# Graph Recoloring: Many questions (and few answers)

Nicolas Bousquet

Réunion ANR GrR Février 2020





# Reconfiguration graph

**Definition** (*k*-Reconfiguration graph  $C_k(G)$  of G)

- Vertices : Proper *k*-colorings of *G*.
- Create an edge between any two k-colorings which differ on exactly one vertex.

All along the talk k denotes the number of colors.

# Reconfiguration graph

**Definition** (*k*-Reconfiguration graph  $C_k(G)$  of G)

- Vertices : Proper *k*-colorings of *G*.
- Create an edge between any two k-colorings which differ on exactly one vertex.

All along the talk k denotes the number of colors.

#### **Definition**:

The k-recoloring diameter is the diameter of  $C_k(G)$  (when connected).

• Can we transform any coloring into any other? Is the reconfiguration graph connected?

- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?

- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- If the answer is positive, how many steps do we need? What is the diameter of the reconfiguration graph?

- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- If the answer is positive, how many steps do we need? What is the diameter of the reconfiguration graph?
- Can we efficiently find a short transformation? Can we find a path between two vertices of the reconfiguration graph in polynomial time? in FPT time?

**Conjecture** (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is  $\mathcal{O}(n^2)$ .



**Conjecture** (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is  $\mathcal{O}(n^2)$ .



**Conjecture** (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is  $\mathcal{O}(n^2)$ .



**Conjecture** (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is  $\mathcal{O}(n^2)$ .



**Conjecture** (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is  $\mathcal{O}(n^2)$ .

A graph is *d*-degenerate if there exists an ordering  $v_1, \ldots, v_n$  such that for every i,  $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \le d$ .



**Theorem** (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most  $2^n$ .

**Theorem** (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is  $\mathcal{O}(n^{d+1})$ .

Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is  $\mathcal{O}(n^{d+1})$ .



Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is  $\mathcal{O}(n^{d+1})$ .



Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is  $\mathcal{O}(n^{d+1})$ .



Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is  $\mathcal{O}(n^{d+1})$ .



Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is  $\mathcal{O}(n^{d+1})$ .

### Sketch of the proof :



• Ingredient 1 : Look at it in the other direction.

**Theorem** (B., Heinrich '19)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is  $\mathcal{O}(n^{d+1})$ .



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where  $|L| \ge d^+ + 2$ .

**Theorem** (B., Heinrich '19)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is  $\mathcal{O}(n^{d+1})$ .



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where  $|L| \ge d^+ + 2$ .
- Ingredient 3 : Notion of full color (to apply induction).

Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is  $\mathcal{O}(n^{d+1})$ .

### Sketch of the proof :



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where  $|L| \ge d^+ + 2$ .
- Ingredient 3 : Notion of full color (to apply induction).

### **Open problem :**

Prove the Cerededa's conjecture for d = 2

### Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is  $\mathcal{O}(n^{d+1})$ .

#### Sketch of the proof :



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where  $|L| \ge d^+ + 2$ .
- Ingredient 3 : Notion of full color (to apply induction).

#### **Open problem :**

Prove the Cerededa's conjecture for d = 2... and  $\Delta = 4$ !

[Feghali, Johnson, Paulusma '17] d = 2 and  $\Delta = 3$  is true.

The conjecture has been verified for a few graph classes. Known results :

- [Bonamy et al. '12] Chordal graphs.
- [Bousquet, Heinrich '19] Bipartite planar graphs.
- [Bonamy, Bousquet '18] Bounded treewidth graphs.

## **Open problems :**

• Perfect graphs ? Induced cycles and their complements of size  $\geq$  4 are even.

The conjecture has been verified for a few graph classes. Known results :

- [Bonamy et al. '12] Chordal graphs.
- [Bousquet, Heinrich '19] Bipartite planar graphs.
- [Bonamy, Bousquet '18] Bounded treewidth graphs.

- Perfect graphs? Induced cycles and their complements of size  $\geq$  4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5. Is the reconfiguration graph connected when k ≥ χ + 2?

The conjecture has been verified for a few graph classes. Known results :

- [Bonamy et al. '12] Chordal graphs.
- [Bousquet, Heinrich '19] Bipartite planar graphs.
- [Bonamy, Bousquet '18] Bounded treewidth graphs.

