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Hypergraphs

A hypergraph is a pair H = (V ,E ) where :
• V is a set of vertices.

• E is a set of subsets of V called hyperedges.

Definition Hypergraph
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Hitting sets

A hitting set is a subset of vertices intersecting all the hyperedges.

A packing is a subset of pairwise disjoint hyperedges.

Definition Hitting set

τ : minimum size of a hitting set. (= 3)

ν : maximum size of a packing. (=2)

ν ≤ τ
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Erdős-Pósa property

ν ≤ τ

Bounding τ in function of ν ?

No.
Hypergraph where every set of size n

2 + 1 is a hyperedge.

• ν = 1.

• τ = n
2 .

A class H of hypergraphs has the Erdős-Pósa property if there
exists a function f such that for every H ∈ H

τ ≤ f (ν(H)).

Definition
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Illustration : Menger’s theorem

The maximum number of edge-disjoint xy -paths is the size of a
minimum xy -separator.

Theorem (Menger)

x y

• Vertices : edges of the graph.

• Hyperedges : xy -paths.

τ : minimum number of edges whose deletion separate x from y .
ν : maximum number of edge-disjoint xy -paths.
Reformulation of Menger’s theorem : ν = τ .
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Illustration : Erdős-Pósa theorem

The minimum size of a feedback vertex set can be bounded in
function of the number of maximal vertex-disjoint cycles.

Theorem (Erdős, Pósa)

• Vertices : vertices of the graph.

• Hyperedges : cycles of the graph.

τ : minimum feedback vertex set.
ν : maximum number of vertex-disjoint cycles.
Reformulation : τ ≤ O(ν log ν).
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An invariant between τ and ν

Variables : for each vi ∈ V , associate xi a non negative integer.
Constraints : for each e ∈ E ,

∑
vi∈e xi ≥ 1

Objective function : τ = min(
∑n

i=1 xi )

Transversal Integer Linear Program

1

1 1

• τ ≥ τ∗.
• τ∗ can be computed in polynomial time.

8/29



An invariant between τ and ν

Variables : for each vi ∈ V , associate xi a non negative real.
Constraints : for each e ∈ E ,

∑
vi∈e xi ≥ 1

Objective function : τ∗= min(
∑n

i=1 xi )

Fractional Transversal Linear Program

1

0.5

• τ ≥ τ∗.
• τ∗ can be computed in polynomial time.

8/29



An invariant between τ and ν

Variables : for each vi ∈ V , associate xi a non negative real.
Constraints : for each e ∈ E ,

∑
vi∈e xi ≥ 1

Objective function : τ∗= min(
∑n

i=1 xi )

Fractional Transversal Linear Program

1

0.5

• τ ≥ τ∗.
• τ∗ can be computed in polynomial time.

8/29



Integrality gap

The integrality gap between τ and τ∗ can be arbitrarily large.

ν ≤ τ∗ ≤ τ

Inequalities

Structural question : Which conditions ensure :

• τ ≤ f (ν) (Erdős-Pósa property).

• τ ≤ f (τ∗) (bounded integrality gap).

Complexity question : Computing or approximating τ and ν is
hard (under complexity assumptions).

• Find approximation algorithm for τ and ν ?

• Find “efficient” algorithms for these problems ?
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VC-dimension

A set X ⊆ V is shattered iff for all Y ⊆ X , there exists e ∈ E
such that e ∩ X = Y .
The VC-dimension is the maximum size of a shattered set.

Definition VC-dimension (Vapnik, Chervonenkis ’71)

Illustration : vertices = R2 hyperedges = rectangles.
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Linking τ and τ ∗

Bounded VC-dimension gives combinatorial properties :

• Polynomial number of hyperedges.

• Bounded gap between τ, τ∗ and sometimes between τ and ν.

Every hypergraph of VC-dimension d satisfies :
τ ≤ 2d · τ∗ log(11τ∗)

Theorem (Haussler, Welzl ’86)

• Dominating set in k-majority tournaments. (Alon et al. ’08).

• Chromatic number of triangle-free graphs of large degree
( Luczak, Thomassé ’10).

• Separating cliques and stable sets in split-free graphs. 1

But sometimes a bounded gap between τ and τ∗ is not enough...

1. Clique versus independent set, B., Lagoutte, Thomassé, to appear,’13.

11/29



Linking τ and τ ∗

Bounded VC-dimension gives combinatorial properties :

• Polynomial number of hyperedges.

