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Reconfiguration

A one-player game is a puzzle : one player
makes a series of moves, trying to accom-
plish some goal.

Question :
Giving my current position, can I reach a fixed target position ?

• Widely studied on graph problems in the last 15 years.
Colorings, independent sets, dominating sets, cliques, list colorings, bases of

matroids, CSP and boolean formulas...

• Important problems in random sampling, bioinformatics,
discrete geometry, games...etc... for decades.
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Focus on Hanoi tower

Goal :
Move disks from the first to the last rod moving one disk at every
step.

Remarks :

• Induction based methods.

• Exponential length transformation.
Looks simple but computationally hard.

• Understandable because of symmetry.
In what follows, symmetry / structure will vanish.
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Configuration graph

• Vertices : Valid solutions of I .

• Create an edge between any two solutions if we can
transform one into the other in one elementary step.

Definition (Configuration graph C(I ) of I )

Reconfiguration diameter =
Diameter of C(I ) (when connec-

ted)
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Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Outline of the presentation :
Focus on Graph Recoloring an Independent Set Reconfiguration.

6/23



Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Outline of the presentation :
Focus on Graph Recoloring an Independent Set Reconfiguration.

6/23



Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Outline of the presentation :
Focus on Graph Recoloring an Independent Set Reconfiguration.

6/23



Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Outline of the presentation :
Focus on Graph Recoloring an Independent Set Reconfiguration.

6/23



Main questions

• Reachability problem. Given two configurations, is it
possible to transform the first into the other ?
Are the configurations in the same components of C(I ) ?

• Connectivity problem. Given any pair of configurations, is it
possible to transform the first into the other ?
Is the configuration graph C(I ) connected ?

• Minimization. Given two configurations, what is the length
of a shortest sequence ?
What is the diameter of the configuration graph C(I ) ?

• Algorithmics. Can we efficiently solve these questions ? (In
polynomial time, FPT-time...).

Outline of the presentation :
Focus on Graph Recoloring an Independent Set Reconfiguration.

6/23



PART I

Graph Recoloring
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Genesis of graph recoloring

Spin is an intrinsic form of angular momentum car-
ried by elementary particles [...], quantum wavefields
allow only discrete values.

Spin of fermions ∈ {1
2 ,

3
2 ,

5
2 , . . .}.

Spin of bozons ∈ {0, 1, 2, . . .}.
A spin system is a set of spins given with :

• An integer k being the number of states.
• An interaction {0, 1} (symmetric) matrix

modelizing the interaction between spins.
• 0 = no interaction = no link.
• 1 = interaction = link.

A spin configuration is a function f : S → {1, . . . , k}n.
⇔ A (non necessarily proper) graph coloring.
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Antiferromagnetic Potts model

0 2 4

T = 5, 1, 0.2, 0.05

H(σ) : number of monochromatic edges.
=
Edges with both endpoints of the same
color.

Gibbs measure at fixed temperature T :

νT (σ) = e−
H(σ)
T

Remarks :

• Free to rescale, νT = probability distribution P on the
colorings.

• The probability ↘ if the number of monochrom. edges ↗.

• When T ↘, P(c)↘ if c has at least one monochr. edge.

Limit of an antiferromagnetic Potts model when T → 0.
⇒ Only proper colorings have positive measure.
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Sampling spin configurations
MCMC algorithm to sample a configuration (Glauber dynamics) :
• Start with an initial coloring c ;

• Choose a vertex v and a color a uniformly at random ;
• Recolor v with color a if the resulting coloring is proper ;

otherwise do not modify the coloring c.
• Repeat

Remark :
The Glauber dynamics is a random walk in the configuration
graph.

Questions :
• Can we generate every solution ?

Is the configuration graph connected ?

• How long shall we wait to “sample a solution almost at
random” ?
What is the mixing time ? (Related with the diameter of the configuration

graph).
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Cereceda’s conjecture

The (d + 2)-recoloring diameter of any d-degenerate graph is
O(n2).

Conjecture (Cereceda ’08)

A graph is d-degenerate if there exists an ordering v1, . . . , vn such
that for every i , |N(vi ) ∩ {vi+1, . . . , vn}| ≤ d .

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)
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Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Proof scheme

The (d + 2)-recoloring diameter of any d-degenerate graph is at
most 2n.

Theorem (Dyer et al. ’06)

Induction type technique :

• Delete a vertex of degree at most d .

• Apply induction on the remaining graph.

• Add the last vertex and recolor it when you are forced to.

12/23



Cereceda’s conjecture (cont.)

The (d + 2)-recoloring diameter of any d-degenerate graph is
O(nd+1).

