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Mass spectrometry

⇒ Chemical formula : C2NH5.

⇒ C C N
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H
Molecule = Connected loopless multigraph where
Vertices = Atoms.
Vertex degree = Number of bounds.
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Realizing a degree sequence

Mathematical formulation :
Let S = {d1, . . . , dn} be a non-increasing sequence. Does it exist a
graph satisfying this degree sequence ?

Let S = d1, . . . , dn be a non-increasing degree sequence. There
exists a connected loop-free multigraph G with degree sequence
S iff :
• ∑

di is even

• dn > 0

• ∑
di ≥ 2(n − 1)

• d1 ≤
∑n

i=2 di .

Theorem ([Senior ’51])

Question :
Is it necessarily the correct molecule ? ⇒ NO !
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Structural isomers
Two molecules can have the same degree sequence, they are called
(structural) isomers.

Question :
Is it possible to generate (efficiently) all the molecules with a fixed
degree sequence ?

Generation from a seed :

• We start from a graph G with a fixed degree sequence

• We apply an operation that maintains the degree sequence.

• Generation of all the graphs of that DS by repeating this
operation ?

The natural operation : flip

⇒
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Reconfiguration graph

Given a degree sequence S , G(S) is the graph where

• Vertices = loopless multigraphs with degree sequence S .

• Edge G1,G2 = There is a flip transforming G1 into G2.

Remark :
Any loopless multigraph G1 with degree sequence S can be
transformed into G2 via flips
⇔ G(S) is connected.

Restriction of the reconfiguration graph :
Given a property Π, we denote by G(S ,Π) the induced subgraph of
G(S) restricted to graphs with property Π.

Classical properties Π : Connected, being simple...etc...
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Existing results

• Find a graph with a fixed degree sequence S if it exists ?

Polytime [Hakimi ’62] [Senior ’51]

• Generate all the graphs of degree sequence S using flips ?

YES [Hakimi ’62] [Taylor ’81]

• Given two graphs can we find a shortest transformation ?

NP-complete [Will ’99] [B., Mary ’18]

• Given two graphs can we approximate a shortest
transformation ?

3/2-approx [Bereg, Ito ’17] 4-approx [B., Mary ’18]

Multigraphs Connected multigraphs.
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Tandem mass spectrometry

• The molecule is broken into pieces...

• ... which is in turn again broken into pieces...etc...

Figure : wikipedia.com
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Tree of the fragments

Molecule

Tree of the fragments :

• Each leaf is an atom → its degree is known.

• The whole graph is connected.

• Each fragment induces a connected subgraph.

• Fragments are pairwise included in the other or disjoint
→ the collection of fragments is nested.
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Combinatorial reformulation

A degree sequence S .
A set of fragments C that

• contains V

• is nested.

Our property Π :
For every C ∈ C, G [C ] is connected.

G(S ,Π) : graphs of G(S) such that every set in C induces a
connected subgraph.

Questions : Can we still :

• Find a graph that realizes this degree sequence S where each
set of C is connected ?
⇔ Find a graph in G(S ,Π) ?

• Generate all the solutions using flips ?
⇐ Is G(S ,Π) connected ?
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Our results

We can find in polynomial time a graph in G(S ,Π) if it exists.

Theorem (B., Mary)

G(S ,Π) is connected.

Theorem (B., Mary)

The proof is algorithmic and we can moreover prove the following :

Given G1,G2 in G(S ,Π), we can find in polynomial time a trans-
formation from G1 to G2 of length at most (8d + 4) · OPT .

Theorem B., Mary)

Corollary :
There is a polynomial delay algorithm to enumerate all the graphs
in G(S ,Π).
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Tree augmentation

• Start from the root of the tree of the fragments.

• Auxiliary graph : all the fragments that are leaves of the
current tree are contracted.

• If the two auxiliary graphs agree, add all the children of a leaf
of a current tree.
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Step 1 : Equilibration the degree sequences

Claim :
If C has larger degree in the auxiliary graph of G than in H then
an edge of H[C ] can be deleted without violating any constraints.

Sketch :
Same S + Assumptions ⇒ E (H[C ]) > E (G [C ]).
⇒ H[C ] contains a (nice) cycle D.
⇒ Delete an edge of D does not violate connectivity constraints.
semi false...
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Step 2 : Transform the auxiliary graph

It is possible to transform the first reduced graph into the second
maintaining connectivity.

Theorem ([Taylor] [B., Mary])

Problem : Not enough ! (some subsets have to remain connected).

Since the graphs agree before the “extension”, the difference is
“reduced” to the new set of vertices.
⇒ Only modify edges incident to new vertices.
⇒ To ensure it, we define a (new !) auxiliary graph.
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Current tree = Whole tree of the fragments ⇒ the graphs are the
same.
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Approximation ratio

We never flip a good edge (an edge of both graphs).

Claim 1

An edge of the symmetric is used at most once to equilibrate
degrees.

Claim 2

An edge is modified only when one of its endpoints is “extended”
in the tree.

Claim 3

⇒ (8d + 4)-approximation algorithm.
15/16



Conclusion

• Improve the approximation factor. Can we eliminate the factor
depending of the height ?

• For simple graphs.
Best approximation factor : 3

2 . No lower bound.

• For connected graphs.
Best approximation factor : 4. No lower bound.

• What if the collection C is not nested ?

• Polynomial space enumeration algorithm with polynomial
delay ?

Thanks for your attention
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