- Perfect graphs? Induced cycles and their complements of size  $\geq$  4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5. Is the reconfiguration graph connected when k ≥ χ + 2?
- Even hole-free graphs?

The conjecture has been verified for a few graph classes. Known results :

- [Bonamy et al. '12] Chordal graphs.
- [Bousquet, Heinrich '19] Bipartite planar graphs.
- [Bonamy, Bousquet '18] Bounded treewidth graphs.

- Perfect graphs ? Induced cycles and their complements of size  $\geq$  4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5. Is the reconfiguration graph connected when k ≥ χ + 2?
- Even hole-free graphs?
- Line graphs?

Planar graphs

• There are frozen 6-colorings.

- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7: Diameter  $O(n^6)$  [B., Heinrich '19+]. Feghali told me that he can now do better... (in preparation)



- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7: Diameter  $O(n^6)$  [B., Heinrich '19+]. Feghali told me that he can now do better... (in preparation)



 Planar graphs. d = 5, k = 8 : Diameter O(n · Polylog(n)) [Feghali '19+].

- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7 : Diameter O(n<sup>6</sup>) [B., Heinrich '19+].
   Feghali told me that he can now do better... (in preparation)



- Planar graphs. d = 5, k = 8 : Diameter O(n · Polylog(n)) [Feghali '19+].
- Planar graphs. d = 5, k = 10 : Diameter ≤ 10n. [Dvořák, Feghali, 20+]

- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7 : Diameter O(n<sup>6</sup>) [B., Heinrich '19+].
   Feghali told me that he can now do better... (in preparation)



- Planar graphs. d = 5, k = 8: Diameter  $O(n \cdot Polylog(n))$  [Feghali '19+].
- Planar graphs. d = 5, k = 10: Diameter  $\leq 10n$ . [Dvořák, Feghali, 20+]

•  $\triangle$ -free planar graphs. d = 3, k = 5: Diameter  $O(n^4)$ . [B., Heinrich '19+].

- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7 : Diameter O(n<sup>6</sup>) [B., Heinrich '19+].
   Feghali told me that he can now do better... (in preparation)



- Planar graphs. d = 5, k = 8 : Diameter O(n · Polylog(n)) [Feghali '19+].
- Planar graphs. d = 5, k = 10 : Diameter ≤ 10n. [Dvořák, Feghali, 20+]

- $\triangle$ -free planar graphs. d = 3, k = 5: Diameter  $O(n^4)$ . [B., Heinrich '19+].
- Graphs on surfaces?

- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7 : Diameter O(n<sup>6</sup>) [B., Heinrich '19+].
   Feghali told me that he can now do better... (in preparation)



- Planar graphs. d = 5, k = 8 : Diameter O(n · Polylog(n)) [Feghali '19+].
- Planar graphs. d = 5, k = 10 : Diameter ≤ 10n. [Dvořák, Feghali, 20+]

- $\triangle$ -free planar graphs. d = 3, k = 5: Diameter  $O(n^4)$ . [B., Heinrich '19+].
- Graphs on surfaces?
- Transformation between non-frozen 6-colorings?
  [Feghali, Johnson, Paulusma] proved a similar result for Δ colorings.

# When k increases

Theorem (B., Perarnau '16)

If  $k \ge 2d + 2$ , the diameter of the k-reconfiguration graph of any d-degenerate graph is  $O(d \cdot n)$ .

# When k increases

### **Theorem** (B., Perarnau '16)

If  $k \ge 2d + 2$ , the diameter of the k-reconfiguration graph of any d-degenerate graph is  $O(d \cdot n)$ .

### **Theorem** (Bartier, B. '19+)

If  $k \ge d + 4$ , the diameter of the k-reconfiguration graph of any d-degenerate chordal graph is  $O(f(\Delta) \cdot n)$ .

# When k increases

## Theorem (B., Perarnau '16)

If  $k \ge 2d + 2$ , the diameter of the k-reconfiguration graph of any d-degenerate graph is  $O(d \cdot n)$ .

### **Theorem** (Bartier, B. '19+)

If  $k \ge d + 4$ , the diameter of the k-reconfiguration graph of any d-degenerate chordal graph is  $O(f(\Delta) \cdot n)$ .

- Prove it for degenerate graphs. (Or disprove it !)
- Remove the dependency on  $\Delta$  (and replace it by d).
- When can we remove any dependency on d?

