Independent Set Reconfiguration

Nicolas Bousquet

4 septembre 2024

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

• Widely studied on graph problems in the last 15 years. Colorings, independent sets, dominating sets, cliques, list colorings, bases of matroids, CSP and boolean formulas...

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

- Widely studied on graph problems in the last 15 years. Colorings, independent sets, dominating sets, cliques, list colorings, bases of matroids, CSP and boolean formulas...
- Important problems in random sampling, bioinformatics, discrete geometry, games...etc... for decades.

Goal :

Goal :

Goal :

Goal :

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

• Induction based methods

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

- Induction based methods
- Exponential length transformation.

Looks simple but computationally hard.

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

- Induction based methods
- Exponential length transformation. Looks simple but computationally hard.
- Understandable because of symmetry. In what follows, symmetry / structure will vanish.

Configuration graph

Definition (Configuration graph $C(I)$ of I)

- Vertices : Valid solutions of I.
- Create an edge between any two solutions if we can transform one into the other in one elementary step.

 $Reconfiguration$ diameter $=$ Diameter of $C(I)$ (when connected)

• Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?

- Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other ? Is the configuration graph $C(I)$ connected?

- Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other ? Is the configuration graph $C(1)$ connected?
- Minimization. Given two configurations, what is the length of a shortest sequence ? What is the diameter of the configuration graph $C(I)$?

- Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other ? Is the configuration graph $C(I)$ connected?
- Minimization. Given two configurations, what is the length of a shortest sequence ? What is the diameter of the configuration graph $C(I)$?
- **Algorithmics.** Can we efficiently solve these questions? (In polynomial time, FPT-time...).

• [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem - Motion of rectangular robots in a grid. ⇒ PSPACE-complete (but they need large robots).

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem for "dominos shaped" robots ?

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem for "dominos shaped" robots ?

Token Jumping

Select one vertex of I and move it anywhere else. (keeping an IS)

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Jumping

Select one vertex of *l* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *l* and move it to an adjacent vertex.

(keeping an IS).

Token Jumping

Select one vertex of *l* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *l* and move it to an adjacent vertex.

(keeping an IS).

Token Jumping

Select one vertex of *l* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *l* and move it to an adjacent vertex.

(keeping an IS).

Question : What is the complexity of TS / TJ-REACHABILITY?

TS (resp. TJ) REACHABILITY

```
TS/TJ-Reachability :
Input : A graph G, two independent sets I, J.
Input : YES iff there exists a TS (resp. TJ)-transformation from I
to J.
```
TS (resp. TJ) REACHABILITY

```
TS/TJ-REACHABILITY:
```
Input : A graph G , two independent sets I, J . Input : YES iff there exists a TS (resp. TJ)-transformation from I to J.

- [Hearn, Demaine '04] TS/TJ Reachability are PSPACE-complete...
- [Wrochna '18] ... even on bounded bandwidth graphs.

TS (resp. TJ) REACHABILITY

TS/TJ-REACHABILITY:

Input : A graph G , two independent sets I, J . Input : YES iff there exists a TS (resp. TJ)-transformation from I to J.

- [Hearn, Demaine '04] TS/TJ Reachability are PSPACE-complete...
- Wrochna '18] ... even on bounded bandwidth graphs.

Today :

Focus on parameterized algorithms.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter $=$ size of the IS.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter $=$ size of the IS.

Theorem

Deciding if G has an independent set of size k is W[1]-hard.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter $=$ size of the IS.

Theorem

Deciding if G has an independent set of size k is W[1]-hard.

Theorem (Bodlaender, Groenland, Swennenhuis '21)

TS and TJ-REACHABILITY are XL-complete.

TJ-ISR is FPT on :

• [Ito et al. '14] Planar graphs.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

TS-ISR is FPT on : [Bartier et al. '20 and '22, '24]

• Bipartite C_4 -free graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

- Bipartite C_4 -free graphs
- Bounded degree graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

- Bipartite C_4 -free graphs
- Bounded degree graphs
- Planar graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

- Bipartite C_4 -free graphs
- Bounded degree graphs
- Planar graphs
- Chordal graphs of bounded ω .
- Graphs of girth > 5 .

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

- Bipartite C4-free graphs
- Bounded degree graphs
- Planar graphs
- Chordal graphs of bounded ω .
- Graphs of girth > 5 .

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Consequences :

- FPT on bounded degree graphs.
- FPT on planar graphs.

Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that $N[X] = V$. \Leftrightarrow A set of tokens whose (closed) neighborhood is V.

Dominating Set Reconfiguration

A dominating set is a subset X of vertices such that $N[X] = V$. \Leftrightarrow A set of tokens whose (closed) neighborhood is V.

 S, T are TS-adjacent (resp. TJ-adjacent) if T can be obtained from S by sliding a token along an edge (resp. jumping a token).

Parameterized results

- [Mouawad et al.'18] TJ-DSR is FPT on nowhere dense graphs.
- [BDMMP'24+] TS-DSR is XL-complete on bounded treewidth graphs !

Parameterized results

- [Mouawad et al.'18] TJ-DSR is FPT on nowhere dense graphs.
- [BDMMP'24+] TS-DSR is XL-complete on bounded treewidth graphs !

Remark :

- First reconfiguration problem hard on bounded treewidth graphs.
- First TS/TJ difference of behavior on sparse graphs.

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

- An alphabet Σ
- A collection of tapes where cells are labeled by $\subseteq \Sigma$.
- Lecture heads

Goal :

Move all the lecture heads from left to right while keeping $\bigcup \sum_{\text{lecture heads}} = \sum$.

Theorem [BDMMP'24+] :

Tape Reconfiguration is XL-complete even on bounded treewidth instances.

Shortest path reconfiguration

Theorem [BGLM'24]

 $W[1]$ -hard even on bounded degenerate graphs (for TS and TJ).

Shortest path reconfiguration

Theorem [BGLM'24]

 $W[1]$ -hard even on bounded degenerate graphs (for TS and TJ).

Questions :

- What about bounded treewidth ?
- Planar graphs ? (polytime for TJ).

What next?

- Understand deeper the behavior of TS.
- Are TS locality and shortest path locality similar ?

What next?

- Understand deeper the behavior of TS.
- Are TS locality and shortest path locality similar?

Thanks for your attention !