Independent Set Reconfiguration Which price for locality?

Nicolas Bousquet

joint works with
Valentin Bartier, Marthe Bonamy, Clément Dallard, Kyle
Lomer, Amer Mouawad

CoRE 2021 - July 2021
L!̣िī

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

Reconfiguration

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

- Applications to random sampling, bioinformatics, discrete geometry...etc...

Main questions

- Reachability problem. Given two configurations, is it possible to transform the one into the other?
- Connectivity problem. Given any pair of configurations, is it possible to transform the one into the other?
- Minimization. Given two configurations, what is the length of a shortest sequence?

Main questions

- Reachability problem. Given two configurations, is it possible to transform the one into the other?
- Connectivity problem. Given any pair of configurations, is it possible to transform the one into the other?
- Minimization. Given two configurations, what is the length of a shortest sequence?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Main questions

- Reachability problem. Given two configurations, is it possible to transform the one into the other?
- Connectivity problem. Given any pair of configurations, is it possible to transform the one into the other?
- Minimization. Given two configurations, what is the length of a shortest sequence?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).
Today : Reachability + Independent Set Reconfiguration.

Genesis of Independent Set Reconfiguration

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).

Genesis of Independent Set Reconfiguration

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Genesis of Independent Set Reconfiguration

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman's problem for "dominos shaped" robots?

Genesis of Independent Set Reconfiguration

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman's problem for "dominos shaped" robots?

Theorem (Hearn, Demaine '05)

Warehouseman's problem is PSPACE-complete for dominos shaped-robots.

What about other applications?

For puzzles :

\rightarrow The transformation is local.

What about other applications?

For puzzles :

\rightarrow The transformation is local.

Other applications :

- Random sampling.
- Enumeration.
- Centralized distribution of tokens.
\rightarrow No locality needed.

Token Jumping vs Token Sliding

Token Jumping vs Token Sliding

Token Jumping Select one vertex of I and move it anywhere else.
(keeping an IS)

Token Jumping vs Token Sliding

Token Jumping
Select one vertex of I and move it anywhere else.
(keeping an IS)

Token Jumping vs Token Sliding

Token Jumping
Select one vertex of I and move it anywhere else.
(keeping an IS)

Token Sliding
Select one vertex of I and move it to an adjacent vertex.
(keeping an IS).

Token Jumping vs Token Sliding

Token Jumping
Select one vertex of I and move it anywhere else.
(keeping an IS)

Token Sliding
Select one vertex of I and move it to an adjacent vertex.
(keeping an IS).

Token Jumping vs Token Sliding

Token Jumping
Select one vertex of I and move it anywhere else.
(keeping an IS)

Token Sliding
Select one vertex of I and move it to an adjacent vertex.
(keeping an IS).

Question : What is the complexity of TS / TJ-Reachability?

TS (resp. TJ) Reachability

TS/TJ-Reachability : Input : A graph G, two independent sets I, J. Input : YES iff there exists a TS (resp. TJ)-transformation from / to J.

TS (resp. TJ) Reachability

TS/TJ-REAChability :
Input: A graph G, two independent sets I, J.
Input : YES iff there exists a TS (resp. TJ)-transformation from / to J.

Theorem (Hearn, Demaine '04)
TS/TJ-Reachability is PSPACE-complete.

Trees

Remark
TJ-Reachability is polynomial on trees.

Trees

Remark
TJ-Reachability is polynomial on trees.
Sketch of the proof : Move tokens to leaves.

Trees

Remark
TJ-Reachability is polynomial on trees.
Sketch of the proof : Move tokens to leaves.

Trees

Remark
TJ-Reachability is polynomial on trees.
Sketch of the proof : Move tokens to leaves.

Trees

Remark
TJ-Reachability is polynomial on trees.
Sketch of the proof : Move tokens to leaves.

Trees

Remark
TJ-Reachability is polynomial on trees.
Sketch of the proof : Move tokens to leaves.
Theorem (Demaine et al. '13)
TS-Reachability is polynomial on trees.

Trees

Remark
TJ-Reachability is polynomial on trees.
Sketch of the proof : Move tokens to leaves.
Theorem (Demaine et al. '13)
TS-REACHABILITY is polynomial on trees.
Sketch of the proof :

- Find the set of rigid tokens X.

