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Introduction

Context. In the last decades, the importance of computer science grew in the everyday life. In
the same time, theoretical aspects of computer science have been developed, and in particular al-
gorithmics. The aim of algorithmics is to find the best algorithm for solving a problem, where best
means that it both provides the best solution and finds it faster than other algorithms. Algorithmic
theory provides some tools for designing algorithms or for proving that some problems cannot be
efficiently solved. At the beginning of computer science, algorithms were often very simple. Todays
they are more and more involved as the sizes of the problems increase (more tasks are given to com-
puters and the amount of data to treat is ever increasing). Mathematics, and particularly combina-
torics, provide useful tools for designing algorithms and finding (positive or negative) bounds on
their complexity. Indeed, mathematical structures can lead to algorithms that make use of deeper
concepts to be much more efficient.

Since computers only deal with finite structures, the notions of graphs and hypergraphs and
more generally all the combinatorial notions, arise naturally in various fields of computer science.
A graph is a set of points called vertices where some pairs of vertices are connected by links called
edges. For instance, a road network can be represented by a graph where the vertices of the graph
are crossings of the network and edges of the graphs are the existing roads between crossings.
Hypergraphs generalize the notion of graphs since, instead of connecting pairs of vertices with
links, we can create relations between arbitrarily many vertices, with so-called hyperedges. From
an applicative point of view, the concept of graphs is sometimes not adequate. For instance hyper-
graphs can represent social networks better than graphs. In this case, the vertices of the hypergraph
represent people and hyperedges represent a point of mutual interest shared by the set of persons
(for instance they practice the same activity). Keep in mind that edges represent binary relations
(the vertex a is linked with the vertex b) while hyperedges represent relations of an arbitrarily large
size (the whole set of vertices A has the same property).

During my PhD, I was interested in a particular problem on hypergraphs: the HITTING SET prob-
lem. I studied it from both a combinatorial and an algorithmic point of view using VC-dimension
and important separators. A hitting set is a set of vertices which intersects every hyperedge. In other

3



4 INTRODUCTION

Figure 0.1: Non equality between minimum hitting set and maximum packing.

words, it is a subset of vertices such that every hyperedge contains at least one vertex of the hitting
set. A packing is a set of vertex-disjoint hyperedges. In other words, no vertex appears in two hyper-
edges of a packing. The size of a hitting set denotes its number of vertices while the size of a packing
denotes its number of hyperedges. The HITTING SET problem consists in, given a hypergraph H and
an integer k, determining if H has a hitting set of size at most k. The PACKING problem consists in,
given a hypergraph H and an integer k, determining if H has a packing of size at least k. PACKING

and HITTING SET problems naturally generalize many problems on graphs and hypergraphs such
as VERTEX COVER, MAXIMUM MATCHING, 3D-MATCHING, CHROMATIC NUMBER, DOMINATING SET,
MULTICUT, IDENTIFYING CODE, FEEDBACK VERTEX SET.

The size of a hitting set is at least the size of a packing. Indeed, no vertex appears in two hyper-
edges of a packing. So, if we want a set of vertices intersecting all the hyperedges, we need pairwise
distinct vertices for the hyperedges of the packing. Hence the minimum size of a hitting set denoted
by τ is at least the maximum size of a packing denoted by ν, i.e. we have τ≥ ν. In the general case
this inequality is not an equality. In Figure 0.1, the equality between τ and ν is not achieved. Indeed,
every pair of hyperedges intersects; so the maximum size of a packing is one. On the contrary, since
no vertex is in the intersection of the three hyperedges, the minimum size of a hitting set is at least
two (and actually exactly two).

There exists a very simple way to determine if an instance of HITTING SET is satisfied. Denote by
H the hypergraph and by k the integer of the instance. For every subset of vertices of size k, check
if this subset is a hitting set or not. If at least one subset of size k is a hitting set, then the answer
is positive. Otherwise, it is negative. However, the “problem” of this algorithm is its cost. Indeed,
if we are looking for hitting sets of size 6 in hypergraphs of size 1000 (a “small” instance), then the
algorithm will check if a billion of billion of sets are hitting sets or not. So it is a main issue to find
more efficient algorithms even for subcases of the HITTING SET problem.

This naturally raises two questions on hitting sets:

(1) We have seen that τ ≥ ν. Can we "reverse" this inequality? More precisely does there exist a
function f such that τ≤ f (ν)? Or if the answer is negative in general hypergraphs, what condi-
tions ensure that there exists such a function?

(2) We have seen an algorithm for deciding the HITTING SET problem which seems not really ef-
ficient. Can we find “efficient algorithms” in order to compute τ and ν ? Or if the answer is
negative in general hypergraphs, what conditions on the hypergraph ensure that we can effi-
ciently evaluate these values?

The goal of this manuscript is to provide some (partial) answers to both questions using in particu-
lar two general tools: the VC-dimension and the important separators.
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Gap between τ and ν and VC-dimension. The answer to the first question has been well known
for decades: there is no function linking τ and ν. Nevertheless, for dozens of classes of hypergraphs
there exist functions linking τ and ν. Historically, one of the first (and most famous) bound between
τ and ν is due to Erdős and Pósa who proved that for any graph the gap between the maximum
number of vertex-disjoint cycles and the minimum number of vertices intersecting all the cycles is
bounded. In other words they proved that there is a bounded gap between τ and ν in the so-called
cycle hypergraphs. When the gap between τ and ν is bounded for a class of hypergraphs, we say
that the class satisfies the Erdős-Pósa property.
So, in order to obtain the Erdős-Pósa property, we have to add constraints on the hyperedges. For
instance, we can add size constraints (the size of every hyperedge is bounded), or geometrical con-
straints (hyperedges can represent rectangles, or lines in a geometrical space). Over all the existing
invariants on hypergraphs, one is particularly useful for finding (upper) bounds on the size of hit-
ting sets: the dimension of Vapnik-Chervonenkis (VC-dimension for short). The VC-dimension is a
complexity measure on hypergraphs. A set of vertices is shattered if the hyperedges intersect it in all
possible ways. More formally, a set X is shattered if for every X ′ ⊆ X there exists a hyperedge e such
that e ∩X = X ′. The VC-dimension is the maximum size of a shattered set. The main statement on
VC-dimension ensures that τ can be bounded by a function of the the so-called fractional relaxation
of τ and the VC-dimension. In other words, when the VC-dimension is bounded, τ is bounded by
a function of its fractional relaxation, while this is false on general hypergraphs. In addition, under
stronger conditions on the VC-dimension, the gap between τ and ν can also be bounded.

One of the main objectives of my PhD was to study the VC-dimension machinery in order to
understand it and apply it on hypergraphs, but also on graphs.

Algorithmic aspects of hitting sets and important separators. Before looking more into to the
second question, let us first give some informal definitions on complexity and try to define a little
bit more properly what “efficient algorithm” means. When we are given an instance of a problem
(understand a “question”), we want to find a solution (understand an “answer”). But we want some
conditions on this answer. First we want a correct answer: if somebody asks a question, he is waiting
for a good answer. But there is a second crucial point: the time complexity. If somebody asks a
question, he does not want to wait the answer for decades (nobody likes his computer to lag).

Historically, the first definition of “efficient” algorithm in theoretical computer science is an al-
gorithm running in polynomial time. The research of polynomial time algorithm for solving prob-
lems was and is still one of the main goals of algorithmic graph theory. However, many problems
seem to not admit polynomial time algorithms. This intuition was formalized by Cook in the 70’s.
He defined a complexity class called N P which is “the class of problems which can be solved in po-
lynomial time with a non-deterministic Turing machine”. We will not properly define the class N P
(which needs technical definitions) but, roughly, a problem is in N P if solutions can be verified in
polynomial time (you can efficiently check if the solver lied to you). The HITTING SET problem is in
N P . Indeed, if you are given a set of vertices, you can check in polynomial time if the set intersects
every hyperedge or not. Similarly the PACKING PROBLEM is in N P . Cook proved that a problem of
N P is at least as difficult as the other problems of N P : the SAT problem. All the problems of N P
which are as difficult as SAT are said to be NP-complete. He finally conjectured the following:

Conjecture 1 (P 6= N P ). There is no polynomial time algorithm for deciding the SAT problem.
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Conjecture 1 is still open today and is considered as the main open problem of theoretical com-
puter science. In the remaining, we assume that Conjecture 1 holds. Since Cook’s paper, thousands
of problems have been proved to be NP-complete, and then (probably) do not admit polynomial
time algorithms. Unfortunately, both PACKING and HITTING SET problems are N P-complete. So
we cannot (under Conjecture 1) compute in polynomial time a hitting set of minimum size (nor a
packing of maximum size) on general hypergraphs.
Since, several methods for designing as efficient as possible algorithms for N P-complete problems
have been developed. Approximation algorithms are polynomial time algorithms which are looking
for non-necessarily optimal solution but solutions with some guarantees compared to the optimal
ones. A second issue consists in finding exponential-time algorithms with exponents which are as
small as possible. One can also develop heuristics which are not polynomial in theory but efficient
in practice (SAT solvers for instance). In this manuscript we only deal with another field of theoret-
ical algorithmic theory: the parameterized complexity.

The idea of the parameterized complexity is the following: an NP-complete problem cannot be
solved in polynomial time, so the goal is to confine the combinatorial explosion of the algorithm to
a small parameter instead of the whole size of the instance. So the aim is to develop an algorithm
which is polynomial in the size of the input except for this small parameter. More formally, a prob-
lem is FPT (Fixed Parameter Tractable) according to a parameter k if there exists an algorithm that
decides any instance of size n in time f (k)nc where c is a constant and f a computable function. If
this parameter is small enough, the resulting algorithm can be efficient even if its complexity is not
polynomial. More precisely, there exists a polynomial time algorithm for every fixed k whose power
does not depend on k.
During my PhD, I studied several hitting set problems from a parameterized point of view. In par-
ticular I focused on the MULTICUT problem using a notion defined in the last few years: important
separators. Important separators are particular separators which can be favored compared to the
others (whenever we want to minimize a connected component). Marx developed this tool and
proved that in many graph separation problems an important separator has to be selected. In ad-
dition he proved that the number of important separators of size k is bounded. More precisely, the
number of important separators of size at most k between x and y can be bounded by a function
of k and all of them can be enumerated in time f (k) (which indeed is interesting for designing FPT
algorithms).

Outline of the thesis

Chapters 1, 2 and 3 are general chapters which are devoted to introducing and explaining all the
tools used along the manuscript. Unless specified otherwise, I did not participate to the proofs of
the results mentioned along these three chapters. Chapter 4, 5 and 6 are devoted to a presentation
of some of the results obtained during my PhD.

In Chapter 1, we provide classical definitions on graphs and hypergraphs. We also recall well-
known theorems used throughout the manuscript. We end this chapter by introducing the param-
eterized complexity and by looking a little bit further at the notions of FPT algorithms and kernel
algorithms.
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In Chapter 2, we introduce the two main notions of this manuscript: hitting sets and packings.
We see that lots of invariants on graphs can be viewed as particular cases of hitting sets, such as
vertex covers or dominating sets. We also define more properly the transversality τ and the packing
number ν and we study several classes of hypergraphs satisfying τ≤ f (ν), but also classes such that
the gap between them is arbitrarily large in the general case. In a second part, we introduce notions
of linear programming and prove that both τ and ν can be expressed as objective functions of in-
teger linear programs. We then introduce the fractional relaxation of the transversality, denoted by
τ∗, whose value is between τ and ν. The fractional transversality will be a crucial notion for finding
upper bounds on the transversality in Chapter 3.
We finally deal with graph separation problems which are particular cases of HITTING SET problems.
We introduce the MULTICUT problem; and we study in details two important methods recently de-
veloped for designing algorithms on graph separation problems. The first one, due to Marx, is called
the important separators technique. It consists in finding separators which can be favored com-
pared to other separators. The second one, due to Marx and Razgon, is called the shadow removal
technique and is based on a random sampling of important separators. We explain both techniques
and illustrate them on the so-called MULTIWAY CUT problem. These methods lead to the most inter-
esting parameterized algorithms for graph separation problems in the last few years.

One of the goals of my PhD was to find upper bounds on τ. One of the best tools for obtain-
ing such bounds is the VC-dimension. The whole Chapter 3 is devoted to its study. This chapter
is built in order to give examples, intuitions and theorems on this notion. We also mention many
applications of these results in graph theory. The key lemma of the VC-dimension theory, due to
Haussler and Welzl, ensures that the gap between τ and τ∗ is bounded whenever the VC-dimension
is bounded. After sketching its proof we will give several of its applications to graph theory.
Unfortunately, the class of hypergraph of bounded VC-dimension does not have the Erdős-Pósa
property. Nevertheless, we give two generalizations of the result of Haussler and Welzl which ensure
that τ≤ f (ν). First we introduce the notion of 2VC-dimension which strengthens the notion of VC-
dimension. Ding, Seymour Winkler proved that a bounded 2VC-dimension ensures the Erdős-Pósa
property. In the second generalization, due to Matoušek, we need notions of both VC-dimension
and (p, q)-property in order to bound the gap between τ and ν.
All along Chapter 3, we give applications to graph theory. One of them, due to Stéphan Thomassé
and myself, is a partial result on a graph coloring conjecture of Scott (the general conjecture has
been disproved since). More precisely we proved that the chromatic number of any maximal
triangle-free graph with no induced subdivision of a graph H can be bounded by a function of |H |.
The complete proof is in Section 3.4.2.

One of the first applications of the VC-dimension in graph theory is due to Chepoi, Estellon and
Vaxès. They proved that there exists a constant c such that every planar graph of diameter 2` can be
covered by c balls of radius ` (where c does not depend on `). Their proof is based on a hypergraph
argument since they consider the hypergraph of balls of radius `. Using VC-dimension they proved
that the transversality of this hypergraph is bounded which leads to their result. In Chapter 4 we
present a generalization of their result due to Stéphan Thomassé and myself. We first propose a
formal definition of VC-dimension and 2VC-dimension for graphs. The interest of this notion on
graphs is twofold. First we prove that any class of graphs with no large clique-minor, or with no
large clique-width, has bounded 2VC-dimension. So this notion catches both notions of minors
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and clique-width.
Then we extend the result of Chepoi, Estellon and Vaxès to graphs of bounded 2VC-dimension
(which is a direct consequence of a theorem of Chapter 3) and then to graphs of bounded VC-
dimension (using the proof scheme of the paper of Chepoi, Estellon and Vaxès with more involved
arguments). More precisely we prove that for every r , the minimum number of balls of radius r
needed to cover the graph can be bounded by a function of the maximum packing of balls of ra-
dius r and of the VC-dimension of the graph. For the more special class of graphs of bounded
2VC-dimension the upper bound is smaller and the proof is shorter.

In Chapter 5 we study with Aurélie Lagoutte and Stéphan Thomassé a conjecture of Yannakakis
via VC-dimension. The conjecture states the following: given a graph G , there exists a polynomial
number (in the size of G) of bipartitions B of the vertex set such that for any clique K and any stable
set S which do not intersect, there exists a bipartition of B such that all the vertices of K are in one
part and all the vertices of S are in the other part. We prove that this conjecture holds for several
classes of graphs such as random graphs, split-free graphs and graphs with neither long paths nor
their complements. For split-free graphs, the proof is based on a VC-dimensional argument on a
particular neighborhood hypergraph. For graphs with neither long paths nor their complements,
the proof is a consequence of another result due to Aurélie Lagoutte, Stéphan Thomassé and myself
on the Erdős-Hajnal conjecture. More precisely we prove that the so-called Erdős-Hajnal conjec-
ture holds for graphs with neither long paths nor their complements. The Yannakakis’ conjecture
on this class of graphs is obtained as a corollary of this result.
We then study more specifically the links between this conjecture and another conjecture of graph
theory called the Alon-Saks-Seymour conjecture. The last conjecture states that if we consider a
graph G whose edges can be covered by k edge-disjoint complete bipartite graphs then the chro-
matic number of G is at most P (k) where P is a fixed polynomial function. We prove that the Yan-
nakakis’ conjecture is equivalent to the Alon, Saks, Seymour conjecture. In addition we show that
these conjectures are linked with some Constraint Satisfaction Problems, and in particular with the
so-called Stubborn problem which was recently proved to be polynomial.

A last important type of hitting sets problems studied in this manuscript is the graph separation
problems. In Chapter 6, we study the MULTICUT problem from an parameterized algorithmic point
of view. Let G be a graph and R be a set of pairs of vertices. A multicut of (G ,R) is a set of edges
whose deletion disconnect every pair of vertices of R (i.e. for every (x, y) ∈ R, x and y are not in the
same connected component). In other words a multicut is a hitting set of the set of paths between
vertices of R.

MULTICUT:
Input: A graph G = (V ,E), a set of pairs of vertices R, an integer k.
Parameter: k.
Output: TRUE if there is a multicut of (G ,R) of size at most k, FALSE otherwise.

We prove with Jean Daligault and Stéphan Thomassé that MULTICUT is FPT parameterized by the
size of the solution, i.e. there exists an algorithm running in f (k) ·nc deciding the MULTICUT prob-
lem. It was considered as one of the main open problems of parameterized complexity. At the
same time, Marx and Razgon proposed another proof of the same result. Their proof is based on
the shadow removal technique introduced in Chapter 2. Our proof is based on the important sep-
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arators (introduced in Chapter 2) but also on other combinatorial techniques such as ∆-systems,
Dilworth’s theorem and iterative compression.

Publications

Throughout this manuscript, several of my works are presented. However, for the coherence
of this manuscript, some of them were omitted. All the results obtained during my PhD are listed
below.

International conferences:.
– [34] A Polynomial Kernel for Multicut in Trees with Jean Daligault, Stéphan Thomassé, Anders

Yeo, STACS’09, (2009) 183-194. In this paper, we proved that MULTICUT admits a polynomial
kernel when the input graph is a tree. More precisely we proved that there exists a kernel of
size O (k6). It means that we can reduce in polynomial time any instance into an instance of
size O (k6) such that the reduced instance is positive if and only if the initial one is positive 1.
This kernel was improved into a cubic kernel in [51].

– [39] Equivalence and Inclusion Problem for Strongly Unambiguous Büchi Automata with
Christof Löding, LATA’10 , (2010) volume 6031 of Lecture Notes in Computer Science 118-
129. Unambiguous automata are automata such that any accepted word has exactly one
accepting sequence. The equivalence and the inclusion problems are polynomial time de-
cidable for finite unambiguous automata instead of PSPACE-complete for general automata.
We generalized this result for strongly unambiguous Büchi automata (automata on infinite
words) 2.

– [33] Multicut is FPT with Jean Daligault, Stéphan Thomassé, STOC’11, Proceedings of the
43rd annual ACM symposium on Theory of computing (2011), 459-468. We proved that
MULTICUT admits an FPT algorithm parameterized by the size of the solution. The proof of
this result will be presented in Chapter 6.

– [35] Parameterized Domination in Circle Graphs with Daniel Gonçalves, George Mertzios,
Christophe Paul, Ignasi Sau and Stéphan Thomassé, WG’12, volume 7551 of Lecture Notes
in Computer Science 308-319 (2012). A circle graph is an intersection graph of chords of a
circle. In this article we proved that DOMINATING SET and lots of its variants are W [1]-hard
(i.e. probably do not admit FPT algorithms): namely DOMINATING SET, CONNECTED DOM-
INATING SET, INDEPENDENT DOMINATING SET and TOTAL DOMINATING SET are W [1]-hard
restricted to circle graphs. We also provided a polynomial time algorithm for TREE DOMINAT-
ING SET.

– [29] Recoloring bounded treewidth graphs with Marthe Bonamy, LAGOS’13 (2013). Given two
proper colorings of a graph, one can ask if it is possible to transform one coloring into the
other by recoloring one vertex at each step, and such that at each step the current coloring is
proper. We proved that any graph can be recolored with a quadratic number of steps if the
number of colors is at least the treewidth of the graph plus 2.

1. This result was obtained during my bachelor internship.
2. This result was obtained during my first year of Master internship.
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– [30] Adjacent vertex-distinguishing edge coloring of graphs with Marthe Bonamy and Hervé
Hocquard, accepted to EuroComb’13. An AVD-coloring is a proper edge-coloring such that
any pair of adjacent vertices is not adjacent to the same set of colors. A conjecture states that
any graph on at least six vertices is AVD (∆+ 2)-colorable (where ∆ denotes the maximum
degree). We gave some evidence for this conjecture by proving stronger results on graphs of
bounded maximum average degree and planar graphs with ∆≥ 12.

Journals.
– [41] Scott’s induced subdivision conjecture for maximal triangle-free graphs with Stéphan

Thomassé, Combinatorics, Probability and Computing, (2012) 21:512-514. A proof of this
result is presented in Chapter 3.

– [36] Parameterized Domination in Circle Graphs with Daniel Gonçalves, George Mertzios,
Christophe Paul, Ignasi Sau and Stéphan Thomassé, Theory of Computing Systems (2013)
1-28. This paper is the long version of [35].

Submitted papers.
– [37] Clique versus independent set, with Aurélie Lagoutte and Stéphan Thomassé. A complete

version of this article will be found in Chapter 5.
– [38] The Erdős-Hajnal Conjecture for Paths and Antipaths, with Aurélie Lagoutte and Stéphan

Thomassé. The Erdős-Hajnal conjecture states the following: every graph on n vertices with
no induced copy of a fixed graph H contains a clique or an induced stable set of size nε where
ε is a strictly positive constant which only depends on H . This conjecture is open even for
H = P5. We proved in this note that any graph which contains (as an induced copy) neither
the graph Pk or its complement, admits a clique or a stable set of size at least nε(k). The proof
of this result is presented in Chapter 5.

– [40] VC-dimension and Erdős-Pósa property of graphs, with Stéphan Thomassé. This result is
presented in Chapter 4.

– [1] Excluding cycles with a fixed number of chords, with Pierre Aboulker. Trotignon and
Vuškovic proved that the class of graphs with no cycle with exactly one chord is χ-bounded
(i.e. the chromatic number can be bounded by a function of the maximal clique). We gen-
eralized their result for graphs with no cycle with exactly two chords and with no cycle with
exactly three chords. More precisely, we proved that in both cases we have χ≤ω+ c where c
is a constant.

– [20] Rainbow colorings of 3-chromatic graphs, with Stéphane Bessy. A rainbow coloring of G is
a coloring of G with χ(G) colors such that each vertex is the beginning of a path of length χ−1
containing a vertex of each color. It is conjectured that every graph except C7 has a rainbow
coloring. We proved that every 3-chromatic graph except C7 admits a rainbow coloring. We
also gave some evidence for the case of 4-chromatic graphs.

– [32] Sparsest problem on chordal graphs, with Marin Bougeret, Rodolphe Giroudeau and Rémi
Watrigant. The SPARSEST problem consists in, given a graph G and an integer k, finding k ver-
tices of G inducing the fewest number of edges. It generalizes the INDEPENDENT SET problem:
if there is an independent set of size k then the sparsest set on k vertices induces no edge. We
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proved that this problem is FPT and does not admit a polynomial kernel restricted to chordal
graphs and parameterized by k.

Preprints.
– [28] Recoloring graphs via tree-decompositions, with Marthe Bonamy. This paper is a long

version of [29]. In addition we gave some bounds on the number of steps needed to recolor
cographs and distance-hereditary graphs. More precisely we proved that cographs can be re-
colored with a linear number of steps and distance-hereditary graphs with a quadratic num-
ber of steps as long as the number of colors is at least the chromatic number plus one.





CHAPTER

1
Preliminaries

In this chapter, we introduce the main definitions concerning graphs and hypergraphs and pa-
rameterized complexity which will be used all along the manuscript.

In this thesis, we only deal with finite structure. So in all the manuscript, we consider a finite
set V called the vertex set; the elements of V are called the vertices and its cardinality |V | is denoted vertex set

verticesby n.

