Graph Recoloring: From statistical physics to graph theory

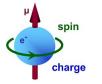
Nicolas Bousquet

JGA 2019 Bruxelles

Spin is one of two types of angular momentum in quantum mechanic. [...] In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction".

Spin is one of two types of angular momentum in quantum mechanic. [...] In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction".

Usually, spins take their value in $\{+,-\},$ but sometimes the range is larger...

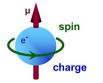


Spin is one of two types of angular momentum in quantum mechanic. [...] In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction".

Usually, spins take their value in $\{+,-\},$ but sometimes the range is larger...

A spin system is a set of spins given with :

- An integer *k* being the number of states.
- An interaction {0,1} (symmetric) matrix modelizing the interaction between spins.
 - 0 = no interaction = no link.
 - 1 = interaction = link.



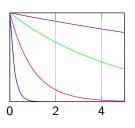
Spin is one of two types of angular momentum in quantum mechanic. [...] In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction".

Usually, spins take their value in $\{+,-\},$ but sometimes the range is larger...

A spin system is a set of spins given with :

- An integer *k* being the number of states.
- An interaction {0,1} (symmetric) matrix modelizing the interaction between spins.
 - 0 = no interaction = no link.
 - 1 = interaction = link.

A spin configuration is a function $f : S \to \{1, ..., k\}^n$. \Leftrightarrow A (non necessarily proper) graph coloring.

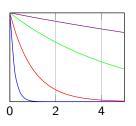


T = 5, 1, 0.2, 0.05

Antiferromagnetic Potts model $H(\sigma)$: number of monochromatic edges. = Edges with both endpoints of the same color.

Gibbs measure at fixed temperature T:

 $\nu_T(\sigma) = e^{-\frac{H(\sigma)}{T}}$



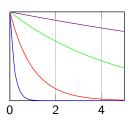
Gibbs measure at fixed temperature T:

T = 5, 1, 0.2, 0.05

$$\nu_T(\sigma) = e^{-\frac{H(\sigma)}{T}}$$

Remarks :

• Free to rescale, ν_T = probability distribution $\mathbb P$ on the colorings.



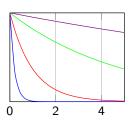
Gibbs measure at fixed temperature T:

T = 5, 1, 0.2, 0.05

$$\nu_{T}(\sigma) = e^{-\frac{H(\sigma)}{T}}$$

Remarks :

- Free to rescale, ν_T = probability distribution $\mathbb P$ on the colorings.
- The probability \searrow if the number of monochrom. edges \nearrow .



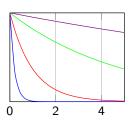
Gibbs measure at fixed temperature T:

T = 5, 1, 0.2, 0.05

$$\nu_{T}(\sigma) = e^{-\frac{H(\sigma)}{T}}$$

Remarks :

- Free to rescale, ν_T = probability distribution $\mathbb P$ on the colorings.
- The probability ∖ if the number of monochrom. edges ↗.
- When $T \searrow$, $\mathcal{P}(c) \searrow$ if c has at least one monochr. edge.



Gibbs measure at fixed temperature T:

T = 5, 1, 0.2, 0.05

 $\nu_{T}(\sigma) = e^{-\frac{H(\sigma)}{T}}$

Remarks :

- Free to rescale, ν_T = probability distribution $\mathbb P$ on the colorings.
- The probability ∖ if the number of monochrom. edges ↗.
- When $T \searrow$, $\mathcal{P}(c) \searrow$ if c has at least one monochr. edge.

Definition (Glauber dynamics)

Limit of a *k*-state Potts model when $T \rightarrow 0$. \Rightarrow Only **proper** colorings have positive measure.

Reconfiguration graph

Definition (*k*-Reconfiguration graph $C_k(G)$ of G)

- Vertices : Proper *k*-colorings of *G*.
- Create an edge between any two k-colorings which differ on exactly one vertex.

All along the talk k denotes the number of colors.

Reconfiguration graph

Definition (*k*-Reconfiguration graph $C_k(G)$ of G)

- Vertices : Proper *k*-colorings of *G*.
- Create an edge between any two k-colorings which differ on exactly one vertex.

All along the talk k denotes the number of colors.

Definition:

The k-recoloring diameter is the diameter of $C_k(G)$ (when connected).

