A Journey on Configuration Graphs (Recoloring regular graphs)

Nicolas Bousquet

LACIM - September, 20th, 2024

LACIM Laboratoire d'algèbre, de combinatoire et d'informatique mathématique

n points in convex position

Triangulation : Non crossing set of edges such that inner faces are triangles.

n points in convex position Triangulation : Non crossing set of edges such that inner faces are triangles.

Flip : exchange a diagonal.

n points in convex positionTriangulation : Non crossing set of edges such that inner faces are triangles.Flip : exchange a diagonal.

Associahedron $\mathcal{A}(n)$: Vertices : Triangulations Edges : Flips.

Source : wikipedia

n points in convex positionTriangulation : Non crossing set of edges such that inner faces are triangles.Flip : exchange a diagonal.

Associahedron $\mathcal{A}(n)$: Vertices : Triangulations Edges : Flips.

Question : Diameter of $\mathcal{A}(n)$?

Source : wikipedia

n points in convex positionTriangulation : Non crossing set of edges such that inner faces are triangles.Flip : exchange a diagonal.

Associahedron $\mathcal{A}(n)$: Vertices : Triangulations Edges : Flips.

Question : Diameter of $\mathcal{A}(n)$?

Theorem (Pournin'12)

For every $n \ge 4$, diam $(\mathcal{A}(n)) = 2n - 4$.

Hirsch conjecture

Source : wikipedia

Polytopes where : *n* : number of facets *d* : dimension.

Elementary step : Sliding along an edge.

Hirsch conjecture

Source : wikipedia

Polytopes where : *n* : number of facets *d* : dimension.

Elementary step : Sliding along an edge.

Conjecture (Hirsch)

The diameter of any polytope is at most n - d.

Hirsch conjecture

Source : wikipedia

Polytopes where : *n* : number of facets *d* : dimension.

Elementary step : Sliding along an edge.

Conjecture (Hirsch)

The diameter of any polytope is at most n - d.

- (Santos'11) Counter-example.
- Relaxations still widely open.

Puzzles & more

One-player games are puzzles : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position?

Puzzles & more

One-player games are puzzles : one player makes a series of moves, trying to accomplish some goal.

Question:

Giving my current position, can I reach a fixed target position?

Puzzles & more

One-player games are puzzles : one player makes a series of moves, trying to accomplish some goal.

Question:

Giving my current position, can I reach a fixed target position?

Motivated by problems of random sampling, enumeration, bioinformatics, discrete geometry, games...etc... for decades.

Goal :

Goal :

Goal :

Goal :

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

• Induction based methods.

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

- Induction based methods.
- Exponential length transformation.

Looks simple but computationally hard.

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

- Induction based methods.
- Exponential length transformation.

Looks simple but computationally hard.

• Understandable because of symmetry. In what follows, symmetry / structure will vanish.

Configuration graph

Definition (Configuration graph C(I) of I)

- Vertices : Valid solutions of *I*.
- Create an edge between any two solutions if we can transform one into the other in one elementary step.

Configuration graph

Definition (Configuration graph C(I) of I)

- Vertices : Valid solutions of *I*.
- Create an edge between any two solutions if we can transform one into the other in one elementary step.

Reconfiguration diameter = Diameter of C(I) (when connected)

• **Reachability problem.** Given two configurations, is it possible to transform the first into the other? Are the configurations in the same components of *C(I)*?

- Reachability problem. Given two configurations, is it possible to transform the first into the other?
 Are the configurations in the same components of C(1)?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other?
 Is the configuration graph C(1) connected?

- Reachability problem. Given two configurations, is it possible to transform the first into the other?
 Are the configurations in the same components of C(1)?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other?
 Is the configuration graph C(1) connected?
- Minimization. Given two configurations, what is the length of a shortest sequence?
 What is the diameter of the configuration graph C(I)?

