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First definitions

ω the maximum size of a clique.

α the maximum size of a stable set.

χ the chromatic number.

Pk : induced path on k vertices.

Ck : induced cycle on k vertices.

class = class closed under induced subgraphs.

Definition

A graph G is H-free if no induced subgraph of G is isomorphic to
H.
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Chromatic number and stable sets

Chromatic number at most c
= Partition into c stable sets

⇓
Fractional chromatic number number at most c

(⇒ Existence of a stable set of size n
c for every induced subgraph).

⇓
Existence of an empty bipartite graph of size n

2c (for every induced
subgraph).

Question :
Reverse of these implications ?

First implication : FALSE.

Second implication : we only have a polynomial clique or a
polynomial stable set.
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Erdős-Hajnal conjecture Erdős-Hajnal for paths Conclusion

Chromatic number and stable sets

Chromatic number at most c
= Partition into c stable sets

⇓
Fractional chromatic number number at most c

(⇒ Existence of a stable set of size n
c for every induced subgraph).

⇓
Existence of an empty bipartite graph of size n

2c (for every induced
subgraph).

Question :
Reverse of these implications ?

First implication : FALSE.

Second implication : we only have a polynomial clique or a
polynomial stable set.
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Chromatic number and cliques

Observation : We always have ω ≤ χ. ⇒ Reverse function ?

Definition (χ-bounded)

A class is χ-bounded if χ ≤ f (ω).

Example : Graphs with no Pk are χ-bounded.

Conjecture (Gyárfás ’87)

A graph with no copy of Pk has chromatic number at most
Poly(k , ω).

Conjecture (Erdős Hajnal ’89)

A graph with no copy of Pk has a clique or a stable set of size nε.

Folklore

If a class C of graphs satisfies χ ≤ ωc then C has a polynomial
clique or stable set.
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Erdős-Hajnal conjecture

What is the value of max(ω, α) if some graph H is forbidden ?

α = n

α ≥ √n log n

α or ω are at least
√
n

α or ω are at least
√
n

Conjecture (Erdős-Hajnal ’89)

For every H, there exists ε > 0 such that every H-free graph
satisfies max(α, ω) ≥ nε.

Lemma (Grimmet, Mc Diarmid ’75)

Random graphs satisfy α, ω = O(log n).
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Prime graphs

Theorem (Alon, Pach, Solymosi)

If the Erdős-Hajnal conjecture holds for every prime graph H, then
it holds for every graph.

Interesting prime graphs on 4 vertices : P4. X

Interesting prime graphs on 5 vertices : bull, P5, C5 and their
complements.

Bull : Chudnovsky, Safra ’08. X

P5,C5 : widely open.

⇒ What happens if we enforce stronger conditions...
Idea : forbid a graph and its complement.
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Our results (I)

Theorem (Chudnovsky, Zwols ’11)

Graphs with no P5 nor complement of P6 have the Erdős-Hajnal
property.

Theorem (Chudnovsky, Seymour ’12)

Graphs with no P5 nor complement of P7 have the Erdős-Hajnal
property.

Theorem (B., Lagoutte, Thomassé ’13)

Graphs with no Pk nor its complement have the Erdős-Hajnal
property.
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Our results (II)

Conjecture (Gyárfás)

Graphs with no cycle of length at least k are χ-bounded.

Theorem (Bonamy, B., Thomassé ’13)

Graphs with no cycles of length at least k nor their complements
have the Erdős-Hajnal property.
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Erdős-Hajnal for paths and antipaths

Theorem (B., Lagoutte, Thomassé ’13)

Graphs with no Pk nor its complement have the Erdős-Hajnal
property.

Structure of the proof :

1 Extract a sparse or a dense linear subgraph.

2 The graph contains an empty (or complete) linear bipartite
subgraph.

3 Linear empty bipartite graph ⇒ polynomial clique / stable set.

sparse = degree of each vertex ≤ εn.
dense = degree of each vertex ≥ (1− ε)n.

Since the problem is the same up to complementation, we assume
that there is a linear sparse subgraph.
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Step 2 : extracting an empty (or complete) linear bipartite

Inspired from Gyárfás’ proof that (triangle,Pk)-free graphs are
χ-bounded.
Gyárfas’ method : Grow a path from any vertex u.

Take a vertex u.

A connected component X of G \N(u) has chromatic number
at least χ− 1.
Take v a vertex of N(u) with a neighbor in X .

Restrict the graph to v ∪ X and repeat.

χ − 1

u

v
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Step 2 : adaptation of the Gyárfás’ proof

Method : Grow a path from any vertex u.

Consider a sparse graph. Take a vertex u.

If no component of G \ N(u) has size at least (1− ε)n, then
conclude.
Otherwise a connected component X of G \ N(u) has size at
least (1− ε)n.
Take v a vertex of N(u) with a neighbor in X .
Restrict the graph to v ∪ X and repeat.

u

v
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Step 3 : empty bipartite graph implies Erdős-Hajnal

Lemma (Alon et al., Fox and Pach)

Every graph with an empty or a complete bipartite graph of linear
size contains a cograph of size nε.

Proof :
Find a cograph of polynomial size.

Find an empty or complete bipartite graph of size cn.

Apply induction on each part for finding a cograph of size
(nc )ε.

Disjoint union or join : cograph of size 2(nc )ε.

⇒ Every cograph has a clique or a stable set of size
√
n.
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Lemma (Alon et al., Fox and Pach)

Every graph with an empty or a complete bipartite graph of linear
size contains a cograph of size nε.

Proof :
Find a cograph of polynomial size.

Find an empty or complete bipartite graph of size cn.

Apply induction on each part for finding a cograph of size
(nc )ε.

Disjoint union or join : cograph of size 2(nc )ε.

⇒ Every cograph has a clique or a stable set of size
√
n.
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Conclusion

Questions

Does P5 and/or C5 have the Erdős-Hajnal property ?

Lokshtanov, Vatshelle, Villanger : find maximum stable set in
polynomial time in P5-free graphs.
The proof is based on a “chordalisation” of the P5-free graph.
It suffices to show that dense P5-free graphs have a
polynomial clique or stable set.

Conjecture (Gyárfás ’87)

Graphs with no long cycle are χ-bounded.

Open even for triangle-free graphs.

Question

Find a class of graphs with linear empty bipartite graphs but no
linear stable set.
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Thanks for your attention


	Erdos-Hajnal conjecture
	Erdos-Hajnal for paths
	Conclusion