Sets and orders. Let V be a set of vertices and X be a subset of V . The complement of X is the
set V \ X and we denote it by X . A (partial) order ≺ is a transitive and anti-symmetric relation. X

partial
order

Transitive means that x ≺ y and y ≺ z implies x ≺ z. And anti-symmetric means that x ≺ y implies
y ⊀ x. Two elements x and y are comparable if x ≺ y or y ≺ x. A total order is an order such that any

comparable
pair of elements is comparable. An antichain of a partial order is a subset of pairwise incomparable antichain
elements. A chain is a subset of pairwise comparable elements. Note that the order restricted to the chain

elements of a chain is a total order. A set of chains covers V if every vertex of V appears in at least covers V

one chain. The well-known Dilworth’s theorem links the size of coverings and the size of antichains.

Theorem 1.1 (Dilworth 1950). For every order over a finite set, the maximum size of an antichain
equals the minimum number of chains needed to cover the whole set V .

If there is an antichain of size at least k, then the number of chains needed to cover V is at least
k. Indeed elements of an antichain are pairwise incomparable, so no two of them can be in the
same chain. Dilworth’s theorem ensures that the reverse inequality also holds.

1.1 Hypergraphs

For more definitions and results concerning hypergraphs, the reader is referred to [19]. Let V be
a set of vertices. Let E be a subset of all subsets of V . The elements of E are called (hyper)edges and hyperedge

the whole set E is called the (hyper)edge set. In the following and all along the manuscript, we will
consider that the empty set can be a hyperedge. The size of a hyperedge is its number of vertices. A

13
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1
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Figure 1.1: A hypergraph. For readability the
hyperedges of size at least 3 are represented
in blue.

1 4 3 25
V

E

Figure 1.2: Incidence bipartite graph of Fig-
ure 1.1.

hypergraph H is a pair (V ,E) where V is a set of vertices and E is a set of hyperedges. In the follow-hypergraph

ing, H will always denote a hypergraph, V its vertex set and E its hyperedge set. The cardinality of
E , denoted by m, is the number of hyperedges of H . Figure 1.1 represents a hypergraph with hyper-
edge set a = {1}, b = {1,5}, c = {1,3,4,5}, d = {1,2,5}, e = {2,4}, f = {2,3,4} and g = {2,3}. Straight lines
are hyperedges of size 2 (in Figure 1.1 and throughout this manuscript).
All the invariants considered during this manuscript are not modified if the same edge appears sev-
eral times. So, when we count the number of hyperedges, we will assume that the hypergraph is
simple, i.e. does not contain two identical hyperedges. The number of hyperedges of a (simple)simple

hypergraph is at most 2n since a set of size n contains 2n distinct subsets.
Let H be a hypergraph. Let V ′ be a subset of vertices. The trace of a hyperedge e on V ′ is e ∩V ′.trace

The restriction of H to V ′, denoted by H [V ′] is the hypergraph on vertex set V ′ where hyperedges
are the traces of the hyperedges of H on V ′. A hypergraph H ′ is a subhypergraph of H if H ′ can besubhypergraph

obtained from H by a sequence of deletions of vertices and hyperedges. In other words, a hyper-
graph H ′ is a subhypergraph of H if there is a subset of vertices V ′ such that H ′ can be obtained
from H [V ′] by hyperedges deletion.

Incidence bipartite graph. A graph is a hypergraph with hyperedges of size exactly 2. Let H =graph

(V ,E) be a hypergraph. The incidence bipartite graph G of H has vertex set (V ,E) and ve is anincidence bi-
partite graph (oriented) edge of G if and only if v ∈ e in H . Note that the hypergraph can be reconstructed from

its incidence bipartite graph. Figure 1.2 is the incidence bipartite graph of Figure 1.1. Note that
there is an orientation on the edges (from V to E) in order to keep in mind which set represents the
vertices of the hypergraph and which set represents the hyperedges of the hypergraph.

Dual hypergraph. The dual hypergraph of H , denoted by H d , is the hypergraph on vertex set Edual hyper-
graph

dual
where for every v ∈ V there exists a hyperedge ev in H d such that the vertex e of H d is in ev if and
only if v ∈ e in H . Informally, it means that every hyperedge e becomes a vertex in H d and every
vertex v becomes a hyperedge ev in H d . The hyperedge ev in H d contains all the e ∈ E(H) such that
v ∈ e in the hypergraph H . Note that it corresponds to an exchange of the roles of V and E in the
incidence bipartite graph; instead of considering that the edges are from V to E we consider that
the edges are from E to V . Figure 1.3 represents the dual of the hypergraph of Figure 1.1.

Observation 1.2. Every hypergraph H satisfies (H d )d = H .
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Figure 1.3: Dual hypergraph of Figure 1.1. In order to understand the construction, the hyperedges
of Figure 1.1 are called a,b,c,d ,e, f , g in their order of apparition (from left to right) in the incidence
bipartite graph of Figure 1.2.
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Figure 1.4: The complement hypergraph of Figure 1.1. Complements of blue hyperedges are repre-
sented in blue.

Proof. Let H = (V ,E) be a hypergraph and let ((V ,E),E ′) be its incidence bipartite graph. By defini-
tion, the incidence bipartite graph of H d is ((E ,V ),E ′). And the incidence bipartite graph of (H d )d

is ((V ,E),E ′), i.e. (H d )d = H .

A hypergraph is auto-dual if H d = H . All along the manuscript, we will introduce several classes auto-dual

of auto-dual hypergraphs.

Opposite and complement hypergraphs. The complement hypergraph H c of H = (V ,E) is the complement

hypergraph on vertex set V where X is a hyperedge if and only if V \ X ∈ E . In other words, the
complement hypergraph is obtained by replacing every hyperedge by its complement. Figure 1.4
represents the complement hypergraph of Figure 1.1.
The opposite hypergraph H o of H has vertex set V and e is a hyperedge of H o if and only if e is not opposite hy-

pergrapha hyperedge of H . So any set that is not a hyperedge of H becomes a hyperedge in the opposite
hypergraph. The opposite hypergraph of Figure 1.1 contains 25 −7 = 25 hyperedges.

Uniform and complete hypergraphs. Let k,n be two integers with k ≤ n. A hypergraph is k-
uniform if all its hyperedges have size exactly k. Note that a k-uniform hypergraph has at most

(n
k

)
k-uniform

(distinct) hyperedges. The complete k-uniform hypergraph on n vertices, denoted by Uk,n Uk,n is Uk,n

the k-uniform hypergraph on n vertices where every subset of size k is a hyperedge. Note that the
complete uniform hypergraph Uk,n has exactly

(n
k

)
hyperedges. The complete uniform hypergraph
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Figure 1.5: Representation of U3,4.

U3,4 is represented in Figure 1.5 and U2,4 in Figure 1.6(a).
The k-complete hypergraph on n vertices, denoted by Ck,n Ck,n is the hypergraph on n verticesCk,n

where every subset of size at most k is a hyperedge. In other words, the k-complete hypergraph is
the (edge) union of the Uk ′,n with k ′ ≤ k. The complete hypergraph on n vertices, denoted by Cn , iscomplete

hypergraph the hypergraph Cn,n , i.e. the hypergraph containing all the possible hyperedges.

1.2 Graphs

For complements on graph theory, the reader is referred to [19, 31, 70]. Recall that graphs are
2-uniform hypergraphs. In the following G = (V ,E) denotes a graph. In order to simplify notations,
the edge {u, v} is denoted by uv . As for hypergraphs, we denote |V | by n and |E | by m. Two vertices
u and v are adjacent (or connected) if uv ∈ E . We also say that u is a neighbor of v . The verticesadjacent

connected

neighbor
u and v are the endpoints of the edge uv . The (open) neighborhood neighborhood of a vertex u,

endpoints

neighborhood

denoted by NG (u) (or N (u) when no confusion is possible) is the subset of vertices v of V such that
uv is an edge. For every subset X of V , N (X ) will denote the set

⋃
x∈X N (x). The degree of u is its

degree
number of neighbors. The set N (u)∪ {u}, denoted by N [u], is the closed neighborhood of u. The
closed non-neighborhood NC [x] of x is V \ N [x]. We define similarly the non-neighborhood of x
which is V \ N (x) by NC (x).

Operation on graphs. The complement of G is the graph Gc = (V ,E c ) where uv ∈ E c if and only ifcomplement

uv ∉ E . It is coherent with the hypergraph definition of complement if we restrict to hyperedges of
size 2. Let V1 be a subset of vertices. The (sub)graph induced by V1, denoted by G[V1], has vertex set
V1 and its edges are the edges of G with both endpoints in V1. More formally G[V1] = (V1,E ′) where
x y ∈ E ′ if and only if x, y ∈ V1 and x y ∈ E . A graph G contains an induced copy of F if there existsinduced

copy V1 ⊆V such that G[V1] is (isomorphic to) F . A graph G contains a copy of F (or F is a subgraph of G)
subgraph of
G if there exists V1 ⊆ V such that F can be obtained from G[V1] by a deletion of edges. Informally it

means that G[V1] “contains” the edges of F , i.e. is a “super-graph” of F (for the containment). Note
that a graph containing an induced copy of F also contains a copy of F but the reverse is not true
(the graph Figure 1.6(a) contains Figure 1.6(b) as a copy but not as an induced copy). A graph is
F -free if it does not contain any induced copy of F .F -free

Graph classes. A class of graphs (or a family of graphs) is a (non-necessarily finite) set of graphs. A
class C is hereditary if every induced subgraph of a graph of C is in C . Let H be a class of graphs.hereditary
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(a) (b) (c) (d)

Figure 1.6: (a) A clique of size 4. (b) A stable set of size 4. (c) A path of length 3. (d) A cycle of length 4.

A class of graphs C is H -free if for every H ∈H and G ∈G the graph G is H-free.

Clique and Stable Sets. A clique (or a complete graph) K of a graph G is a subset of pairwise ad- clique

jacent vertices of G . In other words, it is a subset K such that G[K ] contains all the possible edges.
The clique number of G , denoted by ω(G),ω is the size of a maximum clique in G . The clique of ω

size 3 is often called a triangle. The clique of size n is denoted by Kn and K4 is represented in Fig- triangle

ure 1.6(a). The clique of size n is exactly the hypergraph U2,n . By abuse of notation, a clique will
denote both the subset of vertices which are pairwise connected and the graph induced by these
vertices. Note that, unlike general graphs, a graph contains a copy of a clique K if and only if it
contains an induced copy of a clique K . A stable set (or an independent set) S is a subset of vertices stable set

which are pairwise non-adjacent. In other words, it is a subset S such that G[S] contains no edge.
The independence number, denoted by α(G) α is the size of a maximum stable set. The stable set of α

size 4 is represented in Figure 1.6(b). Note that any stable set (resp. clique) of Gc is a clique (resp.
stable set) of G . Remark also that a clique and a stable set intersect on at most one vertex.

Random graphs. Let n be a positive integer and p ∈ [0,1]. The random graphs considered in this
manuscript are drawn under the Erdős-Rényi model. The random graph G(n, p) is a probability
space over the set of graphs on the vertex set {1, . . . ,n} determined by Pr[i j ∈ E ] = p, where these
events are mutually independent. We say that G(n, p) has clique number ω if ω is the minimum in-
teger that satisfies E(number of cliques of size ω) ≥ 1. We define similarly the independence num-
ber α of G(n, p). An event E occurs with high probability if the probability of this event tends to 1
when n tends to infinity.

Ramsey’s type theorems. A k-edge coloring γ of a clique K if a function γ : E(K ) −→ {1, . . . ,k}. A k-edge
coloringmonochromatic clique of an edge coloring γ of K is a subset of vertices S such that all the edges of

K [S] are colored identically.

Theorem 1.3 (Ramsey). For every k, there exists a function Rk such that any k-edge coloring of KRk (n)

has a monochromatic clique of size n.

Proof. Let γ be an edge-coloring of a clique. The coloring γ is a right coloring on the ordered set
v1, . . . , vn of vertices if for every q,r, s with r, s > q we have γ(vq vr ) = γ(vq vs). Informally, it means
that all the increasing edges leaving a same vertex are colored identically. Note that it does not
necessarily mean that all the edges adjacent to the same vertex are colored identically since the
“decreasing” edges can be colored differently.
Let us prove by induction that there exists a function Qk such that every graph of size at least Qk (n)
has a subset of n ordered vertices inducing a right coloring for γ. Let us prove that Qk (n + 1) ≤
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k ·Qk (n)+1. Let K be a clique of size k ·Qk (n)+1 and γ be a k-edge coloring of K . Let u ∈ V . For
every i ∈ {1, . . . ,k}, let Vi be the set of vertices v of K such that uv is colored with i . Note that (Vi )i≤k

is a partition of V \ {u} (since K is a clique). Up to a permutation on the color set, we can assume
that V1 has maximum cardinality over the sets {V1, . . . ,Vk }. Since V \{u} is partitioned into at most k
sets, the size of V1 is at least Qk (n).
By induction hypothesis, the clique K [V1] contains an ordered subset U of size n such that γ is a
right coloring on U . Let us denote by u1, . . . ,un the ordered set of vertices of U . Let us prove that γ
is a right coloring on U ′ = {u,u1, . . . ,un}. By induction hypothesis, γ is a right coloring on U . So γ is
a right coloring on U ′ if and only if all the edges uui are colored identically, which holds since, by
construction, all the vertices of U are in V1.
Let K be a clique of size Qk (kn). The previous part of the proof ensures that K contains a subset W
of size kn inducing a right coloring for γ. Since there are at most k colors, at least n vertices have
the same color “at their right”. Denote by W ′ this subset. The set K [W ′] is a monochromatic clique
of size n. So Rk (n) ≤Qk (kn).

Remark that since Theorem 1.3 holds for cliques of size Rk (n), then it also holds for any larger
clique. It can be derived from the proof of Theorem 1.3 that the function Rk given by the proof of
Theorem 1.3 satisfies Rk (n) ≈ kkn . In other words, any k-edge coloring of a clique of size n admits
a monochromatic clique of size almost (logk n)/k 1. Theorem 1.3 is much more famous over the
following form:

Corollary 1.4. There exists a function R such that every graph G on at least R(n) vertices has an
(induced) clique or a stable set of size n.

Proof. Let G = (V ,E) be a graph. Let γ be the 2-edge coloring of the clique K of size |V | where edges
of G are colored with 1 and non-edges with 2. A monochromatic clique of color 1 induces a clique
in G and a monochromatic clique of color 2 induces a stable set. If |V | ≥ R(n) then K contains a
monochromatic clique of size n and then G contains a clique or a stable set of size n. So there is no
monochromatic clique of size n in γ and then Theorem 1.3 ensures that |V (G)| ≤ R2(n).

The function R of Corollary 1.4 almost satisfies R(n) ≈ 4n . On the opposite, random graph Gn,1/2

has (with high probability) no clique of size larger than 2logn. In other words, we know that R(n) ≥p
2

n
. So we know that the Ramsey number R(n) satisfies:

p
2

n ≤ R(n) ≤ 4n .

Closing this gap is a widely open problem. Nevertheless, for several classes of graphs, the size of
maximum cliques and of maximum stable sets is unbalanced. For instance, the size of a maximum
clique of a K`-free graph is at most `−1. And in this case, the size of a stable set is much more larger
than logn. A triangle-free graph is a K3-free graph.

Observation 1.5. Every triangle-free graph on n vertices has a stable set of size at least
p

n.

1. All along this manuscript logb denotes the logarithm to base b and log denotes the logarithm to base b
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Sketch of the proof. First assume that a vertex u has degree at least
p

n, then denote by X the neigh-
borhood of u. The set X is a stable set. Indeed if x y is an edge of G[X ] then G[{u, x, y}] would be a
triangle, a contradiction. Thus X is a stable set of G of size

p
n.

So we can assume that every vertex has degree less than
p

n. Consider the following algorithm: as
long as there remain vertices, add a vertex x in the solution and delete the neighborhood of x from
G (i.e. replace G by G[V \ N [x])). This algorithm provides a stable set of size

p
n. Indeed, at each

step at most
p

n vertices are deleted and one vertex is added in the solution. Since at each step,
we delete the neighborhood of the chosen vertex from the vertex set, the set of chosen vertices is a
stable set.

This square root lower bound has been improved by Kim who proved the following in [127].

Theorem 1.6 (Kim [127]). Every triangle-free graph G on n vertices admits a stable set of size Ω(
p

n ·
logn). 2

Paths and distances. Given a graph G = (V ,E), a walk of length k from x ∈V to y ∈V is a sequence walk

of vertices x = x0, x1, . . . , xk−1, xk = y where xi xi+1 ∈ E for each 0 ≤ i ≤ k −1. A path is a walk with path

pairwise distinct vertices. Note that a path is not necessarily induced. The vertices x and y are the
endpoints of the walk. The xi x j -subpath is the path xi , xi+1, . . . , x j . The interior of the path is the interior

x1xk−1-subpath. The length of a path is its number of vertices minus one. The path of length (k−1) length

is denoted by Pk and P4 is represented in Figure 1.6(c). A graph G contains a Pk if a subgraph of G
is isomorphic to Pk .

A cycle is a path u1, . . . ,uk such that uk u1 is also an edge and such that k ≥ 3. The length of a cycle cycle

is its number of vertices. The induced cycle of length k is denoted by Ck . The cycle C4 is represented
in Figure 1.6(d). A graph G contains a Ck if a subgraph of G is isomorphic to Ck . The girth of a graph girth

G is the minimum size of a cycle of G . Any cycle of the length of the girth is necessarily induced as
otherwise there would be a (strictly) shorter cycle. Also note that a graph is triangle-free if and only
if its girth is at least 4.

A minimum path from x to y , also called minimum x y-path, is a path of minimum length from minimum
pathx to y . The distance between x and y , denoted by d(x, y) is the length of a minimum path from x

to y when such a path exists and +∞ otherwise. The distance between a set X and a set Y is the
minimum of the distances between x and y for all pairs (x, y) ∈ X ×Y . The ball of center x and radius
k, denoted by B(x,k), is the set of vertices at distance at most k from x. Note that the vertices of
B(x,1) are the vertices of the closed neighborhood of x.

Chromatic number. A vertex-coloring (or coloring for short) is a function γ : V −→ {1, . . . ,k}. coloring

A proper k-coloring is a coloring such that every pair of adjacent vertices receives distinct colors.
The minimum k for which there exists a proper k-coloring is called the chromatic number of the chromatic

numbergraph and is denoted by χ(G) χ. Note that ω(G) ≤ χ(G) since, for every clique K of G , the vertices
χ

of K must receive pairwise distinct colors (since the vertices are adjacent). Lots of constructions
ensure that the gap between the chromatic number and the clique number can be arbitrarily large
(see [85, 155, 165, 194] for instance).

2. ByΩ(n), we mean at least cn for some positive constant c.
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Figure 1.7: A net: a graph made of a triangle and three pending edges. A net is a split graph.

Observation 1.7. The chromatic number of a graph equals the minimum number of stable sets which
cover its vertices.

Proof. Let G be a graph and γ be a (proper) χ(G)-coloring of G . For every color i , the graph induced
by the vertices of color i is a stable set. Since G is properly colored with at most k colors, V is covered
by the union of at most k stable sets. Conversely, if k stable sets cover V , then coloring the vertices
of the same stable set with the same color provides a proper coloring.

The stable set hypergraph of a graph G is the hypergraph H where vertices are maximal (by in-stable set hy-
pergraph clusion) stable sets of G , and for every vertex v we create a hyperedge ev containing all the maximal

stable sets containing v . In other words, for every vertex v ∈V , there is a hyperedge ev such that ev

contains all the maximal stable set S of V (H) such that v ∈ S.

Bipartite. A graph is bipartite if its vertex set can be partitioned into two sets V1,V2 such thatbipartite

every edge has one endpoint in V1 and one in V2, i.e. neither G[V1] nor G[V2] contains an edge.
Bipartite graphs are denoted by ((V1,V2),E) where V1 ∪V2 is the vertex set and E is the set of edges.
Figure 1.2 is a bipartite graph. Note that the chromatic number of bipartite graphs equals 2 (as long
as they contain at least one edge). Indeed, V can be partitioned into two stable sets V1 and V2, so
Observation 1.7 ensures that χ(G) ≤ 2. Two subsets of vertices X ,Y ⊆ V are completely adjacent if
for all x ∈ X , y ∈ Y , x y ∈ E . They are completely non-adjacent if there is no edge between them.
A bipartite graph on vertex set (V1,V2) which are completely adjacent is a complete bipartite graph
and is denoted by K|V1|,|V2|. The graph K2,2 is represented in Figure 1.6(d).

Split graphs. A graph G = (V ,E) is split if V = V1 ∪V2 and the subgraph induced by V1 is a cliquesplit

and the subgraph induced by V2 is a stable set. Figure 3.9 represents a split graph, called the net.

Trees and connectivity. A graph G which does not contain any cycle is acyclic or is a forest. Itacyclic

forest is classical to show that any forest with at least one edge contains at least two vertices of degree
one. The leaves of a forest are the vertices of degree at most one. The vertices of a forest are oftenleaves

called nodes. A graph is connected if for every pair of vertices u and v , there exists a path from u tonodes

connected v . In others words, a graph is connected if for every pair of vertices the distance is not infinite. A
connected component of a graph is a maximum subset of vertices which induces a connected graph.connected

component A tree is a connected acyclic graph. Figure 1.6(b) and (c) represent forests but only Figure 1.6(c) is a
tree

tree. One can easily verify that every tree on n vertices has exactly n−1 edges. It is classical to show
that a graph is connected if it as a spanning tree.
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A feedback vertex set X of a graph G is a subset of vertices whose deletion provide a graph withoutfeedback
vertex set cycle, i.e. such that G[V \ X ] is acyclic.

Dominating set. Given a graph G = (V ,E), a dominating set of G is a subset of vertices X such dominating
setthat for every vertex v ∈ V \ X , there exists a vertex x of X such that xv is an edge. In other words

a dominating set is a subset X of vertices such that N [X ] = V . Several variants of dominating sets
exist, such as total, independent, connected dominating sets. In this manuscript in particular, we
are interested by dominating sets at large distances. A vertex u dominates a vertex v at distance k
if there exists a path of length at most k with endpoints u and v . A dominating set is a subset of
vertices which dominates every vertex at distance 1.
The neighborhood hypergraph of G = (V ,E) is the hypergraph on vertex set V where e ⊆ V is a hy-
peredge if and only if there exists a vertex v ∈V such that N (v) = e in G . Informally, hyperedges are
open neighborhoods of vertices of the graph. One can note that a subset of vertices of the hyper-
graph intersecting all the hyperedges is a dominating set of the graph G . One can similarly define
the closed neighborhood hypergraph where hyperedges are the closed neighborhoods of the ver-
tices of G instead of their open neighborhoods.
The B-hypergraph of a graph G has vertex set V and a subset Y ⊆V is a hyperedge if there are a ver- B-

hypergraphtex x ∈ V and an integer k such that Y = B(x,k). For a given integer `, the B`-hypergraph of G has
B`-
hypergraphvertex set V and Y ⊆V is a hyperedge if and only if there is an x such that Y = B(x,`). Recall that the

closed neighborhood hypergraph is the B1-hypergraph. Note that, for every ` the B`-hypergraph
of a graph G and its dual are the same since for every pair x, y of vertices, x ∈ B(y,`) if and only if
y ∈ B(x,`).

