Graph Recoloring:
 Many questions (and few answers)

Nicolas Bousquet

Réunion ANR GrR

Février 2020

Reconfiguration graph

Definition (k-Reconfiguration graph $\mathcal{C}_{k}(G)$ of G)

- Vertices : Proper k-colorings of G.
- Create an edge between any two k-colorings which differ on exactly one vertex.

All along the talk k denotes the number of colors.

Reconfiguration graph

Definition (k-Reconfiguration graph $\mathcal{C}_{k}(G)$ of G)

- Vertices : Proper k-colorings of G.
- Create an edge between any two k-colorings which differ on exactly one vertex.

All along the talk k denotes the number of colors.
Definition :
The k-recoloring diameter is the diameter of $\mathcal{C}_{k}(G)$ (when connected).

Main questions in Comb. / Alg.

- Can we transform any coloring into any other? Is the reconfiguration graph connected?

Main questions in Comb. / Alg.

- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?

Main questions in Comb. / Alg.

- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- If the answer is positive, how many steps do we need? What is the diameter of the reconfiguration graph?

Main questions in Comb. / Alg.

- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- If the answer is positive, how many steps do we need? What is the diameter of the reconfiguration graph ?
- Can we effiently find a short transformation? Can we find a path between two vertices of the reconfiguration graph in polynomial time? in FPT time?

Cereceda's conjecture

Conjecture (Cereceda '08)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{2}\right)$.

A graph is d-degenerate if there exists an ordering v_{1}, \ldots, v_{n} such that for every $i,\left|N\left(v_{i}\right) \cap\left\{v_{i+1}, \ldots, v_{n}\right\}\right| \leq d$.

Cereceda's conjecture

Conjecture (Cereceda '08)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{2}\right)$.

A graph is d-degenerate if there exists an ordering v_{1}, \ldots, v_{n} such that for every $i,\left|N\left(v_{i}\right) \cap\left\{v_{i+1}, \ldots, v_{n}\right\}\right| \leq d$.

Cereceda's conjecture

Conjecture (Cereceda '08)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{2}\right)$.

A graph is d-degenerate if there exists an ordering v_{1}, \ldots, v_{n} such that for every $i,\left|N\left(v_{i}\right) \cap\left\{v_{i+1}, \ldots, v_{n}\right\}\right| \leq d$.

Cereceda's conjecture

Conjecture (Cereceda '08)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{2}\right)$.

A graph is d-degenerate if there exists an ordering v_{1}, \ldots, v_{n} such that for every $i,\left|N\left(v_{i}\right) \cap\left\{v_{i+1}, \ldots, v_{n}\right\}\right| \leq d$.

Cereceda's conjecture

Conjecture (Cereceda '08)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{2}\right)$.

A graph is d-degenerate if there exists an ordering v_{1}, \ldots, v_{n} such that for every $i,\left|N\left(v_{i}\right) \cap\left\{v_{i+1}, \ldots, v_{n}\right\}\right| \leq d$.

Theorem (Dyer et al. '06)

The $(d+2)$-recoloring diameter of any d-degenerate graph is at most 2^{n}.

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

- Ingredient 1 : Look at it in the other direction.

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \geq d^{+}+2$.

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \geq d^{+}+2$.
- Ingredient 3 : Notion of full color (to apply induction).

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \geq d^{+}+2$.
- Ingredient 3 : Notion of full color (to apply induction).

Open problem :
Prove the Cerededa's conjecture for $d=2$

Cereceda's conjecture (cont.)

Theorem (B., Heinrich '19)

The $(d+2)$-recoloring diameter of any d-degenerate graph is $\mathcal{O}\left(n^{d+1}\right)$.

Sketch of the proof :

- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \geq d^{+}+2$.
- Ingredient 3 : Notion of full color (to apply induction).

Open problem :

Prove the Cerededa's conjecture for $d=2 \ldots$ and $\Delta=4$!
[Feghali, Johnson, Paulusma '17] $d=2$ and $\Delta=3$ is true.