- Reachability problem. Given two configurations, is it possible to transform the first into the other?
 Are the configurations in the same components of C(1)?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other?
 Is the configuration graph C(1) connected?
- Minimization. Given two configurations, what is the length of a shortest sequence?
 What is the diameter of the configuration graph C(I)?
- Algorithmics. Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Focus : graph coloring

(Proper) coloring :

Adjacent vertices are colored differently

- *n* : Number of vertices
- k : Number of colors

Focus : graph coloring

(Proper) coloring :

Adjacent vertices are colored differently

- n : Number of vertices
- k : Number of colors

Recoloring operations :

Single vertex recoloring : → ● ● ● ● → → → ● ● ● ●

Random sampling, very elementary step

Focus : graph coloring

(Proper) coloring :

Adjacent vertices are colored differently

- n : Number of vertices
- k : Number of colors

Recoloring operations :

Random sampling, very elementary step

Kempe changes : → ● ● ● ● → → ● ● ● ● ●

Random sampling, physics...

 $\Delta=$ maximum degree of the original graph

- $\Delta=$ maximum degree of the original graph
 - $k \leq \Delta + 1$ \rightarrow Not always possible (Frozen colorings)

(but always possible if not Δ -regular)

- $\Delta=$ maximum degree of the original graph
 - $k \leq \Delta + 1$ \rightarrow Not always possible (Frozen colorings)

(but always possible if not Δ -regular)

• Paths (and cycles) with k = 3 $\rightarrow diam(\mathcal{C}(G)) = \theta(n^2)$ (tight)

- $\Delta=$ maximum degree of the original graph
 - $k \leq \Delta + 1$ \rightarrow Not always possible (Frozen colorings)

(but always possible if not Δ -regular)

- Paths (and cycles) with k = 3 $\rightarrow diam(\mathcal{C}(G)) = \theta(n^2)$ (tight)
- $k \ge \Delta + 2$ and $\Delta \ge 3$ $\rightarrow diam(\mathcal{C}(G)) = O(n)$

- $\Delta=$ maximum degree of the original graph
 - $k \leq \Delta + 1$ \rightarrow Not always possible (Frozen colorings)

(but always possible if not Δ -regular)

- Paths (and cycles) with k = 3 $\rightarrow diam(\mathcal{C}(G)) = \theta(n^2)$ (tight)
- $k \ge \Delta + 2$ and $\Delta \ge 3$ $\rightarrow diam(\mathcal{C}(G)) = O(n)$

Why quadratic?

Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Why quadratic?

Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Idea of the proof.

• Represent a coloring c as a sequence of \uparrow and \rightarrow

Why quadratic?

Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Idea of the proof.

- Represent a coloring c as a sequence of \uparrow and \rightarrow
- If $c(v_{i+1}) c(v_i) = 1 \mod 3$ then \uparrow
- If $c(v_{i+1}) c(v_i) = -1 \mod 3$ then \rightarrow
Why quadratic?

Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Idea of the proof.

- Represent a coloring c as a sequence of \uparrow and \rightarrow
- If $c(v_{i+1}) c(v_i) = 1 \mod 3$ then \uparrow
- If $c(v_{i+1}) c(v_i) = -1 \mod 3$ then \rightarrow

What is the modification of a color change?

Remark.

The area under the curve is only modified by +1 or -1.

Why quadratic?

Theorem (Bonamy et al. '11)

The configuration graph of 3-colorings of P_n has diameter $\Omega(n^2)$.

Idea of the proof.

- Represent a coloring c as a sequence of \uparrow and \rightarrow
- If $c(v_{i+1}) c(v_i) = 1 \mod 3$ then \uparrow
- If $c(v_{i+1}) c(v_i) = -1 \mod 3$ then \rightarrow

What is the modification of a color change?

Remark.

The area under the curve is only modified by +1 or -1. \Rightarrow A transformation from $123123\cdots 123$ to $132132\cdots 132$ is quadratic.

• Let's introduce a small perturbation.

• Let's introduce a small perturbation.