Directed graphs. For more details concerning directed graphs, the reader is referred to [18]. An
arc is an oriented pair of vertices. For brevity, we will denote the ordered pair (u, v) by uv when no arc

confusion is possible with edge of graphs. Nevertheless keep in mind that uv is distinct from vu in
directed graphs while it refers to the same edge in undirected graphs. A directed graph (or digraph directed

graphfor short) is a pair D = (V , A) such that V is a set of vertices and A is a set of arcs. For every arc
uv , u is called the beginning of uv and v the end of uv . For every vertex u, the in-neighborhood
(resp. out-neighborhood) of u, denoted by N−(x) (resp. N+(x)) is the set of vertices v such that vu
(resp. uv) is an arc. The closed in-neighborhood of u is the in-neighborhood of u plus the vertex u
itself. The closed in-neighborhood hypergraph H of a directed graph D is the hypergraph on vertex
V where X ⊆V is a hyperedge if and only if X is the closed in-neighborhood of some vertex v in D .

A directed graph is oriented if for every pair of vertices both uv and vu are not arcs. An oriented oriented

graph is an orientation of the edges of a simple graph. The underlying graph of an oriented graph is underlying
graphthe (unoriented) graph such that x y is an edge if and only if x y or y x are arcs. In other words, the

underlying graph is the graph obtained by “forgetting” the orientations of the arcs. A directed path
is a subset of vertices u1, . . . ,u` such that ui ui+1 is an arc for every 1 ≤ i ≤ `−1. A circuit of a directed circuit

graph is a directed path u1, . . . ,u` such that u`u1 is an arc. Note that a directed graph is oriented if
it does not contain any circuit of length 2. An oriented graph is a tournament if for every pair u, v tournament

of vertices either uv or vu are arcs. In other words, a tournament of size n is an orientation of the
clique Kn . A transitive tournament is an acyclic tournament, i.e. a tournament with no circuit. transitive

tournament
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Oriented graphs and orders. An oriented graph is transitive whenever for any three vertices
u, v, w if uv and v w are arcs then uw is an arc. Every partial order ≺ on V can be represented
as an oriented, transitive and acyclic oriented graph defined as follows: x y is an arc if and only if
x ≺ y . Note that a transitive tournament is the representation of a total order on V .

1.3 Parameterized complexity

In the following we introduce the parameterized complexity aspects developed throughout the
manuscript. For more results concerning parameterized complexity, the reader is referred to the
classical books [75, 93, 157].

A decision problem is a problem which returns either TRUE or FALSE. An instance of a decisiondecision
problem problem is positive if its output is TRUE, otherwise, it is negative. A parameterized problem is a
positive

negative
problem where the input is a pair (I ,k) where I is the instance of the problem and k is an integer
called the parameter. Usually, the parameter is either a part of the input (such as the size of theparameter
solution) or an invariant of the input graph (such as the treewidth). By abuse of notation, we will
call parameters both the invariant which is the parameter and the size of this invariant.

Fixed Parameter Algorithms. A decision problem is FPT (or Fixed Parameter Tractable) accord-FPT

ing to a parameter k if there exists a constant c (which does not depend on k) and a computable
function f such that for every instance of size n of parameter k, one can decide in time f (k) ·nc if
the instance is positive or not. In other words, there exists an algorithm running in f (k) ·nc which
solves the decision problem. Note that every polynomial time solvable problem admits FPT algo-
rithms and the function f is indeed a polynomial function.

The goal of the parameterized complexity is twofold. The first one is theoretical: it permits to
refine the class of NP-hard problems into several subclasses (which are hopefully disjoint). Indeed,
several parameterized problems (probably) do not admit FPT algorithms. Consider the COLORING

problem which given an integer k and a graph G , decides if there exists a proper k-coloring of G . The
COLORING problem parameterized by k is not FPT. Indeed, deciding if a graph admits a proper 3-
coloring is NP-complete (even for planar 4-regular graphs [67]). So there is no algorithm in f (k)nc

algorithm to decide the COLORING problem, otherwise the complexity of 3-COLORING would be
f (3) ·nc , i.e. polynomial. In addition, several problems, such as k-CLIQUE, or k-DOMINATING SET,
parameterized by the size of the solution (probably) do not admit FPT algorithms, even if they are
polynomial time solvable when k is a fixed constant.
The second interest is more practical: it permits to tackle NP-complete problems and to obtain
tractable algorithms when the parameter is small. So FPT algorithms provide efficient and exact al-
gorithms for deciding NP-complete problems. In addition, parameterized complexity also permits
to determine “why” an NP-complete problem is hard. Indeed, an FPT algorithm isolates a param-
eter from the remaining part of the instance in such a way that the unique exponential term of the
complexity of the algorithm is due to this parameter. In some sense, the parameter is the core of
the complexity of the problem.

Classical techniques. There are several classical techniques for proving that a problem is FPT. Let
us describe some of them.
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Branching algorithm. At each step of the algorithm, several choices are possible (and the instance
is positive if and only if at least one of these choices leads to a positive instance). A branching
algorithm “branches” over all these choices, which means that a branching algorithm runs distinct
instances for every possible choice. Then we solve all the new, hopefully smaller, instances and
return TRUE if and only if at least one of the new instances returns TRUE.

A branching algorithm can be represented as a search tree where each branching is a node of the
tree and its sons are the new instances. The leaves are the instances which can be solved without
new branchings. Note that the depth of the tree is the maximum number of consecutive branchings
and the width of the tree is the maximum number of simultaneous branchings. If both width and
depth of the branching tree are functions of k, then the whole tree has size f (k) for some function
f . So if the amount of work on each node is FPT, then the resulting algorithm is FPT. Let us illustrate
the method on VERTEX COVER.

VERTEX COVER:
Input: A graph G , an integer k.
Output: TRUE if there exist k vertices which intersect all the edges of the graph, other-
wise FALSE.

In other words, a vertex cover is a subset of vertices X such that G[V \ X ] is a stable set.

Theorem 1.8. VERTEX COVER is FPT parameterized by the size of the solution.

Algorithm 1: AlgoVC(G ,k) for VERTEX COVER

Input : A graph G = (V ,E), an integer k.
Parameter: k.
Output : TRUE if there is a vertex cover of size at most k, FALSE otherwise.

if E =∅ then1

Return TRUE2

if k = 0 and E 6=∅ then3

Return FALSE4

Let uv ∈ E ;5

Boolean1:=AlgoVC(G[V \ u],k −1);6

Boolean2:=AlgoVC(G[V \ v],k −1);7

Return OR(Boolean1,Boolean2);8

Sketch of the proof. Algorithm 1 describes a branching algorithm for solving VERTEX COVER. As long
as there remains one edge uv in the graph, we branch in order to determine which vertex of u or v
is in the vertex cover, which means that we “try” both choices (lines 6 and 7). At the end, the answer
is positive if and only if one of the two branching instances returns TRUE (line 8). Note that if there
is a solution of size at most k, then at least one of these two branches leads to a positive instance.
Indeed every vertex cover contains either u or v since it covers the edge uv .

In order to determine if there is a vertex cover of size k, we just have to run Algorithm 1 with
input (G ,k) to decide if G has a vertex cover of size at most k. One can easily prove that Algorithm 1
has complexity O∗(2k ), where O∗ means that the polynomial term is not expressed. Indeed, at each
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step, there are two possible choices, so the width of the branching tree is 2. In addition, the height
of the tree is at most k since at each step the size of the parameter decreases by one and there is no
branching when the parameter equals zero.

There are several other exponential time algorithms for VERTEX COVER, the best ones have com-
plexity O∗(21.27k ) (see [46, 158]). The branching technique will be used in Chapter 6.

Iterative compression is another classical technique to design FPT algorithms. This technique has
been introduced by Reed et al. [173] for designing an FPT algorithm for ODD CYCLE TRANSVERSAL.
The general idea consists in using a solution of a smaller instance to find a solution of a larger in-
stance. If the problem of deriving a solution from a solution of a smaller instance can be decided
in FPT time, then the problem of finding a solution without any information can also be decided in
FPT time. We will see a formal proof of this result for MULTICUT in Chapter 6.

Important separators and shadow removal. These techniques have been developed in the last few
years and already have many applications. A large part of Chapter 2.3 is devoted to defining and
illustrating these notions. Important separators are the core of the MULTICUT proof [33] presented
in Chapter 6.

Other techniques. There are several other classical techniques for designing FPT algorithms. Color
coding, introduced in [11], is a technique which consists in randomly coloring the graph. We then
try to find a structure which intersects all colors, which is often simpler than to find an uncolored
structure. Reduction to bounded treewidth graphs is also a classical method: it first consists in prov-
ing that a so-called irrelevant vertex can be found and deleted from the graph (in FPT time) if the
treewidth is large enough. Then, one has to prove that the problem is FPT for bounded treewidth
graphs, which is often simpler than for general graphs. A last technique for designing FPT algo-
rithms consists in finding kernels. We will describe this technique in a further paragraph.

Parameters. In this paragraph we use the terms of treewidth and Monadic Second Order Logic,
the reader is referred to [70, 93] for formal definitions. In the last few years, an important “ecology”
of parameters has been developed. Let us describe the most standard ones in the next few lines.
For more information, the reader is referred to [90].

The most classical parameter is the size of the solution. For instance, Theorem 1.8 ensures that
VERTEX COVER parameterized by k (which is the size of the solution) admits an FPT algorithm.
Then we refine the parameter k. By refining we mean that we can consider a weaker parameter (i.e.
a parameter of smaller size) and determine if the problem is still FPT parameterized by this weaker
parameter. Let α and β be two invariants such that for every graph G , we have α(G) ≤ β(G). If the
problemΠ parameterized by α is FPT, then the problemΠ parameterized by β is FPT. Indeed, since
Π is FPT parameterized by α, the decision problem Π can be decided in f (α) ·nc . So it can also be
decided in f (β) ·nc since α≤β. We say that the parameter α refines the parameter β.
The size of a vertex cover can be refined by the size of a feedback vertex set. Indeed the size of a
vertex cover is at least the size of a feedback vertex set since a subset of vertices whose deletion
eliminates all the edges of the graph in particular eliminates all the cycles of the graph. Since VER-
TEX COVER is FPT parameterized by the minimum size of a feedback vertex set by [121], VERTEX

COVER is FPT parameterized by the size of a solution, i.e. [121] gives Theorem 1.8.
Note that a minimum vertex cover is the minimum number of vertices which have to be deleted in
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34

Figure 1.8: A graph which admits a vertex cover of size 2.

order to obtain a stable set, i.e. a graph of treewidth 0. So the minimum size of a vertex cover is the
“distance to (graphs of) treewidth 0”. A minimum feedback vertex set is the minimum number of
vertices which have to be deleted in order to obtain a forest. Since forests are graphs of treewidth at
most 1, the size of a minimum feedback vertex set is the distance to treewidth 1. One can naturally
generalize these two invariants by introducing the “distance to treewidth `” which is the minimum
number of vertices whose deletion gives a graph of treewidth at most `. It provides a hierarchy of
parameters where every parameter refines the previous one. In other words, if a problem Π is FPT
for the parameter distance to treewidth ` then Π is FPT for the parameter distance to treewidth `′

for every `′ ≤ `.
There is another classical parameter which is the treewidth of the input graph. A famous meta-

theorem of Courcelle [63] ensures that every problem that can be expressed in Monadic Second
Order Logic admits an FPT algorithm parameterized by the treewidth of the input graph. In addition
the algorithm provided by Courcelle is linear when k is a constant (understand here that the degree
c of the polynomial function in the FPT algorithm is 1). Nevertheless the exponential function in the
treewidth is not tractable. Since VERTEX COVER can be expressed in Monadic Second Order Logic,
VERTEX COVER is FPT parameterized by the treewidth of the input graph.

W -hierarchy. In order to prove that a problem (probably) does not admit a polynomial algorithm,
the standard method consists in proving that the problem is NP-hard. Indeed a classical conjecture
in complexity ensures that P 6= N P and then NP-hard problems probably do not admit polynomial
time algorithms. This conjecture has an “equivalent” for FPT algorithms. Let us first recall some
definitions of logic. A clause is a disjunction of literals (which are positive or negative variables).
The size of a clause is its number of literals. A SAT formula is a conjunction of clauses. A 2-SAT
formula is a conjunction of clauses of size 2. The sign ∨ denotes the disjunction. We pay attention
to the following problem:

WEIGHTED 2-SAT:
Input: 2-SAT formula φ, an integer k.
Parameter: k
Output: TRUE if there exists an assignment of the variables where at most k variables
are assigned to true which satisfies the formula φ, otherwise FALSE.

Observation 1.9. W EIGHTED 2-SAT is NP-complete.

Sketch of the proof. VERTEX COVER is an NP-complete problem. We reduce VERTEX COVER to
WEIGHTED 2-SAT. Let G be a graph. For every vertex u of the graph, create a variable xu . For
every edge uv , create the clause xu ∨ xv . One can easily prove that the resulting 2-SAT formula has
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a positive assignment with at most k positive variables if and only if G has a vertex cover of size at
most k.

For the VERTEX COVER instance of Figure 1.8, the reduction algorithm creates a WEIGHTED 2-SAT

instance with five clauses, x1∨x2, x1∨x4, x2∨x4, x2∨x3 and x3∨x4. Since all the clauses are satisfied
when both x2 and x4 are assigned to true, 2 and 4 form a vertex cover of Figure 1.8. WEIGHTED 2-SAT

is conjectured not to admit FPT algorithms. We say that the problem WEIGHTED 2-SAT is in W [1]
(introduced in [74]). A parameterized problem Π is W [1]-hard if it is as complicated as WEIGHTED

2-SAT parameterized by k. By “as complicated as” we mean that there exists a reduction algorithm
from every instance of WEIGHTED 2-SAT to a parameterized instance ofΠ such that:

– The complexity of the algorithm is FPT parameterized by k.
– The size of the parameter in the resulting instance ofΠ is a function of k.

On the opposite, a problem is in W [1] if it can be reduced via an FPT parameterized reduction
to WEIGHTED 2-SAT. A problem is W [1]-complete if it is both in W [1] and W [1]-hard. The mostW [1]-

complete classical W [1]-complete problem is probably k-CLIQUE where k denotes the size of the desired
clique. Lots of hardness reductions are reductions from k-CLIQUE in order to prove that a problem
is W [1]-hard (see [36] for instance).

The W [1]-class can be extended into an infinite hierarchy of complexity classes called the W -
hierarchy, which is the pendant of the polynomial hierarchy for the complexity NP-class. They
satisfy

F PT ⊆W [1] ⊆W [2] · · · ⊆ X P.

where XP denotes the set of parameterized problems which can be solved in O (n f (k)). In other
words, XP is the set of problems which are polynomial when the parameter is not a part of the input
but a constant.

Conjecture 2.
F PT (W [1](W [2] . . .( X P.

For more details on the W [1]-hierarchy the reader is referred to [75].

Kernels. In parameterized complexity, there is another crucial notion which is the notion of ker-
nels. In the following we assume that k ≤ n where n is the size of the instance and k the parameter.
The parameterized problem Π admits a kernel (of size f ) if there exists a polynomial time algo-kernel

rithm (in both the size of the instance and of the parameter) such that for every instance (I ,k), the
algorithm returns an instance (I ′,k ′) of the problemΠ such that:

– The new instance (I ′,k ′) satisfies k ′ ≤ k.
– There exists a function f such that for every I , the output instance I ′ has size at most f (k ′).
– The instance (I ,k) of the problemΠ is positive if and only if the instance (I ′,k ′) of the problem
Π is positive.

Such an algorithm is called a kernel algorithm. Informally a kernel algorithm is an algorithm which
reduces an instance ofΠ into a smaller instance (which only depends on the size of the parameter)
which is positive if and only if the original instance is positive. The interest of a kernel algorithm is
twofold. The first one is practical since kernel algorithms provide interesting pre-processing algo-
rithms. Indeed they transform arbitrarily larges instances into instances whose size only depends
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on k in polynomial time. The second interest is theoretical: if a problem admits a kernel, then,
since this kernel can be obtained in polynomial time, it means that all the hardness of the problem
is reduced to this kernel. It raises a natural question: up to which size can we reduce the size of the
problem?

Existence of kernels and existence of FPT algorithms are actually equivalent.

Lemma 1.10 (Folklore). A problemΠ admits an FPT algorithm if and only if it admits a kernel.

Proof. Assume that Π admits a kernel algorithm A whose complexity is P (n) where P is a polyno-
mial function, and n denotes the size of the instance. Let (I ,k) be an instance of Π. The algorithm
A on the instance (I ,k) returns an instance (I ′,k ′) equivalent to (I ,k) of size f (k ′) where k ′ ≤ k.
Then decide with any algorithm if the instance (I ′,k ′) is positive or not. Note that the complexity
of this second algorithm is a function say g of k ′ since the size of the instance I ′ is a function of k ′.
Therefore the whole complexity is P (n,k)+ g (k ′) = P (n) · f (k) since k ′ ≤ k.

Let us prove the converse. Since Π is FPT, an algorithm A decides Π in time f (k) ·P (n). Let us
prove that Π admits a kernel of size f (k). Let (I ,k) be an instance of the parameterized problem
Π. First note that if |I | ≤ f (k) then no kernel algorithm is needed since the size of the instance is
at most the size of the desired kernel. Otherwise, |I | ≥ f (k), so the algorithm A , running in time
f (k) ·P (n) ≤ nP (n), is a polynomial time algorithm for (I ,k). So we can decide the instance (I ,k) in
polynomial time and return a trivial instance which is either positive ifΠ(I ,k) is positive or negative
otherwise. Such an algorithm is a kernel algorithm since its running time is polynomial.

A much more constrained condition is the existence of polynomial kernels. A problem admits a
polynomial kernel if the function f of the kernel definition is a polynomial function. Finding small polynomial

kernelkernel is interesting for several reasons. First, it can improve FPT algorithms. Indeed if the kernel
is small enough and if the exponential algorithm is good enough, the resulting FPT algorithm can
be efficient. For instance, MAXIMUM INTERNAL SPANNING TREE problem has a polynomial kernel
of size 3k [94] and an exact exponential algorithm of complexity O∗(2n) [156], which provides a
O∗(28k ) exponential time algorithm [94] improving the older FPT algorithms.

Note nevertheless that all the FPT problems do not admit polynomial kernels unless N P ⊆
coN P/pol y . A machinery was developed in order to determine kernel lower bounds, such as OR-
compositions, and more recently CROSS-compositions [23, 24]. So, problems with polynomial ker-
nels refine the class of FPT problems since there are problems which admit polynomial kernels and
several problems which do not admit polynomial kernel.

We have now defined the main combinatorial and algorithmic concepts needed to tackle more
precisely the study of hitting sets and packings. The following Chapter is devoted to the general
study of hitting sets and packings.





CHAPTER

2
Hitting sets

In this chapter we introduce the notions of hitting sets and packings. The results mentionned all
along this chapter are general results on hypergraph theory (and none of them were proved during my
PhD). The chapter is organized in such a way the introduced notions are more and more involved.

2.1 Hitting sets and packings

This Chapter is an introduction on hitting sets and packings in hypergraphs. In Section 2.1,
we introduce these two notions, provide several examples and study the gap between the two as-
sociated parameters. In Section 2.2, we will first express these two notions in terms of linear pro-
gramming. We will see that these two notions are dual, not in the hypergraph meaning introduced
in Chapter 1 but in the linear programming meaning. In order to avoid confusion, the duality be-
tween hitting set and packing number will be referred as LP-duality. We will finally show that the
so-called “integrality gap” between these notions and their fractional relaxations can be arbitrarily
large. In Section 2.3, we will consider algorithmic aspects of hitting sets through the eyes of graph
separation problems. In particular we study two keys methods for designing FPT algorithms for
graph separation problems which are the important separators technique (Section 2.3.2, a tool in-
troduced by Marx) and the shadow removal technique (Section 2.3.4, a tool introduced by Marx
and Razgon). These two techniques are technically very involved. Since we study them in details
in Sections 2.3.2 and 2.3.4, these two sections are much more involved than the other part of the
chapter.

2.1.1 Definitions and first properties

Let H = (V ,E) be a hypergraph with no empty hyperedge. A hitting set of H , also called a hitting set

transversal, is a subset X of vertices such that, for every hyperedge e ∈ E , at least one vertex of transversal

X is in e. In other words, a hitting set is a subset of vertices intersecting all the hyperedges. Note
that the whole set of vertices V is a hitting set. In Figure 2.1, the set of gray vertices is a hitting
set of size 3. The transversality of H , denoted by τ(H)τ is the minimum size of a hitting set of H . transversality

τ

29
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Figure 2.1: The set of gray vertices is a hitting
set of size 3.

Figure 2.2: The set of gray hyperedges is a
packing of size 2.

Determining if a hypergraph H has a hitting set of size at most k is an NP-hard problem, even for
2-uniform hypergraphs (one of the 21 Karp’s NP-complete problems called VERTEX COVER).
A subset of hyperedges P ⊆ E is a packing of H if every vertex of H is in at most one hyperedge ofpacking

P . In other words, all the hyperedges of P are vertex disjoint. In Figure 2.2, the set of gray hyper-
edges is a packing of size 2. The packing number of H , denoted by ν(H), is the maximum size of aν(H)

packing of H . Note that a hypergraph H satisfies ν(H) = 1 if all its hyperedges pairwise intersect.
Determining if a hypergraph has a packing of size k is an NP-complete problem, even for 3-uniform
hypergraphs (the problem is the 3-dimensional matching problem). Nevertheless for 2-uniform hy-
pergraphs the problem is polynomial time solvable (indeed a packing of a 2-uniform hypergraph is
exactly a matching of the corresponding graph and a maximum matching can be found in polyno-
mial time). When no confusion is possible, transversality and packing number will be denoted by τ
and ν instead of τ(H) and ν(H).

Observation 2.1. Every hypergraph with no empty hyperedge H satisfies

ν(H) ≤ τ(H).

Proof. Let P be a packing and X be a hitting set of H . Every hyperedge e of P satisfies e∩X 6=∅. And
no vertex of X intersects more than one edge of the packing since e ∩ e ′ =∅ for every e,e ′ ∈ P . So
|X | ≥ |P |. The desired inequality is obtained by considering a maximum packing and a minimum
hitting set.

Observation 2.1 raises a natural question: is τ also bounded by a function of ν? Unfortunately
the answer is NO. Consider the complete uniform hypergraph Un+1,2n . Its packing number equals
one. Indeed every hyperedge contains more than half the vertices, so every pair of hyperedges
intersects. On the contrary, the transversality of Un+1,2n is at least n. Otherwise the complement of
a hitting set would have size at least n +1, and then would contain a hyperedge (since every subset
of size n +1 is a hyperedge), a contradiction.
Nevertheless, in several cases, τ can be bounded by a function of ν. In the following we present
several classes of hypergraphs satisfying this property.

Erdős-Pósa property and feedback vertex set. Let G = (V ,E) be a graph. Recall that a feedback
vertex set of G is a subset of vertices X such that G[V \ X ] is acyclic. Note that it also is a subset
of vertices intersecting all the cycles of G . Indeed, every cycle of G contains a vertex of a feedback
vertex set X , since otherwise G[V \ X ] would contain this cycle (and then the resulting graph would
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Figure 2.3: An Escher’s wall of height 4. To increase the height of the Escher’s wall by one, add a
line and a brick per line (and a new vertex at the left). One can prove that every odd cycle passes
through one of the left vertices so we have ν = 1. And one can find h/2 odd cycles such that every
vertex is in at most two odd cycles (where h denotes the height of the wall). So τ≥ 1/2 ·h/2.

not be acyclic). Determining the size of a minimum feedback vertex set problem is NP-hard even
for graphs of maximum degree 4 [175]. In their seminal paper [82], Erdős and Pósa proved the
following.

Theorem 2.2 (Erdős, Pósa [82]). Let G be a graph. Denote by τ the size of a minimum feedback vertex
set and by ν the maximum number of vertex disjoint cycles. We have

τ=O (ν · logν).