• Bounded gap between τ, τ∗ and sometimes between τ and ν.

Every hypergraph of VC-dimension d satisfies :
τ ≤ 2d · τ∗ log(11τ∗)

Theorem (Haussler, Welzl ’86)

• Dominating set in k-majority tournaments. (Alon et al. ’08).

• Chromatic number of triangle-free graphs of large degree
( Luczak, Thomassé ’10).
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11/29



Linking τ and τ ∗

Bounded VC-dimension gives combinatorial properties :

• Polynomial number of hyperedges.

• Bounded gap between τ, τ∗ and sometimes between τ and ν.

Every hypergraph of VC-dimension d satisfies :
τ ≤ 2d · τ∗ log(11τ∗)

Theorem (Haussler, Welzl ’86)

• Dominating set in k-majority tournaments. (Alon et al. ’08).

• Chromatic number of triangle-free graphs of large degree
( Luczak, Thomassé ’10).
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2VC-dimension

A set X ⊆ V is 2-shattered if for every Y ⊆ X with |Y | = 2,
there exists e ∈ E , e ∩ X = Y .
The 2VC-dimension of a hypergraph is the maximum size of a
2-shattered set.

Definition 2VC-dimension

2VC ≥ VC since a shattered set is 2-shattered.
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Erdős-Pósa property

Every hypergraph of (dual) 2VC-dimension d satisfies :
τ ≤ 11d2(ν + d + 3) ·

(d+ν
d

)

= f (d , ν)

Theorem (Ding, Seymour, Winkler ’91)

• Few applications of this theorem.
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A first application

Every maximal-triangle free graph with no induced subdivision
of H has chromatic number at most f (|H|).

Theorem (B., Thomassé) 1

A graph is maximal triangle-free
⇔ Any additional edge create a triangle.

⇔ Every pair of closed neighborhoods intersect.

Definition maximal triangle-free

Induced subdivision :

H

1. Scott’s conjecture for maximal triangle-free graphs, B., Thomassé CPC’12
14/29
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Sketch of the proof
Neighborhood hypergraph Γ of G : hyperedges are closed
neighborhoods of G .

• A hitting set of Γ is a dominating set of G .

• A triangle-free graph has chromatic number at most 2τ (it
is covered by τ induced stars).

Observations
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Sketch of the proof (II)

The closed neighborhood hypergraph of a maximal triangle-free
graph satisfies ν = 1.

Observation

Every hypergraph of 2VC-dimension d satisfies
τ ≤ f (d , ν)

Theorem (Ding, Seymour, Winkler ’91)

• Either τ is bounded

• Or the 2VC-dimension is unbounded.

Let us prove that in the latter case, we have an induced subdivision
of H.
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Let us prove that in the latter case, we have an induced subdivision
of H.
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Intuition

Goal : Extract from this graph a subdivision of H.

• The bottom is a stable set but the top may not be.

Question : How can we transform this intuition into a proof.
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Formal proof

We have
(k

2

)
vertices on the top.

• Construct an auxiliary graph G ′ where there is an edge if the
vertex corresponding to the pair is preserved in the top.

• Any subgraph of G ′ appears an induced subdivision of G .
• G ′ has O(k

√
log k) edges ⇒ G ′ has a subdivision of H.

Every triangle-free graph on k2 vertices has a stable set of size
k
√

log(k).

Theorem (Kim ’95)
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vertices on the top.

• Construct an auxiliary graph G ′ where there is an edge if the
vertex corresponding to the pair is preserved in the top.

• Any subgraph of G ′ appears an induced subdivision of G .
• G ′ has O(k

√
log k) edges ⇒ G ′ has a subdivision of H.

Every graph on k vertices with more than 512 · |H| · k edges has
a (non induced) subdivision of H.

Theorem (Mader ’67)
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A second application

Every planar graph of diameter 2` can be covered by c balls of
radius ` (where c is independent from `).

Theorem (Chepoi, Estellon, Vaxès ’07)

B`-hypergraph :
• Vertices : vertices of the graph.

• Hyperedges : balls of radius `.

The B`-hypergraph has the Erdős-Pósa property.

Tools :
• The B`-hypergraph has VC-dimension ≤ 4.

•

If the B-hypergraph has VC-dimension d then τ ≤ f (d , ν).

