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Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach a fixed target position ?

2/17
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A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach a fixed target position ?

® Applications to random sampling, bioinformatics, discrete
geometry...etc...
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Main questions

® Reachability problem. Given two configurations, is it
possible to transform the one into the other?

® Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other?

® Minimization. Given two configurations, what is the length
of a shortest sequence ?
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® Reachability problem. Given two configurations, is it
possible to transform the one into the other?

® Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other?

® Minimization. Given two configurations, what is the length
of a shortest sequence ?

¢ Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Today : Reachability 4+ Independent Set Reconfiguration.
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Genesis of Independent Set
Reconfiguration

® [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -
Motion of rectangular robots in a grid.
= PSPACE-complete (but they need large robots).
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Genesis of Independent Set
Reconfiguration
® [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem -
Motion of rectangular robots in a grid.

= PSPACE-complete (but they need large robots).
e [Flake, Baum '03] Rush hour is PSPACE-complete.

Su b b

Question : What is the complexity of the Warehouseman'’s
problem for “dominos shaped” robots ?

Theorem (Hearn, Demaine '05)]

Warehouseman’s problem is PSPACE-complete for dominos
shaped-robots.

4/17



What about other applications ?

For puzzles :
— The transformation is local.
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What about other applications ?

For puzzles :
— The transformation is local.

Other applications :
® Random sampling.
® Enumeration.
® Centralized distribution of tokens.

— No locality needed.
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Token Jumping vs Token Sliding
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Token Jumping vs Token Sliding

Token Sliding

Select one vertex of / and
move it to an adjacent ver-
tex.

(keeping an IS).

Token Jumping

Select one vertex of / and
move it anywhere else.
(keeping an IS)

Question : What is the complexity of T'S / TJ-REACHABILITY ?
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TS (resp. TJ) REACHABILITY

TS/TJ-REACHABILITY :
Input : A graph G, two independent sets /, J.

Input : YES iff there exists a TS (resp. TJ)-transformation from /
to J.
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TS/TJ-REACHABILITY :
Input : A graph G, two independent sets /, J.

Input : YES iff there exists a TS (resp. TJ)-transformation from /
to J.

Theorem (Hearn, Demaine ’04)]

TS/TJ-REACHABILITY is PSPACE-complete. ]
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Trees

Remark

TJ-REACHABILITY is polynomial on trees. ]

Sketch of the proof : Move tokens to leaves.

Theorem (Demaine et al. '13)]

TS-REACHABILITY is polynomial on trees. ]

Sketch of the proof :
® Find the set of rigid tokens X.

® YES iff same number of vertices in each component of T \ X.
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Chordal graphs

Chordal graphs are intersection graphs of subtrees of a tree.

Remark

TJ-REACHABILITY is polynomial on chordal graphs. ]
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Chordal graphs

Chordal graphs are intersection graphs of subtrees of a tree.

Remark

TJ-REACHABILITY is polynomial on chordal graphs.

Sketch of the proof :
Move tokens to sim p|ICIa| vertices (vertices whose neighborhood is a clique).

What about TS?

e [Belmonte et al. "19] PSPACE-complete for split graphs.

(split graph = V = Vj U V5 where V; induces a clique and V5 a stable set)

e [Bonamy, B. "18] Polynomial for interval graphs.
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Bounded treewidth graphs (and below)

Theorem (\Wrochna '16)]

TS and TJ-REACHABILITY are PSPACE-complete on bounded
bandwidth graphs.
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Bounded treewidth graphs (and below)

Theorem (\Wrochna ’16)]

TS and TJ-REACHABILITY are PSPACE-complete on bounded
bandwidth graphs.

Remark :
Bandwidth > Pathwidth > Treewidth.

— PSPACE-complete on bounded treewidth graphs.

Remark :
MIS is FPT parameterized by treewidth.

Questions :
® Small ¢ for which ISR is PSPACE-complete on graphs of
treewidth at most ¢ ?
® Graphs of treewidth at most 27

Outerplanar ? Series-parallel graphs?
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Parameterized complexity

A problem [1 parameterized by k is FPT if it can be decided in
f(k) - Poly(n).

In this talk :
Parameter = size of the IS.
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Parameterized complexity

A problem [1 parameterized by k is FPT if it can be decided in
f(k) - Poly(n).

In this talk :
Parameter = size of the IS.

Theorem

Deciding if there is an independent set of size k is W[1]-hard. ]

Theorem (lto et al. '14)]

TS and TJ-REACHABILITY are W[1]-hard. ]

[Bodlaender, Groenland, Swennenhuis '21+4] XL-complete
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Bounded degree

Bounded treewidth
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Token Jumping

MIS and TJ

No-where dense

Bounded degeneracy

| Kj-topological minor frccl

K-minor-free

Bounded degree

Bounded treewidth

TJ-IRS is FPT on :
e [lto et al. '14] Planar graphs.
o [Lokshtanov et al. '15] Bounded degeneracy.
® [Siebertz '17] No-where dense.

e [B., Mary, Parreau '18] Ki¢-free graphs.
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What about TS?

[Bartier et al. '20 and '21+]
TS-ISR is FPT for :

MIS and TJ

No-where dense

° Bipartite C4—free graphs Bounded degencracy|

® Bounded degree graphs

® Planar graphs -

N

Bounded treewidth graphs
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Galactic reconfiguration
A galactic graph is a graph with special ver-
tices called black holes that :
® might contain several tokens,

® might contain tokens while there are
tokens in their neighborhood.
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Galactic reconfiguration
A galactic graph is a graph with special ver-
tices called black holes that :
® might contain several tokens,

® might contain tokens while there are
tokens in their neighborhood.

Reduction rule]

If G admits a long enough geodesic path P with no token on it
nor its neighborhood, then P can be collapsed into a single black
hole vertex.

VNWA N LY

Consequences :
® FPT on bounded degree graphs.
® FPT on planar graphs.
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Even more local ?

LOCAL model :
® |nitially a node only knows its own ID.

® At each step, every node sends all its information to its
neighborhood.

Essentially : In t rounds, a node x knows N*(x).

What is the complexity ? Number of rounds.
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Distributed ISR

Question : How to define ISR in the distributed setting ?
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Distributed ISR

Question : How to define ISR in the distributed setting ?

® |mpossible to keep track of the global size locally.
— Maximal Independent Sets.

® Impossible to keep the maximality all along the sequence.
— Relax the condition on the intermediate steps
(4-dominating sets)

® Trade off between number of rounds and steps of the
reconfiguration sequence ?

— Distributed Reconfiguration of Maximal Independent Sets,
Censor-Hillel and Rabie (2019).
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Some open problems :

® Polynomial kernels?
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Conclusion

Some open problems :
® Polynomial kernels?
® Shortest transformations ? still open for trees?
e TS/TJ-REACHABILITY on Ps-free graphs? por pspace?
¢ TS-REACHABILITY on {Cs, Cs}-free graphs ? #pt or witl-hard?

Thanks for your attention !
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