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Associahedron

n points in convex position

Triangulation : Non crossing set of edges
such that inner faces are triangles.
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n points in convex position

Triangulation : Non crossing set of edges
such that inner faces are triangles.

Flip : exchange a diagonal.
Associahedron A(n) :

Vertices : Triangulations
Edges : Flips.

Associahedron

WA

al(be)(de))
|

(a(de))de) a(((be)d)e)

((@b)e)(de) a((b(cd))e)

((@(bend)e ——— (a((be)d)e

(((@b)e)d)e (a(b(cd))e

((ab)(ed))e

Source : wikipedia
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WA

Flip : exchange a diagonal.

a((be)(de))
1

Associahedron A(n) : v
Vertices : Triangulations woondo L aleone
Edges : Flips. 2 ‘

a((b(cd)e)

QueStion : Dlameter Of A(n) ? o ((a[bc))d)e‘;;—/;,(a((bc)d))z

(((@b)e)d)e ! (a(b(cd))e
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Source : wikipedia
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Associahedron

n points in convex position

Triangulation : Non crossing set of edges
such that inner faces are triangles.

WA

Flip : exchange a diagonal.

. al(beXde)
Associahedron A(n) : 1
Vertices : Triangulations wonds L aleono
Edges : Flips. 2 ‘
Question : Diameter of A(n)? B SO A
Theorem (Pournlnylz)] (((ab)e)d)e § (a(b(cd))e
For every n > 4, diam(.A(n)) = 2n—A4. e

Source : wikipedia
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Hirsch conjecture

Polytopes where :
n : number of facets
d : dimension.

Elementary step : Sliding along an edge.

Source : wikipedia
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Hirsch conjecture

Polytopes where :
n : number of facets
d : dimension.

Elementary step : Sliding along an edge.

Source : wikipedia

Conjecture (Hirsch)]

The diameter of any polytope is at most n — d. ]

® (Santos'11l) Counter-example.

® Relaxations still widely open.
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Puzzles & more

One-player games are puzzles : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach a fixed target position ?
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Puzzles & more

One-player games are puzzles : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can | reach a fixed target position ?

Motivated by problems of random sampling, enumeration,
bioinformatics, discrete geometry, games...etc... for decades.
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Focus on Hanoi tower

Goal :
Move disks from the first to the last rod moving one disk at every
step.
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Focus on Hanoi tower

Goal :
Move disks from the first to the last rod moving one disk at every
step.

Remarks :
® |nduction based methods.

® Exponential length transformation.

Looks simple but computationally hard.

® Understandable because of symmetry.

In what follows, symmetry / structure will vanish.
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Configuration graph

Definition (Configuration graph C(/) of /)]

® Vertices : Valid solutions of /.

® (Create an edge between any two solutions if we can
transform one into the other in one elementary step.
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Configuration graph

Definition (Configuration graph C(/) of /)]

® Vertices : Valid solutions of /.

® (Create an edge between any two solutions if we can
transform one into the other in one elementary step.

a((be)(de))
'

(a(be))de) {1‘ a(((be)d)e)
Reconfiguration diameter =

albledye) Diameter of C(/) (when connec-
ted)

((@b)e)(de) .. ,
(@(bepd)e ———> (al(be)d)e

(((@b)e)d)e ! (a(b(cd)e

((ab)ed))e
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Main questions (in CS)

® Reachability problem. Given two configurations, is it
possible to transform the first into the other?

Are the configurations in the same components of C(/)?
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Main questions (in CS)

Reachability problem. Given two configurations, is it
possible to transform the first into the other?
Are the configurations in the same components of C(/)?

Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other?
Is the configuration graph C(/) connected ?

Minimization. Given two configurations, what is the length
of a shortest sequence?
What is the diameter of the configuration graph C(/)?

Algorithmics. Can we efficiently solve these questions? (In
polynomial time, FPT-time...).
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Focus : graph coloring

(Proper) coloring :
Adjacent vertices are colored diffe-

rently \/
n : Number of vertices

k : Number of colors
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Focus : graph coloring

(Proper) coloring :
Adjacent vertices are colored diffe-

rently \/
n : Number of vertices

k : Number of colors

Recoloring operations :

® Single vertex recoloring : —+eeee— = —seosee

Random sampling, very elementary step
e Kempe changes : s o000 = ocoe00o-

Random sampling, physics...
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Recoloring paths & grids
(and beyond)

A = maximum degree of the original graph
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Why quadratic?

