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Reconfiguration problems

Informal framework :

• Two solutions of an instance of a problem.

• An elementary transformation between two
solutions.

Question :
Given my current position, can I reach my target position ?

Many motivations :

• One-player games (puzzles).

• Markov chains (ergodicity and mixing time).

• Applications to many problems : statistical physics, biology,
motion of robots, discrete geometry...
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Main questions

• Reachability problem. Given two configurations, is it
possible to transform the one into the other ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the one into the other ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?

• Algorithmics. Can we efficiently solve these problems ? (In
polynomial time, FPT-time...).
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Spanning tree reconfiguration

Spanning Tree : Subset of edges that in-
duces a spanning connected graph wi-
thout cycle.

Elementary transformation.
T1 can be transformed into T2 via an
edge flip if there exists e1 ∈ T1 and
e2 ∈ T2 such that T2 = (T1 ∪ e2) \ e1.

Spanning Tree Reconfiguration (STR)
Input : A graph G , two spanning trees T1,T2.
Question : It is possible to transform T1 into T2 via a sequence of
edge flips ?

Answer : [Ito et al.] YES !

What if we add some constraints on the the spanning trees ?
→ In this paper : Number of leaves.
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STR with few leaves

Spanning Tree Reconfiguration (STR) with ≤ k Leaves
Input : A graph G , two spanning trees T1,T2 with ≤ k leaves.
Output : YES iff T1  T2 via spanning trees with ≤ k leaves.

Our Result 1 :
STR with ≤ 3 Leaves is PSPACE-complete.

Remarks :

• STR with ≤ 2 leaves is Hamiltonian Path
Reconfiguration whose complexity is unknown.

• 3 can be replaced by any integer ≥ 3 in the statement.
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STR with many leaves

Spanning Tree Reconfiguration with Many Leaves
Input : A graph G , an integer k and two spanning trees T1,T2

with ≥ k leaves.
Output : YES iff T1  T2 via spanning trees with ≥ k leaves.

Our results 2 :
STR with Many Leaves :

• is PSPACE-complete even restricted to bipartite graphs or
split graphs ;

• is PSPACE-complete restricted to planar graphs ;

• can be decided in polynomial time on cographs and interval
graphs.
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Reduction for STR with ≤ 3 leaves
Adaptation of a reduction from Vertex Cover to
Hamiltonian Path.

Edge gadget :

Lemma (folklore) : Any hamiltonian path must intersect the edge
gadget in one of the two following ways (up to symmetry) :

Lemma : In any spanning tree with ≤ 3 leaves, ≥ 1 white vertex
has degree one in the subgraph induced by the edge-gadget.
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Reduction for STR with ≤ 3 leaves (cont.)

x1

X

uv

u

v

u

w

v

w
vw

uw

x2

Reduction from k-Vertex Cover :
• Two vertices of degree 1, an independant set X of size k + 1,

an edge gadget for every edge.

• For every edge uv , connect the “special” entering vertex of u
to the vertices of X or to the previous “special” exit vertex of
u.
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Reconfiguration adaptation

(TAR) Minimum Vertex Cover Reconfiguration is
PSPACE-complete.

Theorem [Wrochna]

S(T ) : Set of vertices v such that, for some edge gadget, (at least)

one of the white vertices of v has degree one in the restriction of
T to the edge gadget.

Remark : S(T ) is a vertex cover for any spanning tree with ≤ 3
leaves.

Technical lemmas :

• Show that |S(T )| ≤ k + 1 for any T with ≤ 3 leaves.

• Show that if T2 can be obtained from T1 via an edge flip then
it corresponds to a “single step” modication for vertex cover
reconfiguration.
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STR with many Leaves hardness for planar
graphs

Reduction from Minimum Vertex Cover Reconfiguration
on Planar Graphs

Construction :

• First subdivide every edge once.

• Create a new vertex for each
face and connect it to all the
vertices of its face.

• Create a new vertex for each
face and connect it to its
corresponding blue vertex.

Remarks :

1 • vertices are internal nodes.

2 • vertices are leaves.
3 ≥ 1 neighbor of a • vertex is internal.
⇒ ≥ faces + min vertex cover leaves.
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Polynomial algorithm on cographs

The answer (on cographs) is always positive if k ≤ n − 3.

Lemma 1

STR with ≥ n − 2 Leaves is in P (for any graph).

Lemma 2

Sketch of the proof :

• All the spanning trees with the same internal nodes are
reachable from each other.

• Given two sets X ,Y of size 2, we can decide in polytime if
there is an edge flip from a tree with internal nodes X to a
tree with internal nodes Y .
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Polynomial algorithm for interval graphs

· · ·

Idea of the polynomial time algorithm :

• Fix the first interval vertex.

• Push left the second interval vertex by “induction”. (It is actually

more complicated, it is not really an induction since we cannot simply delete the

left part, but we can reduce it somehow...)

• Push right the first interval vertex.

(Technical) Lemma : The vertex obtained by this algorithm is
the rightmost possible position of the first interval vertex in a
spanning tree reachable from the initial tree.
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Conclusion

Questions :

• Complexity of Spanning Tree Reconfiguration (STR)
with Few Leaves on restricted graph classes ? (The reduction

do not maintain any parameter...)

• Lemma : STR with ≥ n − 2 Leaves is in P.
Is STR with ≥ n − ` leaves FPT parameterized by ` ?

• Is STR with many leaves polynomial in outerplanar graphs ?

Thanks !
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