Graph classes

The conjecture has been verified for a few graph classes.
Known results :

- [Bonamy et al. '12] Chordal graphs.
- [Bousquet, Heinrich '19] Bipartite planar graphs.
- [Bonamy, Bousquet '18] Bounded treewidth graphs.

Open problems :

- Perfect graphs ? Induced cycles and their complements of size ≥ 4 are even.

Graph classes

The conjecture has been verified for a few graph classes.

Known results :

- [Bonamy et al. '12] Chordal graphs.
- [Bousquet, Heinrich '19] Bipartite planar graphs.
- [Bonamy, Bousquet '18] Bounded treewidth graphs.

Open problems :

- Perfect graphs? Induced cycles and their complements of size ≥ 4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5.

Is the reconfiguration graph connected when $k \geq \chi+2$?

Graph classes

The conjecture has been verified for a few graph classes.

Known results :

- [Bonamy et al. '12] Chordal graphs.
- [Bousquet, Heinrich '19] Bipartite planar graphs.
- [Bonamy, Bousquet '18] Bounded treewidth graphs.

Open problems :

- Perfect graphs? Induced cycles and their complements of size ≥ 4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5.

Is the reconfiguration graph connected when $k \geq \chi+2$?

- Even hole-free graphs?

Graph classes

The conjecture has been verified for a few graph classes.

Known results :

- [Bonamy et al. '12] Chordal graphs.
- [Bousquet, Heinrich '19] Bipartite planar graphs.
- [Bonamy, Bousquet '18] Bounded treewidth graphs.

Open problems :

- Perfect graphs? Induced cycles and their complements of size ≥ 4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5.

Is the reconfiguration graph connected when $k \geq \chi+2$?

- Even hole-free graphs?
- Line graphs?

Planar graphs

- There are frozen 6 -colorings.

Planar graphs

- There are frozen 6 -colorings.
- Planar graphs. $d=5, k=7$: Diameter $O\left(n^{6}\right)$ [B., Heinrich '19+].
Feghali told me that he can now do better... (in preparation)

Planar graphs

- There are frozen 6 -colorings.
- Planar graphs. $d=5, k=7$: Diameter $O\left(n^{6}\right)$ [B., Heinrich '19+].
Feghali told me that he can now do better... (in preparation)

- Planar graphs. $d=5, k=8$: Diameter $O(n \cdot \operatorname{Polylog}(n))$ [Feghali '19+].

Planar graphs

- There are frozen 6 -colorings.
- Planar graphs. $d=5, k=7$: Diameter $O\left(n^{6}\right)$ [B., Heinrich '19+].
Feghali told me that he can now do better... (in preparation)

- Planar graphs. $d=5, k=8$:

Diameter $O(n \cdot \operatorname{Polylog}(n))$ [Feghali '19+].

- Planar graphs. $d=5, k=10$:

Diameter $\leq 10 n$. [Dvořák, Feghali, 20+]
A 9-coloring can be obtained by recoloring each vertex at most twice.

Planar graphs

- There are frozen 6 -colorings.
- Planar graphs. $d=5, k=7$:

Diameter $O\left(n^{6}\right)$ [B., Heinrich '19+].
Feghali told me that he can now do better... (in preparation)

- Planar graphs. $d=5, k=8$:

Diameter $O(n \cdot \operatorname{Polylog}(n))$ [Feghali '19+].

- Planar graphs. $d=5, k=10$:

Diameter $\leq 10 n$. [Dvořák, Feghali, 20+]
A 9-coloring can be obtained by recoloring each vertex at most twice.

- \triangle-free planar graphs. $d=3, k=5$: Diameter $O\left(n^{4}\right)$. [B., Heinrich '19+].

