Erdős-Hajnal for paths and cycles

Marthe Bonamy

Nicolas Bousquet Aurélie Lagoutte Stéphan Thomassé

LIRMM, Montpellier

First definitions

- $\bullet \ \omega$ the maximum size of a clique.
- α the maximum size of a stable set.
- χ the chromatic number.
- P_k : induced path on k vertices.
- C_k : induced cycle on k vertices.
- class = class closed under induced subgraphs.

Definition

A graph G is H-free if no induced subgraph of G is isomorphic to H.

Chromatic number at most c

= Partition into *c* stable sets

Chromatic number at most
$$c$$

= Partition into c stable sets
 $\downarrow \downarrow$
Fractional chromatic number number at most c
(\Rightarrow Existence of a stable set of size $\frac{n}{c}$ for every induced subgraph).
 $\downarrow \downarrow$
Existence of an empty bipartite graph of size $\frac{n}{2c}$ (for every induced subgraph).

Chromatic number at most
$$c$$

= Partition into c stable sets
 $\downarrow \downarrow$
Fractional chromatic number number at most c
(\Rightarrow Existence of a stable set of size $\frac{n}{c}$ for every induced subgraph).
 $\downarrow \downarrow$
Existence of an empty bipartite graph of size $\frac{n}{2c}$ (for every induced subgraph).

Question :

Reverse of these implications?

- First implication : FALSE.
- Second implication : we only have a polynomial clique or a polynomial stable set.

Observation : We always have $\omega \leq \chi$. \Rightarrow Reverse function ?

Observation : We always have $\omega \leq \chi$. \Rightarrow Reverse function ?

Definition (χ -bounded)

A class is χ -bounded if $\chi \leq f(\omega)$.

Example : Graphs with no P_k are χ -bounded.

Observation : We always have $\omega \leq \chi$. \Rightarrow Reverse function ?

Definition (χ -bounded)

A class is χ -bounded if $\chi \leq f(\omega)$.

Example : Graphs with no P_k are χ -bounded.

Conjecture (Gyárfás '87)

A graph with no copy of P_k has chromatic number at most $Poly(k, \omega)$.

Observation : We always have $\omega \leq \chi$. \Rightarrow Reverse function ?

Definition (χ -bounded)

A class is χ -bounded if $\chi \leq f(\omega)$.

Example : Graphs with no P_k are χ -bounded.

Conjecture (Gyárfás '87)

A graph with no copy of P_k has chromatic number at most $Poly(k, \omega)$.

Conjecture (Erdős Hajnal '89)

A graph with no copy of P_k has a clique or a stable set of size n^{ϵ} .

Observation : We always have $\omega \leq \chi$. \Rightarrow Reverse function ?

Definition (χ -bounded)

A class is χ -bounded if $\chi \leq f(\omega)$.

Example : Graphs with no P_k are χ -bounded.

Conjecture (Gyárfás '87)

A graph with no copy of P_k has chromatic number at most $Poly(k, \omega)$.

Conjecture (Erdős Hajnal '89)

A graph with no copy of P_k has a clique or a stable set of size n^{ϵ} .

Folklore

If a class ${\mathcal C}$ of graphs satisfies $\chi \leq \omega^c$ then ${\mathcal C}$ has a polynomial clique or stable set.

Erdős-Hajnal conjecture

What is the value of $max(\omega, \alpha)$ if some graph H is forbidden?

•••	$\alpha = n$
	$\alpha \geq \sqrt{n \log n}$
•••	$lpha$ or ω are at least \sqrt{n}
• • • •	α or ω are at least \sqrt{n}

Erdős-Hajnal conjecture

What is the value of $max(\omega, \alpha)$ if some graph H is forbidden?

Conjecture (Erdős-Hajnal '89)

For every H, there exists $\epsilon > 0$ such that every H-free graph satisfies $\max(\alpha, \omega) \ge n^{\epsilon}$.

