A Journey on Configuration Graphs Coloring and Independent Set Reconfiguration

Nicolas Bousquet

July, 3rd, 2024

My research - 11 years ago

My research - Now

My research - Now

My research - Now

Geometric & Col. Rec. Local certification

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

• Widely studied on graph problems in the last 15 years. Colorings, independent sets, dominating sets, cliques, list colorings, bases of matroids, CSP and boolean formulas...

A one-player game is a puzzle : one player makes a series of moves, trying to accomplish some goal.

Question :

Giving my current position, can I reach a fixed target position ?

- Widely studied on graph problems in the last 15 years. Colorings, independent sets, dominating sets, cliques, list colorings, bases of matroids, CSP and boolean formulas...
- Important problems in random sampling, bioinformatics, discrete geometry, games...etc... for decades.

Goal :

Goal :

Goal :

Goal :

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

• Induction based methods

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

- Induction based methods
- Exponential length transformation.

Looks simple but computationally hard.

Goal :

Move disks from the first to the last rod moving one disk at every step.

Remarks :

- Induction based methods
- Exponential length transformation. Looks simple but computationally hard.
- Understandable because of symmetry. In what follows, symmetry / structure will vanish.

Configuration graph

Definition (Configuration graph $C(I)$ of I)

- Vertices : Valid solutions of I.
- Create an edge between any two solutions if we can transform one into the other in one elementary step.

 $Reconfiguration$ diameter $=$ Diameter of $C(I)$ (when connected)

• Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?

- Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other ? Is the configuration graph $C(I)$ connected?

- Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other ? Is the configuration graph $C(I)$ connected?
- Minimization. Given two configurations, what is the length of a shortest sequence ?

What is the diameter of the configuration graph $C(I)$?

- Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other ? Is the configuration graph $C(I)$ connected?
- Minimization. Given two configurations, what is the length of a shortest sequence ? What is the diameter of the configuration graph $C(I)$?
- **Algorithmics.** Can we efficiently solve these questions? (In polynomial time, FPT-time...).

- Reachability problem. Given two configurations, is it possible to transform the first into the other ? Are the configurations in the same components of $C(I)$?
- Connectivity problem. Given any pair of configurations, is it possible to transform the first into the other ? Is the configuration graph $C(I)$ connected?
- Minimization. Given two configurations, what is the length of a shortest sequence ? What is the diameter of the configuration graph $C(I)$?
- **Algorithmics.** Can we efficiently solve these questions? (In polynomial time, FPT-time...).

Outline of the presentation :

Focus on Graph Recoloring an Independent Set Reconfiguration.

Graph Recoloring

Spin is an intrinsic form of angular momentum carried by elementary particles [...], quantum wavefields allow only discrete values.

Spin is an intrinsic form of angular momentum carried by elementary particles [...], quantum wavefields allow only discrete values.

Spin of fermions $\in \{\frac{1}{2}, \frac{3}{2}\}$ $\frac{3}{2}$, $\frac{5}{2}$ $\frac{5}{2}, \ldots$ }. Spin of bozons $\in \{0, 1, 2, \ldots\}.$

Spin is an intrinsic form of angular momentum carried by elementary particles [...], quantum wavefields allow only discrete values.

Spin of fermions $\in \{\frac{1}{2}, \frac{3}{2}\}$ $\frac{3}{2}$, $\frac{5}{2}$ $\frac{5}{2}, \ldots$ }. Spin of bozons $\in \{0, 1, 2, ...\}$.

A spin system is a set of spins given with :

- An integer k being the number of states.
- An interaction $\{0,1\}$ (symmetric) matrix modelizing the interaction between spins.
	- \bullet 0 = no interaction = no link.
	- \bullet 1 = interaction = link.

Spin is an intrinsic form of angular momentum carried by elementary particles [...], quantum wavefields allow only discrete values.

Spin of fermions $\in \{\frac{1}{2}, \frac{3}{2}\}$ $\frac{3}{2}$, $\frac{5}{2}$ $\frac{5}{2}, \ldots$ }. Spin of bozons $\in \{0, 1, 2, ...\}$.