Planar graphs

- There are frozen 6 -colorings.
- Planar graphs. $d=5, k=7$:

Diameter $O\left(n^{6}\right)$ [B., Heinrich '19+].
Feghali told me that he can now do better... (in preparation)

- Planar graphs. $d=5, k=8$:

Diameter $O(n \cdot \operatorname{Polylog}(n))$ [Feghali '19+].

- Planar graphs. $d=5, k=10$:

Diameter $\leq 10 n$. [Dvořák, Feghali, 20+]
A 9-coloring can be obtained by recoloring each vertex at most twice.

- \triangle-free planar graphs. $d=3, k=5$:

Diameter $O\left(n^{4}\right)$. [B., Heinrich '19+].

- Graphs on surfaces?

Planar graphs

- There are frozen 6 -colorings.
- Planar graphs. $d=5, k=7$:

Diameter $O\left(n^{6}\right)$ [B., Heinrich '19+].
Feghali told me that he can now do better... (in preparation)

- Planar graphs. $d=5, k=8$:

Diameter $O(n \cdot \operatorname{Polylog}(n))$ [Feghali '19+].

- Planar graphs. $d=5, k=10$:

Diameter $\leq 10 n$. [Dvořák, Feghali, 20+]
A 9-coloring can be obtained by recoloring each vertex at most twice.

- \triangle-free planar graphs. $d=3, k=5$:

Diameter $O\left(n^{4}\right)$. [B., Heinrich '19+].

- Graphs on surfaces?
- Transformation between non-frozen 6-colorings?
[Feghali, Johnson, Paulusma] proved a similar result for Δ colorings.

When k increases

Theorem (B., Perarnau '16)

If $k \geq 2 d+2$, the diameter of the k-reconfiguration graph of any d-degenerate graph is $O(d \cdot n)$.

When k increases

Theorem (B., Perarnau '16)

If $k \geq 2 d+2$, the diameter of the k-reconfiguration graph of any d-degenerate graph is $O(d \cdot n)$.

Theorem (Bartier, B. '19+)

If $k \geq d+4$, the diameter of the k-reconfiguration graph of any d-degenerate chordal graph is $O(f(\Delta) \cdot n)$.

When k increases

Theorem (B., Perarnau '16)

If $k \geq 2 d+2$, the diameter of the k-reconfiguration graph of any d-degenerate graph is $O(d \cdot n)$.

Theorem (Bartier, B. '19+)

If $k \geq d+4$, the diameter of the k-reconfiguration graph of any d-degenerate chordal graph is $O(f(\Delta) \cdot n)$.

Open problems :

- Prove it for degenerate graphs. (Or disprove it !)
- Remove the dependency on Δ (and replace it by d).
- When can we remove any dependency on d ?

Lower bound

Theorem (Bonamy et al. '12)
The 3-recoloring diameter of the path P_{n} is $\Omega\left(n^{2}\right)$.

Lower bound

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_{n} is $\Omega\left(n^{2}\right)$.

Sketch of the proof

- If $c\left(v_{i+1}\right)=c\left(v_{i}\right)-1 \Rightarrow$ Write \rightarrow.
- If $c\left(v_{i+1}\right)=c\left(v_{i}\right)+1 \Rightarrow$ Write \uparrow.

Lower bound

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_{n} is $\Omega\left(n^{2}\right)$.

Sketch of the proof

- If $c\left(v_{i+1}\right)=c\left(v_{i}\right)-1 \Rightarrow$ Write \rightarrow.
- If $c\left(v_{i+1}\right)=c\left(v_{i}\right)+1 \Rightarrow$ Write \uparrow.

Claim : A recoloring performs the following :

\Rightarrow The surface is only modified by "one" at each step.

Lower bound

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_{n} is $\Omega\left(n^{2}\right)$.

Sketch of the proof

- If $c\left(v_{i+1}\right)=c\left(v_{i}\right)-1 \Rightarrow$ Write \rightarrow.
- If $c\left(v_{i+1}\right)=c\left(v_{i}\right)+1 \Rightarrow$ Write \uparrow.