In addition Erdős and Pósa proved that the upper bound can be achieved on random graphs,
using a probabilistic argument [82].
The cycle hypergraph H of the graph G has vertex set V (G) and C ⊆ V is a hyperedge if G[C ] is a
(non-necessarily induced) cycle. A packing of H is a subset of vertex disjoint hyperedges, so, in
the graph G , it corresponds to a collection of vertex disjoint cycles. A hitting set of H is a subset of
vertices intersecting every hyperedge, i.e. every cycle of G . So a hitting set of H is a feedback vertex
set of G . Hence Theorem 2.2 can be rephrased as follows: cycle hypergraphs satisfy τ=O (ν · logν).
A class of hypergraphs with τ ≤ f (ν) satisfies the Erdős-Pósa property. More formally, let H be a
family of hypergraphs. The family H satisfies the Erdős-Pósa property (for the gap function f ) if for Erdős-Pósa

property

gap function
every hypergraph H in H , we have τ(H) ≤ f (ν(H)). Note that a class of hypergraphs H satisfying
ν= 1 satisfies the Erdős-Pósa property if and only if there exists a constant c such that every H ∈H

satisfies τ(H) ≤ c.
Theorem 2.2 was generalized by Kakimura, Kawarabayashi and Marx who proved that the set

of cycles intersecting a fixed set S also has the Erdős-Pósa property [123]. Pontecorvi and Wollan
closed the gap in [166] between upper and lower bound by giving an O (ν · logν) upper bound. The
result of Erdős and Pósa was also generalized to several other types of cycles. Indeed given a particu-
lar set of cycles, one can ask if this set of cycles satisfies the Erdős-Pósa property. Even cycles satisfy
the Erdős-Pósa property [183] as planar minors [50, 176]. On the contrary, Lovász and Schrijver no-
ticed that odd cycles do not satisfy the Erdős-Pósa property. Escher’s walls give a family of graphs
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with packing number one and with arbitrarily large transversality (see Figure 2.3). For a complete
proof of this result see [169] for instance. The existence of an equivalent version of Theorem 2.2 for
directed graphs, known as Gallai-Younger conjecture, was solved by Reed et al. in [172].

k-uniform hypergraphs. Let us first illustrate the notions of packings and hitting sets on uniform
hypergraphs.

Observation 2.3. Let k > 0. Every k-uniform hypergraph H satisfies

τ(H) ≤ k ·ν(H).

Proof. Consider a maximal (in terms of inclusion) packing P of H . Let X = ⋃
e∈P

⋃
x∈e x. In other

words X is the set of vertices contained in the hyperedges of P . Since every hyperedge has size
k, the set X has size at most k · ν. Let us show that the set X is a hitting set of H . Assume by
contradiction that a hyperedge e satisfies e ∩X =∅. Then no vertex of e is in a hyperedge of P , and
e can be added in the packing P , which contradicts the maximality of P .

The inequality τ≤ k ·ν provided by Observation 2.3 is tight (up to an additive constant). Indeed
consider the complete uniform hypergraph Uk,n . A maximal packing P has size at most bn/kc. In-
deed

∑
e∈P |e| ≤ n since every vertex appears in at most one hyperedge of the packing P . Since every

hyperedge e satisfies |e| = k, we have |P | ≤ n/k. A hitting set has size at least n −k +1. Otherwise,
at least k vertices would not be in the hitting set, and then a hyperedge would not be intersected
by the hitting set (since every subset of size k is a hyperedge), a contradiction. Finally we have
τ+k −1 ≥ n ≥ kbn/kc ≥ kν.

The proof of Observation 2.3 leads to a k-approximation algorithm for k-uniform hypergraphs.
Greedily add hyperedges in a packing P as long as possible. At the end of the algorithm, denote
by X = ⋃

e∈P
⋃

x∈e x. Since P is a packing, X has size at most k ·ν(H). And since P is maximal by
inclusion, X is a hitting set. Observation 2.1 ensures that ν≤ τ, so X is a hitting set of size at most
k ·τ. Therefore the greedy algorithm is a k-approximation algorithm.

Consider the particular case of graphs (which are 2-uniform hypergraphs). Let G be a graph.
A vertex cover is a hitting set of G . Determining the minimum size of a vertex cover is NP-hard. Avertex cover

matching is a packing of G . On the contrary, determining the size of a maximum size of a matchingmatching

in a graph can be done in polynomial time (see [79] for instance). The following result due to Konig
links the size of a minimum vertex cover and the size of a maximum matching in bipartite graphs.

Theorem 2.4 (Konig [134]). The size of a maximum matching equals the size of a minimum vertex
cover in bipartite graphs.

The equality of Theorem 2.4 is false on general graphs. Indeed, the clique Kn has matchings of
size at most n/2 and vertex covers of size at least n−1. Ryser’s conjectured that Theorem 2.4 can be
extended to k-partite hypergraphs. A hypergraph is k-partite if there exists a partition of the vertexk-partite

set into V1, . . . ,Vk such that every hyperedge contains exactly one vertex in each set.

Conjecture 3 (Ryser). Every k-partite hypergraph satisfies τ≤ (k −1)ν.
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Conjecture 3 generalizes Theorem 2.4. Indeed, in the particular case k = 2, Observation 2.1
ensures that ν ≤ τ, so if τ ≤ (k −1)ν then τ = ν. Aharoni proved Conjecture 3 for k = 3 [2]. In the
specific case ν= 1, Tuza [187] proved Conjecture 3 for k = 4 and k = 5 (the problem is still open for
k ≥ 6). Haxell and Scott generalized Tuza’s result by proving that τ≤ (k −ε)ν [118] for some positive
constant ε for k = 4,5. In the general case Ryser’s conjecture is still open for k ≥ 4.

Menger’s theorem. Another well-known theorem of graph theory can be rephrased as an Erdős-
Pósa property: Menger’s theorem. Let G be a graph and s, t be two vertices of G . An st-path is a path st-path

from s to t in G . An (edge) st-separator is a subset S of edges whose deletion puts s and t in distinct st-separator

connected components. In other words, S is a set of edges intersecting all the st-paths. Indeed if an
st-path is not intersected by S then both s and t are in the same connected component.

The st-transversal hypergraph of the graph G is the hypergraph on the edges of the graph G
where hyperedges are the edges of st-paths. A hitting set of this hypergraph is a subset of edges
which intersects every hyperedge, so every st-path. Hence a hitting set is a subset of edges whose
deletion disconnects s from t . Conversely, one can easily verify that every st-separator is a hitting
set of the st-transversal hypergraph. So the transversality of the st-transversal hypergraph is the
minimum size of a st-separator. And the packing number denotes the maximum number of disjoint
hyperedges, so it is the maximum number of interior disjoint paths between s and t . All the previous
definitions also holds if we replace s and t by two sets A and B . An AB-path is a path from a vertex of
A to a vertex of B . And an AB-separator is a subset of vertices which intersects every path between
a vertex of A and a vertex of B . A famous theorem due to Menger (whose proof can be found in [70]
for instance) states the following:

Theorem 2.5 (Menger). Let G be a graph and A,B be two subsets of vertices. The minimum size of
an AB-separator equals the maximum number of edge disjoint AB-paths, i.e. the AB-transversal
hypergraph satisfies τ= ν.

In addition, Menger’s theorem proofs provide a polynomial time algorithm to find minimum
separators and maximum collections of edge disjoint paths in polynomial time. Generalizations
of Menger’s theorem have been extensively studied. If, instead of looking for separators between
two vertices, we are looking for a minimum separator between 3 vertices, the problem becomes
NP-complete. Such problem, known as MULTIWAY CUT, is a well-studied graph separation problem.
We will discuss this problem and its generalizations a little bit further in Section 2.3 and Chapter 6.

Note finally that all along this paragraph we deal with edge separators. Nevertheless Menger’s
Theorem also holds from a vertex point of view. In other words, the maximum set of vertex disjoint
paths between s and t equals the minimum number of vertices which have to be deleted in order
to put s and t in distinct connected components.

2.1.2 Helly property

Informally, a family of sets satisfies the Helly property if every subfamily of pairwise intersecting Helly
propertysets has an element in all of them. Helly property often holds for families of geometrical objects

(where sets are viewed as sets of points of the space). For instance, intervals of the line satisfy
the Helly property. This example can be extended to d-dimensional spaces with axis-parallel d-
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Figure 2.4: Rectangles of the plane satisfy the
Helly property: the gray part is in the inter-
section of all the rectangles.

Figure 2.5: On the contrary, hypergraphs of
rectangles do not satisfy the Helly property.

dimensional rectangles. Figure 2.4 represents pairwise intersecting rectangles: the gray part is in
the intersection of the collection of the set of rectangles.

A hypergraph has the Helly property if for every subset E ′ of pairwise intersecting hyperedges,
there exists a vertex v of V such that v ∈ ∩e∈E ′e. Hypergraphs can represent objects in geometrical
spaces. Consider for instance a set V of points of the plane and R a collection of rectangles of the
plane. It naturally induces a hypergraph where the vertex set is V and for every R ∈ R, there is a
hyperedge eR such that v ∈ eR if and only if v is in the rectangle R (see Figure 2.5). The hypergraph
can be represented in the plane with the same set of rectangles. Geometrical hypergraphs are built
from geometrical problems, but even if the Helly property is satisfied for the geometrical problem,
it is not necessarily satisfied for the hypergraph problem. Figure 2.5 illustrates this phenomenon.
Indeed, every pair of hyperedges (which correspond to rectangles in the plane) pairwise intersects
in H , but since there is no vertex in the area of intersection of the whole set of rectangles. Hence the
set of hyperedges does not intersect in the hypergraph: the hypergraph does not satisfy the Helly
property.

If a Helly hypergraph satisfiesν= 1, then τ= 1. Indeed, since the packing number equals one, all
the hyperedges pairwise intersect. And then the Helly property ensures all the hyperedges intersect
on a same vertex. Nevertheless, and quite surprisingly at first glance, Helly hypergraphs do not have
the Erdős-Pósa property as underlined in [114].

Lemma 2.6. There exist Helly hypergraphs Hk such that ν(Hk ) = 2 and τ(Hk ) = k.

Proof. Let Gk be a k-chromatic graph of girth at least 4 (such graphs exist as mentioned in Chap-
ter 1). Construct the stable set hypergraph Hk of Gk . Recall that Hk is constructed as follows: the
vertices of Hk are maximal (by inclusion) stable sets of H . For every vertex x of Gk , construct a hy-
peredge containing all the stable sets S of V (Hk ) such that x ∈ S. In the following, we denote by ex

the hyperedge of Hk corresponding to x in Gk . Let us first prove the following claim.

Claim 2.7. For every x, y in V (Gk ), we have ex ∩ey =∅ if and only if x y is an edge.

Proof. If x y is an edge, then no stable set contains both x and y , so ex ∩ey =∅. Conversely, if x y is
not an edge, then {x, y} is a stable set. It can be completed into a stable set S maximal by inclusion
and S ∈ ex ∩ey .
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Figure 2.6: A hypergraph satisfying the (3,2)-property.

Let us prove that Hk is a Helly hypergraph. Let ex1 , . . . ,ex` be pairwise intersecting hyperedges.
By Claim 2.7, for every pair i 6= j , xi x j is not an edge. So {x1, . . . , x`} is a stable set which can be
completed into a stable set S maximum by inclusion. Finally we have S ∈∩i≤`exi .

Let us now evaluate ν and τ. If there is a packing of size 3, Claim 2.7 ensures that Gk contains
a clique of size 3, which contradicts our girth assumption. Indeed a graph of girth at least 4 cannot
contain a triangle (which is a cycle of length 3). So the packing number is at most 2. On the contrary,
τ(Hk ) ≥ k. A hitting set S is a family of stable sets of Gk intersecting all the hyperedges of Hk . So for
every vertex x, ex ∩S 6=∅. In other words, every vertex of Gk appears in a stable set of S . So |S |
stable sets cover all the vertices of Gk . Observation 1.7 ensures that |S | ≥ χ(Gk ) = k. Finally every
hitting set has size at least k, i.e. we have τ≥ k.

Note that the proof of Lemma 2.6 ensures that the stable set hypergraph of any graph has the
Helly property. Let us provide another simple example of a non-geometrical hypergraph with the
Helly property.

Observation 2.8. Let T be a tree. Any subset of subtrees of T satisfies the Helly property.

Proof. Let us prove it by induction on the number of nodes of the tree. Let T be a family of pairwise
intersecting subtrees of T (where subtrees can be single vertices). Let f be a leaf of T . Either a
subtree is reduced to the leaf f , and since subtrees of T pairwise intersect, all the subtrees contain
f , i.e. τ = 1. Otherwise we apply induction on T [V \ { f }] (the family still pairwise intersects since
every subtree containing f also contains its unique neighbor since a tree is a connected graph).

(p, q)-property. A hypergraph has the (p, q)-property if for every set of p hyperedges, at least q of (p, q)-
propertythem intersect. Figure 2.6 represents a set of hyperedges satisfying the (3,2)-property since for every

set of three hyperedges, at least two of them intersect. Note that a hypergraph H satisfies the (p,2)-
property if and only if ν < p. Indeed a hypergraph with the (p,2)-property satisfies that for every
subset of p hyperedges, at least one vertex is in two hyperedges, i.e. there are no p vertex disjoint
hyperedges. Hadwiger and Debrunner asked for the existence of a function M(p, q,d) such that
every set of compact convex sets in Rd with the (p, q)-property satisfies τ ≤ M(p, q,d) [115]. Such
a statement generalizes Helly’s theorem [119] which ensures that compact convex sets in Rd with
the (d +1,d +1)-property satisfy τ= 1. Alon and Kleitman proved the Hadwiger-Debrunner’s con-
jecture [8]. In Chapter 3, we will see that under some combinatorial properties, the (p, q)-property
implies the Erdős-Pósa property.
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2.1.3 Duality of hypergraphs

Let us study the behavior of hitting sets and packings through the eyes of duality of hypergraphs.
Recall that in the dual hypergraph, vertices become hyperedges and hyperedges become vertices
(for a formal definition, see Section 1.1).

Duality of τ : covering. Given a hypergraph H , a covering E ′ of H is a subset of edges such thatcovering

every vertex is contained in at least one hyperedge of E ′. The covering number, denoted by c(H) is
the minimum size of a covering. Note that a covering exists if and only if for every vertex, there ex-
ists a hyperedge containing it. For graphs (understand here 2-uniform hypergraphs), the covering
number is crucially linked with the size of a maximum matching. More precisely, the covering num-
ber of a graph equals n minus the size of a maximum matching. Indeed, each edge of a maximum
matching covers two distinct (new) vertices. To cover the remaining vertices, we add edges which
only cover one vertex not yet covered. Since the size of a maximum matching in a 2-hypergraph is
exactly the maximum number of disjoint hyperedges, we have

c(G) = n −ν(G).

A matching is perfect if every vertex of the graph is covered by the matching (so ν= c). Note that
only graphs with an even number of vertices can admit perfect matchings and their sizes are exactly
n/2. The existence of perfect matchings in graphs has been extensively studied in the literature. For
instance, bridgeless cubic graphs admit perfect matchings (Petersen’s theorem, see [70] for a proof).

Observation 2.9. For every hypergraph H with no empty hyperedge, the dual of a hitting set is a
covering. In particular, we have

τ(H) = c(H d ).

Proof. Let H be a hypergraph and X be a hitting set of H . Let ((V ,E),E ′) be the incidence bipartite
graph of H . Let e be a hyperedge of H . Since X is a hitting set e ∩ X 6= ∅. So there exists x ∈ X
such that x ∈ e, i.e. xe is an edge of the incidence bipartite graph. Hence the neighborhoods of the
vertices of X cover the vertices of E in the incidence bipartite graph. The same holds in the dual
incidence bipartite graph since the edges are not modified. Finally, in the dual hypergraph X is a
subset of hyperedges containing all the vertices.

The reverse inequality is given by Observation 1.2 which ensures that (H d )d = H .

Duality of ν : stable set. Given a hypergraph, a stable set is a subset of vertices such that no hyper-stable set

edge contains at least two of them. The size of a maximum stable set is denoted by α. Note that a
stable set of a 2-uniform hypergraph is a subset of vertices X such that no hyperedge contains two
vertices of X , i.e. no hyperedge is contained in X since hyperedges have size 2. So the notion of
stable set in hypergraph extends the notion of stable sets in graphs.

Observation 2.10. For every hypergraph H, the dual of a packing is a stable set. In particular, we
have

ν(H) =α(H d ).
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P

Figure 2.7: A 2-dimensional polytope defined by 4 constraints.

Proof. Let E ′ be a packing of a hypergraph H . In the dual hypergraph, E ′ becomes a subset of
vertices. Since E ′ is a packing, no vertex of H is contained in two hyperedges of E ′. Therefore, in the
dual hypergraph no hyperedge contains at least two vertices of the corresponding subset of vertices
E ′.

2.2 Linear programming and integrality gap

In this Section, we introduce general notions of linear programming and apply them on hitting
sets. For more information and complete proofs, the reader is referred to [180].

2.2.1 Generalities

Half-spaces and polyhedra. Let us first recall classical definitions of linear algebra. The set Rd

denotes the real d-dimensional space. A vector is a ordered set of d reals. It can be seen as the vector

coordinates of a point in Rd . Let X be a set of ` vectors of Rd . The cone generated by X is the
set of all the positive combinations of points of X . In other words, the cone generated by X is
{
∑

x∈X αx x|αx ≥ 0}.
The transposition of a matrix A is denoted by t A and the coefficient (i , j ) of the matrix t A is the

coefficient ( j , i ) of A. Note that the transposition of a n ×d matrix is a d ×n matrix. The (affine)
hyperplane defined by a in Rd and β ∈ R is the set of points of Rd such that t ax = β. The half- hyperplane

space defined by a vector a of Rd and β ∈ R is the subset of points x of Rd such that t ax ≤ β. From half-space

a geometrical point of view, an half-space is the set of points of Rd which are below (or above) a
hyperplane.

A polyhedron is an intersection of several half-spaces. A polytope is a bounded polyhedron. polyhedron

polytopeThe gray part of Figure 2.7 is a polytope of a 2-dimensional space. Since every half-space can be
expressed as a linear inequation t ax ≤ b, every intersection of half-spaces t ai x ≤ bi can be trans-
formed into a matrix inequality Ax ≤ b. The i -th line of the matrix is t ai and the i -th coordinate of
b is bi . So every polyhedron can be expressed as the set of points x such that Ax ≤ b where A is an
n ∗d matrix, where n is the number of half-spaces and d is the dimension of the space. Recall that
Ax ≤ b is satisfied if the inequality is satisfied on each coordinate. In the following every half-space
intequality will be called a constraint. constraint

Linear programming. A linear program, abbreviated into LP, consists in maximizing or minimiz- LP

ing a linear function over a polyhedron. The function we want to maximize (or minimize) is called
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the objective function. The polyhedron can be represented with a matrix A called the constraintobjective
function matrix and a vector b called the constraint vector. A solution of a linear program is a vector which
constraint
matrix satisfies the constraints, in other words, a solution is a point in the polyhedron. Over all the so-

lutions, we want to maximize (or minimize) an objective linear function denoted by t cx for some
vector c. By abuse of notation, c is also called the objective function. For summary, a linear program
can be seen as the following value:

max
x∈Rd

(t cx| Ax ≤ b).

The optimal value is the real number corresponding to the linear program. A solution x of the
linear program is optimal if the objective function on x has the optimal value.

From a geometrical point of view, the objective function is a direction in Rd , and an optimal
solution is a point of the polyhedron which is the furthest in this direction (see Figure 2.8 for an
illustration).

There are two famous algorithms for computing optimal solutions of LP. The first one, due to
Dantzig, is called the simplex algorithm [68]. It is a non-polynomial (in the worst case) algorithm
but it is really efficient in practice. In the 80’s, a polynomial time algorithm, based on the so-called
ellipsoid method, was discovered (see [109] for complete information on the algorithm).ellipsoid

method

Theorem 2.11 (Ellipsoid method). An optimal solution of a (real) LP can be found in polynomial
time.

Let max(t cx|Ax ≤ b) be a linear program. The LP-dual of the linear program is min(t yb|y ≥LP-dual

0, t y A = t c). Note that the LP-dual of a linear program is a linear program. The initial linear program
is called the primal linear program. The LP-duality theorem ensures the following :primal

Theorem 2.12 (Duality of LP). For every linear program over real numbers (with a finite optimal
value), we have

max(t cx|Ax ≤ b) = min(t yb|y ≥ 0, t y A = t c).

Note that a linear program can admit no solution. In this case we assume the following: min;=
+∞ and max; = −∞. As we have already seen, each line of the constraint matrix “represents” a
constraint. In addition each column “represents” a variable since for each constraint, the value
of the i -th column still multiplies the i -th variable. In the dual linear program, since we multiply
by the left hand side the matrix A instead of the right hand side, the variables “are” the lines of the
matrix A and the constraints “are” the columns of the matrix A. So variables of the dual LP represent
constraints of the primal LP. And constraint of the dual LP represent variables of the primal LP.
Theorem 2.12 ensures that there is an equality between primal and dual linear program in real
numbers. This equality which is correct for real numbers is not correct for integer linear programs.

Integer Linear Program. Up to this point, we have only considered linear program in real spaces.
Nevertheless, in several cases we are looking for integer solutions, i.e. a point which is in the poly-
hedron, which has integer coordinates and which maximizes the objective function according to
these two conditions. In other words, we consider the intersection of the polyhedron with the in-
teger grid in the space Rd and we try to maximize a linear function. To sum up, an integer linear
program (ILP for short) has the same constraint matrix and objective function as a LP program ex-LP
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Figure 2.8: Gap between LP and ILP: the arrow represents the objective function and the gray part
the polyhedron. The rightmost point is an optimal real solution and the leftmost is an optimal
integer solution (integer values are represented with the grid).

cept that the variables must take integer values instead of real values. When we are given an ILP, the
corresponding real number LP is called the fractional relaxation of the integer linear program. fractional re-

laxationThe gap between integer and real optimal values of a LP is called the integrality gap. In the
integrality
gapfollowing we will say that integrality gap is bounded if there exists a function f such that τ≤ f (τ∗).

We will say that there is no integrality gap if τ = τ∗. The integrality gap can be arbitrarily large.
Figure 2.8 represents a polytope with a large gap between the optimal integral solution and the
optimal real solution. One can easily modify this example in order to have an arbitrarily large gap.
In Section 2.2.2, we will study the integrality gap of the transversality and the packing LP. Even if
computing the fractional relaxation of an ILP can be done in polynomial time by Theorem 2.11,
computing the optimal value of an ILP is an hard problem in general (we will see in Section 2.2.2 that
the transversality which is NP-hard to compute can be expressed as an ILP). Note that, in several
cases, the integrality gap is bounded or, even better, there is no integrality gap.

2.2.2 Transversal and Packing Linear Programs

In the following, we will consider the transversality and the packing number as linear programs.
Let H = (V ,E) be a hypergraph.

Transversal (Integer) Linear Program:
Variables: A variable xv ∈R (or N) for every v ∈V .
Constraints: For every hyperedge e ∈ E ,

∑
v∈e xv ≥ 1.

For every vertex v , xv ≥ 0.
Objective function: minimize

∑
v∈V xv .

The constraint matrix of the Transversal LP of the hypergraph of Figure 2.9 is represented in Fig-
ure 2.10. Note that there are two types of constraints. The hyperedge constraints are the constraints
on the hyperedges of H . The positivity constraints are the constraints on the vertices of H . There
exists a bijection between the set of variables and the set of vertices of the hypergraph. By abuse
of notation, and when no confusion is possible, we will say that the variables are the vertices of the
hypergraph. The values of the variables can be seen as a weight function on the vertices of the hy-
pergraph. A weight function w : V −→ R satisfies the transversal linear program if, when we give
the value w(v) to the variable xv then all the constraints are satisfied. We will denote by w(V ) the
sum of the weights of all the vertices.