Sampling spin configurations

In the statistical physics community, the following Monte Carlo Markov chain was proposed to sample a configuration :

- Start with an initial coloring c;
- Choose a vertex v and a color a uniformly at random;
- Recolor *v* with color *a* if the resulting coloring is proper; otherwise do not modify the coloring *c*.
- Repeat

Sampling spin configurations

In the statistical physics community, the following Monte Carlo Markov chain was proposed to sample a configuration :

- Start with an initial coloring c;
- Choose a vertex v and a color a uniformly at random;
- Recolor *v* with color *a* if the resulting coloring is proper; otherwise do not modify the coloring *c*.
- Repeat

Questions :

- Can we generate every solution?
- Does it "sample a solution almost at random" ?

Sampling spin configurations

In the statistical physics community, the following Monte Carlo Markov chain was proposed to sample a configuration :

- Start with an initial coloring c;
- Choose a vertex v and a color a uniformly at random;
- Recolor *v* with color *a* if the resulting coloring is proper; otherwise do not modify the coloring *c*.
- Repeat

Questions :

- Can we generate every solution?
- Does it "sample a solution almost at random" ?

Remark :

The Markov chain is a random walk in the reconfiguration graph.

A Markov chain is irreducible if any solution can be reached from any other.

 $\Leftrightarrow \mathsf{The reconfiguration graph is } \mathsf{connected}.$

A Markov chain is irreducible if any solution can be reached from any other.

 $\Leftrightarrow \mathsf{The reconfiguration graph is } \mathsf{connected}.$

A chain is aperiodic if the gcd of all the circuits is 1.

A Markov chain is irreducible if any solution can be reached from any other.

 $\Leftrightarrow \mathsf{The reconfiguration graph is } \mathsf{connected}.$

A chain is aperiodic if the gcd of all the circuits is 1.

Theorem

Every ergodic (aperiodic and irreducible) Markov chain converges to a unique stationnary distribution.

A Markov chain is irreducible if any solution can be reached from any other.

 $\Leftrightarrow \mathsf{The reconfiguration graph is } \mathsf{connected}.$

A chain is aperiodic if the gcd of all the circuits is 1.

Theorem

Every ergodic (aperiodic and irreducible) Markov chain converges to a unique stationnary distribution.

In our case :

• $\mathbb{P}(X_{t+1} = X_t) > 0 \Rightarrow$ Aperiodicity holds.

A Markov chain is irreducible if any solution can be reached from any other.

 $\Leftrightarrow \mathsf{The reconfiguration graph is } \mathsf{connected}.$

A chain is aperiodic if the gcd of all the circuits is 1.

Theorem

Every ergodic (aperiodic and irreducible) Markov chain converges to a unique stationnary distribution.

In our case :

- $\mathbb{P}(X_{t+1} = X_t) > 0 \Rightarrow$ Aperiodicity holds.
- All the transitions have the same probability ⇒ the stationnary distribution is uniform.

A Markov chain is irreducible if any solution can be reached from any other.

 $\Leftrightarrow \mathsf{The reconfiguration graph is } \mathsf{connected}.$

A chain is aperiodic if the gcd of all the circuits is 1.

Theorem

Every ergodic (aperiodic and irreducible) Markov chain converges to a unique stationnary distribution.

In our case :

- $\mathbb{P}(X_{t+1} = X_t) > 0 \Rightarrow$ Aperiodicity holds.
- All the transitions have the same probability ⇒ the stationnary distribution is uniform.

Question :

How much time do we need to converge?

Mixing time = number of steps needed to be "close" to the stationnary distribution.

 \Leftrightarrow Number of steps needed to guarantee that the solutions is sampled "almost" at random.

Mixing time = number of steps needed to be "close" to the stationnary distribution.

 \Leftrightarrow Number of steps needed to guarantee that the solutions is sampled "almost" at random.

A chain is rapidly mixing if its mixing time is polynomial (and even better $O(n \log n)$).

Mixing time = number of steps needed to be "close" to the stationnary distribution.

 \Leftrightarrow Number of steps needed to guarantee that the solutions is sampled "almost" at random.

A chain is rapidly mixing if its mixing time is polynomial (and even better $O(n \log n)$).

Mixing time and Reconfiguration graph?

• Diameter of the Reconfiguration graph = D \Rightarrow Mixing time $\ge 2 \cdot D$.