A spin system is a set of spins given with :

- An integer k being the number of states.
- An interaction $\{0,1\}$ (symmetric) matrix modelizing the interaction between spins.
	- \bullet 0 = no interaction = no link.
	- \bullet 1 = interaction = link.

A spin configuration is a function $f: S \to \{1, \ldots, k\}^n$. \Leftrightarrow A (non necessarily proper) graph coloring.

Antiferromagnetic Potts model

 $H(\sigma)$: number of monochromatic edges. = Edges with both endpoints of the same color.

Gibbs measure at fixed temperature T :

 $\nu_{\mathcal{T}}(\sigma) = e^{-\frac{H(\sigma)}{\mathcal{T}}}$

Antiferromagnetic Potts model

 $H(\sigma)$: number of monochromatic edges. = Edges with both endpoints of the same color.

Gibbs measure at fixed temperature T :

 $\nu_{\mathcal{T}}(\sigma) = e^{-\frac{H(\sigma)}{\mathcal{T}}}$

Remarks :

• Free to rescale, $\nu_T =$ probability distribution $\mathbb P$ on the colorings.

Antiferromagnetic Potts model

 $H(\sigma)$: number of monochromatic edges. = Edges with both endpoints of the same color.

Gibbs measure at fixed temperature T :

 $\nu_{\mathcal{T}}(\sigma) = e^{-\frac{H(\sigma)}{\mathcal{T}}}$

Remarks :

- Free to rescale, $\nu_T =$ probability distribution $\mathbb P$ on the colorings.
- The probability \setminus if the number of monochrom. edges \nearrow .

Antiferromagnetic Potts model

 $H(\sigma)$: number of monochromatic edges. = Edges with both endpoints of the same color.

Gibbs measure at fixed temperature T :

 $\nu_{\mathcal{T}}(\sigma) = e^{-\frac{H(\sigma)}{\mathcal{T}}}$

Remarks :

- Free to rescale, $\nu_T =$ probability distribution $\mathbb P$ on the colorings.
- The probability \setminus if the number of monochrom. edges \nearrow .
- When $T \setminus_{\alpha} \mathcal{P}(c) \setminus_{\alpha}$ if c has at least one monochr. edge.

Antiferromagnetic Potts model

 $H(\sigma)$: number of monochromatic edges. = Edges with both endpoints of the same color.

Gibbs measure at fixed temperature T :

 $\nu_{\mathcal{T}}(\sigma) = e^{-\frac{H(\sigma)}{\mathcal{T}}}$

Remarks :

- Free to rescale, ν_{τ} = probability distribution $\mathbb P$ on the colorings.
- The probability \setminus if the number of monochrom. edges \nearrow .
- When $T \setminus_{\alpha} P(c) \setminus_{\alpha}$ if c has at least one monochr. edge.

Limit of an antiferromagnetic Potts model when $T\rightarrow 0.$ \Rightarrow Only **proper** colorings have positive measure.

MCMC algorithm to sample a configuration (Glauber dynamics) :

• Start with an initial coloring c ;

MCMC algorithm to sample a configuration (Glauber dynamics) :

- Start with an initial coloring c ;
- Choose a vertex v and a color a uniformly at random;

MCMC algorithm to sample a configuration (Glauber dynamics) :

- Start with an initial coloring c ;
- Choose a vertex v and a color a uniformly at random;
- Recolor v with color a if the resulting coloring is proper; otherwise do not modify the coloring c .

MCMC algorithm to sample a configuration (Glauber dynamics) :

- Start with an initial coloring c ;
- Choose a vertex v and a color a uniformly at random;
- Recolor v with color a if the resulting coloring is proper; otherwise do not modify the coloring c .
- Repeat
Sampling spin configurations

MCMC algorithm to sample a configuration (Glauber dynamics) :

- Start with an initial coloring c ;
- Choose a vertex v and a color a uniformly at random;
- Recolor v with color a if the resulting coloring is proper; otherwise do not modify the coloring c .
- Repeat

Remark :

The Glauber dynamics is a random walk in the configuration graph.

