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Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach a fixed target position ?

• Applications to random sampling, bioinformatics, discrete
geometry...etc...
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Main questions

• Reachability problem. Given two configurations, is it
possible to transform the one into the other ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Today : Reachability + Independent Set Reconfiguration.
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Genesis of Independent Set
Reconfiguration

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman’s
problem for “dominos shaped” robots ?

Warehouseman’s problem is PSPACE-complete for dominos
shaped-robots.

Theorem (Hearn, Demaine ’05)
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What about other applications ?

For puzzles :
→ The transformation is local.

Other applications :

• Random sampling.

• Enumeration.

• Centralized distribution of tokens.

→ No locality needed.
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Token Jumping vs Token Sliding

Token Jumping
Select one vertex of I and
move it anywhere else.
(keeping an IS)

Token Sliding
Select one vertex of I and
move it to an adjacent ver-
tex.
(keeping an IS).

Question : What is the complexity of TS / TJ-Reachability ?
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TS (resp. TJ) Reachability

TS/TJ-Reachability :
Input : A graph G , two independent sets I , J.
Input : YES iff there exists a TS (resp. TJ)-transformation from I
to J.

TS/TJ-Reachability is PSPACE-complete.

Theorem (Hearn, Demaine ’04)
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Trees

TJ-Reachability is polynomial on trees.

Remark

Sketch of the proof : Move tokens to leaves.

TS-Reachability is polynomial on trees.

Theorem (Demaine et al. ’13)

Sketch of the proof :
• Find the set of rigid tokens X .

• YES iff same number of vertices in each component of T \ X .
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Chordal graphs

Chordal graphs are intersection graphs of subtrees of a tree.

TJ-Reachability is polynomial on chordal graphs.

Remark

Sketch of the proof :
Move tokens to simplicial vertices (vertices whose neighborhood is a clique).

What about TS ?

• [Belmonte et al. ’19] PSPACE-complete for split graphs.
(split graph = V = V1 ∪ V2 where V1 induces a clique and V2 a stable set)

• [Bonamy, B. ’18] Polynomial for interval graphs.
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Bounded treewidth graphs (and below)

TS and TJ-Reachability are PSPACE-complete on bounded
bandwidth graphs.

Theorem (Wrochna ’16)

Remark :
Bandwidth ≥ Pathwidth ≥ Treewidth.

→ PSPACE-complete on bounded treewidth graphs.

Remark :
MIS is FPT parameterized by treewidth.

Questions :

• Small c for which ISR is PSPACE-complete on graphs of
treewidth at most c ?
• Graphs of treewidth at most 2 ?

Outerplanar ? Series-parallel graphs ?
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Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in
f (k) · Poly(n).

In this talk :
Parameter = size of the IS.

Deciding if there is an independent set of size k is W[1]-hard.

Theorem

TS and TJ-Reachability are W[1]-hard.

Theorem (Ito et al. ’14)

[Bodlaender, Groenland, Swennenhuis ’21+] XL-complete
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Token Jumping

Bounded degree

Bounded treewidth Planar

Kt-minor-free

Kt-topological minor free

No-where dense

Bounded degeneracy

Kt,t-free

TJ-IRS is FPT on :

• [Ito et al. ’14] Planar graphs.

• [Lokshtanov et al. ’15] Bounded degeneracy.

• [Siebertz ’17] No-where dense.

• [B., Mary, Parreau ’18] Kt,t-free graphs.
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What about TS ?

[Bartier et al. ’20 and ’21+]
TS-ISR is FPT for :

• Bipartite C4-free graphs

• Bounded degree graphs

• Planar graphs

• Bounded treewidth graphs

Bounded degree

Bounded treewidth Planar

Kt-minor-free

Kt-topological minor free

No-where dense

Bounded degeneracy

Kt,t-free MIS and TJ

TS
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Galactic reconfiguration

A galactic graph is a graph with special ver-
tices called black holes that :

• might contain several tokens,

• might contain tokens while there are
tokens in their neighborhood.

If G admits a long enough geodesic path P with no token on it
nor its neighborhood, then P can be collapsed into a single black
hole vertex.

Reduction rule

Consequences :
• FPT on bounded degree graphs.

• FPT on planar graphs.
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Even more local ?

LOCAL model :

• Initially a node only knows its own ID.

• At each step, every node sends all its information to its
neighborhood.

Essentially : In t rounds, a node x knows Nt(x).

What is the complexity ? Number of rounds.
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Distributed ISR

Question : How to define ISR in the distributed setting ?

• Impossible to keep track of the global size locally.

→ Maximal Independent Sets.

• Impossible to keep the maximality all along the sequence.

→ Relax the condition on the intermediate steps
(4-dominating sets)

• Trade off between number of rounds and steps of the
reconfiguration sequence ?

→ Distributed Reconfiguration of Maximal Independent Sets,
Censor-Hillel and Rabie (2019).
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Conclusion

Some open problems :

• Polynomial kernels ?

• Shortest transformations ? Still open for trees ?

• TS/TJ-Reachability on P5-free graphs ? P or PSPACE ?

• TS-Reachability on {C4,C5}-free graphs ? FPT or W[1]-hard ?

Thanks for your attention !
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