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Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach a fixed target position ?

• Widely studied on graph problems in the last 15 years.
Colorings, independent sets, dominating sets, cliques, list colorings, bases of

matroids, CSP and boolean formulas...

• Important problems in random sampling, bioinformatics,
discrete geometry, games...etc... for decades.
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Focus on Hanoi tower

Goal :
Move disks from the first to the last rod moving one disk at every
step.

Remarks :

• Induction based methods.

• Exponential length transformation.
Looks simple but computationally hard.

• Understandable because of symmetry.
In what follows, symmetry / structure will vanish.
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Configuration graph

• Vertices : Valid solutions of I .

• Create an edge between any two solutions if we can
transform one into the other in one elementary step.

Definition (Configuration graph C(I ) of I )

Reconfiguration diameter =
Diameter of C(I ) (when connec-

ted)
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Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

5/16



Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

5/16



Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

5/16



Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

5/16



Genesis of ISR

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots ?

The problem is PSPACE-complete.

Theorem [Hearn, Demaine ’04]
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Token Jumping vs Token Sliding

Token Jumping
Select one vertex of I and
move it anywhere else.
(keeping an IS)

Token Sliding
Select one vertex of I and
move it to an adjacent ver-
tex.
(keeping an IS).

Question : What is the complexity of TS / TJ-Reachability ?
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TS (resp. TJ) Reachability

TS/TJ-Reachability :
Input : A graph G , two independent sets I , J.
Input : YES iff there exists a TS (resp. TJ)-transformation from I
to J.

• [Hearn, Demaine ’04] TS/TJ Reachability are
PSPACE-complete...

• [Wrochna ’18] ... even on bounded bandwidth graphs.

Today :
Focus on parameterized algorithms.
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Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in
f (k) · Poly(n).

In this talk :
Parameter = size of the IS.

Deciding if G has an independent set of size k is W[1]-hard.

Theorem

TS and TJ-Reachability are XL-complete.

Theorem (Bodlaender, Groenland, Swennenhuis ’21)
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Token Jumping

Bounded degree

Bounded treewidth Planar

Kt-minor-free

Kt-topological minor free

No-where dense

Bounded degeneracy

Kt,t-free

TJ-ISR is FPT on :

• [Ito et al. ’14] Planar graphs.

• [Lokshtanov et al. ’15] Bounded
degeneracy.

• [Siebertz ’17] No-where dense.

• [B., Mary, Parreau ’18] Kt,t-free
graphs.

TS-ISR is FPT on :
[Bartier et al. ’20 and ’22, ’24]

• Bipartite C4-free graphs

• Bounded degree graphs

• Planar graphs

• Chordal graphs of bounded ω.

• Graphs of girth ≥ 5.
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Galactic reconfiguration

A galactic graph is a graph with special ver-
tices called black holes that :

• might contain several tokens,

• might contain tokens even if they have
tokens in their neighborhoods.

If G admits a long enough geodesic path P with no token on it
nor its neighborhood, then P can be collapsed into a single black
hole vertex.

Reduction rule

Consequences :
• FPT on bounded degree graphs.

• FPT on planar graphs.
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Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that N[X ] = V .
⇔ A set of tokens whose (closed) neighborhood is V .

S ,T are TS-adjacent (resp. TJ-adjacent) if T can be obtained
from S by sliding a token along an edge (resp. jumping a token).
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Parameterized results

Bounded degree

Bounded treewidth Planar

Kt-minor-free

Kt-topological minor free

No-where dense

Bounded degeneracy

Kt,t-free

• [Mouawad et al.’18] TJ-DSR is FPT on nowhere dense graphs.

• [BDMMP’24+] TS-DSR is XL-complete on bounded
treewidth graphs !

Remark :

• First reconfiguration problem hard on bounded treewidth
graphs.

• First TS/TJ difference of behavior on sparse graphs.
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Key ingredient - Tape Reconfiguration
• An alphabet Σ

• A collection of tapes where cells are labeled by ⊆ Σ.

• Lecture heads

Goal :
Move all the lecture heads from left to right while keeping
∪Σlecture heads = Σ.

Σ = a, b, c

a, b b, c c, a a, b b, c c, a a, b b, c c, a

b, c c, a a, b b, c c, a a, b b, c c, a a, b

Theorem [BDMMP’24+] :
Tape Reconfiguration is XL-complete even on bounded treewidth
instances.

14/16



Key ingredient - Tape Reconfiguration
• An alphabet Σ

• A collection of tapes where cells are labeled by ⊆ Σ.

• Lecture heads

Goal :
Move all the lecture heads from left to right while keeping
∪Σlecture heads = Σ.

Σ = a, b, c

a, b b, c c, a a, b b, c c, a a, b b, c c, a

b, c c, a a, b b, c c, a a, b b, c c, a a, b

Theorem [BDMMP’24+] :
Tape Reconfiguration is XL-complete even on bounded treewidth
instances.

14/16



Key ingredient - Tape Reconfiguration
• An alphabet Σ

• A collection of tapes where cells are labeled by ⊆ Σ.

• Lecture heads

Goal :
Move all the lecture heads from left to right while keeping
∪Σlecture heads = Σ.

Σ = a, b, c

a, b b, c c, a a, b b, c c, a a, b b, c c, a

b, c c, a a, b b, c c, a a, b b, c c, a a, b

Theorem [BDMMP’24+] :
Tape Reconfiguration is XL-complete even on bounded treewidth
instances.

14/16



Key ingredient - Tape Reconfiguration
• An alphabet Σ

• A collection of tapes where cells are labeled by ⊆ Σ.

• Lecture heads

Goal :
Move all the lecture heads from left to right while keeping
∪Σlecture heads = Σ.

Σ = a, b, c

a, b b, c c, a a, b b, c c, a a, b b, c c, a

b, c c, a a, b b, c c, a a, b b, c c, a a, b

Theorem [BDMMP’24+] :
Tape Reconfiguration is XL-complete even on bounded treewidth
instances.

14/16



Key ingredient - Tape Reconfiguration
• An alphabet Σ

• A collection of tapes where cells are labeled by ⊆ Σ.

• Lecture heads

Goal :
Move all the lecture heads from left to right while keeping
∪Σlecture heads = Σ.

Σ = a, b, c

a, b b, c c, a a, b b, c c, a a, b b, c c, a

b, c c, a a, b b, c c, a a, b b, c c, a a, b

Theorem [BDMMP’24+] :
Tape Reconfiguration is XL-complete even on bounded treewidth
instances.

14/16



Key ingredient - Tape Reconfiguration
• An alphabet Σ

• A collection of tapes where cells are labeled by ⊆ Σ.

• Lecture heads

Goal :
Move all the lecture heads from left to right while keeping
∪Σlecture heads = Σ.

Σ = a, b, c

a, b b, c c, a a, b b, c c, a a, b b, c c, a

b, c c, a a, b b, c c, a a, b b, c c, a a, b

Theorem [BDMMP’24+] :
Tape Reconfiguration is XL-complete even on bounded treewidth
instances.

14/16



Shortest path reconfiguration

Bounded degree

Bounded treewidth Planar

Kt-minor-free

Kt-topological minor free

No-where dense

Bounded degeneracy

Kt,t-free

Theorem [BGLM’24]
W [1]-hard even on bounded degenerate graphs (for TS and TJ).

Questions :
- What about bounded treewidth ?
- Planar graphs ? (polytime for TJ).
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What next ?

• Understand deeper the behavior of TS.

• Are TS locality and shortest path locality similar ?

Thanks for your attention !
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