Observation 2.13. Let H be a hypergraph with no empty hyperedges. The optimal value of the
Transversal Integer Linear Program of H equals τ(H).
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Figure 2.9: A hypergraph. For readability the
hyperedges of size at least 3 are represented
in blue.
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Figure 2.10: Constraint matrix A of the
Transversal LP of Figure 2.9. The seven first
lines are hyperedges constraints. The five
others are positivity constraints.

Proof. Let w be an optimal weight function V −→ N of the Transversal ILP. First note that each
variable has either value zero or one. Indeed, assume by contradiction that some vertex v satisfies
w(v) ≥ 2. Consider the weight function w ′ where w ′(u) = w(u) for every u 6= v and w ′(v) = w(v)−1.
All the constraints are still satisfied. For the positivity constraints, it is immediate. For the hyperedge
constraints, either v ∉ e and then we have

∑
u∈e w ′(u) = ∑

u∈e w(u) ≥ 1 since the function w is a
solution of the transversal LP. Or v ∈ e, and then we have

∑
u∈e w ′(u) ≥ w ′(v) ≥ 1. So w ′ is also a

solution of the transversal LP and
∑

u∈V w ′(u) < ∑
u∈V w(u), a contradiction with the optimality of

w .
So w is a function V −→ {0,1}. Let X be the subset of vertices v such that w(v) = 1. Since∑

u∈e w(u) ≥ 1 for every hyperedge e, we have X ∩ e 6= ∅, i.e. X is a hitting set. Conversely, every
hitting set can be transformed into a solution of the Transversal ILP by giving weight one to the
vertices of the hitting set and zero to the others.

Note that if the hypergraph contains an empty hyperedge, then the Transversal LP cannot be
satisfied since there is a constraint 0 ≥ 1. Indeed, no vertex of the hypergraph can intersect the
empty hyperedge. Let us now define the packing LP of a hypergraph H = (V ,E).

Packing (Integer) Linear Program:
Variables: A variable xe ∈R (or N) for each hyperedge e.
Constraints: For every vertex v ,

∑
e|v∈e xe ≤ 1.

For every hyperedge e, xe ≥ 0.
Objective function: maximize

∑
xe∈E xe .

Note that if the hypergraph H contains an empty hyperedge then the optimal value of the Packing
Linear Program of H is infinite. Indeed, we can give to the empty hyperedge an arbitrarily large
value since no constraint uses it.
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Observation 2.14. Let H be a hypergraph with no empty hyperedge. The optimal value of the Packing
Integer Linear Program of H equals ν(H).

Proof. First note that every variable has value 0 or 1. Indeed if a variable xe has value at least two,
then every vertex v ∈ e would satisfy

∑
e ′|v∈e ′ x ′

e ≥ 2, a contradiction. Such a vertex v exists since H
does not contain any empty hyperedge.
So the Packing ILP can be seen as a weight function w : E −→ {0,1}. Let us denote by P the set
of hyperedges e such that w(e) = 1. Since every vertex v satisfies

∑
e|v∈e w(e) ≤ 1, every vertex is

in at most one hyperedge of P . In other words the hyperedges of P are vertex disjoint, i.e. P is a
packing.

If the hypergraph contains an empty hyperedge, then we can put it in the packing (it does not
intersect any other hyperedge, so all the optimal packings contain it) and compute the packing of
the remaining hypergraph via linear programming: containing an empty hyperedge does not avoid
us to apply linear programming techniques.

Theorem 2.15. Transversal Linear Program and Packing Linear Program are LP-dual.

Sketch of proof. Let H be a hypergraph. Let us denote by A the matrix constraint, by b the constraint
vector and by c the objective function of the Transversal LP. So the Transversal LP can be written as
min t cx under the constraint Ax ≤ b.

In the dual linear program, there is a variable associated to each constraint of the primal linear
program. In other words, there is a variable associated to every hyperedge constraint (we will de-
note it by xe ) and to every positivity constraint (we will denote it by yv ). In the following, we denote
by y the concatenation of the vectors xe and yv . Let us first describe the objective function of the
dual LP. Theorem 2.12 ensures that the objective function of the dual LP consists in maximizing t by
(since the dual of a minimization problem is a maximization problem). The vector b equals one
on the hyperedge constraints (since every hyperedge must have size at least one) and equals zero
on the positivity constraints (since every variable must have non negative weight). So the objective
function of the dual LP is max(

∑
e∈E xe ).

The vector c is a vector of ones (since we sum the values of all the variables in the objective
function of the primal LP). The coefficients of the matrix A are 0 and 1. On the lines corresponding
to hyperedge constraints, the coefficient A( j , i ) = 1 if the vertex i is in the hyperedge e j . On the
lines corresponding to positivity constraints, all the coefficients equal zero except in the j -th col-
umn for the positivity constraint of the vertex v j . The constraints of the dual LP correspond to the
columns (i.e. to the vertices) of the primal LP. The dual constraint corresponding to the vertex v is
(
∑

e|v∈e xe )+ yv = 1. Theorem 2.12 ensures that the dual linear program has the following variables
and constraints.

Variables: A variable xe for each hyperedge e,
A variable yv for every vertex v .
Constraints: For every vertex v , yv +∑

e|v∈e xe = 1.
For every hyperedge e, xe ≥ 0.
For every vertex v , yv ≥ 0.

Note that each variable yv appears in exactly one constraint (the constraint of the vertex v) and does
not appear in the objective function. So we can forget these variables and replace the equalities
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by inequalities. In other words, the vertex constraint for the vertex v becomes
∑

e|v∈e xe ≤ 1. It
is equivalent to the original one since if we add yv and give it the value 1−∑

e|v∈e xe , the original
constraint is satisfied. The resulting LP is exactly the Packing LP.

Fractional transversality and integrality gap. In the following we will denote by τ∗ and ν∗ theτ∗
ν∗ fractional relaxation of respectively τ and ν. In other words, τ∗ (resp. ν∗) is the optimal value of

the Transversal (resp. Packing) Linear Program in real numbers. The following theorem is a direct
consequence of Theorem 2.12 and Theorem 2.15.

Theorem 2.16. Every hypergraph H with no empty hyperedge satisfies :

ν≤ ν∗ = τ∗ ≤ τ.

Before illustrating the integrality gap of transversal and packing LP, let us first provide a simple
but useful observation.

Observation 2.17. Let H be a hypergraph with no empty hyperedge and let c be a positive constant.
If every hyperedge contains at least c ·n vertices, then τ∗ ≤ 1/c.

Proof. Let w be the weight function V −→ R such that w(v) = 1/(cn) for every v ∈ V . Every hy-
peredge has weight at least 1 (since every hyperedge contains at least cn vertices and each ver-
tex has weight 1/cn), so all the constraints are satisfied. And the total weight of the vertex set is
n/cn = 1/c.

Lemma 2.18. The gap between τ and τ∗ can be arbitrarily large.

Proof. Let Un,2n be the complete n-uniform hypergraph on 2n vertices. Since every hyperedge
contains half of the vertices, Observation 2.17 ensures that τ∗ ≤ 2. On the contrary, we have τ≥ n+1.
Otherwise the complement of a hitting set would have size at least n, and then would contain a
hyperedge (since every subset of size n is a hyperedge), a contradiction.

Lemma 2.18 refines the fact that the gap between τ and ν can be arbitrarily large by Theo-
rem 2.16.

Lemma 2.19. The gap between ν and ν∗ can be arbitrarily large.

Proof. Let Kn be a clique on n vertices. Construct the following hypergraph Hn . The vertices of Hn

are the edges of Kn . For every vertex v , create the hyperedge ev containing all the edges adjacent to
v . The hypergraph H4 is represented on Figure 2.11.

Consider the following weight function w on the hyperedges which associates 1/2 to every hy-
peredge of the hypergraph. The total weight is n/2 since there are n hyperedges in the hypergraph
Hn and each hyperedge has weight 1/2. The constraints are satisfied since every vertex of Hn is
in two hyperedges (the edge uv of Kn is only in the hyperedges eu and ev ). So ν∗(Hn) ≥ n/2. On
the contrary, we have ν(Hn) = 1. Indeed, for every pair of vertices u, v , the hyperedges eu and ev

intersect on uv (the edge uv exists since the original graph is a clique).
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Figure 2.11: Illustration of the proof of Lemma 2.19. At the left a K4. At the right, the hypergraph
constructed from the edges of K4.

Let us finally uses both LP-duality and hypergraph duality in order to link α and c. Recall that
α denotes the maximum size of a stable set of a hypergraph. And c denotes the minimum size of
a covering of the hypergraph. Observation 2.9 ensures that τ(H) = c(H t ). And Observation 2.10
ensures that ν(H) = α(H t ). Therefore, by applying Theorem 2.12 on the dual hypergraph, we have
the following.

Observation 2.20. Every hypergraph H satisfies α(H) ≤α∗(H) = c∗(H) ≤ c(H).

2.2.3 Farkas’ Lemma
Farkas

Lemma 2.21 (Farkas’ Lemma). Let A be a n ×m matrix. At least one of the following holds:

1. There exists w ∈Rm such that w ≥ 0, w 6= 0 and Aw ≥ 0.

or 2. There exists y ∈Rn such that y ≥ 0, y 6= 0 and t y A ≤ 0.

There exists several proof of this result. In particular it can be seen as a particular case of the
well-known Hahn-Banach theorem (which is a main theorem in analytics). There also exists less
involved proofs (one of them can be found in [180]). Note that Lemma 2.21 is one of the most
famous “visual” applications of the duality of linear programming. Indeed it ensures that either the
primal satisfies some property or that the dual satisfies the dual property. Let us now give a nice
application of Farkas’ Lemma due to Alon et Brightwell [6].

Lemma 2.22 (Alon, Brightwell [6]). For every oriented graph D = (V , A), there exists a weight function
w : V → [0,1] such that w(V ) = 1 and for each vertex u, w(N+(u)) ≥ w(N−(u)).

Proof. Let M be the adjacency matrix of the oriented graph D , that is to say that Mu,v = 1 if uv ∈ A,
−1 if vu ∈ A, and 0 otherwise. Apply Lemma 2.21 to M .
If case one occurs, then w is a nonnegative weight function on the columns of M , with at least
one non zero weight. Since M w ≥ 0, we get w(N+(u)) ≥ w(N−(u)) for all u ∈ V . Indeed, each
constraint corresponds to each line of the matrix. And the line corresponding to the vertex u gives
the constraint

∑
v |uv∈A w(v)−∑

v |vu∈A w(v) ≥ 0, i.e. we have w(N+(u)) ≥ w(N−(u)). We conclude by
rescaling the weight function with a factor 1/w(V ) (such a rescaling does not affect the inequalities
and provides a total weight of 1).
Otherwise, case two occurs and there is y ∈Rn with y 6= 0 such that t y A ≤ 0. We get by transposition
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t Ay ≤ 0 thus −Ay ≤ 0 since A is an antisymmetric matrix, and then Ay ≥ 0. We conclude as in the
previous case.

Note that the inequality of Lemma 2.22 can also be reversed. In other words, there exists a
weight function w : V → [0,1] such that w(V ) = 1 and for each vertex u, w(N−(u)) ≥ w(N+(u)).
Indeed, if we reverse the arcs of an oriented graph and if we apply Lemma 2.22 on the oriented
graph with reversed edges, then it immediately gives w(N−(u)) ≥ w(N+(u)). The following Lemma
is a direct consequence of Lemma 2.22

Lemma 2.23 (Alon, Brightwell [6]). Every tournament T has a weight function w : V → [0,1] such
that w(V ) = 2 and for each vertex u, w(N+[u]) ≥ 1.

Proof. Let us consider a weight function w ′ satisfying conditions of Lemma 2.22. Let us define the
weight function w such that for every u ∈ V we have w(u) = 2w ′(u). The total weight is 2, and
for every vertex u we have w(N+(u)) ≥ w(N−(u)). In addition, since T is a tournament, we have
w(N+[u])+ w(N−(u)) = 2. So Lemma 2.22 ensures that w(N+(u)) ≥ 1. It immediately gives the
conclusion.

2.3 Algorithmic aspects of hitting sets. Application to MULTICUT

All along this part we will consider parameterized algorithmic aspects of hitting sets. First we
will introduce the HITTING SET problem. In Section 2.3.1, we will focus more precisely on graph
separation problems and MULTICUT. We will make a state of the art of the existing results in this
area. Then we will introduce two crucial tools to design parameterized algorithms for graph sep-
aration problems. The first one, introduced by Marx, is called the important separator technique.
The second one, due to Marx and Razgon, consists in a random sampling of important separators.
In Sections 2.3.2 and 2.3.4 we will present these tools. The proofs of these two sections are quite
involved compared to the other parts of this chapter.

Let us first state formally the decision hitting set problem.

HITTING SET:
Input: A hypergraph H = (V ,E), an integer k.
Parameter: k.
Output: TRUE if H has a hitting set of size at most k, otherwise FALSE.

A lot of graph problems can be expressed as hitting set problems. The easiest one is VERTEX

COVER. Indeed, as underlined in Section 2.1, a vertex cover of the graph G is a hitting set of a 2-
uniform hypergraph G . So HITTING SET is NP-complete since VERTEX COVER is (it is one of the 21
Karp’s problem). Note also that DOMINATING SET is a HITTING SET problem. Indeed let G be a graph
and consider its closed neighborhood hypergraph H of G . A hitting set of H is a dominating set of
G . Indeed a hitting set of H is a subset of vertices intersecting every closed neighborhood, so a set of
vertices whose closed neighborhood cover the vertices of G . Hence a hitting set of H is a dominating
set of G . So, from a parameterized point of view, HITTING SET is W [2]-hard parameterized by the
size of the solution because DOMINATING SET is (and the reduction does not modify the parameter),
see [75]. Finally HITTING SET (probably) does not admit FPT algorithms in the general case.
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In this manuscript, we are interested in a particular type of HITTING SET problems, which are
the graph separation problems. Let us first provide several definitions. Given a graph G and a set R
of requests between pairs of vertices (these vertices are called terminals or endpoints), a multicut 1 is requests

terminals

multicut
a subset F of edges of G whose removal separates the two endpoints of every request (i.e. for every
request, the two endpoints of this request lie in different connected components of G \ F ).

MULTICUT:
Input: A graph G = (V ,E), a set of requests R, an integer k.
Parameter: k.
Output: TRUE if there is a multicut of size at most k, otherwise FALSE.

Consider the hypergraph H on vertex set E where E ′ ⊆ E is a hyperedge if the set of edges of
E ′ form a path between two endpoints of a same request. In other words, the hyperedges are the
possible paths between endpoints of requests. A hitting set of H is a subset of edges which intersects
all the paths between endpoints of the same requests. So the deletion of such a subset of edges put
the endpoints of every request in distinct connected components. In other words, a hitting set is a
multicut of (G ,R).

MULTICUT parameterized by the size of the solution was considered as one of the main open
problems of the fixed parameterized complexity theory [69]. We proved with Jean Daligaut and
Stéphan Thomassé that MULTICUT is FPT [33]. Independently Marx and Razgon proved the same
result in [147]. The rest of this section is organized as follows. In Section 2.3.1, we propose a state of
the art of the MULTICUT problem and related problems. Most of the recent results obtained on graph
separation problems are based on a technique called important separators and its randomized ex-
tension called shadow removal. In Section 2.3.2, we present the important separators technique
and illustrate it on MULTIWAY CUT. Finally in Section 2.3.4 we introduce the shadow removal tech-
nique and apply it to DIRECTED MULTIWAY CUT.

2.3.1 Multicut problems

MULTICUT and its variants have raised an extensive literature. These problems play an important
role in network issues, such as routing and telecommunications (see [62]). For example, vertices
of the graph could represent Urban Switch Centers in a telephone network, and (weighted) edges
represent physical connections between vertices [43].

The MULTICUT problem is already hard when the input graph is a tree since VERTEX COVER can
be viewed as MULTICUT in stars. Indeed consider a star on n branches where each branch corre-
sponds to a vertex of the graph. There is a request between two branches if the corresponding ver-
tices are adjacent in the graph. One can easily verify that a multicut of size at most k is a vertex cover
of the original graph of size at most k (and conversely). Hence MULTICUT IN TREES is NP-complete
and MaxSNP hard (since VERTEX COVER is), which implies that it admits no Polynomial-Time Ap-
proximation Scheme (PTAS) unless P=NP. Garg et al. [104] proved that MULTICUT IN TREES admits a
2-approximation algorithm, by showing that in trees the minimal size of a multicut is at most twice
the maximal flow value, and using a primal-dual approach. Guo and Niedermeier [112] proved that
MULTICUT IN TREES is FPT parameterized by the size of the solution. The existence of a polynomial
kernel was asked in [22]. We answered this with Jean Daligault, Stéphan Thomassé and Anders Yeo

1. In this thesis, the term multicut stands for edge-multicut.
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in [34] by proving that MULTICUT IN TREES admits a O (k6) kernel. This upper bound was improved
by Chen et al. in [51] into a O (k3) kernel.

A classical variant of MULTICUT is the MULTIWAY CUT problem in which a set of terminals has to
be pairwise separated.

MULTIWAY CUT:
Input: A graph G = (V ,E), a set of terminals X ⊆V , an integer k.
Parameter: k.
Output: TRUE if there exist k edges whose deletion puts every vertex of X in distinct
connected components, otherwise FALSE.

MULTIWAY CUT has been proved to be FPT parameterized by the size of the solution by Marx [143]. A
faster O∗(4k ) algorithm was proposed by Chen et al. [52], improved into a O∗(2k ) algorithm in [66].
The proof, based on important separators, will be detailed a little bit further. Recently Kratsch and
Wahlström proved that MULTIWAY CUT admits a O (k t ) kernel where t denotes the number of termi-
nals. It is still open to determine if MULTIWAY CUT admits a polynomial kernel parameterized by the
size of the cutset only.

On general instances, Garg et al. gave an approximation algorithm for MULTICUT within a log-
arithmic factor in [103], proving that the minimum size of the multicut is within a factor O (log (`))
of the maximum multiflow value in general graphs, where ` is the number of requests. How-
ever, MULTICUT has no constant factor approximation algorithm if Khot’s Unique Games Conjecture
holds [48].

Guo et al. showed in [111] that MULTICUT is FPT when parameterized by both the treewidth of
the graph and the number of requests. Gottlob and Lee proved a stronger result in [106]: MULTICUT

is FPT when parameterized by the treewidth of the input structure, i.e. the input graph whose edge
set is augmented by the set of requests. Marx proved that MULTICUT is FPT parameterized by the
size of the solution plus the number of requests [143]. A faster algorithm running in time O∗((8·`)k )
was given by Guillemot [110] (recall that ` is the number of requests). Marx et al. [144] obtained
FPT results for more general types of constrained MULTICUT problems through treewidth reduc-
tion results. However their treewidth reduction techniques do not yield FPT algorithm of MULTICUT

when parameterized by the size of the solution only. Finally, Marx and Razgon obtained a factor
2 Fixed-Parameter-Approximation for MULTICUT parameterized by the size of the solution in [146].
We finally proved in 2011 with Jean Daligault and Stéphan Thomassé that MULTICUT is FPT param-
eterized by the size of the solution [33]. Independently, Marx and Razgon also provided an FPT
algorithm [147]. Nevertheless there remain several open problems on MULTICUT. In particular we
can add constraints on the structure of the target MULTICUT: we can look for independent multi-
cuts, or connected multicuts. When parameterized by both the size of a solution and the number of
requests, the problem is FPT for finding independent multicuts [145]. Recently, Cygan et al. proved
that both MULTICUT and MULTIWAY CUT parameterized by the size of the solution do not admit po-
lynomial kernels [64].

Problem 1. Does MULTICUT parameterized by both the size of the solution and the number of requests
admits a polynomial kernel?

Instead of wanting to intersect all the paths between every pair of terminal of a same request,
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we can just ask for intersecting a subset of paths between every pair of terminals. More formally,
consider the following problem.

HITTING PATH:
Input: A graph G , a set R of paths in G , an integer k.
Parameter: k.
Output: TRUE if there is a set of at most k edges of G which hits R, otherwise FALSE.

Problem 2. Is HITTING PATH FPT parameterized by the size of the solution?

Note that HITTING PATH and MULTICUT are rather distinct problems: MULTICUT cannot be (eas-
ily) reduced to HITTING PATH in polynomial time since there can be an exponential number of paths
between some endpoints of a request.

Recently, lots of research have been done for studying MULTICUT in directed graphs. The input
graph is a directed graph and the requests are directed pairs. The objective is to eliminate all the di-
rected paths between directed pairs of terminals. Marx and Razgon proved that DIRECTED MULTICUT

is W[1]-hard parameterized by the size of the solution in [147]. Even worse, Kratsch et al. proved
that DIRECTED MULTICUT is W [1]-hard parameterized by the size of the solution in directed acyclic
graphs [130]. Nevertheless DIRECTED MULTICUT in Directed Acyclic Graphs is FPT parameterized by
the size of the solution plus the number of pairs of terminals [130]. In addition, Chitnis et al. proved
in [55] that DIRECTED MULTICUT with two pairs of terminals is FPT parameterized by the size of the
solution.

Problem 3. Is DIRECTED MULTICUT FPT parameterized by both the size of the solution and the number
of terminals?
Or, a little bit weaker, is DIRECTED MULTICUT FPT parameterized by the size of the solution when the
number of requests is a fixed constant?

Nevertheless in several sub-cases, DIRECTED MULTICUT is FPT. A crucial variant of DIRECTED

MULTICUT is FPT parameterized by the size of the solution in directed graphs: SKEW MULTICUT. In
the SKEW MULTICUT problem, we are given an oriented graph and two ordered sets of terminals si , ti

and we want to find a subset of at most k edges which eliminates all the directed paths from si to t j

for every j ≥ i . SKEW MULTICUT is FPT parameterized by the size of the solution in Directed Acyclic
Graphs [53]. The proof of this result is the core of the proof that DIRECTED FEEDBACK VERTEX SET is
FPT parameterized by the size of the solution [53]. More recently and using shadow removal tech-
niques, several other variants of DIRECTED MULTICUT such as DIRECTED MULTIWAY CUT were shown
to be FPT [55].

2.3.2 Important separators

All along the manuscript, the graphs are assumed to be simple and loopless. Nevertheless the
rest of this chapter and exclusively there, we will assume that the graphs can have multiple edges
but still no loop. In other words, for every pair u, v there can be several edges uv in the graph. Let us
now introduce important separators and shadow removal. These two techniques are very involved.
Therefore the proofs of the next sections are much more complicated than the other proofs of this
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x y

Figure 2.12: Every pair of edges with one edge in the upper path and one edge in the below path is
a minimum x y-separator.

chapter. We will nevertheless detail the first proofs in order to increase little by little the complexity.
We will also give at the beginning the main intuitions on important separators.

Lots of proofs of graph separation problems solved in the last few years are based on important
separators, such as [33, 53, 55, 143, 147]. This technique has been introduced by Marx in [143]. All
the lemmas and theorems of Section 2.3.2 are classical ones, and were already proved in [52, 143]
for instance.
Let G be a graph and x, y be two vertices of a graph. The number of minimum separators between
x and y can be arbitrarily large. Consider for instance the graph of Figure 2.12. Every pair of edges
with one edge on the above path and one on the below path is a minimum separator between x
and y . So, if the two x y-paths have length n, then there are 2n x y-separators of size 2. Neverthe-
less, all of them are not necessarily “important”. Imagine for instance that our goal is to separate x
from y in such a way the component of x is minimized. Then there is a unique such x y-separator
of minimum size (instead of an exponential number). In Figure 2.12 it is the set of two edges ad-
jacent to x. Marx proved that the number of (indivisible) important x y-separators of size at most
k can be bounded by a function of k. In addition, all these separators can be found in FPT time
parameterized by k.