Mixing time = number of steps needed to be "close" to the stationnary distribution.

 \Leftrightarrow Number of steps needed to guarantee that the solutions is sampled "almost" at random.

A chain is rapidly mixing if its mixing time is polynomial (and even better $O(n \log n)$).

Mixing time and Reconfiguration graph?

- Diameter of the Reconfiguration graph = D \Rightarrow Mixing time $\geq 2 \cdot D$.
- Better lower bounds? Look at the connectivity of the reconfiguration graph (e.g. bottleneck ratio).

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing?

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing ?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing ?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.
- [Vigoda '00] Mixing time polynomial if $k = \frac{11}{6}\Delta$.

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing ?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.
- [Vigoda '00] Mixing time polynomial if $k = \frac{11}{6}\Delta$.
- [Chen, Delcourt, Moitra, Perarnau, Postle '18] Mixing time polynomial if $k = (\frac{11}{6} \epsilon)\Delta$.

How many colors (in terms of the maximum degree Δ) do we need to ensure that the chain is rapidly mixing ?

Known results :

- The chain is not always ergodic if $k \leq \Delta + 1$ (e.g. cliques).
- The chain is ergodic if $k \ge \Delta + 2$.
- [Vigoda '00] Mixing time polynomial if $k = \frac{11}{6}\Delta$.
- [Chen, Delcourt, Moitra, Perarnau, Postle '18] Mixing time polynomial if $k = (\frac{11}{6} \epsilon)\Delta$.

Conjecture

If $k \ge \Delta + 2$, the mixing time is $\mathcal{O}(n \log n)$.

Coupon collector problem

Coupon collector problem :

- In each cereal box, there is a gift.
- There are *n* distinct gifts in total.
- Goal : get them all !

Question : How many boxes do we need to buy?

Coupon collector problem

Coupon collector problem :

- In each cereal box, there is a gift.
- There are *n* distinct gifts in total.
- Goal : get them all !

Question : How many boxes do we need to buy?

Theorem

The expected number of steps needed to collect them all (if distribution iid) is $\Theta(n \log n)$.

Informal argument : How much steps to reach a coloring where all the colors have changed ?

Informal argument : How much steps to reach a coloring where all the colors have changed ?

 \Rightarrow We need to select each vertex at least once.

Informal argument : How much steps to reach a coloring where all the colors have changed ?

- \Rightarrow We need to select each vertex at least once.
- ⇒ By coupon collector, the expected number of steps is $\Omega(n \log n)$.

Informal argument : How much steps to reach a coloring where all the colors have changed ?

- \Rightarrow We need to select each vertex at least once.
- ⇒ By coupon collector, the expected number of steps is $\Omega(n \log n)$.

If we want to be more formal...

• Problem : The density of such colorings might be small.

Coupon collector and mixing time

Informal argument : How much steps to reach a coloring where all the colors have changed ?

- \Rightarrow We need to select each vertex at least once.
- ⇒ By coupon collector, the expected number of steps is $\Omega(n \log n)$.

If we want to be more formal...

- Problem : The density of such colorings might be small.
- [Hayes, Sinclair '05] Mixing time $\Omega(n \log n)$ if $\Delta = O(1)$.

Coupon collector and mixing time

Informal argument : How much steps to reach a coloring where all the colors have changed ?

- \Rightarrow We need to select each vertex at least once.
- ⇒ By coupon collector, the expected number of steps is $\Omega(n \log n)$.

If we want to be more formal...

- Problem : The density of such colorings might be small.
- [Hayes, Sinclair '05] Mixing time $\Omega(n \log n)$ if $\Delta = O(1)$.
- [Hayes, Sinclair '05] There exist graphs for which the mixing time is O(n).

• Can we transform any coloring into any other? Is the reconfiguration graph connected?

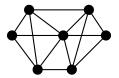
- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?

- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- If the answer is positive, how many steps do we need? What is the diameter of the reconfiguration graph?

- Can we transform any coloring into any other? Is the reconfiguration graph connected?
- Given two colorings, can we transform the one into the other? Given two vertices of the reconfiguration graph, are they in the same connected component?
- If the answer is positive, how many steps do we need? What is the diameter of the reconfiguration graph?
- Can we efficiently find a short transformation? Can we find a path between two vertices of the reconfiguration graph in polynomial time? in FPT time?

Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.



Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda '08)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

A graph is *d*-degenerate if there exists an ordering v_1, \ldots, v_n such that for every i, $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \le d$.

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

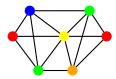
The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

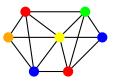
- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

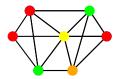


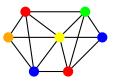


Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

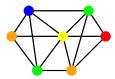


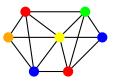


Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

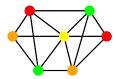


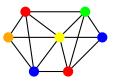


Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

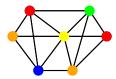


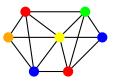


Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

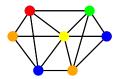


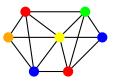


Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

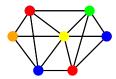


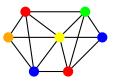


Theorem (Dyer et al. '06)

The (d+2)-recoloring diameter of any *d*-degenerate graph is at most 2^n .

- Delete a vertex of degree at most *d*.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.



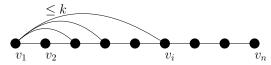


Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

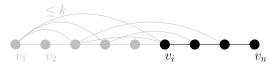
Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.



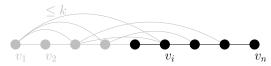
Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.



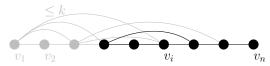
Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.



Theorem (B., Heinrich '19)

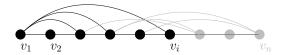
The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.



Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any *d*-degenerate graph is $\mathcal{O}(n^{d+1})$.

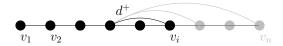
Sketch of the proof :



• Ingredient 1 : Look at it in the other direction.

Theorem (B., Heinrich '19)

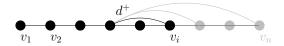
The (d + 2)-recoloring diameter of any *d*-degenerate graph is $\mathcal{O}(n^{d+1})$.



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.

Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

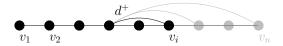


- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Sketch of the proof :



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

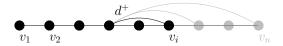
Open problem :

Prove the Cerededa's conjecture for d = 2

Theorem (B., Heinrich '19)

The (d + 2)-recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Sketch of the proof :



- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

Open problem :

Prove the Cerededa's conjecture for d = 2... and $\Delta = 4$!

[Feghali, Johnson, Paulusma '17] d = 2 and $\Delta = 3$ is true.

Definition:

G is chordal if any cycle of length \geq 4 has a chord.

Definition:

G is chordal if any cycle of length \geq 4 has a chord.

Definition:

G is chordal if any cycle of length \geq 4 has a chord.

Definition:

G is chordal if any cycle of length \geq 4 has a chord.

Definition:

G is chordal if any cycle of length \geq 4 has a chord.

 \Leftrightarrow G can be prunned via simplicial vertices (vertices whose neighborhood is a clique).

Theorem (Bonamy et al. '12)

The $(\chi + 1)$ -recoloring diameter of any chordal graph is $\mathcal{O}(n^2)$.

Definition:

G is chordal if any cycle of length \geq 4 has a chord.

 \Leftrightarrow G can be prunned via simplicial vertices (vertices whose neighborhood is a clique).

Theorem (Bonamy et al. '12)

The $(\chi + 1)$ -recoloring diameter of any chordal graph is $\mathcal{O}(n^2)$.

Remarks :

• For chordal graphs, $d=\chi+1=\omega+1$. (Chordal graphs are perfect)

Definition:

G is chordal if any cycle of length \geq 4 has a chord.

 \Leftrightarrow G can be prunned via simplicial vertices (vertices whose neighborhood is a clique).

Theorem (Bonamy et al. '12)

The $(\chi + 1)$ -recoloring diameter of any chordal graph is $\mathcal{O}(n^2)$.

Remarks :

- For chordal graphs, $d=\chi+1=\omega+1$. (Chordal graphs are perfect)
- Chordal graphs with $\chi = 2$ are exactly trees
 - \Rightarrow Cereceda's conjecture holds for d = 1.

Definition:

G is chordal if any cycle of length \geq 4 has a chord.

 \Leftrightarrow G can be prunned via simplicial vertices (vertices whose neighborhood is a clique).