Theorem (B., Thomassé ’13) 1

1. VC-dimension and Erdős-Pósa property, B., Thomassé, submitted.
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• Vertices : vertices of the graph.

• Hyperedges : balls of all possible radii.
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Tools :
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2 VC-dimension

3 Graph separation problems
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Many pairs of terminals

Polynomial time for finding a minimum xy -separator.

Theorem (Menger)

2 pairs of terminals : Polynomial time.
≥ 3 pairs of terminals : NP-complete.

Theorem (Dalhaus et al. ’91)

How can we tackle NP-hard problems ?

• Better exponential time algorithms.

• Approximation.

• Heuristics.

• Parameterized complexity.
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Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in
f (k) · Poly(n).

Definition FPT (Fixed Parameter Tractable)

FPT problems :

• Vertex Cover.

• k-Path.

Non FPT problems (under complexity assumptions) :

• Dominating set.

• Independent set.
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Multicut

Input : A graph G , a set of pairs (xi , yi ), an integer k .
Parameter : k
Output : TRUE if there exist k edges whose deletion disconnect
every pair (xi , yi ).

Definition Multicut

• Vertices : edges of the graph.

• Hyperedges : xiyi -paths for some i .

τ : minimum size of a multicut.
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Recent results

• Polynomial kernel for trees. 1

• 2-approximation algorithm in FPT time. (Marx, Razgon ’10)

• Multicut is FPT if it is FPT when G has bounded treewidth.
(Daligault, Paul, Perez, Thomassé ’11)

Multicut is FPT parameterized by the size of the solution

Conjecture

1. A polynomial kernel for Multicut in trees, B., Daligault, Thomassé, Yeo
STACS’09

2. Multicut is FPT, B., Daligault, Thomassé STOC’11
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Multicut is FPT parameterized by the size of the solution.

Theorem (Marx and Razgon / B., Daligault, Thomassé) 2

1. A polynomial kernel for Multicut in trees, B., Daligault, Thomassé, Yeo
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Connectivity

A xy -separator is a subset X of vertices containing x and not
containing y .

Definition separator

The border of a separator is the number of edges with one
endpoint in X .
The size of a separator is the cardinality of its border.

x y
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Important separators

A separator X is important if every subset Y of X has a larger
border.

Definition important separator

x y
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Important separators

The number of important separators of size k is at most 4k .

Theorem (Marx ’06, Chen et al. ’08)

Many applications :

• Multiway Cut (Marx ’06).

• Directed Feedback Vertex set (Chen et al., Marx, Razgon ’08).

• Almost 2-SAT (Marx, Razgon ’09).

• Directed Multiway Cut (Chitnis, Hajiaghayi, Marx ’13).
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Multicut is FPT
Sketch of the proof :

• Find a vertex multicut.
• Guess the number of edges in each component.
• Reduce components with at least 3 attachment vertices.
• Treat components with one attachment vertex.
• Find an important path on 2-components.
• Reduce each component to a path.
• Solve a 2-SAT instance.
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Further work

VC-dimension.

• Combinatorics. Close gaps between upper and lower bounds.

• Application. Adapt and apply the methods to many other
problems (domination-like problems may work).

• Algorithm. Find NP-complete problems which become
polynomial when the VC-dimension is bounded.

Graph separation problems.

• Combinatorics. Find the exact upper bound on the number
of important separators.

• Application. Find a simpler FPT-algorithm for Multicut.

• Algorithm. Many open problems for Multicut in Directed
graphs.
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Other Contributions

Algorithmic and parameterized complexity :

• Parameterized results for domination on circle graphs.
• Sparsest Subgraph is FPT on chordal graphs.

Graph structure and coloring :

• χ-boundedness for graphs with no cycle with 2/3 chords.
• Erdős-Hajnal conjecture for paths and antipaths.
• Rainbow colorings of 3-chromatic graphs.
• Recoloring graphs via tree-decompositions.
• AVD-colorings for graphs of large ∆.

joint work with Pierre Aboulker, Stéphane Bessy, Marthe Bonamy,
Marin Bougeret, Jean Daligault, Rodolphe Giroudeau, Daniel
Gonçalves, Hervé Hocquard, Aurélie Lagoutte, George Mertzios,
Christophe Paul, Ignasi Sau, Stéphan Thomassé, Rémi Watrigant,
Anders Yeo.
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