Let us now define formally these notions. Let G = (V ,E) be a connected graph on n vertices
with a particular vertex x called the root. In the following, we will only consider separators from theroot

point of view of the root x. A separator can be considered as a set of edges, but also as a bipartition
of the vertex set (the vertices which are in the connected component of x and the vertices which are
not). In the following we consider separators as bipartitions. As we want to focus on one side of the
bipartition, we define a separator as a subset of vertices S containing the root x. An x y-separator isseparator

a subset of vertices containing x and not containing y . The border of S is the set of edges of G withborder

exactly one endpoint in S. We denote the border of S by ∆(S), and the cardinality of ∆(S) is denoted∆

by δ(S). By abuse of notations, the size of a separator S will denote the size of the border of S, i.e.δ

δ(S). Recall that A denotes the complement of the set A, i.e. V \ A.

Observation 2.24. The function δ is submodular, i.e. for every pair of separators S,T we have δ(S)+
δ(T ) ≥ δ(S ∩T )+δ(S ∪T ).

Proof. Let us prove that every edge which contributes to the right hand side also contributes to the
left hand side with at least the same multiplicity. Let S and T be two separators and let u, v be two
vertices of the graph.

– If uv is in ∆(S∩T ) and in∆(S∪T ), then without loss of generality, u is in S∩T and v in S∩T .
So uv is in both ∆(S) and ∆(T ).

– If uv is in∆(S∩T ) and not in ∆(S∪T ), then, up to symmetry, we have u ∈ S∩T and v ∈ S∩T .
So uv is in ∆(T ).
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– If uv is in ∆(S∪T ) and not in ∆(S∩T ) then, without loss of generality, u is in S \ (S∩T ) and v
is in S ∩T . So in particular uv is in ∆(S).

Let x be a root. Let y be a vertex. The tools used for proving Theorem 2.5 (Menger’s Theorem)
ensures that the size of a minimum x y-separator can be determined in polynomial time (and a
minimum separator can be computed in polynomial time) and it is equal to the maximum number
of edge-disjoint paths between x and y . The connectivity between x and y is the minimum size of connectivity

a separator between x and y and it is denoted by λ(x, y) (or when no confusion is possible by λ). A
separator S is an important separator if every separator T such that T ( S satisfies δ(T ) > δ(S). Let important

separatorus first make an easy observation.

Observation 2.25. Every separator S contains an important separator S′ such that δ(S′) ≤ δ(S).

Proof. We prove it by induction on the number of vertices contained in S. Either S is an impor-
tant separator and the conclusion holds. Otherwise there exists S′ ( S such that δ(S′) ≤ δ(S). By
induction there exists an important separator S′′ such that S′′ ⊂ S′. We also have S′′ ⊆ S.

The “idea” of important separators can be summarized as follows. If you want to find a separator
with less vertices (in the component of the root x), then you have to pay a price: the size of the
border of the separator must be strictly larger. Before stating the most important results of this
section, let us first give some general properties of important separators.

Lemma 2.26. Important separators are closed under union. In other words, if S and T are important
separators, then S ∪T is an important separator.

Proof. Let S1 ∪S2 be the union of two important separators. Let S3 ( S1 ∪S2 be a separator such
that δ(S3) is minimized. Our goal is to prove that δ(S3) > δ(S1 ∪S2). Indeed in this case, since δ(S3)
minimizes the size of the border over the strict subsets of S1∪S2, it would mean that no T ( S1∪S2

satisfies δ(T ) ≤ δ(S1 ∪S2), i.e. S1 ∪S2 is an important separator.
Without loss of generality, we can assume that S1 is not included in S3. Since S1 is an important
separator, we have δ(S1 ∩S3) > δ(S1). Indeed S1 ∩S3 ( S1 and every strict subset T of S1 satisfies
δ(T ) > δ(S1) since S1 is an important separator. As Observation 2.24 ensures that δ(S1∩S3)+δ(S1∪
S3) ≤ δ(S1)+δ(S3), we obtain δ(S1 ∪S3) < δ(S3).
Note that we have S1 ∪ S3 ⊆ S1 ∪ S2 (since both S1 and S3 are in this set). By definition, S3 has
minimum border among strict subsets of S1 ∪S2 and δ(S3) > δ(S1 ∪S2), hence the set S1 ∪S3 is not
a strict subset of S1 ∪S2. So it is equal to S1 ∪S2. Finally δ(S1 ∪S2) = δ(S1 ∪S3) < δ(S3), thus S1 ∪S2

is an important separator.

Lemma 2.27. If S1,S2 are distinct important separators, then δ(S1 ∪S2) < max(δ(S1),δ(S2)).

Proof. As S1 6= S1 ∪S2 or S2 6= S1 ∪S2, we can assume without loss of generality that S1( S1 ∪S2. By
Lemma 2.26, S1 ∪S2 is an important separator and S1 ( S1 ∪S2, thus we have δ(S1 ∪S2) < δ(S1) ≤
max(δ(S1),δ(S2)).

A separator S is an indivisible separator if no strict subset of ∆(S) is a separator. In other words, indivisible
separatorwhen we delete from the graph all the edges of∆(S) but exactly one, the graph becomes a connected
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Figure 2.13: Illustration of Lemma 2.28.

graph. Or yet differently an indivisible separator is a separator S such that V \S induces a connected
subgraph. A separator is divisible if it is not indivisible. An indivisible important x y-separator S is
an indivisible important separator rooted in x such that y ∉ S.

Lemma 2.28. If S is a divisible important separator and W is a connected component of G \ S, the
separator W is an indivisible important separator with δ(W ) < δ(S).

Proof. The situation of Lemma 2.28 is illustrated on Figure 2.13. The separator W is indivisible
since the set W is connected. So we just have to prove that W is an important separator. First note
that we have ∆(W )(∆(S). Note that the non equality comes from the fact that S is divisible.

Consider an important separator T ⊆W which minimizes δ(T ). Our goal is to prove that T =W .
By Lemma 2.26, S ∪T is an important separator. As δ(T ) ≤ δ(S ∪T ) by minimality of δ(T ) (since
S ∪T ⊂W ), we have T = S ∪T (because S ∪T is an important separator). In particular, S ⊆ T . Every
edge of ∆(W ) has one endpoint in S and one endpoint in W . Since S ⊆ T and since no vertex of W
is in T , we have ∆(W ) ⊆ ∆(T ). Therefore, by minimality of δ(T ), we have ∆(T ) = ∆(W ). Finally we
have T =W . Thus, W is an important separator.

Corollary 2.29. Every indivisible separator S contains an indivisible important separator S′ with
δ(S′) ≤ δ(S).

Proof. Let S′′ be an (non necessarily indivisible) important separator contained in S such that
δ(S′′) ≤ δ(S). As S is connected, the set S is included in a connected component Y of G \ S′′. By
Lemma 2.28, S′ := Y is an indivisible important separator with δ(S′) < δ(S′′) ≤ δ(S). Moreover, S′ ⊆ S
as S ⊆ Y .

In the following we are looking for x y-separators: we do not care about separating x from other
vertices than y , so the only separators which are interesting for us are indivisible x y-separators
since if the separator is divisible we can do “the same” with less edges. So Corollary 2.29 ensures
that we can just look for indivisible important x y-separators. Marx first proved that the number of
indivisible important x y-separators of size at most k is bounded by a function of k. In the litera-
ture the "indivisible" is often omitted and such indivisible important x y-separators are often called
important x y-separators.

Lemma 2.30. Let G be a graph and x, y be two vertices. There is a unique important x y-separator of
size λ(x, y) (which can be computed in polynomial time). This separator is indivisible. In addition,
every important x y-separator is contained in S.
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Proof. Let S be an important x y-separator of size λ(x, y). Note that such a separator exists by Ob-
servation 2.25. Assume by contradiction that an important x y-separator T contains a vertex which
is not in S. Lemma 2.26 ensures that S∪T is an important separator. Since S( S∪T and since S∪T
is an important separator, we have δ(S ∪T ) < δ(S). In addition y ∉ S ∪T , so there is a x y-separator
of size less than λ(x, y), a contradiction. So no important x y-separator contains a vertex which is
not in S.
So there is a unique minimum important x y-separator. In addition this separator is indivisible
otherwise it would not be minimal. The proof of the complexity part can be found in [143] for in-
stance.

In the following the unique important x y-separator of size λ(x, y) will be called the minimum
important x y-separator. Let us now give some definitions. Let G = (V ,E) be a graph. The graph
G ′ = (V ′,E ′) obtained by identifying two vertices u and v is the graph where u, v are deleted and are
replaced by a unique vertex w , and w is adjacent to every vertex w ′ which is a neighbor of u or v
and the multiplicity of this edge is the multiplicity of uw ′ plus the multiplicity of v w ′. Contracting
an edge e consists in identifying the endpoints of the edge e. Let us make an observation which will
be important in the proof of the next theorem.

Observation 2.31. Let G be a graph and S be the minimum important x y-separator. Let G ′ be the
graph G where all the vertices of S have been identified with y. Every indivisible important x y-
separator of G is an indivisible important x y-separator of G ′.

Proof. Lemma 2.30 ensures that, if we look for important x y-separators, the vertices which are not
in the unique minimum indivisible important separator S can be identified with y . Indeed for every
indivisible important x y-separator T , no vertex of S is in T . So if we identify all the vertices of S (and
still denote by y the identified vertex), the indivisible important x y-separators are not affected.

Note also that in the graph G ′ there is a unique x y-separator of size λ(x, y) (which is V \ y). Note
that we just deal with separators and not important separators here. The first upper bound on the
number of indivisible important x y-separators is due to Marx. It was improved by Chen et al. We
will see further that this bound is nearly tight.

Theorem 2.32 (Marx [143], Chen et al. [52]). Let G be a graph and x, y be two vertices. There are at
most 4k indivisible important x y-separators of size at most k which can be enumerated in FPT time
(in 4O (k)).

Proof. First note that if λ(x, y) > k, then there is no indivisible important x y-separator. So in the
following we assume that k ≥ λ(x, y). By Lemma 2.30, there exists a unique minimum indivisible
important x y-separator S. Identify all the vertices in S with y (since no vertex of S is in an indivisible
important x y-separator by Lemma 2.30 this operation is safe). We still denote by y the identified
vertex. Let us denote by G ′ the graph obtained after this contraction. Observation 2.31 ensures that
after this contraction:

– There is a unique minimum x y-separator which is the set of edges adjacent to y .
– The indivisible important x y-separators of the graph G are exactly the indivisible x y-

separators of the graph G ′.
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In the rest of the proof we only work on the graph G ′. Let us prove that every indivisible important
x y-separator can be found using a branching algorithm. Let e be an edge of ∆(S).

Claim 2.33. Every indivisible important x y-separator of G ′ containing e in its border is an indivisible
important x y-separator of G ′−e ( i.e. the graph obtained by a deletion of e from E).

Proof. Let T be an indivisible important x y-separator such that e ∈∆(T ). Assume by contradiction
that T \ e is not important in G ′− e. Then there exists T ′ ( T such that δ(T ′) ≤ δ(T ). In the whole
graph G ′ (i.e. when we add e), the border of T ′ increases by at most one (since only the edge e
can be added in the border of T ′). And the border of T increases by exactly one. So we still have
δ(T ′) ≤ δ(T ) in G ′, contradicting the fact that T is an important x y-separator. In addition T \ e is
clearly still indivisible in G ′−e.

Claim 2.34. Every indivisible important x y-separator of G ′ not containing e in its border is an indi-
visible important x y-separator of the graph G ′ where the endpoints of e are contracted.

Proof. Let us denote by G ′
e the graph G ′ in which the edge e is contracted. Let T be an indivisible

important x y-separator of G ′ such that e ∉∆(T ). So both endpoints of e are in the same connected
component in G[E \∆(T )] (since e is not in ∆(T )). Assume by contradiction that T is not indivisible
in G ′

e . So there exists T ′ ( T such that δ(T ′) ≤ δ(T ). Though the size of δ(T ′) does not increase in
the graph G ′. So we still have δ(T ′) ≤ δ(T ) and T ′( T , a contradiction.

Consider the following algorithm. If λ(x, y) > k return the empty set. Otherwise, compute the
unique minimum indivisible important x y-separator S (which can be done in polynomial time by
Lemma 2.30). Identify all the vertices of S with y . Let e be an edge adjacent to y in the contracted
graph. Claim 2.33 and 2.34 ensures that if we branch by deleting the edge e or by contracting the
edge e, then we find all the indivisible important x y-separators.

Let us prove that in both cases, the invariant 2k −λ decreases. In the first case, k decreases
by one and the connectivity decreases by exactly one. Indeed Theorem 2.5 ensures that there are
λ(x, y) edge-disjoint x y-paths in G , so there remain at least λ−1 paths when e is deleted, i.e. the
connectivity decreases by at most one (and actually exactly one). In the second case, k is not mod-
ified and λ strictly increases. Indeed since vertices of S have been contracted with y and since S is
the unique minimum important x y-separator, the contraction of the edge e ensures that the con-
nectivity strictly increases. Otherwise there would be an x y-separator T of size λwith both vertices
of e in T , and then T ( S. So the invariant decreases. So the height of the branching tree is at most
2k. And the width of the branching tree is 2 since we branch over two possible choices at each
step. So there are at most 4k branches and each branch gives at most an indivisible important x y-
separator, so there are at most 4k indivisible important x y-separators of size at most k.
Since computing the unique minimum indivisible important x y-separator can be done in polyno-
mial time, the resulting algorithm is FPT.

Theorem 2.32 ensures that the number of indivisible important x y-separators is bounded. We
have already seen that the “important” is necessary in Figure 2.12. But the “indivisible” assumption
is also necessary. Indeed in Figure 2.14, any pair of edges containing the edge x y is an important
x y-separators while the number of indivisible important x y-separators is one. The next lemma
ensures that the upper bound of Theorem 2.32 is almost tight.
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x y

Figure 2.14: Every pair of edges containing the edge x y is an important x y-separator, but there is a
unique indivisible important x y-separator which is the edge x y .

y

X

T ′

I

Figure 2.15: A graph with almost O∗(4k ) indivisible important Y X -separators of size k. The sets T ′

and I are illustrations of the proof of Lemma 2.35.

Before stating formally the lemma, let us give some definitions. Let X ,Y be two subsets of vertices.
In the following, we deal with separators rooted in X and with X Y -separators. A separator rooted
in X is a separator which contains all the vertices of X . In other words, if we identify all the vertices
of X into x, it is a separator rooted in x. A X Y -separator is a separator which does not contain any
vertex of Y . The notion of important separators can be naturally extended to X Y -separators.

Lemma 2.35 (Chen et al. [52]). Let X ,Y be two sets of vertices. There exist graphs with O (4k /pol y(k))
indivisible important Y X -separators of size k.

Proof. Let us first give some definitions. A binary tree (rooted is y) is a tree with nodes of degree one
or three except thee root y which has degree two. A complete binary tree (rooted in y) of depth k is
a tree in which every node of depth at most (k −1) has degree three and every node of depth k is a
leaf. Let us first recall two facts on binary trees. First a binary tree with ` leaves has exactly (`−1)
internal nodes (an internal node is a node which is not a leaf). Second the number of binary trees
rooted in y with exactly ` leaves is the Catalan number C`−1 where

C`−1 =
1

`

(
`−1

2`−2

)
∼ 4`/pol y(`).

Let T be the complete binary tree of depth k. Let us denote by y its root and by X the set of leaves
of T . Let us prove that T has 4k /Pol y(k) indivisible important X y-separators of size at most k (note
that trees are rooted in y while separators are rooted in X ). The tree T is illustrated in Figure 2.15.
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Claim 2.36. Let T ′ be a binary subtree of T with ` leaves. Let I be the set of internal nodes of T ′. The
set I is an indivisible important X y-separator with δ(I ) = `.

Proof. First note that I is a X y-separator since y ∈ I . It is indivisible since every vertex of I is by
construction in the connected component of a vertex of X . And we have δ(I ) = δ(I ) = ` since the
set of internal nodes of a binary tree is only adjacent to its set of leaves. Let us finally prove that
I is important. Assume by contradiction that there exists S ( I such that δ(S) ≤ δ(I ). Since I is
indivisible, Corollary 2.29 ensures that we can assume that S is indivisible. So S is connected, i.e.
induces a subtree of T rooted in y . Let L′ be the set of vertices adjacent to a vertex of S. The set
S ∪L′ induces a binary tree. Since |S| is strictly larger than |I |, the short observations ensures that
we have |L′| > `. A contradiction with δ(S) ≤ δ(I ).

Let us finally prove that every binary tree T ′ with exactly k leaves appears as a subgraph of T
(rooted in y). Since T ′ has k leaves, it has (k −1) internal nodes. Hence the depth of T ′ is at most k.
Since T is the complete binary tree of depth k, it contains T ′ as a subgraph.

So there are at least Ck−1 indivisible important Y X -separators, which achieves the proof of
Lemma 2.35.

Finding the exact upper bound of the number of indivisible important separators is still open.
Note nevertheless that this question is much more a combinatorial question than an algorithmic
question since finding the exact number of indivisible important separators will not improve the
complexity of algorithms since the current bound is nearly tight (4k as upper bound and 4k /pol y(k)
as lower bound).

Problem 4. Let x, y be two vertices. What is the maximum number of indivisible important x y-
separators of size at most k?

2.3.3 Application to MULTIWAY CUT

The first application of important separators in parameterized complexity has been proposed
by Marx for the MULTIWAY CUT problem. Let us first recall the formal definition of the MULTIWAY CUT

problem.

MULTIWAY CUT:
Input: A graph G = (V ,E), a set T ⊆V of terminals, an integer k.
Parameter: k.
Output: TRUE if there exists exists k edges whose deletion puts vertices of T in pairwise
distinct connected components, otherwise FALSE.

Pushing
Lemma Lemma 2.37 (Pushing Lemma [143]). Let (G ,T,k) be an instance of MULTIWAY CUT. Let x ∈ T . If

the instance is positive, then there exists a solution containing an indivisible important (T \ x, x)-
separator.

Proof. The idea is the following: if we separate a terminal x from the other terminals then it is better
to take the maximum number (by inclusion) of vertices in the connected component of x. Indeed,
it will be easier to separate the remaining terminals in the remaining graph since it contains less
vertices. Let us denote by Y the set T \ x.
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Let F be a solution of a MULTIWAY CUT instance of size at most k. Let F ′ be a minimum (by
inclusion) subset of F such that F ′ is a Y x-separator. The set F ′ is the border of an indivisible Y x-
separator and we denote by A the Y x-separator (rooted in Y ) of border F ′. By Lemma 2.29, there
exists an indivisible important Y x-separator B such that B ⊆ A and δ(B) ≤ |F ′|.

Let us prove that (F \∆(A))∪∆(B) is a also solution of the instance (G ,T,k) of the MULTIWAY

CUT problem. The size of (F \∆(A))∪∆(B) is at most k since δ(B) ≤ δ(A). Let P be a path between
two vertices of Y in B . Then it is a path between two vertices of Y in A since B ⊆ A. Since F is a
multiwaycut, the path P is intersected by an edge of F . This edge is not in ∆(A) by definition of the
path, so it is in F \∆(A), i.e. in (S \∆(A))∪∆(B). So every path P between vertices of Y are hit by
(F \∆(A))∪∆(B). Since B is a Y x-separator, the paths between the vertex x and a vertex of Y are also
hit. Hence (F \∆(A))∪∆(B) is a multiwaycut satisfying the conditions of the pushing lemma.

Corollary 2.38 (Marx [143]). MULTIWAY CUT is FPT parameterized by the size of the solution.

Sketch of the proof. Let us prove it by induction on the number of terminals. Let (G ,T,k) be an in-
stance of the MULTIWAY CUT problem. If there is a unique terminal, then return true. Otherwise, let
x ∈ T and Y be the set T \ x. If λ(x,Y ) > k then return false. If there is no Y x-path, delete x from T
since x is already separated from the other terminals.
In the other cases, Theorem 2.32 ensures that there are at most 4k indivisible important Y x-
separators of size at most k which can be found in FPT time. Lemma 2.37 ensures that if there
exists a solution, then there exists a solution such that the border of one of these separators is in
the solution. Branch over all the indivisible important Y x-separators. In other words, for every in-
divisible important Y x-separator A, delete the edges of ∆(A) in the graph G , decrease by δ(A) the
size of the target solution and remove x from T . Lemma 2.37 ensures that the initial instance is
positive if and only if one of the branches is positive. Since each important Y x-separator has size
at least 1 (since there exist Y x-paths), the parameter k strictly decreases at each branching step. So
the branching width is 4k and the branching depth is k: the resulting algorithm is FPT.

Actually, a more careful analysis gives a O∗(4k ) algorithm [52]. We will use the important sep-
arator technique for proving that MULTICUT is FPT in Chapter 6. In their proof, Marx and Razgon
introduced a new technique, called shadow removal [147].

2.3.4 Shadow removal technique

In Sections 2.3.4 and 2.3.5, and exclusively in these ones, we will deal with vertex graph sep-
aration problems instead of edge graph separation problems. In other words instead of deleting
edges, we delete vertices of the graph. The notion of important separators can be easily translated
for vertex separators (and the statements for edge-separators still hold for vertex separators). Let
G = (V ,E) be a graph and x ∈ V . A vertex separator (rooted in x) is a subset S of vertices which
contains x. The border of S, denoted by ∆(S) if the set of vertices z ∉ S such that z a neighbor in
S. We denote by δ(S) the size of ∆(S). A (vertex) important separator is a subset S of vertices such
that for every S′ ( S we have δ(S′) > δ(S). An x y-separator is indivisible if all the vertices of ∆(S)
are needed to separate x from y . Note that it does not mean (as for edge-separators) that S is con-
nected. The shadow removal technique has been introduced by Marx and Razgon in [147] and has
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T

X

shadow

Figure 2.16: The shadow of X (which is a F -HITTING SET of the the gray structure) is the above part
of the figure: it is the set of vertices which cannot reach T .

been extensively used since [55, 130, 136, 137]. This method is based on a random sampling of
important separators.

Let G = (V ,E) be a graph and T be a set of terminals. Let F be a subset of connected subgraphs
of G such that every F ∈ F satisfies F ∩T 6= ;. Such a set F of subgraphs is called a T -compatible
set. Given a T -compatible set F , the F -hypergraph of G is the hypergraph on vertex set V withT -

compatible
set
F -
hypergraph

hyperedge set F . The F -HITTING SET problem is defined as follows:

F -HITTING SET:
Input: A graph G = (V ,E), a set T of terminals, a T -compatible set F , an integer k.
Output: TRUE if the F -hypergraph of G satisfies τ≤ k, otherwise FALSE.

In this section, we consider that separators are rooted in T . In Figure 2.16, the set F composed of
the three gray connected subgraphs is a T -compatible subset. The set X is a hitting set of the F -
hypergraph. Note that MULTICUT is an F -HITTING SET problem where the elements of F are all the
paths between pairwise disjoint terminals. Every path of F induces a connected subgraph which
intersects T . And a hitting set of F is a multicut as underlined in Section 2.3.1.

Let X be a F -HITTING SET. The shadow of X is the set of vertices which are not reachable fromshadow

T in G[E \ X ]. In other words, the shadow of X is the set of vertices which are not in the connected
component of any vertex of T in G[V \ X ]. Roughly speaking the shadow of X is the set of vertices
which are hidden by X when the vertices of T are “enlightened”. In Figure 2.16, the shadow of X is
the above part of the figure. Note that, the shadow of an F -hitting set can be empty (in this case all
the vertices are in the connected component of a vertex of T ). A hitting set X of the F -hypergraph
without vertex in the shadow of X is called a shadowless solution. Let us first make an observation
on the structure of the F -hitting sets.