Claim : A recoloring performs the following :

\Rightarrow The surface is only modified by "one" at each step.
Claim : $\Omega\left(n^{2}\right)$ steps are needed to transform 123.... 123 into 132.... 132.

Lower bound

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_{n} is $\Omega\left(n^{2}\right)$.

Sketch of the proof

- If $c\left(v_{i+1}\right)=c\left(v_{i}\right)-1 \Rightarrow$ Write \rightarrow.
- If $c\left(v_{i+1}\right)=c\left(v_{i}\right)+1 \Rightarrow$ Write \uparrow.

Claim : A recoloring performs the following :

\Rightarrow The surface is only modified by "one" at each step.
Claim : $\Omega\left(n^{2}\right)$ steps are needed to transform 123.... 123 into 132.... 132.

Question : Find a (non trivial) lower bound for other graph classes? Or when $k \geq d+2$?

Algorithmic aspects of reconfiguration

Coloring Reachability (CR) Input: A graph G, an integer k, two k-colorings c_{1}, c_{2}.
Output: YES iff c_{1} can be transformed into c_{2}.

Algorithmic aspects of reconfiguration

Coloring Reachability (CR)
Input: A graph G, an integer k, two k-colorings c_{1}, c_{2}.
Output: YES iff c_{1} can be transformed into c_{2}.
Theorem
[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \leq$ $k \leq \Delta$.
[Cereceda, van den Heuvel, Johnson '11] CR is in P when $k=3$.

Algorithmic aspects of reconfiguration

Coloring Reachability (CR)
Input: A graph G, an integer k, two k-colorings c_{1}, c_{2}.
Output: YES iff c_{1} can be transformed into c_{2}.
Theorem
[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \leq$ $k \leq \Delta$.
[Cereceda, van den Heuvel, Johnson '11] CR is in P when $k=3$.

For interval graphs :
Trivial if $k \geq \chi+1$ and $k \leq \chi-1 \ldots$

Algorithmic aspects of reconfiguration

Coloring Reachability (CR)
Input: A graph G, an integer k, two k-colorings c_{1}, c_{2}.
Output: YES iff c_{1} can be transformed into c_{2}.
Theorem
[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \leq$ $k \leq \Delta$.
[Cereceda, van den Heuvel, Johnson '11] CR is in P when $k=3$.

For interval graphs :
Trivial if $k \geq \chi+1$ and $k \leq \chi-1 \ldots$ But open for $k=\chi$!

Algorithmic aspects of reconfiguration

Coloring Reachability (CR)
Input: A graph G, an integer k, two k-colorings c_{1}, c_{2}.
Output: YES iff c_{1} can be transformed into c_{2}.
Theorem
[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \leq$ $k \leq \Delta$.
[Cereceda, van den Heuvel, Johnson '11] CR is in P when $k=3$.

For interval graphs :
Trivial if $k \geq \chi+1$ and $k \leq \chi-1 \ldots$ But open for $k=\chi$! (PSPACE-complete for chordal graphs).

Algorithmic aspects of reconfiguration

Coloring Reachability (CR)
Input: A graph G, an integer k, two k-colorings c_{1}, c_{2}.
Output: YES iff c_{1} can be transformed into c_{2}.

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \leq$ $k \leq \Delta$.
[Cereceda, van den Heuvel, Johnson '11] CR is in P when $k=3$.

For interval graphs :
Trivial if $k \geq \chi+1$ and $k \leq \chi-1 \ldots$ But open for $k=\chi$!
(PSPACE-complete for chordal graphs).
For line graphs :
[Osawa et al. '18] PSPACE-complete if $k \geq 5$. Open for $k=4$.

Conclusion

More questions :

- A connected reconfiguration graph with exponential diameter.
- Understand better what "not connected" means.

Conclusion

More questions :

- A connected reconfiguration graph with exponential diameter.
- Understand better what "not connected" means.

Thanks for your attention!