Trees

Remark

TJ-Reachability is polynomial on trees.
Sketch of the proof : Move tokens to leaves.
Theorem (Demaine et al. '13)
TS-Reachability is polynomial on trees.
Sketch of the proof :

- Find the set of rigid tokens X.
- YES iff same number of vertices in each component of $T \backslash X$.

Chordal graphs

Chordal graphs are intersection graphs of subtrees of a tree.
Remark
TJ-Reachability is polynomial on chordal graphs.

Chordal graphs

Chordal graphs are intersection graphs of subtrees of a tree.
Remark
TJ-Reachability is polynomial on chordal graphs.

Sketch of the proof :

Move tokens to simplicial vertices (vertices whose neighborhood is a clique).

Chordal graphs

Chordal graphs are intersection graphs of subtrees of a tree.

Remark

TJ-Reachability is polynomial on chordal graphs.

Sketch of the proof :

Move tokens to simplicial vertices (vertices whose neighborhood is a clique).

What about TS ?

Chordal graphs

Chordal graphs are intersection graphs of subtrees of a tree.
Remark
TJ-Reachability is polynomial on chordal graphs.

Sketch of the proof :
Move tokens to simplicial vertices (vertices whose neighborhood is a clique).

What about TS ?

- [Belmonte et al. '19] PSPACE-complete for split graphs.
(split graph $=V=V_{1} \cup V_{2}$ where V_{1} induces a clique and V_{2} a stable set)
- [Bonamy, B. '18] Polynomial for interval graphs.

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

TS and TJ-REAChability are PSPACE-complete on bounded bandwidth graphs.

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

TS and TJ-REachability are PSPACE-complete on bounded bandwidth graphs.

Remark :
Bandwidth \geq Pathwidth \geq Treewidth.
\rightarrow PSPACE-complete on bounded treewidth graphs.

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

TS and TJ-Reachability are PSPACE-complete on bounded bandwidth graphs.

Remark :
Bandwidth \geq Pathwidth \geq Treewidth.
\rightarrow PSPACE-complete on bounded treewidth graphs.
Remark :
MIS is FPT parameterized by treewidth.

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

TS and TJ-REAChability are PSPACE-complete on bounded bandwidth graphs.

Remark :
Bandwidth \geq Pathwidth \geq Treewidth.
\rightarrow PSPACE-complete on bounded treewidth graphs.

Remark :

MIS is FPT parameterized by treewidth.

Questions:

- Small c for which ISR is PSPACE-complete on graphs of treewidth at most c ?

Bounded treewidth graphs (and below)

Theorem (Wrochna '16)

TS and TJ-Reachability are PSPACE-complete on bounded bandwidth graphs.

Remark:
Bandwidth \geq Pathwidth \geq Treewidth.
\rightarrow PSPACE-complete on bounded treewidth graphs.

Remark :

MIS is FPT parameterized by treewidth.

Questions :

- Small c for which ISR is PSPACE-complete on graphs of treewidth at most c ?
- Graphs of treewidth at most 2 ?

Outerplanar? Series-parallel graphs?

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot \operatorname{Poly}(n)$.

In this talk :
Parameter $=$ size of the IS.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot \operatorname{Poly}(n)$.

In this talk :

Parameter = size of the IS.

Theorem

Deciding if there is an independent set of size k is $\mathrm{W}[1]$-hard.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot \operatorname{Poly}(n)$.

In this talk :

Parameter = size of the IS.

Theorem

Deciding if there is an independent set of size k is $\mathrm{W}[1]$-hard.

Theorem (Ito et al. '14)
TS and TJ-Reachability are W[1]-hard.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot \operatorname{Poly}(n)$.

In this talk :

Parameter = size of the IS.

Theorem

Deciding if there is an independent set of size k is $\mathrm{W}[1]$-hard.

Theorem (Ito et al. '14)
TS and TJ-Reachability are $\mathrm{W}[1]$-hard.
[Bodlaender, Groenland, Swennenhuis '21+] XL-complete

Token Jumping

Token Jumping

Token Jumping

TJ-IRS is FPT on :

- [lto et al. '14] Planar graphs.

Token Jumping

TJ-IRS is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.

Token Jumping

TJ-IRS is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.

Token Jumping

TJ-IRS is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t, t}$-free graphs.

What about TS ?

What about TS ?

What about TS ?

