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Spin systems

Spin is one of two types of angular mo-
mentum in quantum mechanic. [...]
In some ways, spin is like a vector quan-
tity ; it has a definite magnitude, and it
has a “direction”.

Usually, spins take their value in {+,−}, but sometimes the range
is larger...

A spin system is a set of spins given with :

• An integer k being the number of states.

• An interaction {0, 1} (symmetric) matrix
modelizing the interaction between spins.

• 0 = no interaction = no link.
• 1 = interaction = link.

A spin configuration is a function f : S → {1, . . . , k}n.
⇔ A (non necessarily proper) graph coloring.
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Antiferromagnetic Potts model

0 2 4

T = 5, 1, 0.2, 0.05

H(σ) : number of monochromatic edges.
=
Edges with both endpoints of the same
color.

Gibbs measure at fixed temperature T :

νT (σ) = e−
H(σ)
T

Remarks :

• Free to rescale, νT = probability distribution P on the
colorings.

• The probability ↘ if the number of monochrom. edges ↗.
• When T ↘, P(c)↘ if c has at least one monochr. edge.

Limit of a k-state Potts model when T → 0.
⇒ Only proper colorings have positive measure.

Definition (Glauber dynamics)
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Reconfiguration graph

• Vertices : Proper k-colorings of G .

• Create an edge between any two k-colorings which differ
on exactly one vertex.

Definition (k-Reconfiguration graph Ck(G ) of G )

All along the talk k denotes the number of colors.

Definition :
The k-recoloring diameter is the diameter of Ck(G ) (when connected).
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Sampling spin configurations

In the statistical physics community, the following Monte Carlo
Markov chain was proposed to sample a configuration :

• Start with an initial coloring c ;

• Choose a vertex v and a color a uniformly at random ;

• Recolor v with color a if the resulting coloring is proper ;
otherwise do not modify the coloring c.

• Repeat

Questions :

• Can we generate every solution ?

• Does it “sample a solution almost at random” ?

Remark :
The Markov chain is a random walk in the reconfiguration graph.
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Convergence of Markov chains

A Markov chain is irreducible if any solution can be
reached from any other.
⇔ The reconfiguration graph is connected.

A chain is aperiodic if the gcd of all the circuits
is 1.

A B

Every ergodic (aperiodic and irreducible) Markov chain converges
to a unique stationnary distribution.

Theorem

In our case :

• P(Xt+1 = Xt) > 0 ⇒ Aperiodicity holds.

• All the transitions have the same probability ⇒ the
stationnary distribution is uniform.

Question :
How much time do we need to converge ?
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Mixing time

Mixing time = number of steps needed to be “close” to the
stationnary distribution.
⇔ Number of steps needed to guarantee that the solutions is
sampled “almost” at random.

A chain is rapidly mixing if its mixing time is polynomial (and even
better O(n log n)).

Mixing time and Reconfiguration graph ?

• Diameter of the Reconfiguration graph = D
⇒ Mixing time ≥ 2 · D.

• Better lower bounds ? Look at the connectivity of the
reconfiguration graph (e.g. bottleneck ratio).
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Main question in Statistical Physics

How many colors (in terms of the maximum degree ∆)
do we need to ensure that the chain is rapidly mixing ?

Known results :

• The chain is not always ergodic if k ≤ ∆ + 1 (e.g. cliques).

• The chain is ergodic if k ≥ ∆ + 2.

• [Vigoda ’00] Mixing time polynomial if k = 11
6 ∆.

• [Chen, Delcourt, Moitra, Perarnau, Postle ’18] Mixing time
polynomial if k = ( 11

6 − ε)∆.

If k ≥ ∆ + 2, the mixing time is O(n log n).

Conjecture
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Coupon collector problem

Coupon collector problem :

• In each cereal box, there is a gift.

• There are n distinct gifts in total.

• Goal : get them all !

Question : How many boxes do we need to buy ?