Theorem (Bonamy et al. '12)

The $(\chi + 1)$ -recoloring diameter of any chordal graph is $\mathcal{O}(n^2)$.

Remarks :

- For chordal graphs, $d=\chi+1=\omega+1$. (Chordal graphs are perfect)
- Chordal graphs with χ = 2 are exactly trees
 ⇒ Cereceda's conjecture holds for d = 1.
- [Bonamy, B. '18] Can be extended to treewidth $\leq k$ with k + 2 colors.

Proof based on some identification of vertices technique.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.
- If a contracted vertex is recolored, we recolor one after another the original vertices.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.
- If a contracted vertex is recolored, we recolor one after another the original vertices.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.
- If a contracted vertex is recolored, we recolor one after another the original vertices.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.
- If a contracted vertex is recolored, we recolor one after another the original vertices.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.
- If a contracted vertex is recolored, we recolor one after another the original vertices.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.
- If a contracted vertex is recolored, we recolor one after another the original vertices.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.
- If a contracted vertex is recolored, we recolor one after another the original vertices.

Proof based on some identification of vertices technique.

- x, y are colored the same in the initial and target colorings.
- Contracting x and y leaves a graph of the same class.
- If a contracted vertex is recolored, we recolor one after another the original vertices.
- If k ≥ n + 1, we can obtain any coloring of K_n by recoloring every vertex ≤ 2 times.

$$\checkmark$$

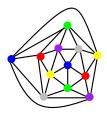
• Perfect graphs? Induced cycles and their complements of size \geq 4 are even.

- Perfect graphs? Induced cycles and their complements of size \geq 4 are even.
- Weakly chordal graphs? No induced cycle of length \geq 5. Is the reconfiguration graph connected when $k \geq \chi + 2$?

- Perfect graphs? Induced cycles and their complements of size \geq 4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5. Is the reconfiguration graph connected when k ≥ χ + 2?

Planar graphs :

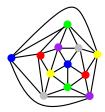
• There are frozen 6-colorings.



- Perfect graphs ? Induced cycles and their complements of size \geq 4 are even.
- Weakly chordal graphs? No induced cycle of length \geq 5. Is the reconfiguration graph connected when $k \geq \chi + 2$?

Planar graphs :

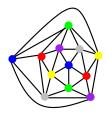
- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7: Diameter $O(n^6)$ [B., Heinrich '19].



- Perfect graphs ? Induced cycles and their complements of size \geq 4 are even.
- Weakly chordal graphs? No induced cycle of length \geq 5. Is the reconfiguration graph connected when $k \geq \chi + 2$?

Planar graphs :

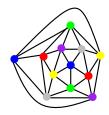
- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7: Diameter $O(n^6)$ [B., Heinrich '19].
- Planar graphs. d = 5, k = 8: Diameter $O(n \cdot Polylog(n))$ [Feghali '19].



- Perfect graphs ? Induced cycles and their complements of size \geq 4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5. Is the reconfiguration graph connected when k ≥ χ + 2?

Planar graphs :

- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7: Diameter $O(n^6)$ [B., Heinrich '19].
- Planar graphs. d = 5, k = 8 : Diameter O(n · Polylog(n)) [Feghali '19].
- \triangle -free planar graphs. d = 3, k = 5: Diameter $O(n^4)$.



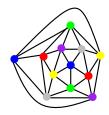
- Perfect graphs ? Induced cycles and their complements of size \geq 4 are even.
- Weakly chordal graphs? No induced cycle of length ≥ 5.
 Is the reconfiguration graph connected when k ≥ χ + 2?

Planar graphs :

- There are frozen 6-colorings.
- Planar graphs. d = 5, k = 7: Diameter $O(n^6)$ [B., Heinrich '19].
- Planar graphs. d = 5, k = 8: Diameter $O(n \cdot Polylog(n))$ [Feghali '19].
- \triangle -free planar graphs. d = 3, k = 5: Diameter $O(n^4)$.

What happens if k increases?

 \rightarrow Go to Valentin Bartier's talk.



Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_n is $\Omega(n^2)$.

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_n is $\Omega(n^2)$.

Sketch of the proof

- If $c(v_{i+1}) = c(v_i) 1 \Rightarrow$ Write \rightarrow .
- If $c(v_{i+1}) = c(v_i) + 1 \Rightarrow$ Write \uparrow .