[Bartier et al. '20 and '21+] TS-ISR is FPT for :

- Bipartite C_{4}-free graphs

What about TS ?

[Bartier et al. '20 and '21+]
TS-ISR is FPT for :

- Bipartite C_{4}-free graphs
- Bounded degree graphs
- Planar graphs
- Bounded treewidth graphs

What about TS ?

[Bartier et al. '20 and '21+] TS-ISR is FPT for :

- Bipartite C_{4}-free graphs
- Bounded degree graphs
- Planar graphs
- Bounded treewidth graphs

What about TS ?

[Bartier et al. '20 and '21+] TS-ISR is FPT for :

- Bipartite C_{4}-free graphs
- Bounded degree graphs
- Planar graphs
- Bounded treewidth graphs

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Galactic reconfiguration

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens while there are tokens in their neighborhood.

Reduction rule

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Consequences :

- FPT on bounded degree graphs.
- FPT on planar graphs.

Even more local?

Even more local?

LOCAL model :

- Initially a node only knows its own ID.

Even more local?

LOCAL model :

- Initially a node only knows its own ID.
- At each step, every node sends all its information to its neighborhood.

Even more local?

LOCAL model :

- Initially a node only knows its own ID.
- At each step, every node sends all its information to its neighborhood.

Even more local?

LOCAL model :

- Initially a node only knows its own ID.
- At each step, every node sends all its information to its neighborhood.
Essentially : In t rounds, a node x knows $N^{t}(x)$.

Even more local?

LOCAL model :

- Initially a node only knows its own ID.
- At each step, every node sends all its information to its neighborhood.
Essentially : In t rounds, a node x knows $N^{t}(x)$.
What is the complexity? Number of rounds.

Distributed ISR

Question : How to define ISR in the distributed setting?

Distributed ISR

Question: How to define ISR in the distributed setting?

- Impossible to keep track of the global size locally.

Distributed ISR

Question: How to define ISR in the distributed setting?

- Impossible to keep track of the global size locally. \rightarrow Maximal Independent Sets.

Distributed ISR

Question: How to define ISR in the distributed setting?

- Impossible to keep track of the global size locally. \rightarrow Maximal Independent Sets.
- Impossible to keep the maximality all along the sequence.

Distributed ISR

Question: How to define ISR in the distributed setting?

- Impossible to keep track of the global size locally. \rightarrow Maximal Independent Sets.
- Impossible to keep the maximality all along the sequence.
\rightarrow Relax the condition on the intermediate steps
(4-dominating sets)

Distributed ISR

Question: How to define ISR in the distributed setting?

- Impossible to keep track of the global size locally. \rightarrow Maximal Independent Sets.
- Impossible to keep the maximality all along the sequence.
\rightarrow Relax the condition on the intermediate steps
(4-dominating sets)
- Trade off between number of rounds and steps of the reconfiguration sequence?

Distributed ISR

Question: How to define ISR in the distributed setting?

- Impossible to keep track of the global size locally. \rightarrow Maximal Independent Sets.
- Impossible to keep the maximality all along the sequence.
\rightarrow Relax the condition on the intermediate steps
(4-dominating sets)
- Trade off between number of rounds and steps of the reconfiguration sequence?
\rightarrow Distributed Reconfiguration of Maximal Independent Sets,
Censor-Hillel and Rabie (2019).

Conclusion

Some open problems :

- Polynomial kernels?

Conclusion

Some open problems :

- Polynomial kernels?
- Shortest transformations? Still open for trees?

Conclusion

Some open problems :

- Polynomial kernels?
- Shortest transformations? Still open for trees?
- TS/TJ-REACHABILITY on P_{5}-free graphs? p or PSPACE?

Conclusion

Some open problems :

- Polynomial kernels?
- Shortest transformations? Still open for trees?
- TS/TJ-Reachability on P_{5}-free graphs? p or PSpace?
- TS-REACHABILITY on $\left\{C_{4}, C_{5}\right\}$-free graphs? fPT or W[1]-hard?

Conclusion

Some open problems :

- Polynomial kernels?
- Shortest transformations? Still open for trees?
- TS/TJ-Reachability on P_{5}-free graphs? p or PSpace?
- TS-REACHABILITY on $\left\{C_{4}, C_{5}\right\}$-free graphs? fPT or W[1]-hard?

Thanks for your attention!