Erdős-Hajnal conjecture

What is the value of $max(\omega, \alpha)$ if some graph H is forbidden?

Conjecture (Erdős-Hajnal '89)

For every *H*, there exists $\epsilon > 0$ such that every *H*-free graph satisfies $\max(\alpha, \omega) \ge n^{\epsilon}$.

Lemma (Grimmet, Mc Diarmid '75)

Random graphs satisfy $\alpha, \omega = \mathcal{O}(\log n)$.

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then it holds for every graph.

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then it holds for every graph.

Interesting prime graphs on 4 vertices : P_4 . \checkmark

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then it holds for every graph.

```
Interesting prime graphs on 4 vertices : P_4. \checkmark
```

Interesting prime graphs on 5 vertices : bull, P_5 , C_5 and their complements.

- Bull : Chudnovsky, Safra '08. 🗸
- P_5, C_5 : widely open.

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then it holds for every graph.

```
Interesting prime graphs on 4 vertices : P_4. \checkmark
```

Interesting prime graphs on 5 vertices : bull, P_5 , C_5 and their complements.

- Bull : Chudnovsky, Safra '08. 🗸
- P_5, C_5 : widely open.

 \Rightarrow What happens if we enforce stronger conditions... Idea : forbid a graph and its complement.

Our results (I)

Theorem (Chudnovsky, Zwols '11)

Graphs with no P_5 nor complement of P_6 have the Erdős-Hajnal property.

Theorem (Chudnovsky, Seymour '12)

Graphs with no P_5 nor complement of P_7 have the Erdős-Hajnal property.

Theorem (B., Lagoutte, Thomassé '13)

Graphs with no P_k nor its complement have the Erdős-Hajnal property.

Our results (II)

Conjecture (Gyárfás)

Graphs with no cycle of length at least k are χ -bounded.

Our results (II)

Conjecture (Gyárfás)

Graphs with no cycle of length at least k are χ -bounded.

Theorem (Bonamy, B., Thomassé '13)

Graphs with no cycles of length at least k nor their complements have the Erdős-Hajnal property.

Erdős-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé '13)

Graphs with no P_k nor its complement have the Erdős-Hajnal property.

Erdős-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé '13)

Graphs with no P_k nor its complement have the Erdős-Hajnal property.

Structure of the proof :

- Extract a sparse or a dense linear subgraph.
- The graph contains an empty (or complete) linear bipartite subgraph.
- So Linear empty bipartite graph \Rightarrow polynomial clique / stable set.

sparse = degree of each vertex $\leq \epsilon n$. dense = degree of each vertex $\geq (1 - \epsilon)n$.

Erdős-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé '13)

Graphs with no P_k nor its complement have the Erdős-Hajnal property.

Structure of the proof :

- Extract a sparse or a dense linear subgraph.
- The graph contains an empty (or complete) linear bipartite subgraph.
- Solution Linear empty bipartite graph \Rightarrow polynomial clique / stable set.

sparse = degree of each vertex $\leq \epsilon n$. dense = degree of each vertex $\geq (1 - \epsilon)n$.

Since the problem is the same up to complementation, we assume that there is a linear sparse subgraph.

Step 2 : extracting an empty (or complete) linear bipartite

Inspired from Gyárfás' proof that (triangle, P_k)-free graphs are $\chi\text{-bounded}.$

Gyárfas' method : Grow a path from any vertex *u*.

Step 2 : extracting an empty (or complete) linear bipartite

Inspired from Gyárfás' proof that (triangle, P_k)-free graphs are χ -bounded.

Gyárfas' method : Grow a path from any vertex *u*.

Take a vertex u.

- A connected component X of G \ N(u) has chromatic number at least χ − 1.
- Take v a vertex of N(u) with a neighbor in X.

Step 2 : extracting an empty (or complete) linear bipartite

Inspired from Gyárfás' proof that (triangle, P_k)-free graphs are χ -bounded.

Gyárfas' method : Grow a path from any vertex *u*.

Take a vertex u.

