Independent Set Reconfiguration Which price for locality?

Nicolas Bousquet

joint works with Valentin Bartier, Marthe Bonamy, Clément Dallard, Kyle Lomer, Amer Mouawad

CoRE 2021 - July 2021

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question:

Giving my current position, can I reach a fixed target position?

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position?

• Applications to random sampling, bioinformatics, discrete geometry...etc...

Main questions

- **Reachability problem.** Given two configurations, is it possible to transform the one into the other?
- **Connectivity problem.** Given any pair of configurations, is it possible to transform the one into the other?
- **Minimization.** Given two configurations, what is the length of a shortest sequence?

Main questions

- **Reachability problem.** Given two configurations, is it possible to transform the one into the other?
- **Connectivity problem.** Given any pair of configurations, is it possible to transform the one into the other?
- **Minimization.** Given two configurations, what is the length of a shortest sequence?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Main questions

- **Reachability problem.** Given two configurations, is it possible to transform the one into the other?
- **Connectivity problem.** Given any pair of configurations, is it possible to transform the one into the other?
- **Minimization.** Given two configurations, what is the length of a shortest sequence?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Today : Reachability + Independent Set Reconfiguration.

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE complete (but they need large robots)
 - \Rightarrow PSPACE-complete (but they need large robots).

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman's problem for "dominos shaped" robots ?

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -Motion of rectangular robots in a grid.
 ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman's problem for "dominos shaped" robots?

Theorem (Hearn, Demaine '05) Warehouseman's problem is PSPACE-complete for dominos shaped-robots.

What about other applications?

For puzzles :

 \rightarrow The transformation is local.

What about other applications?

For puzzles :

 \rightarrow The transformation is local.

Other applications :

- Random sampling.
- Enumeration.
- Centralized distribution of tokens.
- \rightarrow No locality needed.

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Select one vertex of *I* and move it to an adjacent vertex.

(keeping an IS).

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *I* and move it to an adjacent vertex.

(keeping an IS).

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *I* and move it to an adjacent vertex.

(keeping an IS).

Question : What is the complexity of TS / TJ-REACHABILITY?

TS (resp. TJ) REACHABILITY

```
TS/TJ-REACHABILITY :
Input : A graph G, two independent sets I, J.
Input : YES iff there exists a TS (resp. TJ)-transformation from I to J.
```

TS (resp. TJ) REACHABILITY

```
TS/TJ-REACHABILITY :
Input : A graph G, two independent sets I, J.
Input : YES iff there exists a TS (resp. TJ)-transformation from I to J.
```

Theorem (Hearn, Demaine '04)

 $\mathrm{TS}/\mathrm{TJ}\text{-}\mathrm{REACHABILITY}$ is PSPACE-complete.

Sketch of the proof :

• Find the set of rigid tokens X.

Sketch of the proof :

- Find the set of rigid tokens X.
- YES iff same number of vertices in each component of $T \setminus X$.

Chordal graphs are intersection graphs of subtrees of a tree.

Remark

 $TJ\mathchar`-Reachability is polynomial on chordal graphs.$

Chordal graphs are intersection graphs of subtrees of a tree.

Remark

 $TJ\mbox{-}Reachability$ is polynomial on chordal graphs.

Sketch of the proof :

Move tokens to simplicial vertices (vertices whose neighborhood is a clique).

Chordal graphs are intersection graphs of subtrees of a tree.

Remark

 $TJ\mbox{-}Reachability$ is polynomial on chordal graphs.

Sketch of the proof :

Move tokens to simplicial vertices (vertices whose neighborhood is a clique).

What about TS?

Chordal graphs are intersection graphs of subtrees of a tree.

Remark

 $TJ\mbox{-}Reachability$ is polynomial on chordal graphs.

Sketch of the proof :

Move tokens to simplicial vertices (vertices whose neighborhood is a clique).

What about TS?

• [Belmonte et al. '19] PSPACE-complete for split graphs.

(split graph = $V = V_1 \cup V_2$ where V_1 induces a clique and V_2 a stable set)

• [Bonamy, B. '18] Polynomial for interval graphs.

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

TS and $TJ\mathchar`{Bill}TY$ are PSPACE-complete on bounded bandwidth graphs.

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

 $\rm TS$ and $\rm TJ\mathchar`{Bility}$ are PSPACE-complete on bounded bandwidth graphs.

Remark : Bandwidth \geq Pathwidth \geq Treewidth.

 \rightarrow PSPACE-complete on bounded treewidth graphs.

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

 $\rm TS$ and $\rm TJ\mathchar`{Bility}$ are PSPACE-complete on bounded bandwidth graphs.

Remark : Bandwidth \geq Pathwidth \geq Treewidth.

 \rightarrow **PSPACE**-complete on bounded treewidth graphs.

Remark : MIS is FPT parameterized by treewidth. Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

 $\rm TS$ and $\rm TJ\mathcharping$ are PSPACE-complete on bounded bandwidth graphs.

Remark : Bandwidth \geq Pathwidth \geq Treewidth.

 \rightarrow **PSPACE**-complete on bounded treewidth graphs.

