Kempe equivalence of colorings

Marthe Bonamy **Nicolas Bousquet** Carl Feghali Matthew Johnson

JGA 2015

Solutions // Nodes. Most similar solutions // Neighbors.

Motivations

• Obtain a 'random' coloring of a graph.

Motivations

- Obtain a 'random' coloring of a graph.
- Obtain lower bounds on the mixing time of a Markov chain.

Anti-ferromagnetic Potts Model A spin configuration of G = (V, E) is a function $\sigma : V \rightarrow \{1, ..., k\}$. (a graph coloring)

Anti-ferromagnetic Potts Model

A spin configuration of G = (V, E) is a function σ : $V \rightarrow \{1, \ldots, k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

e spin charge

Anti-ferromagnetic Potts Model

A spin configuration of G = (V, E) is a function σ : $V \rightarrow \{1, \ldots, k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a *k*-state Potts model when $T \rightarrow 0$. \Leftrightarrow All the *k*-colorings of *G*.

e spin charge

Anti-ferromagnetic Potts Model A spin configuration of G = (V, E) is a function $\sigma : V \rightarrow \{1, \dots, k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a *k*-state Potts model when $T \rightarrow 0$. \Leftrightarrow All the *k*-colorings of *G*.

The physicists want to:

- Find the mixing time of Markov chains on Glauber dynamics.
- Generate all the possible states of a Glauber dynamics.

e spin charge

Anti-ferromagnetic Potts Model A spin configuration of G = (V, E) is a function $\sigma : V \rightarrow \{1, \dots, k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a *k*-state Potts model when $T \rightarrow 0$. \Leftrightarrow All the *k*-colorings of *G*.

The physicists want to:

- Find the mixing time of Markov chains on Glauber dynamics. We need to recolor only one vertex at a time.
- Generate all the possible states of a Glauber dynamics. We have no constraint on the method.

• In many applications, colors are interchangeable.

- In many applications, colors are interchangeable.
- More actions may be available.

- In many applications, colors are interchangeable.
- More actions may be available.
- Which type of actions ensures that the reconfiguration graph is connected?

- In many applications, colors are interchangeable.
- More actions may be available.
- Which type of actions ensures that the reconfiguration graph is connected?

Idea: Recoloring vertices along a Kempe chain.

Let *a*, *b* be two colors.

Let a, b be two colors.

• A connected component of the graph induced by the vertices colored by *a* or *b* is a Kempe chain.

Let *a*, *b* be two colors.

- A connected component of the graph induced by the vertices colored by *a* or *b* is a Kempe chain.
- Permuting the colors of a Kempe chain is a Kempe change.

Let *a*, *b* be two colors.

- A connected component of the graph induced by the vertices colored by *a* or *b* is a Kempe chain.
- Permuting the colors of a Kempe chain is a Kempe change.

Remark: If a component is reduced to a single vertex, then the Kempe change consists in recoloring one vertex. \Rightarrow Kempe changes generalize single vertex recolorings.

Definition (Kempe equivalent)

Two colorings are Kempe equivalent if we can transform the one into the other within a sequence of Kempe changes.

 Δ : Maximum degree of the graph

Δ : Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Δ : Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Conjecture Mohar '05

All the Δ -colorings of a graph are Kempe equivalent.

Δ : Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Conjecture Mohar '05

All the Δ -colorings of a graph are Kempe equivalent.

Theorem (Las Vergnas, Meyniel '81): All the (k + 1)-colorings of a *k*-degenerate graph are Kempe equivalent.

(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

Δ : Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Conjecture Mohar '05

All the Δ -colorings of a graph are Kempe equivalent.

Theorem (Las Vergnas, Meyniel '81): All the (k + 1)-colorings of a *k*-degenerate graph are Kempe equivalent.

Remark (Mohar '06): All the Δ -colorings of a graph G are Kempe equivalent if G is connected and not regular.

(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

Δ : Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Conjecture Mohar '05

All the *k*-colorings of a *k*-regular graph are Kempe equivalent.

Theorem (Las Vergnas, Meyniel '81): All the (k + 1)-colorings of a *k*-degenerate graph are Kempe equivalent.

Remark (Mohar '06): All the Δ -colorings of a graph G are Kempe equivalent if G is connected and not regular.

(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

Results

The conjecture is false! (van den Heuvel '13)

(3-prism)

Results (2)

Theorem (Feghali, Johnson, Paulusma '15)

All the 3-colorings of a connected 3-regular graphs (other than the 3-prism) are Kempe equivalent.