Theorem (B., Heinrich ’22)

Sketch of the proof :

≤ k

v1 v2 vnvi

• Ingredient 1 : Look at it in the other direction.
• Ingredient 2 : List coloring where |L| ≥ d+ + 2.
• Ingredient 3 : Notion of full color (to apply induction).

Open problem :
Cerededa’s conjecture for d = 2

... and ∆ = 4 !
[Feghali, Johnson, Paulusma ’17] d = 2 and ∆ = 3 is true.
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Open problem :
Cerededa’s conjecture for d = 2

... and ∆ = 4 !
[Feghali, Johnson, Paulusma ’17] d = 2 and ∆ = 3 is true.
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A recent trend - Linear diameter

Open : How many colors to get lin. diameter :
(2− ε)tw(G ) colors ? (2− ε)d ?
7 colors for planar graphs ?
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Part II

Independent Set Reconfiguration

15/23



Genesis of ISR

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots ?

The problem is PSPACE-complete.

Theorem [Hearn, Demaine ’04]

16/23



Genesis of ISR

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots ?

The problem is PSPACE-complete.

Theorem [Hearn, Demaine ’04]

16/23



Genesis of ISR

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots ?

The problem is PSPACE-complete.

Theorem [Hearn, Demaine ’04]

16/23



Genesis of ISR

• [Hopcroft, Schwartz, Sharir ’83] Warehouseman’s problem -
Motion of rectangular robots in a grid.
⇒ PSPACE-complete (but they need large robots).

• [Flake, Baum ’03] Rush hour is PSPACE-complete.

Question : What is the complexity of the Warehouseman problem
for “dominos shaped” robots ?

The problem is PSPACE-complete.

Theorem [Hearn, Demaine ’04]

16/23



Token Jumping vs Token Sliding

Token Jumping
Select one vertex of I and
move it anywhere else.
(keeping an IS)

Token Sliding
Select one vertex of I and
move it to an adjacent ver-
tex.
(keeping an IS).

Question : What is the complexity of TS / TJ-Reachability ?
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TS (resp. TJ) Reachability

TS/TJ-Reachability :
Input : A graph G , two independent sets I , J.
Input : YES iff there exists a TS (resp. TJ)-transformation from I
to J.

• [Hearn, Demaine ’04] TS/TJ Reachability are
PSPACE-complete...

• [Wrochna ’18] ... even on bounded bandwidth graphs.

Today :
Focus on parameterized algorithms.
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Parameterized complexity

A problem Π parameterized by k is FPT if it can be decided in
f (k) · Poly(n).

In this talk :
Parameter = size of the IS.

Deciding if there is an independent set of size k is W[1]-hard.

Theorem

TS and TJ-Reachability are XL-complete.

Theorem (Bodlaender, Groenland, Swennenhuis ’21)
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Token Jumping

Bounded degree

Bounded treewidth Planar

Kt-minor-free

Kt-topological minor free

No-where dense

Bounded degeneracy

Kt,t-free

TJ-ISR is FPT on :

• [Ito et al. ’14] Planar graphs.

• [Lokshtanov et al. ’15] Bounded
degeneracy.

• [Siebertz ’17] No-where dense.

• [B., Mary, Parreau ’18] Kt,t-free
graphs.

TS-ISR is FPT on :
[Bartier et al. ’20 and ’22, ’24]

• Bipartite C4-free graphs

• Bounded degree graphs

• Planar graphs

• Chordal graphs of bounded ω.

• Graphs of girth ≥ 5.
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Galactic reconfiguration

A galactic graph is a graph with special ver-
tices called black holes that :

• might contain several tokens,

• might contain tokens even if they have
tokens in their neighborhoods.

If G admits a long enough geodesic path P with no token on it
nor its neighborhood, then P can be collapsed into a single black
hole vertex.

Reduction rule

Consequences :
• FPT on bounded degree graphs.

• FPT on planar graphs.
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Further work

• Generalize !
On going work : bounded treewidth.

• Understand the Token Sliding model for other problems.

PhD of Alice Joffard for Dominating Sets.

[BDMMPW’24+] Parameterized hardness of TS-DSR on sparse classes.

• Explore the differences between Connected-TJ and TS.

• Dense classes ?
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What next ?

• Lower bounds for combinatorial reconfiguration.

• Explore relations with other fields.

Enumeration, Random Generation, Computational geometry, Algebraic

and geometric combinatorics, bioinformatics...

• Continue to federate the comunity.
Organizing CoRe, reconfiguration workshops, book on reconfiguration problems.

Thanks for your attention !
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