The expected number of steps needed to collect them all (if
distribution iid) is Θ(n log n).

Theorem

9/23



Coupon collector problem

Coupon collector problem :

• In each cereal box, there is a gift.

• There are n distinct gifts in total.

• Goal : get them all !

Question : How many boxes do we need to buy ?

The expected number of steps needed to collect them all (if
distribution iid) is Θ(n log n).

Theorem

9/23



Coupon collector and mixing time

Informal argument : How much steps to reach a coloring where
all the colors have changed ?

⇒ We need to select each vertex at least once.

⇒ By coupon collector, the expected number of steps is
Ω(n log n).

If we want to be more formal...

• Problem : The density of such colorings might be small.

• [Hayes, Sinclair ’05] Mixing time Ω(n log n) if ∆ = O(1).

• [Hayes, Sinclair ’05] There exist graphs for which the mixing
time is O(n).
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Main questions in Comb. / Alg.

• Can we transform any coloring into any other ?
Is the reconfiguration graph connected ?

• Given two colorings, can we transform the one into the other ?
Given two vertices of the reconfiguration graph, are they in
the same connected component ?

• If the answer is positive, how many steps do we need ?
What is the diameter of the reconfiguration graph ?

• Can we effiently find a short transformation ?
Can we find a path between two vertices of the
reconfiguration graph in polynomial time ? in FPT time ?
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Cereceda’s conjecture

The (d + 2)-recoloring diameter of any d-degenerate graph is
O(n2).

Conjecture (Cereceda ’08)

A graph is d-degenerate if there exists an ordering v1, . . . , vn such
that for every i , |N(vi ) ∩ {vi+1, . . . , vn}| ≤ d .

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)
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Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.
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Cereceda’s conjecture (cont.)

The (d + 2)-recoloring diameter of any d-degenerate graph is
O(nd+1).

Theorem (B., Heinrich ’19)

Sketch of the proof :

≤ k

v1 v2 vnvi

• Ingredient 1 : Look at it in the other direction.
• Ingredient 2 : List coloring where |L| ≥ d+ + 2.
• Ingredient 3 : Notion of full color (to apply induction).

Open problem :
Prove the Cerededa’s conjecture for d = 2

... and ∆ = 4 !
[Feghali, Johnson, Paulusma ’17] d = 2 and ∆ = 3 is true.
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Chordal graphs
Definition :
G is chordal if any cycle of length ≥ 4 has
a chord.
⇔ G can be prunned via simplicial vertices
(vertices whose neighborhood is a clique).

The (χ+ 1)-recoloring diameter of any chordal graph is O(n2).

Theorem (Bonamy et al. ’12)

Remarks :

• For chordal graphs, d = χ+ 1 = ω + 1. (Chordal graphs are perfect)

• Chordal graphs with χ = 2 are exactly trees
⇒ Cereceda’s conjecture holds for d = 1.

• [Bonamy, B. ’18] Can be extended to treewidth ≤ k with
k + 2 colors.
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Sketch of the proof

Proof based on some identification of vertices technique.

Idea : Find two vertices x , y such that :

• x , y are colored the same in the initial and target colorings.

• Contracting x and y leaves a graph of the same class.

• If a contracted vertex is recolored, we recolor one after
another the original vertices.

• If k ≥ n + 1, we can obtain any coloring of Kn by recoloring
every vertex ≤ 2 times.
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Open problems

• Perfect graphs ? Induced cycles and their complements of size ≥ 4 are even.

• Weakly chordal graphs ? No induced cycle of length ≥ 5.

Is the reconfiguration graph connected when k ≥ χ + 2 ?

Planar graphs :

• There are frozen 6-colorings.

• Planar graphs. d = 5, k = 7 :
Diameter O(n6) [B., Heinrich ’19].

• Planar graphs. d = 5, k = 8 :
Diameter O(n · Polylog(n)) [Feghali
’19].