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_n is $\Omega(n^2)$.

Sketch of the proof

• If
$$c(v_{i+1}) = c(v_i) - 1 \Rightarrow$$
 Write \rightarrow .

• If
$$c(v_{i+1}) = c(v_i) + 1 \Rightarrow$$
 Write \uparrow .

 \Rightarrow The surface is only modified by "one" at each step.

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_n is $\Omega(n^2)$.

Sketch of the proof

• If
$$c(v_{i+1}) = c(v_i) - 1 \Rightarrow$$
 Write \rightarrow .

• If
$$c(v_{i+1}) = c(v_i) + 1 \Rightarrow$$
 Write \uparrow .

Claim : A recoloring performs a = 1 a a = 1 a a = 1

 \Rightarrow The surface is only modified by "one" at each step.

Claim : $\Omega(n^2)$ steps are needed to transform 123....123 into 132....132.

Theorem (Bonamy et al. '12)

The 3-recoloring diameter of the path P_n is $\Omega(n^2)$.

Sketch of the proof

• If
$$c(v_{i+1}) = c(v_i) - 1 \Rightarrow$$
 Write \rightarrow .

• If
$$c(v_{i+1}) = c(v_i) + 1 \Rightarrow$$
 Write \uparrow .

Claim : A recoloring performs a = 1 a a = 1

 \Rightarrow The surface is only modified by "one" at each step.

Claim : $\Omega(n^2)$ steps are needed to transform 123....123 into 132....132.

Question : Find a (non trivial) lower bound for other graph classes ? Or when $k \ge d + 2$?

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings c_1, c_2 . Output : YES iff c_1 can be transformed into c_2 .

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings c_1, c_2 . Output : YES iff c_1 can be transformed into c_2 .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \le k \le \Delta$. [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings c_1, c_2 . Output : YES iff c_1 can be transformed into c_2 .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \le k \le \Delta$. [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

For interval graphs : Trivial if $k \ge \chi + 1$ and $k \le \chi - 1...$

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings c_1, c_2 . Output : YES iff c_1 can be transformed into c_2 .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \le k \le \Delta$. [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

For interval graphs : Trivial if $k \ge \chi + 1$ and $k \le \chi - 1$... But open for $k = \chi$!

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings c_1, c_2 . Output : YES iff c_1 can be transformed into c_2 .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \le k \le \Delta$. [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

For interval graphs :

Trivial if $k \ge \chi + 1$ and $k \le \chi - 1$... But open for $k = \chi$! (PSPACE-complete for chordal graphs).

COLORING REACHABILITY (CR) Input : A graph G, an integer k, two k-colorings c_1, c_2 . Output : YES iff c_1 can be transformed into c_2 .

Theorem

[Bonsma, Cereceda '09] CR is PSPACE-complete for any $4 \le k \le \Delta$. [Cereceda, van den Heuvel, Johnson '11] CR is in P when k = 3.

For interval graphs :

Trivial if $k \ge \chi + 1$ and $k \le \chi - 1$... But open for $k = \chi$! (PSPACE-complete for chordal graphs).

For line graphs :

[Osawa et al. '18] PSPACE-complete if $k \ge 5$. Open for k = 4.

At the beginning of the talk (a long time ago...).

"At each step, change the color of a single vertex"

At the beginning of the talk (a long time ago...).

"At each step, change the color of a single vertex"

Question : Why a single vertex?

At the beginning of the talk (a long time ago...).

"At each step, change the color of a single vertex"

Question : Why a single vertex?

- The operation is simple.
- The possible set of operations is polynomial.

At the beginning of the talk (a long time ago...).

"At each step, change the color of a single vertex"

Question : Why a single vertex?

- The operation is simple.
- The possible set of operations is polynomial.

Question 2 : Can we imagine another rule?

• Change the color of 2 vertices? 3, 4, ..., k vertices?

At the beginning of the talk (a long time ago...).

"At each step, change the color of a single vertex"

Question : Why a single vertex?

- The operation is simple.
- The possible set of operations is polynomial.

Question 2 : Can we imagine another rule?

- Change the color of 2 vertices? 3, 4, ..., k vertices?
- Change the color of a Kempe chain !

Theorem (Mohar '06)

We can generate all the $(\Delta + 1)$ -colorings using Kempe chains.