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path  $P_n$  is  $\Omega(n^2)$ .

## **Theorem** (Bonamy et al. '12)

The 3-recoloring diameter of the path  $P_n$  is  $\Omega(n^2)$ .

- If  $c(v_{i+1}) = c(v_i) 1 \Rightarrow$  Write  $\rightarrow$ .
- If  $c(v_{i+1}) = c(v_i) + 1 \Rightarrow$  Write  $\uparrow$ .

## **Theorem** (Bonamy et al. '12)

The 3-recoloring diameter of the path  $P_n$  is  $\Omega(n^2)$ .

#### Sketch of the proof

• If 
$$c(v_{i+1}) = c(v_i) - 1 \Rightarrow$$
 Write  $\rightarrow$ .

• If 
$$c(v_{i+1}) = c(v_i) + 1 \Rightarrow$$
 Write  $\uparrow$ .

 $\Rightarrow$  The surface is only modified by "one" at each step.

## **Theorem** (Bonamy et al. '12)

The 3-recoloring diameter of the path  $P_n$  is  $\Omega(n^2)$ .

### Sketch of the proof

• If 
$$c(v_{i+1}) = c(v_i) - 1 \Rightarrow$$
 Write  $\rightarrow$ .

• If 
$$c(v_{i+1}) = c(v_i) + 1 \Rightarrow$$
 Write  $\uparrow$ .

 $\Rightarrow$  The surface is only modified by "one" at each step.

**Claim** :  $\Omega(n^2)$  steps are needed to transform 123....123 into 132....132.

### **Theorem** (Bonamy et al. '12)

The 3-recoloring diameter of the path  $P_n$  is  $\Omega(n^2)$ .

### Sketch of the proof

• If 
$$c(v_{i+1}) = c(v_i) - 1 \Rightarrow$$
 Write  $\rightarrow$ .

• If 
$$c(v_{i+1}) = c(v_i) + 1 \Rightarrow$$
 Write  $\uparrow$ .

Claim : A recoloring performs a = 1 a a = 1 a

 $\Rightarrow$  The surface is only modified by "one" at each step.

**Claim** :  $\Omega(n^2)$  steps are needed to transform 123....123 into 132....132.

**Question :** Find a (non trivial) lower bound for other graph classes ? Or when  $k \ge d + 2$  ?

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings  $c_1, c_2$ . Output : YES iff  $c_1$  can be transformed into  $c_2$ .

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings  $c_1, c_2$ . Output : YES iff  $c_1$  can be transformed into  $c_2$ .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any  $4 \le k \le \Delta$ . [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings  $c_1, c_2$ . Output : YES iff  $c_1$  can be transformed into  $c_2$ .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any  $4 \le k \le \Delta$ . [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

For interval graphs : Trivial if  $k \ge \chi + 1$  and  $k \le \chi - 1...$ 

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings  $c_1, c_2$ . Output : YES iff  $c_1$  can be transformed into  $c_2$ .

[Theorem]

[Bonsma, Cereceda '09] CR is PSPACE-complete for any  $4 \le k \le \Delta$ . [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

For interval graphs : Trivial if  $k \ge \chi + 1$  and  $k \le \chi - 1$ ... But open for  $k = \chi$  !

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings  $c_1, c_2$ . Output : YES iff  $c_1$  can be transformed into  $c_2$ .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any  $4 \le k \le \Delta$ . [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

#### For interval graphs :

Trivial if  $k \ge \chi + 1$  and  $k \le \chi - 1$ ... But open for  $k = \chi$ ! (PSPACE-complete for chordal graphs).

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings  $c_1, c_2$ . Output : YES iff  $c_1$  can be transformed into  $c_2$ .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any  $4 \le k \le \Delta$ . [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

#### For interval graphs :

Trivial if  $k \ge \chi + 1$  and  $k \le \chi - 1$ ... But open for  $k = \chi$ ! (PSPACE-complete for chordal graphs).

## For line graphs :

[Osawa et al. '18] PSPACE-complete if  $k \ge 5$ . Open for k = 4.

# Conclusion

#### More questions :

- A connected reconfiguration graph with exponential diameter.
- Understand better what "not connected" means.

# Conclusion

#### More questions :

- A connected reconfiguration graph with exponential diameter.
- Understand better what "not connected" means.

# Thanks for your attention !