Independent Set Reconfiguration

Nicolas Bousquet

4 septembre 2024

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question:

Giving my current position, can I reach a fixed target position?

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position?

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position?

 Widely studied on graph problems in the last 15 years.
 Colorings, independent sets, dominating sets, cliques, list colorings, bases of matroids, CSP and boolean formulas...

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question:

Giving my current position, can I reach a fixed target position?

- Widely studied on graph problems in the last 15 years.
 Colorings, independent sets, dominating sets, cliques, list colorings, bases of matroids, CSP and boolean formulas...
- Important problems in random sampling, bioinformatics, discrete geometry, games...etc... for decades.

Goal :

Goal :

Goal :

Goal :

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

• Induction based methods.

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

- Induction based methods.
- Exponential length transformation.

Looks simple but computationally hard.

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

- Induction based methods.
- Exponential length transformation. Looks simple but computationally hard.
- Understandable because of symmetry. In what follows, symmetry / structure will vanish.

Configuration graph

Definition (Configuration graph C(I) of I)

- Vertices : Valid solutions of *I*.
- Create an edge between any two solutions if we can transform one into the other in one elementary step.

Reconfiguration diameter = Diameter of C(I) (when connected)

Reachability problem. Given two configurations, is it possible to transform the first into the other?
 Are the configurations in the same components of C(1)?

- **Reachability problem.** Given two configurations, is it possible to transform the first into the other? Are the configurations in the same components of *C*(*I*)?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other?
 Is the configuration graph C(1) connected?

- Reachability problem. Given two configurations, is it possible to transform the first into the other?
 Are the configurations in the same components of C(1)?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other?
 Is the configuration graph C(1) connected?
- Minimization. Given two configurations, what is the length of a shortest sequence?
 What is the diameter of the configuration graph C(1)?

- Reachability problem. Given two configurations, is it possible to transform the first into the other?
 Are the configurations in the same components of C(1)?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other?
 Is the configuration graph C(1) connected?
- Minimization. Given two configurations, what is the length of a shortest sequence?
 What is the diameter of the configuration graph C(I)?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

 [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem for "dominos shaped" robots ?

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem for "dominos shaped" robots ?

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *I* and move it to an adjacent vertex.

(keeping an IS).

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *I* and move it to an adjacent vertex.

(keeping an IS).

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *I* and move it to an adjacent vertex.

(keeping an IS).

Question : What is the complexity of TS / TJ-REACHABILITY?

TS (resp. TJ) REACHABILITY

TS/TJ-Reachability :

Input : A graph *G*, two independent sets *I*, *J*. **Input** : YES iff there exists a TS (resp. TJ)-transformation from *I* to *J*.

TS (resp. TJ) REACHABILITY

TS/TJ-Reachability :

Input : A graph *G*, two independent sets *I*, *J*. **Input** : YES iff there exists a TS (resp. TJ)-transformation from *I* to *J*.

- [Hearn, Demaine '04] TS/TJ Reachability are PSPACE-complete...
- [Wrochna '18] ... even on bounded bandwidth graphs.

TS (resp. TJ) REACHABILITY

TS/TJ-Reachability :

Input : A graph *G*, two independent sets *I*, *J*. **Input** : YES iff there exists a TS (resp. TJ)-transformation from *I* to *J*.

- [Hearn, Demaine '04] TS/TJ Reachability are PSPACE-complete...
- [Wrochna '18] ... even on bounded bandwidth graphs.

Today :

Focus on parameterized algorithms.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter = size of the IS.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter = size of the IS.

Theorem

Deciding if G has an independent set of size k is W[1]-hard.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter = size of the IS.

Theorem

Deciding if G has an independent set of size k is W[1]-hard.

Theorem (Bodlaender, Groenland, Swennenhuis '21)

TS and TJ-REACHABILITY are XL-complete.

Token Jumping

Token Jumping

Token Jumping

TJ-ISR is FPT on :

• [Ito et al. '14] Planar graphs.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] *K*_{t,t}-free graphs.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] K_{t,t}-free graphs.

TS-ISR is FPT on : [Bartier et al. '20 and '22, '24]

• Bipartite C₄-free graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] K_{t,t}-free graphs.

- Bipartite C₄-free graphs
- Bounded degree graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] K_{t,t}-free graphs.

- Bipartite C₄-free graphs
- Bounded degree graphs
- Planar graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] *K*_{t,t}-free graphs.

- Bipartite C₄-free graphs
- Bounded degree graphs
- Planar graphs
- Chordal graphs of bounded ω .
- Graphs of girth ≥ 5.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] *K*_{t,t}-free graphs.

- Bipartite C₄-free graphs
- Bounded degree graphs
- Planar graphs
- Chordal graphs of bounded ω .
- Graphs of girth ≥ 5.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Consequences :

- FPT on bounded degree graphs.
- FPT on planar graphs.

Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that N[X] = V. \Leftrightarrow A set of tokens whose (closed) neighborhood is V.

Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that N[X] = V. \Leftrightarrow A set of tokens whose (closed) neighborhood is V.

S, T are TS-adjacent (resp. TJ-adjacent) if T can be obtained from S by sliding a token along an edge (resp. jumping a token).

Parameterized results

- [Mouawad et al.'18] TJ-DSR is FPT on nowhere dense graphs.
- [BDMMP'24+] TS-DSR is XL-complete on bounded treewidth graphs !

Parameterized results

- [Mouawad et al.'18] TJ-DSR is FPT on nowhere dense graphs.
- [BDMMP'24+] TS-DSR is XL-complete on bounded treewidth graphs !

Remark :

- First reconfiguration problem hard on bounded treewidth graphs.
- First TS/TJ difference of behavior on sparse graphs.

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

Move all the lecture heads from left to right while keeping $\cup \Sigma_{\text{lecture heads}} = \Sigma.$

Theorem [BDMMP'24+] :

Tape Reconfiguration is XL-complete even on bounded treewidth instances.

Shortest path reconfiguration

Theorem [BGLM'24]

W[1]-hard even on bounded degenerate graphs (for TS and TJ).

Shortest path reconfiguration

Theorem [BGLM'24]

W[1]-hard even on bounded degenerate graphs (for TS and TJ).

Questions :

- What about bounded treewidth?
- Planar graphs? (polytime for TJ).

What next?

- Understand deeper the behavior of TS.
- Are TS locality and shortest path locality similar?

What next?

- Understand deeper the behavior of TS.
- Are TS locality and shortest path locality similar?

Thanks for your attention !