Remark : MIS is FPT parameterized by treewidth.

Questions :

• Small *c* for which ISR is PSPACE-complete on graphs of treewidth at most *c* ?

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

 $\rm TS$ and $\rm TJ\mathcharping$ are PSPACE-complete on bounded bandwidth graphs.

Remark : Bandwidth \geq Pathwidth \geq Treewidth.

 \rightarrow **PSPACE**-complete on bounded treewidth graphs.

Remark : MIS is FPT parameterized by treewidth.

Questions :

- Small *c* for which ISR is PSPACE-complete on graphs of treewidth at most *c* ?
- Graphs of treewidth at most 2? Outerplanar? Series-parallel graphs?

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter = size of the IS.

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter = size of the IS.

Theorem

Deciding if there is an independent set of size k is W[1]-hard.

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter = size of the IS.

Theorem

Deciding if there is an independent set of size k is W[1]-hard.

Theorem (Ito et al. '14)

TS and TJ-REACHABILITY are W[1]-hard.

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter = size of the IS.

Theorem

Deciding if there is an independent set of size k is W[1]-hard.

Theorem (Ito et al. '14)

```
\mathrm{TS} and \mathrm{TJ}\text{-}\mathrm{REACHABILITY} are \mathsf{W}[1]\text{-}\mathsf{hard}.
```

[Bodlaender, Groenland, Swennenhuis '21+] XL-complete

TJ-IRS is FPT on :

• [Ito et al. '14] Planar graphs.

TJ-IRS is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.

TJ-IRS is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.

TJ-IRS is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] K_{t,t}-free graphs.

[Bartier et al. '20 and '21+] TS-ISR is FPT for :

• Bipartite C₄-free graphs

[Bartier et al. '20 and '21+] TS-ISR is FPT for :

- Bipartite C₄-free graphs
- Bounded degree graphs
- Planar graphs
- Bounded treewidth graphs

[Bartier et al. '20 and '21+] TS-ISR is FPT for :

- Bipartite C₄-free graphs
- Bounded degree graphs
- Planar graphs
- Bounded treewidth graphs

[Bartier et al. '20 and '21+] TS-ISR is FPT for :

- Bipartite C₄-free graphs
- Bounded degree graphs
- Planar graphs
- Bounded treewidth graphs

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Consequences :

- FPT on bounded degree graphs.
- FPT on planar graphs.

LOCAL model :

• Initially a node only knows its own ID.

LOCAL model :

- Initially a node only knows its own ID.
- At each step, every node sends all its information to its neighborhood.

LOCAL model :

- Initially a node only knows its own ID.
- At each step, every node sends all its information to its neighborhood.

LOCAL model :

- Initially a node only knows its own ID.
- At each step, every node sends all its information to its neighborhood.

Essentially : In t rounds, a node x knows $N^t(x)$.

LOCAL model :

- Initially a node only knows its own ID.
- At each step, every node sends all its information to its neighborhood.

Essentially : In t rounds, a node x knows $N^t(x)$.

What is the complexity? Number of rounds.

Question : How to define ISR in the distributed setting?

• Impossible to keep track of the global size locally.

- Impossible to keep track of the global size locally.
 - \rightarrow Maximal Independent Sets.

- Impossible to keep track of the global size locally. \rightarrow Maximal Independent Sets.
- Impossible to keep the maximality all along the sequence.

- Impossible to keep track of the global size locally.
 → Maximal Independent Sets.
- Impossible to keep the maximality all along the sequence.
 → Relax the condition on the intermediate steps (4-dominating sets)

- Impossible to keep track of the global size locally.
 → Maximal Independent Sets.
- Impossible to keep the maximality all along the sequence.
 → Relax the condition on the intermediate steps (4-dominating sets)
- Trade off between number of rounds and steps of the reconfiguration sequence ?

Question : How to define ISR in the distributed setting?

- Impossible to keep track of the global size locally.
 → Maximal Independent Sets.
- Impossible to keep the maximality all along the sequence.
 → Relax the condition on the intermediate steps (4-dominating sets)
- Trade off between number of rounds and steps of the reconfiguration sequence ?

 \rightarrow Distributed Reconfiguration of Maximal Independent Sets, Censor-Hillel and Rabie (2019).

Some open problems :

• Polynomial kernels?

Some open problems :

- Polynomial kernels?
- Shortest transformations? Still open for trees?

Some open problems :

- Polynomial kernels?
- Shortest transformations? Still open for trees?
- TS/TJ-REACHABILITY on P_5 -free graphs? P or PSPACE?

Some open problems :

- Polynomial kernels?
- Shortest transformations? Still open for trees?
- TS/TJ-REACHABILITY on *P*₅-free graphs? P or PSPACE?
- TS-REACHABILITY on $\{C_4, C_5\}$ -free graphs? FPT or W[1]-hard?

Some open problems :

- Polynomial kernels?
- Shortest transformations? Still open for trees?
- TS/TJ-REACHABILITY on *P*₅-free graphs? P or PSPACE?
- TS-REACHABILITY on $\{C_4, C_5\}$ -free graphs? FPT or W[1]-hard?

Thanks for your attention !