Sampling spin configurations

MCMC algorithm to sample a configuration (Glauber dynamics) :

- Start with an initial coloring c ;
- Choose a vertex v and a color a uniformly at random;
- Recolor v with color a if the resulting coloring is proper; otherwise do not modify the coloring c .
- Repeat

Remark :

The Glauber dynamics is a random walk in the configuration graph.

Questions :

• Can we generate every solution?

Is the configuration graph connected ?

• How long shall we wait to "sample a solution almost at random" ?

What is the mixing time ? (Related with the diameter of the configuration graph).

Conjecture (Cereceda '08)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda '08)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda '08)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda '08)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

Conjecture (Cereceda '08)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^2)$.

A graph is d-degenerate if there exists an ordering v_1, \ldots, v_n such that for every i, $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \le d$.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

Theorem (Dyer et al. '06)

The $(d+2)$ -recoloring diameter of any d-degenerate graph is at most 2^n .

- Delete a vertex of degree at most d.
- Apply induction on the remaining graph.
- Add the last vertex and recolor it when you are forced to.

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

• Ingredient 1 : Look at it in the other direction.

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Sketch of the proof :

• Ingredient 1 : Look at it in the other direction.

• Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Sketch of the proof :

- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

Open problem :

Cerededa's conjecture for $d = 2$

Theorem (B., Heinrich '22)

The $(d + 2)$ -recoloring diameter of any d-degenerate graph is $\mathcal{O}(n^{d+1})$.

Sketch of the proof :

- Ingredient 1 : Look at it in the other direction.
- Ingredient 2 : List coloring where $|L| \ge d^+ + 2$.
- Ingredient 3 : Notion of full color (to apply induction).

Open problem :

Cerededa's conjecture for $d = 2...$ and $\Delta = 4!$

[Feghali, Johnson, Paulusma '17] $d = 2$ and $\Delta = 3$ is true.

Open : How many colors to get lin. diameter : $(2 - \epsilon)$ tw (G) colors ? $(2 - \epsilon)d$?

Open : How many colors to get lin. diameter : $(2 - \epsilon)$ tw (G) colors ? $(2 - \epsilon)d$? 7 colors for planar graphs ?

Part II

Independent Set Reconfiguration

• [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem - Motion of rectangular robots in a grid. ⇒ PSPACE-complete (but they need large robots).

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. ⇒ PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem for "dominos shaped" robots ?

- [Hopcroft, Schwartz, Sharir '83] Warehouseman's problem Motion of rectangular robots in a grid. \Rightarrow PSPACE-complete (but they need large robots).
- [Flake, Baum '03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem for "dominos shaped" robots ?

Token Jumping

Select one vertex of I and move it anywhere else. (keeping an IS)

Token Jumping

Select one vertex of *I* and move it anywhere else. (keeping an IS)

Token Jumping

Select one vertex of *l* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *l* and move it to an adjacent vertex.

(keeping an IS).

Token Jumping

Select one vertex of *l* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *l* and move it to an adjacent vertex.

(keeping an IS).

Token Jumping

Select one vertex of *l* and move it anywhere else. (keeping an IS)

Token Sliding

Select one vertex of *l* and move it to an adjacent vertex.

(keeping an IS).

Question : What is the complexity of TS / TJ-REACHABILITY?

TS (resp. TJ) REACHABILITY

```
TS/TJ-REACHABILITY :
Input : A graph G, two independent sets I, J.
Input : YES iff there exists a TS (resp. TJ)-transformation from I
to J.
```
TS (resp. TJ) REACHABILITY

```
TS/TJ-REACHABILITY:
```
Input : A graph G , two independent sets I, J . Input : YES iff there exists a TS (resp. TJ)-transformation from I to J.

- [Hearn, Demaine '04] TS/TJ Reachability are PSPACE-complete...
- [Wrochna '18] ... even on bounded bandwidth graphs.