• 4-free planar graphs. d = 3, k = 5 :
Diameter O(n4).

What happens if k increases ?
→ Go to Valentin Bartier’s talk.
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Lower bound

The 3-recoloring diameter of the path Pn is Ω(n2).

Theorem (Bonamy et al. ’12)

Sketch of the proof

• If c(vi+1) = c(vi )− 1 ⇒ Write →.

• If c(vi+1) = c(vi ) + 1 ⇒ Write ↑.
Claim : A recoloring performs
the following :

a

a + 1 a

a a− 1

a

⇒ The surface is only modified by “one” at each step.

Claim : Ω(n2) steps are needed to transform 123....123 into
132....132.

Question : Find a (non trivial) lower bound for other graph
classes ? Or when k ≥ d + 2 ?
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Algorithmic aspects of reconfiguration

Coloring Reachability (CR)
Input : A graph G , an integer k, two k-colorings c1, c2.
Output : YES iff c1 can be transformed into c2.

[Bonsma, Cereceda ’09] CR is PSPACE-complete for any 4 ≤
k ≤ ∆.
[Cereceda, van den Heuvel, Johnson ’11] CR is in P when k = 3.

Theorem

For interval graphs :
Trivial if k ≥ χ+ 1 and k ≤ χ− 1...

But open for k = χ !
(PSPACE-complete for chordal graphs).

For line graphs :
[Osawa et al. ’18] PSPACE-complete if k ≥ 5. Open for k = 4.
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What does “close” mean ?

At the beginning of the talk (a long time ago...).

“At each step, change the color of a single vertex”

Question : Why a single vertex ?

• The operation is simple.

• The possible set of operations is polynomial.

Question 2 : Can we imagine another rule ?

• Change the color of 2 vertices ? 3, 4, . . . , k vertices ?

• Change the color of a Kempe chain !
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Recoloring via Kempe chains

We can generate all the (∆ + 1)-colorings using Kempe chains.

Theorem (Mohar ’06)

We can generate all the ∆-colorings of any graph using Kempe
chains.

Conjecture (Mohar ’06)

2 3

1

2

13
1 2

3

2

13

Counter-example proposed by Jan van den Heuvel (2013)
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Recoloring via Kempe chains

We can generate all the (∆ + 1)-colorings using Kempe chains.

Theorem (Mohar ’06)

We can generate all the ∆-colorings of any graph but the 3-prism
using Kempe chains.

Theorem (Bonamy, B., Feghali, Johnson ’19)

2 3
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Counter-example proposed by Jan van den Heuvel (2013)
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Line graphs

Any (χ′ + 1)-edge coloring can be transformed into any other
using Kempe changes.

Conjecture (Vizing ’65)

• [Mohar ’06] True for χ′ + 2.

• [McDonald et al. ’12] ∆ + 1 colors are not enough.

• [Bonamy, Defrain, Klimošová, Muller, Narboni ’19+] Partial
result for planar graphs.

• [Heinrich, Joffard, Noel, Parreau ’19+] For single edge
recoloring : 2∆ colors are needed !

22/23



Line graphs

Any (χ′ + 1)-edge coloring can be transformed into any other
using Kempe changes.

Conjecture (Vizing ’65)

• [Mohar ’06] True for χ′ + 2.

• [McDonald et al. ’12] ∆ + 1 colors are not enough.
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Conclusion

Relation with other fields :

• Sampling. Connectivity ? Diameter ? Huge connectivity ?

• Enumeration. Connectivity ? Good labelling implying BFS ?

• Dynamic systems. Few steps to repair defaults, distributed

recoloring ? → Go to Paul Ouvrard’s talk.

• Operational Research. Transformation between two solutions ?

• Discrete Geometry. Diameter and paths in the graph of flips.

More questions :

• A connected reconfiguration graph with exponential diameter.

• Understand better what “not connected” means.

Thanks for your attention !
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