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Associahedron

n points in convex position

Triangulation : Non crossing set of edges
such that inner faces are triangles.

Flip : exchange a diagonal.

Associahedron A(n) :
Vertices : Triangulations
Edges : Flips.

Question : Diameter of A(n) ?

For every n ≥ 4, diam(A(n)) = 2n−4.

Theorem (Pournin’12)

Source : wikipedia
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Hirsch conjecture

Polytopes where :
n : number of facets
d : dimension.

Elementary step : Sliding along an edge.

Source : wikipedia

The diameter of any polytope is at most n − d .

Conjecture (Hirsch)

• (Santos’11) Counter-example.

• Relaxations still widely open.
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Puzzles & more

One-player games are puzzles : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach a fixed target position ?

Motivated by problems of random sampling, enumeration,
bioinformatics, discrete geometry, games...etc... for decades.
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Focus on Hanoi tower

Goal :
Move disks from the first to the last rod moving one disk at every
step.

Remarks :

• Induction based methods.

• Exponential length transformation.
Looks simple but computationally hard.

• Understandable because of symmetry.
In what follows, symmetry / structure will vanish.
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Configuration graph

• Vertices : Valid solutions of I .

• Create an edge between any two solutions if we can
transform one into the other in one elementary step.

Definition (Configuration graph C(I ) of I )

Reconfiguration diameter =
Diameter of C(I ) (when connec-

ted)
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Main questions (in CS)

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).
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Focus : graph coloring

(Proper) coloring :
Adjacent vertices are colored diffe-
rently

n : Number of vertices
k : Number of colors

Recoloring operations :

• Single vertex recoloring : ⇒
Random sampling, very elementary step

• Kempe changes : ⇒
Random sampling, physics...
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Recoloring paths & grids
(and beyond)

∆ = maximum degree of the original graph

• k ≤ ∆ + 1
→ Not always possible (Frozen
colorings)
(but always possible if not ∆-regular)

• Paths (and cycles) with k = 3
→ diam(C(G )) = θ(n2) (tight)

• k ≥ ∆ + 2 and ∆ ≥ 3
→ diam(C(G )) = O(n)
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Why quadratic ?

The configuration graph of 3-colorings of Pn has diameter Ω(n2).

Theorem (Bonamy et al. ’11)

Idea of the proof.
• Represent a coloring c as a sequence of ↑ and →

• If c(vi+1)− c(vi ) = 1 mod 3 then ↑
• If c(vi+1)− c(vi ) = −1 mod 3 then →

What is the modification of a color change ?

a b

a

a

c a

Remark.
The area under the curve is only modified by +1 or −1.
⇒ A transformation from 123123 · · · 123 to 132132 · · · 132 is
quadratic.
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5-colorings of grids

• Let’s introduce a small
perturbation.

• The perturbation can be
propagated and duplicated...

Question :
Are frozen 5-colorings of grids an artifact ?

Yes !

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n2) steps.

Theorem (Feghali, Johnson, Paulusma ’16)

( [Bonamy, B., Perarnau’21] Exponentially more non-frozen colorings)

Question : Is the diameter really quadratic ?
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Linear diameter

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n) steps.
(Holds for any (∆ + 1)-colorings of any graph as long as ∆ ≥ 3.)

Theorem (B., Feuilloley, Heinrich, Rabie ’24+)

Proof by picture

• Local warming :
Duplicate unfrozen vertices
locally.

• Global warming :
Unfreeze vertices everywhere.

• Remove unfrozen vertices (+ their

close neighbors) and recolor the graph.

• Extend the recoloring to the
whole graph.
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Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...)

0 1 2

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...)

0 1 2

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...)

0 1 2

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...)

0 1 2

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...)

0 1 2

-

+ -

-
+

+

+

-

+

++

+

+

+

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...)

0 1 2

-

+ -

-
+

+

+

-

+

++

+

+

+

2

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...)

0 1 2

-+

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...) 0 1 2

-+

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Existence of a transformation
Problem : Given a graph G and two k-colorings c1, c2 is it
possible to transform c1 into c2 ?

Results :

• [Cereceda et al.’09] k = 3 : Polynomial

• [Bonsma, Cereceda’09] k ≥ 4 : PSPACE-complete

Winding number of a cycle C (for k = 3) :
Number of “turns”

Lemmas :

• Winding number invariant by recoloring

• c1 → c2 ⇔ ∀C , Wc1(C ) = Wc2(C ) (well that’s

slightly more complicated...) 0 1 2

-+

Remark :
Non-connectivity is not obtained from frozen coloring

13/18



Questions

• Remove the dependency on ∆ for (∆ + 1) colorings.
(Current diameter : f (∆) · n).

• Decrease further the number of colors.
Hard in general but what about Cayley graphs ?

• Algorithmic / Conditions on existence of transformation with
less colors ?

• Design lower bounds.
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Kempe changes

⇒
Kempe chain : Bicolored connected component.

Kempe change : Flip of colors along a Kempe chain.

Results :

• [Las Vergnas, Meyniel’81] ∆ + 1
colors : X

• [van den Heuvel] ∆ colors.
Not always possible

• [Feghali, Johnson, Paulusma] ∆ = 3
Unique cubic counter-example...

• [Bonamy, B., Feghali, Johnson’19]
Unique counter-example.

• [Bonamy et al.’22]
Polynomial transformation
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Motivation - WSK algorithm
WSK algorithm : (Wang, Swendsen, Kotecký)
Repeat :

• Select a vertex v at random

• Select a color c at random

• Swap the Kempe chain (c ,color(v)) at v .

Physicists claim :
On grids (under reasonable assumptions) → Random sampling

X (Already known) ! Partial answer X

Missing case :
Triangular grid, 5 colors.
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Triangular grid

Triangular grid + 5 colors ⇒ X

Theorem (Cranston, Mahmoud’22)

Sketch of the proof :

• Usually : Induction - Single vertex removal

• Idea : Remove a substructure

• Step 1 : Find a collection of removable substructures

• Step 2 : Any coloring contains such a substructure

Source : Cranston, Mahmoud
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Questions

• Reconfiguration on Cayley graphs.
How much can symmetry help ?

• Construct lower bounds !
Dramatic lack of tools !

• Other configuration graphs.
e.g. graph associahera which generalize permutahedron...

• Mixing time of Markov chains.
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