- Let's introduce a small perturbation.
- The perturbation can be propagated and duplicated...

- Let's introduce a small perturbation.
- The perturbation can be propagated and duplicated...

Question : Are frozen 5-colorings of grids an artifact?

Question :

Are frozen 5-colorings of grids an artifact? Yes!

Theorem (Feghali, Johnson, Paulusma '16)

Non-completely frozen 5-colorings of grids can be transformed into any other in $O(n^2)$ steps.

([Bonamy, B., Perarnau'21] Exponentially more non-frozen colorings)

5-colorings of grids

- Let's introduce a small perturbation.
- The perturbation can be propagated and duplicated...

Question :

Are frozen 5-colorings of grids an artifact? Yes!

Theorem (Feghali, Johnson, Paulusma '16)

Non-completely frozen 5-colorings of grids can be transformed into any other in $O(n^2)$ steps.

([Bonamy, B., Perarnau'21] Exponentially more non-frozen colorings)

Question : Is the diameter really quadratic?

5-colorings of grids

- Let's introduce a small perturbation.
- The perturbation can be propagated and duplicated...

Theorem (B., Feuilloley, Heinrich, Rabie '24+)

Non-completely frozen 5-colorings of grids can be transformed into any other in O(n) steps.

(Holds for any (Δ + 1)-colorings of any graph as long as Δ \geq 3.)

Theorem (B., Feuilloley, Heinrich, Rabie '24+)

Non-completely frozen 5-colorings of grids can be transformed into any other in O(n) steps.

(Holds for any (Δ + 1)-colorings of any graph as long as Δ \geq 3.)

Proof by picture

• Local warming : Duplicate unfrozen vertices locally.

Theorem (B., Feuilloley, Heinrich, Rabie '24+)

Non-completely frozen 5-colorings of grids can be transformed into any other in O(n) steps.

(Holds for any (Δ + 1)-colorings of any graph as long as Δ \geq 3.)

Proof by picture

- Local warming : Duplicate unfrozen vertices locally.
- Global warming :

Theorem (B., Feuilloley, Heinrich, Rabie '24+)

Non-completely frozen 5-colorings of grids can be transformed into any other in O(n) steps.

(Holds for any (Δ + 1)-colorings of any graph as long as Δ \geq 3.)

Proof by picture

- Local warming : Duplicate unfrozen vertices locally.
- Global warming :

Theorem (B., Feuilloley, Heinrich, Rabie '24+)

Non-completely frozen 5-colorings of grids can be transformed into any other in O(n) steps.

(Holds for any (Δ + 1)-colorings of any graph as long as Δ \geq 3.)

Proof by picture

- Local warming : Duplicate unfrozen vertices locally.
- Global warming :

Theorem (B., Feuilloley, Heinrich, Rabie '24+)

Non-completely frozen 5-colorings of grids can be transformed into any other in O(n) steps.

(Holds for any $(\Delta + 1)$ -colorings of any graph as long as $\Delta \ge 3$.)

Proof by picture

- Local warming : Duplicate unfrozen vertices locally.
- Global warming :

Unfreeze vertices everywhere.

• Remove unfrozen vertices (+ their close neighbors) and recolor the graph.

Theorem (B., Feuilloley, Heinrich, Rabie '24+)

Non-completely frozen 5-colorings of grids can be transformed into any other in O(n) steps.

(Holds for any $(\Delta + 1)$ -colorings of any graph as long as $\Delta \ge 3$.)

Proof by picture

- Local warming : Duplicate unfrozen vertices locally.
- Global warming :

- Remove unfrozen vertices (+ their close neighbors) and recolor the graph.
- Extend the recoloring to the whole graph.

