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Graph recoloring

Solutions // Nodes. Most similar solutions // Neighbors.
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Motivations

• Obtain a ’random’ coloring of a graph.

• Obtain lower bounds on the mixing time of a Markov chain.
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Anti-ferromagnetic Potts Model
A spin configuration of G = (V ,E ) is a func-
tion σ : V → {1, . . . , k}. (a graph coloring)

Probability that a configuration appears is
inversely proportional to the number of
monochromatic edges divided by the tempera-
ture of the system.

Limit of a k-state Potts model when T → 0.
⇔ All the k-colorings of G .

Definition (Glauber dynamics)

The physicists want to:

• Find the mixing time of Markov chains on Glauber dynamics.

We need to recolor only one vertex at a time.

• Generate all the possible states of a Glauber dynamics.

We have no constraint on the method.
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Limit of the recoloring model

• In many applications, colors are interchangeable.

• More actions may be available.

• Which type of actions ensures that the reconfiguration graph
is connected?

Idea: Recoloring vertices along a Kempe chain.
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Kempe chains

Let a, b be two colors.

• A connected component of the graph induced by the vertices
colored by a or b is a Kempe chain.

• Permuting the colors of a Kempe chain is a Kempe change.

Remark: If a component is reduced to a single vertex, then the
Kempe change consists in recoloring one vertex.
⇒ Kempe changes generalize single vertex recolorings.
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Kempe equivalence

Two colorings are Kempe equivalent if we can transform the one
into the other within a sequence of Kempe changes.

Definition (Kempe equivalent)
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Mohar conjecture
∆: Maximum degree of the graph

Every graph is ∆-colorable, except for cliques and odd cycles.

Theorem (Brooks ’41)

All the ∆-colorings of a graph are Kempe equivalent.

Conjecture Mohar ’05

Theorem (Las Vergnas, Meyniel ’81): All the (k + 1)-colorings
of a k-degenerate graph are Kempe equivalent.

Remark (Mohar ’06): All the ∆-colorings of a graph G are
Kempe equivalent if G is connected and not regular.

(k-degenerate: every subgraph contains a vertex of degree ≤ k)
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Results

The conjecture is false! (van den Heuvel ’13)

2 3

1

2

13
1 2

3

2

13

(3-prism)
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Results (2)

All the 3-colorings of a connected 3-regular graphs (other than
the 3-prism) are Kempe equivalent.

Theorem (Feghali, Johnson, Paulusma ’15)

All the k-colorings of a connected k-regular graph with k ≥ 4
are Kempe equivalent.

Theorem (Bonamy, B., Feghali, Johnson ’15)
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Main lemma

Let u,w , v be an induced P3. All the colorings where u and v
are colored alike are Kempe equivalent.

Lemma

Sketch:
• Identify u and v .

• The resulting graph is (∆− 1)-degenerate.

• ∆-colorings of a (∆− 1)-degenerate graph are equivalent.

Consequence: If any coloring is equivalent to a coloring where u
and v are colored alike, all the colorings are Kempe equivalent.

∆-coloring α ∆-coloring β
⇓ ⇑

∆-col. α′ where α′(u) = α′(v) ⇒ ∆-col. β′ where β′(u) = β′(v)
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Sketch for the main result

All the colorings of a connected k-regular graph with k ≥ 4 are
Kempe equivalent.

Theorem (Bonamy, B., Feghali, Johnson ’15)

By contradiction: let G be a minimal k-regular graph with ≥ 2
Kempe classes.

• If G is not 3-connected ⇒ contradiction.

• If G does not have diameter at least 3 ⇒ contradiction.

⇒ G is 3-connected of diameter ≥ 3.
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Sketch (2)
So G is 3-connected of diameter ≥ 3.

• Let u, v at distance ≥ 3.

• Let w1,w2 in N(u) s.t. (w1,w2) /∈ E .

• Let x1, x2 in N(v) s.t. (x1, x2) /∈ E .

d ≥ 3

x1

x2

w1

w2

u v

If:

(i) There exists a coloring s.t. w1,w2 are colored alike and x1, x2
are colored alike.

(ii) Any coloring is equivalent to a coloring where w1,w2 are
colored alike or x1, x2 are colored alike.

Then all the colorings are Kempe equivalent.

Sketch:
∆-coloring α ∆-coloring β

↓ ↑
∆-col. α′ s.t. ∆-col. β′ s.t.
α′(x1) = α′(x2) β′(w1) = β′(w2)

↘ ∆ col. γ s.t. ↗
γ(w1) = γ(w2) and γ(x1) = γ(x2)
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Conclusion

• Maximal distance between two colorings?

• Algorithmic aspects of Kempe chain reconfiguration?

• Characterize the graphs for which all the (∆− 1)-colorings are
Kempe equivalent.

Number of Kempe classes for the triangular lattice for k = 5?

Question

Consequence in physics: Close the study
of the Wang-Swendsen-Koteký algorithm for
Glauber dynamics on triangular lattices.

Thanks for your attention!
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