Observation 2.39. Let G be a graph, T a set of terminals and F a T -compatible set and S,S′ two
separators such that S′ ⊆ S. If ∆(S) is an F -hitting set, then ∆(S′) is an F -hitting set.
In particular if S is a F -hitting set then the border of any important separator contained in S is also
a F -hitting set.

Proof. Let F ∈ F . Since ∆(S) is an F -hitting set, there exists a vertex s of ∆(S) such that s ∈ F . If
s ∈∆(S′) then F is also hit by ∆(S′). Otherwise, since S′ ⊆ S, the vertex s is not in S′. Since T ∩F 6= ;
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T

X

C1 C2

Figure 2.17: The component C1 is in the exact shadow of X while C2 is not since X is an indivisible
TC1-separator but a divisible T C2-separator.

and F is connected, there exists a path in G from T to s. This path intersects ∆(S′), so F is hit by
∆(S′).

The following theorem is the key result of the shadow removal technique.
shadow re-
movalTheorem 2.40 (Marx, Razgon [147]). Let G be a graph, T a set of terminals and F a T -compatible

set. In O∗(2O (k)), we can compute a set Z such that, if the F -hypergraph has a hitting set of size at
most k, then with probability 2−O (k) the F -hypergraph has a minimum hitting set X such that:

– The set Z contains the shadow of X .
– No vertex of X is contained in Z .

Sketch of the proof. The proof is based on a procedure that randomly samples borders of indivisible
important T v-separators for every vertex v and take as set Z the union of their shadows. Let us
prove that we have to take and to avoid a bounded number (in k) of important separators during
the sample in order to satisfy both points. Before formalizing this procedure with Algorithm 2, let
us introduce a new notion. The exact shadow of a set X ⊆V \ T is the set of vertices v of V \ (T ∪X ) exact

shadowsuch that X is the border of a minimal (by inclusion) T v-separator. In other words, X is the border
of an indivisible T v-separator. Figure 2.17 illustrates exact shadows. Again differently, a connected
component of G[V \ X ] is nice for X if X is exactly the set of vertices which are not in X with an edge
with an endpoint of X . The exact shadow of X is the union of all the connected components which
are nice for x. Note that the exact shadow of X could be empty.

Let us prove that Algorithm 2 satisfies the condition of Theorem 2.40 (except that the probability
will not be as good as expected). First note that for every v ∈V , the set of indivisible important T v-
separators can be enumerated in 4O (k) time by Theorem 2.32. So the time complexity of Algorithm 2
satisfies the conditions of Theorem 2.40. For proving Theorem 2.40, we need the following claim.

Claim 2.41. Let S be an important separator set and let X = ∆(S). Every vertex v ∉ S ∪ X is in the
exact shadow of some Xv ⊆ X .

Hint of proof. We just have to prove that for every connected component C of G[V \ (S ∪ X )] then
∆(C )∩ X is an indivisible important T C -separator. The scheme of the proof looks like the proof of
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Algorithm 2: Shadow removal algorithm

Input : A graph G = (V ,E), a set T ⊆V , a T -compatible set F , an integer k.
Output : A set Z satisfying the conditions of Theorem 2.40.

For every vertex v , compute all the indivisible important T v-separators of size at most k (if1

an important separator is computed several times, keep it only once).
Sample them with probability one half.2

Compute Z which is the union of the exact shadows of the borders of the important3

separators selected during the sample.
Return Z .4

Lemma 2.37. Indeed if we can put less vertices in the connected component of T and still separate T
and C then we would find a set S′( S such that δ(S′) ≤ δ(S), a contradiction since S is an important
separator.

Let us now prove that Algorithm 2 is correct. If the F -hypergraph has no hitting set of size at
most k, there is nothing to prove. So we can assume that there is a F -hitting set of size at most k.
Let X be such a solution. By Observation 2.39, we can assume that X is the border of an important
separator S. Let Y be the shadow of X . Claim 2.41 ensures that for every vertex y of Y , there exists
X y ⊆ X such that X y is an indivisible important T y-separator. Since each separator is taken with
probability one half and since there are 2k subsets of X , then all the vertices of Y are in the set Z
computed by Algorithm 2 with probability at least 2−2k

. So the first point holds.
Let us prove the second point. If a vertex x of X is in the set Z computed by Algorithm 2 then it is

in the exact shadow of an important separator sampled during the algorithm. But every vertex is in
the exact shadow of at most 4k important separators (which are actually the indivisible important
xT -separators). Since there are at most k vertices in X , vertices of X are in the exact shadow of
at most k ·4k indivisible important separators, so none of them is chosen with probability at least
2−2O ((k)

.
Note that this proof does not provide a probability better than 2−2O (k)

(instead of 2−o(k)). But
using a better distribution on the set of important separators, this algorithm can be improved in
order to obtain the desired probability.

Note that, Algorithm 2 does not need to know F for finding Z . Indeed during the execution of
the algorithm, we just compute indivisible important separators and randomly sample them and
we do not use the structure of F at all. We just use the structure on F for proving the correctness.
In particular, it means that even if there is an exponential number of elements in F , the algorithm
is only exponential in k.

Also note that taking exact shadows and not shadows in the proof of Theorem 2.40 is necessary.
Indeed consider Figure 2.18. Assume that the vertex x must not appear in the set Z computed by
Algorithm 2. The vertex x is in the exact shadow of one indivisible important T x-separator which
has border the unique neighbor of x; so with probability one half it does not appear in Z . On the
contrary, assume that the algorithm makes the union of the shadows instead of the exact shadows.
Then for every vertex y of Y , there is an indivisible important T y-separator containing the neighbor
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Y

Figure 2.18: The vertex x is in the exact shadow of one important separator but on the shadow of an
arbitrarily large number of important separators.

T
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Figure 2.19: The modification of the graph G into G ′ during the proof of Lemma 2.42.

of x. So if the set Y has size n, the probability that x is in the (non exact) shadow of a selected
invisible important separator is 1− (1/2)n .

Theorem 2.40 ensures that we can, with positive probability, transform an instance into an in-
stance which has a shadowless solution. Let us state it more formally and prove it.

Lemma 2.42. Let I = (G ,T,F ,k) be an instance of F -HITTING SET where G is a graph, T a set of
terminals and F a T -compatible set. In O∗(2O (k)), we can compute an instance I ′ = (G ′,T,F ′,k)
such that:

– Every F ’-hitting set of I ′ is a F -hitting set of I .
– If I has a F -hitting set of size at most k then I ′ has a shadowless F ′-hitting set of size at most

k with probability 2−O (k).

Proof. The proof consists in an application of Theorem 2.40. Let Z be a set of vertices computed by
the algorithm of Theorem 2.40. Let us first construct an instance I ′ from I . Next we will prove that
I ′ satisfies both conditions of Lemma 2.42. Construct the following graph G ′ with vertex set V \ Z .
Every edge of G[V \ Z ] is an edge of G ′. In addition, for every pair of vertices x, y of G[V \ Z ], if there
exists a x y-path with interior vertices in Z then add the edge x y in the graph G ′. In other words, if
x and y can be connected by a path in Z then we "simulate" this path by an edge. The instance I ′ is
the instance (G ′,T,F ′,k) where every hyperedge F of F becomes F∩(V \Z ) in F ′. The modification
of the graph G into G ′ is illustrated in Figure 2.19. Let us prove that any hyperedge F ′ in the F ′ still
induces a connected subgraph of G ′. Assume by contradiction that F ′ has at least two connected
components. Let F1 be a connected component and F2 = F ′ \ F1. Since F is connected in G , there
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exists a path whose interior vertices are in Z connecting a vertex of F1 with a vertex of F2. So in G ′,
there is an edge between a vertex of F1 and a vertex of F2, a contradiction.

If the set X is a hitting set of the F ′-hypergraph of G ′ then it is a hitting set of the F -hypergraph
of G . Indeed every hyperedge of F contains a hyperedge of F ′. So the first point holds.
Let us now prove the second point. Let X be a F -hitting set of size at most k for the instance I . First
note that the shadow of X in G ′ is included in the shadow of X in G . Indeed assume that x ∈V \ Z in
not in the shadow of X in G . Then there exists a path P from a vertex of T to x in V \ X . By replacing
every subpath of vertices of Z by an edge of G ′ (which exists by construction), the same path exists
in G ′. So x in not in the shadow of X in G ′.
Let us denote by Y the shadow of X . Let Z be the set computed by Theorem 2.40. Theorem 2.40
ensures that with probability 2−O (k), the set Z contains all the vertices of Y and does not contain
any vertex of X . So with probability 2−O (k) the set X is included in V \ Z . Hence X is in the vertex set
of G ′. Since X intersects every set of F in G , the set X still intersects every elements of F in G ′ by
construction of G ′. Thus X is a F -hitting set of the instance I ′ = (G ′,T,F ). Finally with probability
2−O (k) the solution X is a shadowless. Indeed with probability 2−O (k) all the vertices of the shadow
of X in G are deleted in G ′ and every vertex in the shadow of X in G ′ is in the shadow of X in G .

So, the shadow removal technique consists in transforming an instance into another where we
have to look for a shadowless solution (with positive probability). Hence, up to application of The-
orem 2.40, we can assume that all the vertices of G[V \ X ] are in a connected component of a vertex
of T : this method has been used intensively since the introduction of this technique. Finally the
shadow removal technique can be derandomized.

Theorem 2.43 (Marx, Razgon [147]). The algorithm of Theorem 2.40 can be derandomized in FPT
time parameterized by k.

2.3.5 Application to DIRECTED MULTIWAY CUT

The shadow removal technique was first used for proving that Multicut is FPT in [147], but since
this application is quite involved, we prefer illustrate this method on DIRECTED MULTIWAY CUT. Let
us first introduce the notion of shadow in directed graphs. Let D be a directed graph and T be a
set of terminals. Let F be a subset of subgraphs of G such that for every F ∈ F , every vertex v of
F can reach T and can be reached from T in the directed graph induced by the vertices of F (this
condition replaces the connexity condition on undirected graphs). Such a set of subgraphs is called
a T -compatible set. The F -hypergraph of G is the hypergraph on vertex set V with hyperedge set F .
The shadow of X is the set of vertices which are not reachable from T in G[E \ X ] or which cannot
reach T in G[E \ X ]. The following statement is the pendant of Theorem 2.40 for directed graphs.

Theorem 2.44 (Chitnis et al. [55]). Let D be a directed graph, T a set of terminals, F a T -compatible
set, an integer k. In O∗( f (k)), we can compute a set Z such that, if there exists a F -hitting set of size
at most k, then with probability 2−O (k2) there is a minimum F -hitting set X such that:

– The set Z contains the shadow of X .
– No vertex of X is contained in Z .

Note that the probability that the “good” event occurs is 2−O (k2) in directed graphs which is not
as good as the probability 2−O (k) obtained for undirected graphs. As for undirected graphs, the
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algorithm of Theorem 2.44 can be derandomized. Let us finally prove that DIRECTED MULTIWAY CUT

is FPT parameterized by the size of the solution using Theorem 2.44.

Theorem 2.45 (Chitnis et al. [55]). DIRECTED MULTIWAY CUT is FPT parameterized by the size of the
solution.

Proof. Let T be the set of terminals of a DIRECTED MULTIWAY CUT instance (D,T,k). The set F corre-
sponds to all the directed paths between distinct pairs of terminals. Note that these directed paths
are T -compatible since the endpoints of the paths are in T and every vertex can be reached by the
beginning of the path and can reach the end of the path. Following the scheme of the proof of
Lemma 2.42 we can prove the following for directed graphs.

Claim 2.46. Let I = (D,T,F ,k) be an instance of the F -HITTING SET problem where D is a directed
graph, T a set of terminals and F a T -compatible set. In O∗( f (k)), we can compute a new instance
I ′ = (D ′,T,F ′,k) such that:

– Every F -hitting set of I ′ is a F -hitting set of I = (G ,T,F ,k).
– If I has a F -hitting set of size at most k then I ′ has a shadowless F -hitting set of size at most k

with probability 2−O (k2).

In the following, we consider the instance I ′ which is the triple (D ′,T,F ′,k) of the reduced in-
stance of Claim 2.46. Let us denote by V ′ the set of vertices of D ′. Assume that there exists a F -
hitting set X of size at most k in D ′. Since X is shadowless, for every vertex v ∉ X , there exists a path
from v to a vertex of T in D ′[V ′ \ X ] and a path from a vertex of T to v in D ′[V ′ \ X ]. So there exists a
directed path P1 from t1 ∈ T to v and a directed path P2 from v to t2 ∈ T in the graph D ′[V \ X ]. So
we have t1 = t2 since otherwise there would remain a directed path between two distinct vertices
of T which is not intersected by X , a contradiction since X is a directed multiway cut. So after the
deletion of X , all the vertices are in the strong connected component of a vertex of T . So the vertex
set V ′ \ X can be partitioned into |T | sets such that each set is the strong connected component of
a vertex of T . Note that there is no arc between distinct components, otherwise there would be a
directed path between distinct vertices of T . So X is a multiway cut of the underlying graph of D ′.
Conversely let G ′ be the underlying graph of D ′. A multiwaycut of G ′ is a directed multiway cut of
D ′. Indeed if every non-oriented path is hit, then every oriented path also is. So G ′ has a multiway
cut of size k if and only if D ′ has a multiway cut of size k. Since MULTIWAY CUT is FPT parameterized
by k by Corollary 2.38, DIRECTED MULTIWAY CUT also is.
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3
VC-dimension

This chapter is devoted to giving the definitions and theorems related to VC-dimension. We give
applications of VC-dimension to graph theory all along this chapter. I have participated to the proofs
of two of these applications:

– A dichotomy result for identifying codes in Section 3.2.3 which is joint work with Zhentao Li,
Aurélie Lagoutte, Aline Parreau and Stéphan Thomassé.

– A proof of Scott’s conjecture for maximal triangle-free graphs in Section 3.4.2 which is joint
work with Stéphan Thomassé.

This chapter is split into several parts. In Section 3.1, we formally define shattered sets and
VC-dimension, then we study the VC-dimension and its stability via opposite, complement and
dual operations. All along this chapter, various examples will be provided in order to illustrate the
notions. Section 3.2 is devoted to proving that hypergraphs of bounded VC-dimension admit a
polynomial number of hyperedges [178]. In addition, the provided upper bound is tight. We will
propose several proofs of this key lemma and give a dichotomy theorem for identifying codes. In
Section 3.3, we will state the most relevant result on VC-dimension which ensures that the integral-
ity gap between τ and τ∗ cannot be arbitrarily large when the VC-dimension is bounded [117]. The
proof is based on the fact that the hypergraph admits a polynomial number of hyperedges. Recall
that Lemma 2.18 ensures that the gap between τ and τ∗ can be arbitrarily large for general hyper-
graphs. We illustrate the interest of this statement with a proof of Alon et al. [6] on dominating set
in k-majority tournaments and on the chromatic number of dense graphs [140]. Another applica-
tion will be provided in Chapter 5. However, the gap between τ and ν can be arbitrarily large for
hypergraphs of bounded VC-dimension. Section 3.4 will introduce two stronger versions of VC-
dimension which ensure the Erdős-Pósa property. The first one, called 2VC-dimension, provides
a polynomial gap between τ and ν [71]. We will illustrate this result with a particular case of the
so-called Scott’s conjecture [41]. The other one, due to Matoušek [151], ensures that both (p, q)-
property and bounded VC-dimension implies Erdős-Pósa property. A result of Chepoi et al. [54],
generalized in Chapter 4, will illustrate this result.

63



64 CHAPTER 3. VC-DIMENSION

Figure 3.1: A shattered set of size 3.

3.1 Shattered sets

Let H be a hypergraph. A subset X of vertices is shattered if for every subset X ′ ⊆ X , there existsshattered

a hyperedge e such that e ∩ X = X ′. Note that the empty set is always shattered. Figure 3.1 repre-
sents a shattered set of size 3. In other words, a shattered set is a subset X of vertices such that all
the possible traces of H on X exist. Yet differently, the hyperedges intersect in all the possible ways
the set X . In the following, we denote by sh(H) the number of shattered sets in H . Since a shattered
set is a subset of vertices, we have sh(H) ≤ 2n .
A shattered set is a witness of the local complexity of the hypergraph: a hypergraph is complex on
a set X if all the traces on X exist. The interest of shattered sets (and of VC-dimension) is that a
bounded local complexity provides several general properties on the hypergraph, for instance on
the number of hyperedges (Theorem 3.12) or on the size of hitting sets (Theorem 3.20 and Theo-
rem 3.32).

The Vapnik-Chervonenkis dimension, or VC-dimension for short, is the maximum size of a shat-VC-
dimension tered set. In the following we will only deal with hypergraphs of VC-dimension at least one. Indeed

as long as a hypergraph contains two (distinct) hyperedges, it contains a shattered set of size one.
A hypergraph has VC-dimension at least d if and only if it contains Cd as a subhypergraph. Let us
denote by vc(H) the VC-dimension of H . Given a family of hypergraphs H , the VC-dimension of
H is the largest VC-dimension of a hypergraph of H . The VC-dimension was first introduced by
Vapnik and Chervonenkis in 1971 in [190].
The VC-dimension has been used in various areas such as learnability theory [21, 92, 116] (where
VC-dimension is one of the main concepts), statistics [189], extremal graph and hypergraph the-
ory [71, 100, 140, 154], combinatorial geometry and discrepancy [124, 125, 148, 160] and, more re-
cently, graph theory [6, 41, 54, 140]. In this thesis we deal with graph theoretical problems.

3.1.1 Opening properties

Observation 3.1. Every hypergraph H of VC-dimension d satisfies sh(H) ≤∑d
i=0

(n
i

)
.

Proof. The proof is straightforward: if the VC-dimension is at most d , then only sets of size at most
d can be shattered. And the number of such sets is

∑d
i=0

(n
i

)
.

Note that the number of shattered sets gives more precise information than the VC-dimension.
Indeed, Observation 3.1 ensures that as long as the VC-dimension is at most d , the number of shat-
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tered sets is at most
∑d

i=0

(n
i

)
. Nevertheless, a reverse function which does not depend on n does not

exists.

Observation 3.2. For every n, there exist hypergraphs with n vertices and at most n hyperedges and
at most n shattered sets with VC-dimension blognc.

Proof. Let V be a set of size n and X be a subset of V of size blognc. Denote by H the hypergraph
with vertex set V whose hyperedges are all possible subsets of X . By construction, the shattered
sets are the subsets of X . Indeed, since no hyperedge contains a vertex which is not in X , no set
containing a vertex which is not in X is shattered. Finally, vc(H) = blognc (since X is shattered) but
sh(H) = 2blognc ≤ n.

Note that the VC-dimension of a hypergraph H = (V ,E) is at most bln |E |c. Indeed, consider a
shattered set X . All the possible traces exist on X . Since there are 2|X | traces on every set X (all the
possible subsets of X ), the hypergraph contains at least 2|X | hyperedges.

In the rest of this section, we study the variation of the VC-dimension for the complement,
opposite and dual operations. We will see that their behaviors (from a VC-dimension point of view)
are various but nevertheless interesting. First, the VC-dimension of the complement hypergraph
is the same as the original hypergraph. In the case of the opposite hypergraph, another notion of
shattering naturally appears, called strong shattering. For dual hypergraphs, we will illustrate the
notion of dual shattered set with complete Venn diagrams, and we will look in particular for the
largest gap between the VC-dimension and the dual VC-dimension.

Complement hypergraph. Recall that the complement hypergraph H c is the hypergraph whose
hyperedges are V \ e for every e ∈ E .

Observation 3.3. Every hypergraph H satisfies vc(H c ) = vc(H).

Proof. Let X be a shattered set of H . Let X ′ be a subset of X . Since X is shattered in H , there exists
a hyperedge e whose trace on X is X \ X ′. So the trace on X of the complement hyperedge e is X ′,
i.e. a hyperedge of H c has trace X ′ on X . So X is shattered in H c .

This proof underlines that the crucial aspect in the VC-dimension theory is not the hyperedge
e itself but the pair of hyperedges (e,e). So replacing all the hyperedges by their complements does
not affect the VC-dimension. However the size of the hyperedges provides an upper bound on the
VC-dimension. More precisely, we have the following.

Observation 3.4. Every hypergraph containing only hyperedges of size at most k has VC-dimension
at most k.

Proof. If a set X is shattered, then a hyperedge e satisfies e ∩X = X . So, we have |X | ≤ k.

Observation 3.4 ensures that k-uniform hypergraphs have VC-dimension at most k. Let us de-
termine the VC-dimension of complete uniform hypergraphs.

Observation 3.5. The complete uniform hypergraph Uk,n has VC-dimension min(k,n −k).
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Proof. First assume that k ≤ n/2. Let X be a subset of vertices of size k. Since k ≤ n/2 , every
subset X ′ of X can be completed into a set Y of size k with vertices of V \ X . By definition, Y is a
hyperedge of Uk,n whose trace on X is X ′. So X is shattered, and the VC-dimension of Uk,n is at
least k. Observation 3.4 ensures that the VC-dimension of Uk,n is at most k, which provides the
equality.

If k ≥ n/2 then we use Observation 3.3 and compute the VC-dimension of the complement
hypergraph of Uk,n . Since the complement of Uk,n is Un−k,n and since n −k ≤ n/2, the first part of
the proof ensures that the VC-dimension of Uk,n equals n −k.

Opposite hypergraph. Recall that the opposite hypergraph of H is the hypergraph H o with vertex
set V where e is a hyperedge of H o if and only if e is not a hyperedge of H . A subset X of vertices is
strongly shattered if there exists a subset Y ⊆V \ X such that for every subset X ′ ⊆ X , the hyperedgestrongly

shattered Y ∪ X ′ exists. In other words, a strongly shattered set is a subset of vertices such that all its subsets
can be extended into a hyperedge in the same way in the whole hypergraph. Note that the difference
between shattered and strongly shattered set is a permutation of the order of the quantifiers. Indeed
a set is shattered if “for every subset of X , there exists a subset of V \X ” and a set is strongly shattered
if “there exists a subset of V \ X such that for every subset of X ”. In the following ssh(H) will denote
the number of strongly shattered sets in H . Note that ssh(H) ≤ sh(H) since every strongly shattered
set is shattered.

Observation 3.6. Let H be a hypergraph. For every subset X of vertices of H, either X is shattered in
H or V \ X is strongly shattered in H o .

Proof. If X is not shattered, then there is a subset X ′ ⊆ X such that no hyperedge of H satisfies
X ∩e = X ′. In other words, the set X ′ cannot be extended into a hyperedge with vertices of V \ X . So,
in the opposite hypergraph, it means that every subset of V \ X can be extended into a hyperedge
with X ′. Hence the set V \ X is strongly shattered in the opposite hypergraph.

If X is shattered, then for every subset X ′ of X , there exists a subset Y of V \ X such that X ′∪Y is
a hyperedge. So, in the opposite hypergraph it means that V \ X cannot be strongly shattered using
the set X ′. And since V \ X can only be extended with subsets of X , V \ X is not strongly shattered
in H o .

The interest of the link between shattered sets and strongly shattered sets will be illustrated in
Section 3.2.

Dual hypergraph. Recall that the dual hypergraph of H is the hypergraph where hyperedges be-
come vertices, and vertices become hyperedges. The dual VC-dimension of H is the VC-dimensiondual VC-

dimension of the dual hypergraph of H . There is another way to define the dual VC-dimension which is more
intuitive. A subset of edges E ′ = {e1, . . . ,e`} forms a complete Venn diagram if for every subset E ′′complete

Venn
diagram

of E ′ there exists a vertex x such that for every e ∈ E ′, x ∈ e if and only if e ∈ E ′′ (see Figure 3.2 for
an illustration). In other words, there is at least one vertex in each possible intersection. The dual
VC-dimension is also the maximum size of a complete Venn diagram.dual VC-

dimension The two definitions are equivalent. Indeed, consider a complete Venn diagram. Each hyperedge
becomes a vertex in the dual hypergraph. Let E ′′ be a subset of E ′ and x be a vertex such that
for every e ∈ E ′, x ∈ e if and only if e ∈ E ′′. Then the hyperedge corresponding to x in the dual
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Figure 3.2: A complete Venn diagram with 3 hyperedges.

hypergraph contains all the vertices of E ′′ and does not contain those of E ′\E ′′. Therefore the set E ′

is shattered in the dual hypergraph. One can easily verify that a shattered set in the dual hypergraph
is a complete Venn diagram in H .