Theorem (Bonamy et al. '11)]

The configuration graph of 3-colorings of P, has diameter Q(n?). ]
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Idea of the proof.
® Represent a coloring ¢ as a sequence of 1 and —
® If c(viy1) — c(vi) =1 mod 3 then ©
e If c(vit1) — c(vi) = —1 mod 3 then —

What is the modification of a color change?

a c a
] —
a b a
Remark.

The area under the curve is only modified by +1 or —1.
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Why quadratic?

Theorem (Bonamy et al. '11)]

The configuration graph of 3-colorings of P, has diameter Q(n?). ]

Idea of the proof.
® Represent a coloring ¢ as a sequence of 1 and —
® If c(viy1) — c(vi) =1 mod 3 then ©
e If c(vit1) — c(vi) = —1 mod 3 then —

What is the modification of a color change?

a c a
] —
a b a
Remark.

The area under the curve is only modified by +1 or —1.
= A transformation from 123123.--123 to 132132---132 is

quadratic.
10/18
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5-colorings of grids

® |et's introduce a small
perturbation.

® The perturbation can be
propagated and duplicated...

Question :
Are frozen 5-colorings of grids an artifact 7 Yes!

Theorem (Feghali, Johnson, Paulusma '16)]

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n?) steps.

( [Bonamy, B., Perarnau’21] Exponentially more non-frozen colorings)
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5-colorings of grids

® |et's introduce a small
perturbation.

® The perturbation can be
propagated and duplicated...

Question :
Are frozen 5-colorings of grids an artifact 7 Yes!

Theorem (Feghali, Johnson, Paulusma '16)]

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n?) steps.

( [Bonamy, B., Perarnau’21] Exponentially more non-frozen colorings)
Question : Is the diameter really quadratic?
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Linear diameter

Theorem (B., Feuilloley, Heinrich, Rabie '24+)]

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n) steps.

(Holds for any (A + 1)-colorings of any graph as long as A > 3.)
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® |ocal warming :
Duplicate unfrozen vertices
locally.
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Linear diameter

Theorem ]

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n) steps.

(Holds for any (A + 1)-colorings of any graph as long as A > 3.)

Proof by picture

® |ocal warming : J:‘ . . f
Duplicate unfrozen vertices 1806006066 0600040 4
locally. b

. ® o
® Global warming : DE006006004 I SO
Unfreeze vertices everywhere. 0 o G e
° ¢
4HFA=== =====;= r SIS SSO
® 0 ¢
T TTT
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Linear diameter

Theorem ]

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n) steps.

(Holds for any (A + 1)-colorings of any graph as long as A > 3.)

Proof by picture

® | ocal warming : Jf . . f
. . T @ T
Duplicate unfrozen vertices ¢ o
locally.
® Global warming : B
Unfreeze vertices everywhere. ‘ ’ < RS
T T
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Linear diameter

Theorem ]

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n) steps.

(Holds for any (A + 1)-colorings of any graph as long as A > 3.)

Proof by picture

® |ocal warming : J-f | | %
. . | ) |
Duplicate unfrozen vertices —
locally.

® Global warming :
Unfreeze vertices everywhere.

® Remove unfrozen vertices (+ their ¢

close neighbors) and recolor the graph. . ‘
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Linear diameter
Theorem

Non-completely frozen 5-colorings of grids can be transformed
into any other in O(n) steps.
(Holds for any (A + 1)-colorings of any graph as long as A > 3.)

Proof by picture

® |ocal warming :

Duplicate unfrozen vertices
locally.

® Global warming :

Unfreeze vertices everywhere.

® Remove unfrozen vertices (+ their

ek
close neighbors) and recolor the graph. # [
® Extend the recoloring to the
whole graph.