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

Results :

• [Cereceda et al.'09] k = 3 : Polynomial

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

- [Cereceda et al.'09] k = 3 : Polynomial
- [Bonsma, Cereceda'09] $k \ge 4$: PSPACE-complete

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

Results :

- [Cereceda et al.'09] k = 3 : Polynomial
- [Bonsma, Cereceda'09] $k \ge 4$: PSPACE-complete

Winding number of a cycle C (for k = 3): Number of "turns"

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

Results :

- [Cereceda et al.'09] k = 3 : Polynomial
- [Bonsma, Cereceda'09] $k \ge 4$: PSPACE-complete

Winding number of a cycle C (for k = 3): Number of "turns"

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

Results :

- [Cereceda et al.'09] k = 3 : Polynomial
- [Bonsma, Cereceda'09] $k \ge 4$: PSPACE-complete

Winding number of a cycle C (for k = 3) : Number of "turns"

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

Results :

- [Cereceda et al.'09] k = 3 : Polynomial
- [Bonsma, Cereceda'09] $k \ge 4$: PSPACE-complete

Winding number of a cycle C (for k = 3) : Number of "turns"

Lemmas :

• Winding number invariant by recoloring

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

Results :

- [Cereceda et al.'09] k = 3 : Polynomial
- [Bonsma, Cereceda'09] $k \ge 4$: PSPACE-complete

Winding number of a cycle C (for k = 3) : Number of "turns"

Lemmas :

- Winding number invariant by recoloring
- $c_1 o c_2 \Leftrightarrow orall C$, $W_{c_1}(C) = W_{c_2}(C)$ (well that's

slightly more complicated...)

Problem : Given a graph G and two k-colorings c_1, c_2 is it possible to transform c_1 into c_2 ?

Results :

- [Cereceda et al.'09] k = 3 : Polynomial
- [Bonsma, Cereceda'09] $k \ge 4$: PSPACE-complete

Winding number of a cycle C (for k = 3) : Number of "turns"

Lemmas :

- Winding number invariant by recoloring
- $c_1
 ightarrow c_2 \Leftrightarrow orall C$, $W_{c_1}(C) = W_{c_2}(C)$ (well that's

slightly more complicated...)

Remark :

Non-connectivity is not obtained from frozen coloring

• Remove the dependency on Δ for $(\Delta + 1)$ colorings.

(Current diameter : $f(\Delta) \cdot n$).

• Remove the dependency on Δ for $(\Delta + 1)$ colorings.

(Current diameter : $f(\Delta) \cdot n$).

• Decrease further the number of colors. Hard in general but what about Cayley graphs?

• Remove the dependency on Δ for $(\Delta + 1)$ colorings.

(Current diameter : $f(\Delta) \cdot n$).

- Decrease further the number of colors. Hard in general but what about Cayley graphs?
- Algorithmic / Conditions on existence of transformation with less colors ?

• Remove the dependency on Δ for $(\Delta + 1)$ colorings.

(Current diameter : $f(\Delta) \cdot n$).

- Decrease further the number of colors. Hard in general but what about Cayley graphs?
- Algorithmic / Conditions on existence of transformation with less colors ?
- Design lower bounds.

Kempe chain : Bicolored connected component.

Kempe change : Flip of colors along a Kempe chain.

Kempe chain : Bicolored connected component.

Kempe change : Flip of colors along a Kempe chain.

Results :

• [Las Vergnas, Meyniel'81] $\Delta + 1$ colors : \checkmark

Kempe chain : Bicolored connected component.

Kempe change : Flip of colors along a Kempe chain.

- [Las Vergnas, Meyniel'81] $\Delta + 1$ colors : \checkmark
- [van den Heuvel] Δ colors. Not always possible

Kempe chain : Bicolored connected component.

Kempe change : Flip of colors along a Kempe chain.

- [Las Vergnas, Meyniel'81] $\Delta + 1$ colors : \checkmark
- [van den Heuvel] ∆ colors. Not always possible
- [Feghali, Johnson, Paulusma] $\Delta = 3$ Unique cubic counter-example...

Kempe chain : Bicolored connected component.

