability is FPT on C4-free bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

High level idea :

• Bound the degree of the graph.

• [Fox Epstein et al.] Determine the frozen tokens is in P.

• [Fox Epstein et al.] Any reachable vertex can be reached via a
sequence all the tokens but ≤ 1 slide ≤ once.

⇒ If IS at large distance, we can reach it.

17/21

Larger girth

TS-Reachability is FPT on C4-free bipartite graphs.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

High level idea :

• Bound the degree of the graph.

• [Fox Epstein et al.] Determine the frozen tokens is in P.

• [Fox Epstein et al.] Any reachable vertex can be reached via a
sequence all the tokens but ≤ 1 slide ≤ once.

⇒ If IS at large distance, we can reach it.

17/21

Which cycles are important ?

C4 ?

→ NO !

TS-Reachability is W[1]-hard parameterized by k on graphs
with no induced C4, . . . ,Cp for p ∈ N.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

High level idea :
• [Bonnet et al. ’19] MIS is W[1]-hard on graphs with no

induced C4, . . . ,Cp for p ∈ N.
• “Gadgetize” from this construction to obtain the

reconfiguration counterpart.

Questions :
• TS-Reachability on graphs of girth ≥ 5 ? ≥ ` for some

fixed ` ?
• TS-Reachability on even hole free graphs ?

It would imply chordal graphs.

18/21

Which cycles are important ?

C4 ? → NO !

TS-Reachability is W[1]-hard parameterized by k on graphs
with no induced C4, . . . ,Cp for p ∈ N.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

High level idea :
• [Bonnet et al. ’19] MIS is W[1]-hard on graphs with no

induced C4, . . . ,Cp for p ∈ N.
• “Gadgetize” from this construction to obtain the

reconfiguration counterpart.

Questions :
• TS-Reachability on graphs of girth ≥ 5 ? ≥ ` for some

fixed ` ?
• TS-Reachability on even hole free graphs ?

It would imply chordal graphs.

18/21

Which cycles are important ?

C4 ? → NO !

TS-Reachability is W[1]-hard parameterized by k on graphs
with no induced C4, . . . ,Cp for p ∈ N.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

High level idea :
• [Bonnet et al. ’19] MIS is W[1]-hard on graphs with no

induced C4, . . . ,Cp for p ∈ N.
• “Gadgetize” from this construction to obtain the

reconfiguration counterpart.

Questions :
• TS-Reachability on graphs of girth ≥ 5 ? ≥ ` for some

fixed ` ?
• TS-Reachability on even hole free graphs ?

It would imply chordal graphs.

18/21

Which cycles are important ?

C4 ? → NO !

TS-Reachability is W[1]-hard parameterized by k on graphs
with no induced C4, . . . ,Cp for p ∈ N.

Theorem (Bartier, B., Dallard, Lomer, Mouawad ’20)

High level idea :
• [Bonnet et al. ’19] MIS is W[1]-hard on graphs with no

induced C4, . . . ,Cp for p ∈ N.
• “Gadgetize” from this construction to obtain the

reconfiguration counterpart.

Questions :
• TS-Reachability on graphs of girth ≥ 5 ? ≥ ` for some

fixed ` ?
• TS-Reachability on even hole free graphs ?

It would imply chordal graphs.
18/21

On going work
(Bartier, B., Dallard, Lomer, Mouawad ’20+)

Hammer # 1 : If ∃X “small” and G [V \ X]
contains many components, the graph can be
reduced.

Hammer # 2 : If G contains a long geodesic
path, then the graph can be reduced.

Hammer # 3 : If ∃X “small” with no token
on X and G [V \ X] contains a long geodesic
path, then the graph can be reduced.

Consequences : FPT algorithms for

• Bounded degree graphs.

• Planar graphs.

• Graphs of treewidth ≤ 4.

• Graphs of bounded treedepth.

19/21

On going work
(Bartier, B., Dallard, Lomer, Mouawad ’20+)

Hammer # 1 : If ∃X “small” and G [V \ X]
contains many components, the graph can be
reduced.

Hammer # 2 : If G contains a long geodesic
path, then the graph can be reduced.

Hammer # 3 : If ∃X “small” with no token
on X and G [V \ X] contains a long geodesic
path, then the graph can be reduced.

Consequences : FPT algorithms for

• Bounded degree graphs.

• Planar graphs.

• Graphs of treewidth ≤ 4.

• Graphs of bounded treedepth.

19/21

On going work
(Bartier, B., Dallard, Lomer, Mouawad ’20+)

Hammer # 1 : If ∃X “small” and G [V \ X]
contains many components, the graph can be
reduced.