12/18



Existence of a transformation

Problem : Given a graph G and two k-colorings c1, ¢ is it
possible to transform ¢ into ¢ 7
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Problem : Given a graph G and two k-colorings c1, ¢ is it
possible to transform ¢ into ¢ 7

Results :
o |[Cereceda et al.'09] kK = 3 : Polynomial
e [Bonsma, Cereceda’09] k > 4 : PSPACE-complete

Winding number of a cycle C (fork=3) :
Number of “turns”

Lemmas :
® Winding number invariant by recoloring n 5
® 1 0= VC, WCI(C) == WC2(C) (well that's

slightly more complicated...)

@
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Existence of a transformation

Problem : Given a graph G and two k-colorings c1, ¢ is it
possible to transform ¢ into ¢ 7

Results :
o |[Cereceda et al.'09] kK = 3 : Polynomial
e [Bonsma, Cereceda’09] k > 4 : PSPACE-complete

Winding number of a cycle C (fork=3) :
Number of “turns”

Lemmas :
® Winding number invariant by recoloring n 5
® 1 0= VC, WCI(C) == WC2(C) (well that's

slightly more complicated...)

@
~ @
~ @

Remark :

Non-connectivity is not obtained from frozen coloring
13/18



Questions

® Remove the dependency on A for (A + 1) colorings.

(Current diameter : f(A) - n).
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Questions

Remove the dependency on A for (A + 1) colorings.

(Current diameter : f(A) - n).

Decrease further the number of colors.
Hard in general but what about Cayley graphs?

Algorithmic / Conditions on existence of transformation with
less colors ?

Design lower bounds.
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Kempe changes
00000 — 10000
Kempe chain : Bicolored connected component.
Kempe change : Flip of colors along a Kempe chain.

Results :

® [Las Vergnas, Meyniel'81] A +1
colors : v

[van den Heuvel] A colors.
Not always possible

[Feghali, Johnson, Paulusma] A =3
Unique cubic counter-example...

[Bonamy, B., Feghali, Johnson'19]
Unique counter-example.

[Bonamy et al."22]

Polynomial transformation
15/18



Motivation - WSK algorithm
WSK algorithm : (Wang, Swendsen, Kotecky)
Repeat :

® Select a vertex v at random
® Select a color ¢ at random
¢ Swap the Kempe chain (c,color(v)) at v.
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® Swap the Kempe chain (c,color(v)) at v.

Physicists claim :
On grids (under reasonable assumptions) —> Random Sampling
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v
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Motivation - WSK algorithm
WSK algorithm :
Repeat :

® Select a vertex v at random
® Select a color ¢ at random
® Swap the Kempe chain (c,color(v)) at v.

Physicists claim :
On ngdS (under reasonable assumptions) —> Random Samp|lng

v (Already known) Partial answer v

Missing case :
Triangular grid, 5 colors.
16/18



Triangular grid

Theorem (Cranston, I\/Iahmoud'22)]

Triangular grid + 5 colors = ]
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Triangular grid

Theorem (Cranston, I\/Iahmoud'22)]

Triangular grid + 5 colors = ]

Sketch of the proof :
® Usually : Induction - Single vertex removal
® |dea : Remove a substructure

® Step 1 : Find a collection of removable substructures
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Source : Cranston, Mahmoud
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Triangular grid

Theorem (Cranston, I\/Iahmoud'22)]

Triangular grid + 5 colors =

Sketch of the proof :
® Usually : Induction - Single vertex removal
® |dea : Remove a substructure
® Step 1 : Find a collection of removable substructures

® Step 2 : Any coloring contains such a substructure

WHL R

Source : Cranston, Mahmoud
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® Reconfiguration on Cayley graphs.

How much can symmetry help?

18/18



Questions

® Reconfiguration on Cayley graphs.

How much can symmetry help?

e Construct lower bounds!!

Dramatic lack of tools!

18/18



Questions

® Reconfiguration on Cayley graphs.

How much can symmetry help?

e Construct lower bounds!!

Dramatic lack of tools!

e QOther configuration graphs.

e.g. graph associahera which generalize permutahedron...

18/18



Questions

Reconfiguration on Cayley graphs.

How much can symmetry help?

Construct lower bounds!

Dramatic lack of tools!

Other configuration graphs.

e.g. graph associahera which generalize permutahedron...

Mixing time of Markov chains.
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