TS (resp. TJ) REACHABILITY

TS/TJ-REACHABILITY:

Input : A graph G , two independent sets I, J . Input : YES iff there exists a TS (resp. TJ)-transformation from I to J.

- [Hearn, Demaine '04] TS/TJ Reachability are PSPACE-complete...
- Wrochna '18] ... even on bounded bandwidth graphs.

Today :

Focus on parameterized algorithms.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter $=$ size of the IS.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter $=$ size of the IS.

Theorem

Deciding if there is an independent set of size k is W[1]-hard.

Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in $f(k) \cdot Poly(n)$.

In this talk : Parameter $=$ size of the IS.

Theorem

Deciding if there is an independent set of size k is W[1]-hard.

Theorem (Bodlaender, Groenland, Swennenhuis '21)

TS and TJ-REACHABILITY are XL-complete.

TJ-ISR is FPT on :

• [Ito et al. '14] Planar graphs.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

TS-ISR is FPT on : [Bartier et al. '20 and '22, '24]

• Bipartite C_4 -free graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

- Bipartite C_4 -free graphs
- Bounded degree graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

- Bipartite C_4 -free graphs
- Bounded degree graphs
- Planar graphs

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

- Bipartite C₄-free graphs
- Bounded degree graphs
- Planar graphs
- Chordal graphs of bounded ω .
- Graphs of girth > 5 .

TJ-ISR is FPT on :

- [Ito et al. '14] Planar graphs.
- [Lokshtanov et al. '15] Bounded degeneracy.
- [Siebertz '17] No-where dense.
- [B., Mary, Parreau '18] $K_{t,t}$ -free graphs.

- Bipartite C4-free graphs
- Bounded degree graphs
- Planar graphs
- Chordal graphs of bounded ω .
- Graphs of girth > 5 .

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

A galactic graph is a graph with special vertices called black holes that :

- might contain several tokens,
- might contain tokens even if they have tokens in their neighborhoods.

If G admits a long enough geodesic path P with no token on it nor its neighborhood, then P can be collapsed into a single black hole vertex.

Consequences :

- FPT on bounded degree graphs.
- FPT on planar graphs.

• Generalize !

On going work : bounded treewidth.

• Generalize !

On going work : bounded treewidth.

• Understand the Token Sliding model for other problems.

PhD of Alice Joffard for Dominating Sets.

[BDMMPW'24+] Parameterized hardness of TS-DSR on sparse classes.

• Generalize !

On going work : bounded treewidth.

- Understand the Token Sliding model for other problems.
	- PhD of Alice Joffard for Dominating Sets.
	- [BDMMPW'24+] Parameterized hardness of TS-DSR on sparse classes.
- Explore the differences between Connected-TJ and TS.

• Generalize !

On going work : bounded treewidth.

• Understand the Token Sliding model for other problems.

PhD of Alice Joffard for Dominating Sets.

[BDMMPW'24+] Parameterized hardness of TS-DSR on sparse classes.

- Explore the differences between Connected-TJ and TS.
- Dense classes?

• Lower bounds for combinatorial reconfiguration.

• Lower bounds for combinatorial reconfiguration.

- Lower bounds for combinatorial reconfiguration.
- Explore relations with other fields.

Enumeration, Random Generation, Computational geometry, Algebraic and geometric combinatorics, bioinformatics...

- Lower bounds for combinatorial reconfiguration.
- Explore relations with other fields.

Enumeration, Random Generation, Computational geometry, Algebraic and geometric combinatorics, bioinformatics...

• Continue to federate the comunity.

Organizing CoRe, reconfiguration workshops, book on reconfiguration problems.

- Lower bounds for combinatorial reconfiguration.
- Explore relations with other fields.

Enumeration, Random Generation, Computational geometry, Algebraic and geometric combinatorics, bioinformatics...

• Continue to federate the comunity.

Organizing CoRe, reconfiguration workshops, book on reconfiguration problems.

Thanks for your attention !