Hammer # 2 : If G contains a long geodesic
path, then the graph can be reduced.

Hammer # 3 : If ∃X “small” with no token
on X and G [V \ X] contains a long geodesic
path, then the graph can be reduced.

Consequences : FPT algorithms for

• Bounded degree graphs.

• Planar graphs.

• Graphs of treewidth ≤ 4.

• Graphs of bounded treedepth.

19/21

On going work
(Bartier, B., Dallard, Lomer, Mouawad ’20+)

Hammer # 1 : If ∃X “small” and G [V \ X]
contains many components, the graph can be
reduced.

Hammer # 2 : If G contains a long geodesic
path, then the graph can be reduced.

Hammer # 3 : If ∃X “small” with no token
on X and G [V \ X] contains a long geodesic
path, then the graph can be reduced.

Consequences : FPT algorithms for

• Bounded degree graphs.

• Planar graphs.

• Graphs of treewidth ≤ 4.

• Graphs of bounded treedepth.

19/21

On going work
(Bartier, B., Dallard, Lomer, Mouawad ’20+)

Hammer # 1 : If ∃X “small” and G [V \ X]
contains many components, the graph can be
reduced.

Hammer # 2 : If G contains a long geodesic
path, then the graph can be reduced.

Hammer # 3 : If ∃X “small” with no token
on X and G [V \ X] contains a long geodesic
path, then the graph can be reduced.

Consequences : FPT algorithms for

• Bounded degree graphs.

• Planar graphs.

• Graphs of treewidth ≤ 4.

• Graphs of bounded treedepth.

19/21

What’s next

For sparse graphs :

• Graphs of bounded treewidth ?

• Graph nowhere dense ?

• K`,`-free graphs ?

For dense graphs :

• Chordal graphs ?

• Split graphs ?

20/21

Conclusion
Another model : Token Jumping (TJ)
⇔ a token can jump anywhere else in the graph.

• Most of the results of this talk holds in the TJ-model.

• Much simpler on sparse graphs (cograph, bounded expansion,

K`,`-free...).

Questions :

• TJ-Reachability in P on P5-free graphs ?
Potential maximum cliques ?

• TJ-Reachability FPT on bipartite graphs ?
([Lokshtanov, Mouawad ’19] The problem only is NP-complete and not

PSPACE complete)

Thanks for your attention !

21/21

Conclusion
Another model : Token Jumping (TJ)
⇔ a token can jump anywhere else in the graph.

• Most of the results of this talk holds in the TJ-model.

• Much simpler on sparse graphs (cograph, bounded expansion,

K`,`-free...).

Questions :

• TJ-Reachability in P on P5-free graphs ?
Potential maximum cliques ?

• TJ-Reachability FPT on bipartite graphs ?
([Lokshtanov, Mouawad ’19] The problem only is NP-complete and not

PSPACE complete)

Thanks for your attention !

21/21

Conclusion
Another model : Token Jumping (TJ)
⇔ a token can jump anywhere else in the graph.

• Most of the results of this talk holds in the TJ-model.

• Much simpler on sparse graphs (cograph, bounded expansion,

K`,`-free...).

Questions :

• TJ-Reachability in P on P5-free graphs ?
Potential maximum cliques ?

• TJ-Reachability FPT on bipartite graphs ?
([Lokshtanov, Mouawad ’19] The problem only is NP-complete and not

PSPACE complete)

Thanks for your attention !

21/21

Conclusion
Another model : Token Jumping (TJ)
⇔ a token can jump anywhere else in the graph.

• Most of the results of this talk holds in the TJ-model.

• Much simpler on sparse graphs (cograph, bounded expansion,

K`,`-free...).

Questions :

• TJ-Reachability in P on P5-free graphs ?
Potential maximum cliques ?

• TJ-Reachability FPT on bipartite graphs ?
([Lokshtanov, Mouawad ’19] The problem only is NP-complete and not

PSPACE complete)

Thanks for your attention !

21/21

Conclusion
Another model : Token Jumping (TJ)
⇔ a token can jump anywhere else in the graph.

• Most of the results of this talk holds in the TJ-model.

• Much simpler on sparse graphs (cograph, bounded expansion,

K`,`-free...).

Questions :

• TJ-Reachability in P on P5-free graphs ?
Potential maximum cliques ?

• TJ-Reachability FPT on bipartite graphs ?
([Lokshtanov, Mouawad ’19] The problem only is NP-complete and not

PSPACE complete)

Thanks for your attention !

21/21