- A connected component X of G \ N(u) has chromatic number at least χ − 1.
- Take v a vertex of N(u) with a neighbor in X.
- Restrict the graph to $v \cup X$ and repeat.

Method : Grow a path from any vertex *u*.

Method : Grow a path from any vertex *u*.

Consider a sparse graph. Take a vertex u.

• If no component of $G \setminus N(u)$ has size at least $(1 - \epsilon)n$, then conclude.

Method : Grow a path from any vertex *u*.

Consider a sparse graph. Take a vertex u.

- If no component of $G \setminus N(u)$ has size at least $(1 \epsilon)n$, then conclude.
- Otherwise a connected component X of $G \setminus N(u)$ has size at least $(1 \epsilon)n$.
- Take v a vertex of N(u) with a neighbor in X.

Method : Grow a path from any vertex *u*.

Consider a sparse graph. Take a vertex *u*.

- If no component of $G \setminus N(u)$ has size at least $(1 \epsilon)n$, then conclude.
- Otherwise a connected component X of G \ N(u) has size at least (1 − ε)n.
- Take v a vertex of N(u) with a neighbor in X.
- Restrict the graph to $v \cup X$ and repeat.

Step 3 : empty bipartite graph implies Erdős-Hajnal

Lemma (Alon et al., Fox and Pach)

Every graph with an empty or a complete bipartite graph of linear size contains a cograph of size n^{ϵ} .

Step 3 : empty bipartite graph implies Erdős-Hajnal

Lemma (Alon et al., Fox and Pach)

Every graph with an empty or a complete bipartite graph of linear size contains a cograph of size n^{ϵ} .

Proof :

Find a cograph of polynomial size.

- Find an empty or complete bipartite graph of size *cn*.
- Apply induction on each part for finding a cograph of size $(\frac{n}{c})^{\epsilon}$.
- Disjoint union or join : cograph of size $2(\frac{n}{c})^{\epsilon}$.

Step 3 : empty bipartite graph implies Erdős-Hajnal

Lemma (Alon et al., Fox and Pach)

Every graph with an empty or a complete bipartite graph of linear size contains a cograph of size n^{ϵ} .

Proof :

Find a cograph of polynomial size.

- Find an empty or complete bipartite graph of size *cn*.
- Apply induction on each part for finding a cograph of size $(\frac{n}{c})^{\epsilon}$.
- Disjoint union or join : cograph of size $2(\frac{n}{c})^{\epsilon}$.
- \Rightarrow Every cograph has a clique or a stable set of size \sqrt{n} .

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

 Lokshtanov, Vatshelle, Villanger : find maximum stable set in polynomial time in P₅-free graphs. The proof is based on a "chordalisation" of the P₅-free graph.

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

- Lokshtanov, Vatshelle, Villanger : find maximum stable set in polynomial time in P₅-free graphs. The proof is based on a "chordalisation" of the P₅-free graph.
- It suffices to show that dense *P*₅-free graphs have a polynomial clique or stable set.

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

- Lokshtanov, Vatshelle, Villanger : find maximum stable set in polynomial time in P₅-free graphs. The proof is based on a "chordalisation" of the P₅-free graph.
- It suffices to show that dense *P*₅-free graphs have a polynomial clique or stable set.

Conjecture (Gyárfás '87)

Graphs with no long cycle are χ -bounded.

Open even for triangle-free graphs.

Questions

Does P_5 and/or C_5 have the Erdős-Hajnal property?

- Lokshtanov, Vatshelle, Villanger : find maximum stable set in polynomial time in P₅-free graphs. The proof is based on a "chordalisation" of the P₅-free graph.
- It suffices to show that dense *P*₅-free graphs have a polynomial clique or stable set.

Conjecture (Gyárfás '87)

Graphs with no long cycle are χ -bounded.

Open even for triangle-free graphs.

Question

Find a class of graphs with linear empty bipartite graphs but no linear stable set.

Thanks for your attention