Results (2)

Theorem (Feghali, Johnson, Paulusma '15)

All the 3-colorings of a connected 3-regular graphs (other than the 3-prism) are Kempe equivalent.

Theorem (Bonamy, B., Feghali, Johnson '15)

All the k-colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

Main lemma

Lemma

Let u, w, v be an induced P_3 . All the colorings where u and v are colored alike are Kempe equivalent.

Main lemma

Lemma

Let u, w, v be an induced P_3 . All the colorings where u and v are colored alike are Kempe equivalent.

Sketch:

- Identify *u* and *v*.
- The resulting graph is $(\Delta 1)$ -degenerate.
- Δ -colorings of a $(\Delta 1)$ -degenerate graph are equivalent.

Main lemma

Lemma

Let u, w, v be an induced P_3 . All the colorings where u and v are colored alike are Kempe equivalent.

Sketch:

- Identify *u* and *v*.
- The resulting graph is $(\Delta 1)$ -degenerate.
- Δ -colorings of a $(\Delta 1)$ -degenerate graph are equivalent.

Consequence: If any coloring is equivalent to a coloring where u and v are colored alike, all the colorings are Kempe equivalent.

$$\begin{array}{ccc} \Delta \text{-coloring } \alpha & & \Delta \text{-coloring } \beta \\ \downarrow & & \uparrow \\ \Delta \text{-col. } \alpha' \text{ where } \alpha'(u) = \alpha'(v) & \Rightarrow & \Delta \text{-col. } \beta' \text{ where } \beta'(u) = \beta'(v) \end{array}$$

Theorem (Bonamy, B., Feghali, Johnson '15)

All the colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

Theorem (Bonamy, B., Feghali, Johnson '15)

All the colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

• If G is not 3-connected \Rightarrow contradiction.

Theorem (Bonamy, B., Feghali, Johnson '15)

All the colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

• If G is not 3-connected \Rightarrow contradiction.

Theorem (Bonamy, B., Feghali, Johnson '15)

All the colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

- If G is not 3-connected \Rightarrow contradiction.
- If G does not have diameter at least $3 \Rightarrow$ contradiction.

 \Rightarrow G is 3-connected of diameter \geq 3.

So G is 3-connected of diameter \geq 3.

- Let u, v at distance ≥ 3 .
- Let w_1, w_2 in N(u) s.t. $(w_1, w_2) \notin E$.
- Let x_1, x_2 in N(v) s.t. $(x_1, x_2) \notin E$.

So G is 3-connected of diameter \geq 3.

- Let u, v at distance ≥ 3 .
- Let w_1, w_2 in N(u) s.t. $(w_1, w_2) \notin E$.

• Let x_1, x_2 in N(v) s.t. $(x_1, x_2) \notin E$. If:

- (i) There exists a coloring s.t. w₁, w₂ are colored alike and x₁, x₂ are colored alike.
- (ii) Any coloring is equivalent to a coloring where w_1, w_2 are colored alike or x_1, x_2 are colored alike.

Then all the colorings are Kempe equivalent.

So G is 3-connected of diameter \geq 3.

- Let u, v at distance ≥ 3 .
- Let w_1, w_2 in N(u) s.t. $(w_1, w_2) \notin E$.

• Let x_1, x_2 in N(v) s.t. $(x_1, x_2) \notin E$. If:

- (i) There exists a coloring s.t. w_1, w_2 are colored alike and x_1, x_2 are colored alike.
- (ii) Any coloring is equivalent to a coloring where w_1, w_2 are colored alike or x_1, x_2 are colored alike.

Then all the colorings are Kempe equivalent.

13/14

• Maximal distance between two colorings?

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- Characterize the graphs for which all the $(\Delta 1)$ -colorings are Kempe equivalent.

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- Characterize the graphs for which all the $(\Delta 1)$ -colorings are Kempe equivalent.

Question

Number of Kempe classes for the triangular lattice for k = 5?

Consequence in physics: Close the study of the Wang-Swendsen-Koteký algorithm for Glauber dynamics on triangular lattices.

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- Characterize the graphs for which all the $(\Delta 1)$ -colorings are Kempe equivalent.

Question

Number of Kempe classes for the triangular lattice for k = 5?

Consequence in physics: Close the study of the Wang-Swendsen-Koteký algorithm for Glauber dynamics on triangular lattices.

Thanks for your attention!