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Reconfiguration graph

• Vertices : Proper k-colorings of G .

• Create an edge between any two k-colorings which differ
on exactly one vertex.

Definition (k-Reconfiguration graph Ck(G ) of G )

All along the talk k denotes the number of colors.

Definition :
The k-recoloring diameter is the diameter of Ck(G ) (when connected).

2/11



Reconfiguration graph

• Vertices : Proper k-colorings of G .

• Create an edge between any two k-colorings which differ
on exactly one vertex.

Definition (k-Reconfiguration graph Ck(G ) of G )

All along the talk k denotes the number of colors.

Definition :
The k-recoloring diameter is the diameter of Ck(G ) (when connected).

2/11



Main questions in Comb. / Alg.

• Can we transform any coloring into any other ?
Is the reconfiguration graph connected ?

• Given two colorings, can we transform the one into the other ?
Given two vertices of the reconfiguration graph, are they in
the same connected component ?

• If the answer is positive, how many steps do we need ?
What is the diameter of the reconfiguration graph ?

• Can we effiently find a short transformation ?
Can we find a path between two vertices of the
reconfiguration graph in polynomial time ? in FPT time ?
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Cereceda’s conjecture

The (d + 2)-recoloring diameter of any d-degenerate graph is
O(n2).

Conjecture (Cereceda ’08)

A graph is d-degenerate if there exists an ordering v1, . . . , vn such
that for every i , |N(vi ) ∩ {vi+1, . . . , vn}| ≤ d .

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)
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Cereceda’s conjecture (cont.)

The (d + 2)-recoloring diameter of any d-degenerate graph is
O(nd+1).

Theorem (B., Heinrich ’19)

Sketch of the proof :

≤ k

v1 v2 vnvi

• Ingredient 1 : Look at it in the other direction.
• Ingredient 2 : List coloring where |L| ≥ d+ + 2.
• Ingredient 3 : Notion of full color (to apply induction).

Open problem :
Prove the Cerededa’s conjecture for d = 2

... and ∆ = 4 !
[Feghali, Johnson, Paulusma ’17] d = 2 and ∆ = 3 is true.
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Graph classes

The conjecture has been verified for a few graph classes.
Known results :

• [Bonamy et al. ’12] Chordal graphs.

• [Bousquet, Heinrich ’19] Bipartite planar graphs.

• [Bonamy, Bousquet ’18] Bounded treewidth graphs.

Open problems :

• Perfect graphs ? Induced cycles and their complements of size ≥ 4 are even.

• Weakly chordal graphs ? No induced cycle of length ≥ 5.

Is the reconfiguration graph connected when k ≥ χ + 2 ?

• Even hole-free graphs ?

• Line graphs ?
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Planar graphs
• There are frozen 6-colorings.

• Planar graphs. d = 5, k = 7 :
Diameter O(n6) [B., Heinrich ’19+].
Feghali told me that he can now do better... (in

preparation)

• Planar graphs. d = 5, k = 8 :
Diameter O(n · Polylog(n)) [Feghali ’19+].

• Planar graphs. d = 5, k = 10 :
Diameter ≤ 10n. [Dvǒrák, Feghali, 20+]
A 9-coloring can be obtained by recoloring each vertex at most twice.

• 4-free planar graphs. d = 3, k = 5 :
Diameter O(n4). [B., Heinrich ’19+].

• Graphs on surfaces ?

• Transformation between non-frozen 6-colorings ?
[Feghali, Johnson, Paulusma] proved a similar result for ∆ colorings.
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When k increases

If k ≥ 2d + 2, the diameter of the k-reconfiguration graph of
any d-degenerate graph is O(d · n).

Theorem (B., Perarnau ’16)

If k ≥ d + 4, the diameter of the k-reconfiguration graph of any
d-degenerate chordal graph is O(f (∆) · n).

Theorem (Bartier, B. ’19+)

Open problems :

• Prove it for degenerate graphs. (Or disprove it !)

• Remove the dependency on ∆ (and replace it by d).

• When can we remove any dependency on d ?
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Lower bound

The 3-recoloring diameter of the path Pn is Ω(n2).

Theorem (Bonamy et al. ’12)

Sketch of the proof

• If c(vi+1) = c(vi )− 1 ⇒ Write →.

• If c(vi+1) = c(vi ) + 1 ⇒ Write ↑.
Claim : A recoloring performs
the following :

a

a + 1 a

a a− 1

a

⇒ The surface is only modified by “one” at each step.

Claim : Ω(n2) steps are needed to transform 123....123 into
132....132.

Question : Find a (non trivial) lower bound for other graph
classes ? Or when k ≥ d + 2 ?
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Algorithmic aspects of reconfiguration

Coloring Reachability (CR)
Input : A graph G , an integer k, two k-colorings c1, c2.
Output : YES iff c1 can be transformed into c2.

[Bonsma, Cereceda ’09] CR is PSPACE-complete for any 4 ≤
k ≤ ∆.
[Cereceda, van den Heuvel, Johnson ’11] CR is in P when k = 3.

Theorem

For interval graphs :
Trivial if k ≥ χ+ 1 and k ≤ χ− 1...

But open for k = χ !
(PSPACE-complete for chordal graphs).

For line graphs :
[Osawa et al. ’18] PSPACE-complete if k ≥ 5. Open for k = 4.
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Output : YES iff c1 can be transformed into c2.

[Bonsma, Cereceda ’09] CR is PSPACE-complete for any 4 ≤
k ≤ ∆.
[Cereceda, van den Heuvel, Johnson ’11] CR is in P when k = 3.

Theorem

For interval graphs :
Trivial if k ≥ χ+ 1 and k ≤ χ− 1... But open for k = χ !
(PSPACE-complete for chordal graphs).

For line graphs :
[Osawa et al. ’18] PSPACE-complete if k ≥ 5. Open for k = 4.
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Conclusion

More questions :

• A connected reconfiguration graph with exponential diameter.

• Understand better what “not connected” means.

Thanks for your attention !
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