Separation of cliques and stable sets

Nicolas Bousquet Aurélie Lagoutte  Stéphan Thomassé

Séminaire AIGCo!

1. Slides by Nicolas Bousquet and Aurélie Lagoutte



Clique-Stable set separation
®000

0 Clique-Stable set separation
@ CL-IS problem
@ Extended formulations
@ Some classes of graphs



Clique-Stable set separation
®000

Clique vs Independent Set Problem




Clique-Stable set separation
0e00

Clique vs Independent Set Problem : Non-det. version




Clique-Stable set separation
0e00

Clique vs Independent Set Problem : Non-det. version




Clique-Stable set separation
coeo

Clique vs Independent Set Problem

Find a CS-separator : a family of cuts separating all the pairs
Clique-Stable set.




Clique-Stable set separation
coeo

Clique vs Independent Set Problem

Find a CS-separator : a family of cuts separating all the pairs
Clique-Stable set.

Theorem (Yannakakis '91)

Non-deterministic communication complexity = log m
where m is the minimal size of a CS-separator.
If m = n°, then complexity=O(log n).




Clique-Stable set separation
coeo
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Find a CS-separator : a family of cuts separating all the pairs
Clique-Stable set.

Theorem (Yannakakis '91)

Non-deterministic communication complexity = log m
where m is the minimal size of a CS-separator.
If m = n°, then complexity=O(log n).

o

Idea : Covering the Clique - Stable Set matrix with monochromatic
rectangles.
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CL-IS problem : Bounds

Upper bound

There is a Clique-Stable separator of size O(n'°&").

Lower bound

There are some graphs with no CS-separator of size less than n®/3.

Does there exists for all graph G on n vertices a CS-separator of
size poly(n)?
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Extended formulations : Definitions

Stable set polytope

@ n dimensionnal space.
o Characteristic vector of S : x3 =1if v € S.

@ Number of constraints needed to define this polytope ?

| \

Extented formulation

Free to increase the dimension, what is the minimum number of
half-spaces necessary to define the polytope ?

A

Reformulation

Free to add new variables, what is the minimum number of
constraints needed to find the set of solutions ?
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If the Stable Set polytope has a polynomial extended formulation,
then the Clique vs Stable Problem has a O(log n) solution.
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Extended formulations and CL-IS problem

Implication (Yannakakis '91)

If the Stable Set polytope has a polynomial extended formulation,
then the Clique vs Stable Problem has a O(log n) solution.

= Fiorini et al. (2012) disprove the existence of such an extended
formulation for the stable set polytope.



Clique-Stable set separation
®0

Random graphs

Theorem (B., Lagoutte, Thomassé)

There is a O(n®+€) CS-separator for random graphs.




Clique-Stable set separation
®0

Random graphs

Theorem (B., Lagoutte, Thomassé)

There is a O(n®+€) CS-separator for random graphs.

Proof :

Let p be the probability of an edge. = Draw randomly a partition
(A, B).

A vertex v is in A with probability p and is in B otherwise.

= Draw O(n®T¢) such partitions.

W.h.p. there is a partition which separates C, S.
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Split-free graphs

Let H be a split graph. There is a polynomial CS-separator for
H-free graphs.

Idea : O(|H]|) vertices of the clique “simulate” the pair C,S.
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Graham Pollack

Graham-Pollak theorem, 1971

bp(Kp) = n—1
@ bp(K,) <n-1
@ bp(K,) > n—1: Tverberg proof via polynomials
@ bp(Kn) > n/2

Kn:U: 1 Bi & Adj(Kn) = Z, 1 Adj(B;).
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Graham Pollack

Graham-Pollak theorem, 1971

bp(Kp) =n—1
@ bp(K,) <n-1
@ bp(K,) > n—1: Tverberg proof via polynomials
@ bp(Kn) > n/2
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Alon-Saks-Seymour conjecture

Graham-Pollak theorem '71
bp(K,) =n—1

Alon-Saks-Seymour conjecture '74
x < bp + 1.

Counter-example (Huang, Sudakov '10)

There exists G such that x > bp®/>.
Upper bound : x < O(bp'°8®P).

Question : Polynomial Alon-Saks-Seymour conjecture

Does there exists P such that for all G, x < P(bp).
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Equivalence

Theorem (B., Lagoutte, Thomassé)

The following statements are equivalent :

@ There is a polynomial P such that for all graphs G,
X < P(bp).
@ For every graph G, there is a polynomial CS-separator.

Remark : One direction was already known.
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Hierarchy of bp;

Definition
bp means that every edge can be covered once.
bp; means that every edge can be covered at most / times.

There is a polynomial P such that for all graphs G, x < P(bp) iff
for every i, there is a polynomial P such that for all graphs G,
X < P(bp;).

A particular case : oriented bp

bp® means that every edge can be covered at most once in each
direction.

bp, < bp° < bp.
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e bp(K,)=n—1.
° bpy(Ky) = O(v/n)
e bp°(Ky)?
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CL-IS and bp°

There is a polynomial CS-separator iff there is a polynomial P such
that for all graphs G, x < P(bp°).

v

Proof <
@ Vertices : Pairs (C, S).
o Edges between (C,S) and (C',S") if xe CNS.
@ Bipartite packing? n.

o Vertices : bipartite graph (A, B).
o Edges: (A,B) and (A, B)if xe ANA.

@ There are cuts separating (Cy, Sx).
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Feder & Hell : Dichotomy theorem ?

Classification P or NP-complete for small matrices, k < 3.
Classification for k = 4 except for the stubborn problem.

Existing bound

The stubborn problem can be solved in time O(n'°8") via
decomposition into O(n'°8") instances of 2-SAT.

Complexity result
Cygan et al, 2010 : The stubborn problem is in P.

Decomposing the stubborn problem into P(n) instances of 2-SAT ?
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Constraint satisfaction problem
3-COMPATIBLE COLORING PROBLEM

Existing bound
3-CCP can be decomposed into O(n'°8") instances of 2-SAT.
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Equivalence theorem

The following are equivalent :

© There is a polynomial P such that for all graphs G,
X < P(bp).

@ For every integer i, there is a polynomial P such that for all
graphs G, x < P(bp;).

© For every graph G, there is a polynomial CS-separator.

@ For every graph G and every list assignment
L:V — P({A1, A2, A3, As}), there is a polynomial 2-list
covering for the stubborn problem on (G, £).

@ For every n and every edge-coloring f : E(K,) — {A, B, C},
there is a polynomial 2-list covering for 3-CCP on (K, ).
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Prospects

@ Solve one problem and deduce the others!

@ Find a combinatorial proof of a linear bound for
Graham-Pollack.

@ Study the Clique-Stable set separation on P4-free graphs,
Py -free graphs.

@ Study the Clique-Stable separation on perfect graphs thanks
to structure theorem.
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Questions

Thanks for your attention.
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