Kempe change : Flip of colors along a Kempe chain.

- [Las Vergnas, Meyniel'81] Δ + 1 colors : √
- [van den Heuvel] ∆ colors. Not always possible
- [Feghali, Johnson, Paulusma] $\Delta = 3$ Unique cubic counter-example...
- [Bonamy, B., Feghali, Johnson'19] Unique counter-example.

Kempe chain : Bicolored connected component.

Kempe change : Flip of colors along a Kempe chain.

- [Las Vergnas, Meyniel'81] Δ + 1 colors : √
- [van den Heuvel] ∆ colors. Not always possible
- [Feghali, Johnson, Paulusma] $\Delta = 3$ Unique cubic counter-example...
- [Bonamy, B., Feghali, Johnson'19] Unique counter-example.
- [Bonamy et al.'22] Polynomial transformation

WSK algorithm : (Wang, Swendsen, Kotecký)

Repeat :

- Select a vertex **v** at random
- Select a color *c* at random
- Swap the Kempe chain (c,color(v)) at v.

WSK algorithm : (Wang, Swendsen, Kotecký)

Repeat :

- Select a vertex v at random
- Select a color *c* at random
- Swap the Kempe chain (c,color(v)) at v.

Physicists claim :

On grids (under reasonable assumptions) \rightarrow Random sampling

WSK algorithm : (Wang, Swendsen, Kotecký)

Repeat :

- Select a vertex v at random
- Select a color *c* at random
- Swap the Kempe chain $(c, \operatorname{color}(v))$ at v.

Physicists claim :

On grids (under reasonable assumptions) \rightarrow Random sampling

✓ (Already known)

Partial answer

WSK algorithm : (Wang, Swendsen, Kotecký)

Repeat :

- Select a vertex v at random
- Select a color *c* at random
- Swap the Kempe chain $(c, \operatorname{color}(v))$ at v.

Physicists claim :

On grids $_{(under \ reasonable \ assumptions)} \rightarrow Random \ sampling$

✓ (Already known)

! Partial answer

Missing case :

Triangular grid, 5 colors.

Theorem (Cranston, Mahmoud'22)

Triangular grid + 5 colors $\Rightarrow \checkmark$

Theorem (Cranston, Mahmoud'22)

Triangular grid + 5 colors $\Rightarrow \checkmark$

Sketch of the proof :

• Usually : Induction - Single vertex removal

Theorem (Cranston, Mahmoud'22)

Triangular grid + 5 colors $\Rightarrow \checkmark$

Sketch of the proof :

- Usually : Induction Single vertex removal
- Idea : Remove a substructure

Source : Cranston, Mahmoud

Theorem (Cranston, Mahmoud'22)

Triangular grid + 5 colors $\Rightarrow \checkmark$

Sketch of the proof :

- Usually : Induction Single vertex removal
- Idea : Remove a substructure
- Step 1 : Find a collection of removable substructures

Source : Cranston, Mahmoud

Theorem (Cranston, Mahmoud'22)

Triangular grid + 5 colors $\Rightarrow \checkmark$

Sketch of the proof :

- Usually : Induction Single vertex removal
- Idea : Remove a substructure
- Step 1 : Find a collection of removable substructures
- Step 2 : Any coloring contains such a substructure

Source : Cranston, Mahmoud

• Reconfiguration on Cayley graphs.

How much can symmetry help?

• Reconfiguration on Cayley graphs.

How much can symmetry help?

• Construct lower bounds!

Dramatic lack of tools!

• Reconfiguration on Cayley graphs.

How much can symmetry help?

• Construct lower bounds!

Dramatic lack of tools!

• Other configuration graphs.

e.g. graph associahera which generalize permutahedron...

• Reconfiguration on Cayley graphs.

How much can symmetry help?

• Construct lower bounds!

Dramatic lack of tools !

• Other configuration graphs.

e.g. graph associahera which generalize permutahedron...

• Mixing time of Markov chains.