Theorem (Mohar '06)

We can generate all the $(\Delta + 1)$ -colorings using Kempe chains.

Conjecture (Mohar '06)

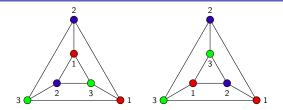
We can generate all the $\Delta\text{-}colorings$ of any graph using Kempe chains.

Theorem (Mohar '06)

We can generate all the $(\Delta + 1)$ -colorings using Kempe chains.

Conjecture (Mohar '06)

We can generate all the $\Delta\text{-}colorings$ of any graph using Kempe chains.



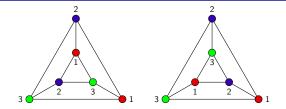
Counter-example proposed by Jan van den Heuvel (2013)

Theorem (Mohar '06)

We can generate all the $(\Delta + 1)$ -colorings using Kempe chains.

Theorem (Bonamy, B., Feghali, Johnson '19)

We can generate all the Δ -colorings of any graph but the 3-prism using Kempe chains.



Counter-example proposed by Jan van den Heuvel (2013)

Conjecture (Vizing '65)

Conjecture (Vizing '65)

Any $(\chi' + 1)$ -edge coloring can be transformed into any other using Kempe changes.

• [Mohar '06] True for $\chi' + 2$.

Conjecture (Vizing '65)

- [Mohar '06] True for $\chi' + 2$.
- [McDonald et al. '12] $\Delta + 1$ colors are not enough.

Conjecture (Vizing '65)

- [Mohar '06] True for $\chi' + 2$.
- [McDonald et al. '12] $\Delta + 1$ colors are not enough.
- [Bonamy, Defrain, Klimošová, Muller, Narboni '19+] Partial result for planar graphs.

Conjecture (Vizing '65)

- [Mohar '06] True for $\chi' + 2$.
- [McDonald et al. '12] $\Delta + 1$ colors are not enough.
- [Bonamy, Defrain, Klimošová, Muller, Narboni '19+] Partial result for planar graphs.
- [Heinrich, Joffard, Noel, Parreau '19+] For single edge recoloring : 2∆ colors are needed !

Relation with other fields :

• Sampling. Connectivity? Diameter? Huge connectivity?

- Sampling. Connectivity? Diameter? Huge connectivity?
- Enumeration. Connectivity? Good labelling implying BFS?

- Sampling. Connectivity? Diameter? Huge connectivity?
- Enumeration. Connectivity? Good labelling implying BFS?
- Dynamic systems. Few steps to repair defaults, distributed recoloring ? → Go to Paul Ouvrard's talk.

- Sampling. Connectivity? Diameter? Huge connectivity?
- Enumeration. Connectivity? Good labelling implying BFS?
- Dynamic systems. Few steps to repair defaults, distributed recoloring ? \rightarrow Go to Paul Ouvrard's talk.
- Operational Research. Transformation between two solutions?

- Sampling. Connectivity? Diameter? Huge connectivity?
- Enumeration. Connectivity? Good labelling implying BFS?
- Dynamic systems. Few steps to repair defaults, distributed recoloring ? \rightarrow Go to Paul Ouvrard's talk.
- Operational Research. Transformation between two solutions?
- Discrete Geometry. Diameter and paths in the graph of flips.

Relation with other fields :

- Sampling. Connectivity? Diameter? Huge connectivity?
- Enumeration. Connectivity? Good labelling implying BFS?
- Dynamic systems. Few steps to repair defaults, distributed recoloring ? \rightarrow Go to Paul Ouvrard's talk.
- Operational Research. Transformation between two solutions?
- Discrete Geometry. Diameter and paths in the graph of flips.

More questions :

- A connected reconfiguration graph with exponential diameter.
- Understand better what "not connected" means.

Relation with other fields :

- Sampling. Connectivity? Diameter? Huge connectivity?
- Enumeration. Connectivity? Good labelling implying BFS?
- Dynamic systems. Few steps to repair defaults, distributed recoloring ? \rightarrow Go to Paul Ouvrard's talk.
- Operational Research. Transformation between two solutions?
- Discrete Geometry. Diameter and paths in the graph of flips.

More questions :

- A connected reconfiguration graph with exponential diameter.
- Understand better what "not connected" means.

Thanks for your attention !