The following result, due to Assad [16], ensures that the gap between the VC-dimension and the
dual VC-dimension cannot be arbitrarily large.

Lemma 3.7 (Assouad [16]). Every hypergraph H of VC-dimension d has dual VC-dimension at least
blogdc.

Proof. Assume that the VC-dimension of H is at least 2d . Let us prove that H admits a complete
Venn diagram of size d . Let X = {x1, . . . , x2d } be a shattered set. There exists a hyperedge e1 contain-
ing x1, . . . , x2d−1 and not containing the others vertices of X . It induces an equal bipartition of the
set X denoted by X1, X2 (where each set has size 2d−1). Since X is shattered, there exists e2 contain-
ing exactly one half of both X1 and X2. We repeat this operation as long as each subset contains at
least two vertices. And the end of the procedure, we obtain d hyperedges E ′ = {e1, . . . ,ed } since the
original set has size 2d and each subset is divided by 2 equal subsets at each step.

Let us prove that E ′ is a complete Venn diagram, i.e. let us verify that, for every subset I of
{1, . . . ,d}, there is a vertex in E ′′ = (ei )i∈I and not in E ′ \ E ′′. To do so, let us prove by induction
that exactly 2d−i vertices of X satisfy the intersection constraints on {e1, . . . ,ei }. The result holds for
i = 0. Assume that there is a subset Y of X of size 2d−i which satisfies the intersection constraints
on {e1, . . . ,ei }. By construction, ei+1 separates the set Y into two equal parts, one included in ei+1

and the other disjoint with ei+1. So exactly one half of Y satisfies the constraint on ei+1. So 2d−i−1

vertices satisfy the intersection constraints on {e1, . . . ,ei+1}.
After d steps, there remains exactly one vertex. So there is a complete Venn diagram of size d , which
achieves the proof of Lemma 3.7.

The gap provided by Lemma 3.7 is tight. Indeed consider a hypergraph on n vertices containing
all the possible hyperedges. Such a hypergraph has VC-dimension n (since each subset of vertices
is a hyperedge). Its dual hypergraph contains exactly n edges, so a shattered set has size at most
bln(n)c since vc(H) ≤ bln(E)c.

Note that vc((H d )d ) = vc(H) since the dual of the dual hypergraph is the initial hypergraph.
Hence, Lemma 3.7 ensures that the dual VC-dimension is at most 2d+1−1. More precisely, we have:

Lemma 3.8. Every hypergraph H satisfies:

blog(vc(H))c ≤ vc(H d ) ≤ 2vc(H)+1 −1.
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This exponential gap can be reduced into a polynomial gap in many cases. Consider for in-
stance auto-dual hypergraphs, i.e. hypergraphs such that H d is isomorphic to H . For such hyper-
graphs, we have vc(H) = vc(H d ). Neighborhood hypergraphs are auto-dual hypergraphs. For such
hypergraphs, the vertices are the vertices of a graph G and Y is a hyperedge if there exists a vertex
v of G such that NG (v) = Y . Such hypergraphs are auto-dual since we have x ∈ NG (y) if and only if
y ∈ NG (x). These types of hypergraphs will be studied in Chapter 4.

Bipartite graphs. Recall that a hypergraph can be seen as its bipartite incident graph B =
((V ,E),E ′) where ve is an edge of E ′ if v ∈ e in the hypergraph. A set X of vertices of V of size
d is shattered if in the bipartite graph B , for every X ′ ⊆ X there exist a vertex e ∈ E such that
NB (e)∩X = X ′. In other words, the neighborhoods of vertices of E provide all the possible traces on
the set X . In other words, for every subset X ′ of X , there exists a vertex e of E such that N (e)∩X = X ′

in the incidence bipartite graph.
Given a (bipartite) graph G = ((V ,W ),E), the VC-dimension of G from V to W is the VC-

dimension of the neighborhood hypergraph from V to W . Note that the VC-dimension of a hy-
pergraph H = (V ,E) is exactly the VC-dimension of the bipartite incidence graph from E to V .

Lemma 3.9. Every bipartite graph ((V ,W ),E) of VC-dimension 2d from V to W contains an induced
copy of every bipartite graph of size d ×d.

Proof. Let G = B((V ,W ),E) be a bipartite graph of VC-dimension at least 2d . Let G ′ = B((A,B),F )
be a bipartite graph of size d ×d . Let us prove that an induced subgraph of G is isomorphic to G ′.
We denote by a1, . . . , ad the vertices of A and by b1, . . . ,bd the vertices of B . Let X = {x1, . . . , x2d } be
a shattered set of size 2d in G . Denote by X1 the set {x1, . . . , xd }. Our goal is to construct a bijection
such that the vertex xi of X1 is isomorphic to ai in A of G ′.
For every vertex bi of B , denote by Xbi the subset of X1 such that x j ∈ Xbi if and only if a j ∈ N (bi ).
Since X is shattered, there exists a vertex yi of W such that N (yi ) = Xbi ∪{xd+i }. Note that the vertex
xd+i is a neighbor of yi and is not a neighbor of any other vertex y j with j 6= i . In particular, for
every i , j , we have yi 6= y j . Let us denote by Y the set {y1, . . . , yd }. We have N (yi )∩ X1 = Xbi . So the
bipartite graph induced by X1 ∪Y is isomorphic to G ′.

Note that the presence of xd+1, . . . , x2d is useful if two vertices of B are twins with respect to A,
meaning that their neighborhoods in A are the same, call it N . Then, even if X is shattered we are
not sure that there exist two hyperedges intersecting A in exactly N (there is no notion of cardinality
in the VC-dimension). Thus the vertices xd+1, . . . , x2d are there for ensures that all the vertices of Y
have distinct neighborhoods on the set X . In fact, only xd+1, . . . , xd+lnd are needed to make N (bi )
and N (b j ) distinct: for bi ∈ B , code i in binary over lnd bits and define N (bi ) as to be the union
of {xd+i1 , . . . ,ud+ik } with the set of v j such that the j -th bit is one. Thus the 2d upper bound of
Lemma 3.9 can be improved into d + lnd .

Lemma 3.9 can be reformulated as follows: if the VC-dimension of a hypergraph is bounded,
then a “bipartite graph” is forbidden in the incidence bipartite graph. In particular, such a bipar-
tite graphs appears with high probability as a subbipartite of a random graph that is large enough.
In other words either the VC-dimension is arbitrarily large or large enough random-like bipartite
graphs are forbidden. Since a random-like bipartite graph is forbidden for hypergraphs of bounded
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Figure 3.3: Sets of size 2d shattered by d-dimensional rectangles for d = 1,2,3.

VC-dimension, the structure of the incidence bipartite graph is constrained. The following sections
explain how these constraints can be used in order to provide several properties of the hypergraph.

3.1.2 First examples

Geometrical hypergraphs. Intersections of geometrical objects are often “simple”, in the sense
that they are constrained because of the topology and geometry of the space. Since the VC-
dimension catches the complexity of the intersections of objects, it is natural to think that the VC-
dimension must be bounded above in many cases.

Consider one of the easiest class of intersection of objects: the intersection of intervals in the
real line (i.e. in R1). Vertices are points of the real line and intervals are represented by hyperedges.
Let x1, x2, x3 be three real numbers such that x1 ≤ x2 ≤ x3. Every interval containing both x1 and x3

must contain x2 (since an interval is convex). So {x1, x2, x3} cannot be shattered since no interval e
satisfies {x1, x2, x3}∩e = {x1, x3}. Then the VC-dimension is at most 2.

More generally, the VC-dimension of intersection of axis-parallel d-dimensional rectangles is at
most 2d . A d-dimensional rectangle hypergraph is a hypergraph where the set of vertices V is a set
of points of Rd and a hyperedge corresponds to the intersection of an axis-parallel d-dimensional
rectangle with V . Let X be a set of size 2d +1. Consider the set S containing all the vertices of X
which are maximum or minimum for at least one of the d coordinates. If there are several minimum
or maximum values, choose arbitrarily one of them. The set S contains at most 2d points (note that
a same point can be maximum or minimum for several coordinates but it does not matter). Any
rectangle containing all the points of S contains all the points of X which are between the first and
the last point of each coordinate. In other words, any rectangle containing all the vertices of S also
contains the whole set X . Hence X cannot be shattered since no rectangle has trace S.

Finally, one can verify that the VC-dimension is equal to 2d for some d-dimensional rectangle
hypergraph. Indeed, if the set S defined in the previous paragraph has size 2d , then X can be shat-
tered. Figure 3.3 represents a set of size 2d which is shattered for d = 1,2,3. In order to shatter two
new vertices in the new dimension, we just have to add one point above and below the previous
structure (which are strictly between the first and the last values of the other coordinates).

Many other geometric classes have a bounded VC-dimension. For instance the VC-dimension
of intersection of hyperplanes in d-dimensional space is d +1, the VC-dimension of intersection of
closed balls is d +2. Convex sets with d faces in the plane have VC-dimension 2d . Deeper examples
of geometrical classes of bounded VC-dimension can be found in [124, 125, 160] for instance.
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≺1

≺2

≺3

x1 x2 x3

x2 x1 x3

x3 x1 x2

a b c

c a b

a b c

Figure 3.4: A 2-majority tournament. Vertices a and b are compatible for {x1, x2, x3}. So they have
the same in-neighborhood in {x1, x2, x3}. Both a and b are not compatible with c for {x1, x2, x3}.

Majority tournaments. Let ≺1, . . . ,≺2k−1 be total orders on V . The majority tournament on
≺1, . . . ,≺2k−1 is a tournament whose vertex set V such that x y is an arc if x is larger than y in at least
k orders. A k-majority tournament T is a tournament such that there exist 2k−1 orders≺1, . . . ,≺2k−1k-majority

tournament such that T is the majority tournament on ≺1, . . . ,≺2k−1. Note that 1-majority tournament are tran-
sitive tournaments. Recall that, given a digraph D = (V , A), the closed in-neighborhood hypergraph
of D is the hypergraph whose vertex set is D and e is a hyperedge if e = N−[x] for some vertex x (re-
call that N−[x] is the closed in-neighborhood of x). The VC-dimension of a k-majority tournament
is the VC-dimension of its closed in-neighborhood hypergraph.

Lemma 3.10. Every k-majority tournament has VC-dimension at most (2k +o(1)) logk where o(1)
tends to zero as k tends to infinity.

Proof. Let T = (V ,E) be a k-majority tournament. Let X be a subset of vertices of size d . Two
vertices y, z in V are incompatible for X if there exist an integer i and a vertex x j ∈ X such that
y ≺i x j ≺i z. Two vertices are compatible for X if they are not incompatible for X . The notions of
compatibility and incompatibility are illustrated on Figure 3.4. Note that two compatible vertices
have the same neighborhood in X . Indeed, for every vertex x ∈ X , two compatible vertices for X
satisfy either x ≺i y, z or y, z,≺i x for every i .
For every order ≺i , the set X partitions the set V \X into |X |+1 parts of consecutive vertices accord-
ing to ≺i . In some sense the vertices of the same class have the same behavior from the point of
view of X in the order ≺i . Note that two incompatible vertices are not in the same set of the parti-
tion for at least one order. Since there are 2k−1 orders and since on each order partitions the vertex
set into d +1 intervals, the number of classes is at most (d +1)2k−1. Since two incompatible vertices
are not in the same class, there are at most (d +1)2k−1 pairwise disjoint incompatible vertices.

So if a X is shattered in the in-neighborhood hypergraph, it means that all the traces exist on X .
Thus in particular we have 2d ≥ (d +1)2k−1 which provides the conclusion.

3.2 VC-dimension and number of hyperedges

This Section is devoted to proving that any hypergraph of bounded VC-dimension has a polyno-
mial number of hyperedges. This result is known as Sauer’s Lemma. Recall that general hypergraphs
can have up to 2n hyperedges. In order to prove it, we prove a stronger statement: the number of
hyperedges can be bounded above by the number of shattered sets. We propose a classical proof
of this result using a shifting argument. Section 3.2.2 provides a bijection between the edge set
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and the set of ordered shattered sets. We will finally give a first application of the Sauer’s lemma in
Section 3.2.3.

3.2.1 The Sandwich Theorem and Sauer’s Lemma

The Sandwich theorem bounds above and below the number of hyperedges in function of the
number of shattered and strongly shattered sets. The proof presented here roughly follows the
scheme of [99].

Sandwich
TheoremTheorem 3.11 (Sandwich Theorem). Every hypergraph H satisfies

ssh(H) ≤ |E(H)| ≤ sh(H).

Proof. Let us first prove that |E(H)| ≤ sh(H). The proof is based on a shifting technique. More
precisely, the goal of the proof consists in constructing a hypergraph H∗ such that:

(i) H∗ has as many hyperedges as H .

(ii) If X is shattered in H∗, then X is shattered in H .

(iii) The hyperedges of H∗ are closed by inclusion. In other words, if e is a hyperedge of H∗ then
every subset of e is a hyperedge of H∗.

Note that such a hypergraph H∗ satisfies |E(H∗)| ≤ sh(H∗). Indeed every hyperedge e is a shattered
set in H∗ since every subset of e is a hyperedge. The construction of H∗ is based on a shifting
technique described in Algorithm 3. One can easily verify that invariant (i) is satisfied by Algorithm 3
(no edge is collapsed into a smaller edge and no edge is deleted). The point (iii) is satisfied since it
is the stop condition of Algorithm 3.

Algorithm 3: Shifting algorithm

Input : A hypergraph H = (V ,E).
Output: A hypergraph satisfying (i), (ii) and (iii) .
while The hypergraph is not closed by inclusion do1

for (v ∈V ) do2

for (e ∈ E) do3

if (e \ {v} ∉ E) then4

Replace e by e \ {v}5

First note that Algorithm 3 ends since at each step, at least one hyperedge becomes strictly
smaller. Let us prove that a shattered set after an application of line 5 is also shattered before this
step. Let H be the hypergraph before the step of line 5 and H ′ be the hypergraph obtained after
line 5 for the vertex v . Assume that a set X is shattered in H ′. If v ∉ X then the set X is shattered
in H since the hyperedges are only modified on v . So we can assume that v ∈ X . Let Y be a subset
of X . If v ∈ Y then the hyperedge with trace Y in H ′ has also trace Y in H (the hyperedge has not
been modified). Assume now that v ∉ Y . A hyperedge e has trace Y ∪ {v} in H ’ since X is shattered.
Since the vertex v ∈ e in H ′, it means that e has not been modified during the step of the algorithm
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between H and H ′, i.e. there exists a hyperedge e ′ = e \ v in H . Hence e ′ ∩ X = Y . So X is also
shattered in H , i.e. point (ii) holds.

The other inequality is obtained using the opposite graph. By Observation 3.6, a strongly shat-
tered set is a set whose complement is not shattered in the opposite hypergraph (recall that the
opposite hypergraph contains all the hyperedges which are not in H). In other words, ssh(H) =
2n − sh(H c ). And the number of edges of the opposite hypergraph is 2n − |E |. The inequality
|E(H c )| ≤ sh(H c ) ensures that 2n − |E | ≤ sh(H c ) = 2n − ssh(H). Hence ssh(H) ≤ |E | which is the
desired inequality.

Note that Theorem 3.11 still holds for hypergraphs induced by a subset of vertices since exactly
the same method can be applied. Recall that a hyperedge e has trace X ′ on a set X if e ∩ X = X ′.
Observation 3.1 provides an upper bound on the number of shattered sets when the VC-dimension
is bounded above. By applying this inequality on Theorem 3.11 we obtain:

Sauer’s
Lemma Lemma 3.12 (Sauer’s Lemma). Let H = (V ,E) be a hypergraph of VC-dimension d. For every set

X ⊆V , the number of (distinct) traces of E on X is at most
∑d

i=0

(|X |
i

)
. In particular, we have

|E | ≤
d∑

i=0

(
n

i

)

Note that, in many cases, we do not need the exact upper bound on the number of hyperedges,
but just an upper bound. In these cases, we will implicitly use the following inequality:

d∑
i=0

(
|X |

i

)
≤ kd+1.

This lemma is known as Sauer’s Lemma, or Sauer-Shelah’s Lemma. It was proved independently
by Sauer [178] and by Shelah [182]. A weaker version was also provided by Vapnik and Chervo-
nenkis [190]. The Sauer’s lemma proofs presented in these articles are purely combinatorial proofs
and are based on induction. Other proofs of the same type can be found in [14, 26, 76, 108], some
providing the reverse inequality of the Sandwich Theorem, others not. The proof of Theorem 3.11
we presented is due to Frankl [99]. Other proofs using shifting techniques are due to Frankl and
Pach [100] and Alon [4]. Aharoni, Linial and Meshulam were the first to explicit a natural injection
from the edge set into shattered sets in [168]. Note that an (implicit) injection also exists in the proof
of Theorem 3.11. In Section 3.2.2, we will provide a bijection between the edge set and particular
shattered sets called ordered-shattered sets. Such a notion of shattered set was studied in [14].

Let us compare Theorem 3.11 and Lemma 3.12. Even if Sauer’s lemma will be enough for most
of the following applications, the Sandwich Theorem can provide an arbitrarily better bound than
Sauer’s Lemma. For instance, Observation 3.2 ensures that some hypergraphs of VC-dimension
logn have n shattered sets and n hyperedges. On such hypergraphs, the Sandwich Theorem is tight
while the bound provided by Sauer’s lemma is not even polynomial.

Nevertheless the gap between sh(E) and |E | can also be arbitrarily large. Let us slightly mod-
ify the example of Observation 3.2 in order to show it. Let V be a set of size n. Partition V into
bn/lognc sets of size (at least) blognc. Since this example is quite “informal”, we will forget the bc
in the following. Denote these sets by (V j ) j≤n/logn and by v j

1 , . . . , v j
logn the vertices of V j . For every
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1 2

3 4

Figure 3.5: Hyperedges of size 2 are repre-
sented with lines. And hyperedges of size 3
with dashed hyperedges for readibility.

1 2

3 4

Figure 3.6: For readability we also represent
the opposite hypergraph of Figure 3.5.

subset I ′ of I = {1, . . . , logn}, construct the hyperedge containing the vertices v j
i for all j and for all

i ∈ I ′. Note that the hypergraph contains exactly n hyperedges since there is exactly one hyperedge

for each subset of I . In addition, one can easily check that every set {v j1

i1
, . . . , v j`

i`
} is shattered as long

as indices i1, . . . , i` are pairwise distinct. Therefore the number of shattered sets is at least

logn∑
i=0

(
logn

i

)
(n/logn)i .

So the number of shattered set in not even polynomial in the number of hyperedges (which is equal
to n).

Theorem 3.11 raises a notion of extremality. A hypergraph is shattering extremal, or s-extremal
for short, if |E | = sh(H). Shattering extremal hypergraphs have not been studied a lot (see [154] for
instance). Nevertheless some nice questions have been raised, for instance:

Problem 5 (Mészáros and Rónyai). Let H be a s-extremal hypergraph. Does there still exists in H a
hyperedge e such that H [E \ e] is s-extremal?

Note that, since sh(H [E \ e]) ≤ sh(H) (a shattered set is still shattered in a larger hypergraph),
we have sh(H [E \ e]) equals |E \ e| or equals |E \ e| + 1 for every edge of a s-extremal hypergraph.
Mészáros and Rónyai asked if there always exist an edge satisfying the equality.

The “dual question” admits a negative answer. More precisely, the dual question is the following:
when |E(H)| < sh(H), is it still possible to add a hyperedge to H in such a way the number of shat-
tered sets does not increase? It would roughly mean that every hypergraph can be completed into
a shattering-extremal hypergraph. The answer is negative, and Figure 3.5 gives a counter-example
provided by Tom Drummond. In Figure 3.6, we also provide a figure of the opposite hypergraph
which is more readable. One can verify that only {123,234,1234} are not shattered (i.e. there are 13
shattered sets) and the hypergraph has 12 hyperedges. In addition, adding any missing hyperedge
creates a new shattered set. Indeed the sets ; and 4 shatter 123. The sets 234 and 1234 shatter 234.

In the following, we study a little bit later the structure of hypergraphs such that |E(H)| =∑d
i=0

(n
i

)
.
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Extremal hypergraphs. We just dealt with shattering extremal hypergraphs. This paragraph deals
with a more classical notion of extremality. Let Ht be a hypergraph. In extremal theory, the goal is
to determine the maximum number of hyperedges contained in a hypergraph with no copy of Ht .
A hypergraph contains a copy of Ht if Ht can be obtained from H by a deletion of vertices and of
hyperedges. Note that a hypergraph containing a copy of Ht is a hypergraph with a subset X of
size |Ht | such that the traces on X contains Ht (in terms of hyperedges). A hypergraph is Ht -free if itHt -free

does not contain any copy of Ht . Let us denote by ex(n, Ht ) the maximum number of hyperedges of
a hypergraph on n vertices which does not contain any copy of Ht . A hypergraph is extremal (for Ht )
if it does not contain any copy of Ht and it has exactly ex(n, Ht ) hyperedges. Extremal hypergraphs
have been extensively studied (see [71, 92, 133] for instance). A nice survey (though not recent) on
extremal problems can be found in [101].

Lemma 3.12 can be rephrased as follows: every hypergraph H with no copy of Cd+1 has at most∑d
i=0

(n
i

)
hyperedges. In addition, Lemma 3.12 is tight for several hypergraphs. Consider for instance

the hypergraph H containing all the hyperedges of size at most d . By Observation 3.4, the VC-
dimension of H is at most d . And the number of edges is exactly

∑d
i=0

(n
i

)
. Hence ex(n,Cd+1) =∑d

i=0

(n
i

)
.

It is straightforward that ex(n,Cd+1) ≥ ex(n,U`,d+1) for every `. More precisely we have
ex(n,Cd+1) ≥ ex(n,F ) for every F on (d + 1) vertices. Indeed if a hypergraph contains a shat-
tered set X of size d + 1, then all the traces of size ` exist on X , in particular those of F . The
surprising point is that the reverse inequality is also correct in the uniform case. In other words,
ex(n,Cd+1) = ex(n,U`,d+1) for every `> 0.

Lemma 3.13. (Füredi, Quinn [102]) For every `,d, there exist U`,d+1-free hypergraphs with exactly∑d
i=0

(n
i

)
hyperedges.

Proof. Construct the following hypergraph H on the ordered vertex set x1, . . . , xn . First H contains
all the hyperedges of size at most `−1. In addition, H contains all the hyperedges e such that there
exists an integer j satisfying e∩{x1, . . . , x j } = `−1 and e misses at most d−` vertices in {x j+1, . . . , xn}.

Let X be a set of size d +1. Denote by xi1 , . . . , xid+1 the vertices of X in the increasing order. No
hyperedge has trace {xi1 , . . . , xi`}. Indeed, consider a hyperedge e containing {x1, . . . , x`}. By con-
struction, there exists an integer j with j ≤ i` such that all the vertices of index at least j except at
most d −` are in e. So at least one vertex of x`+1, . . . , xd+1 is in e.

Let us finally count the number of hyperedges. For every set xi1 , . . . , xik of size at most d , the set e
such that e∩{x1, . . . , xi`} = {xi1 , . . . , xi`} and e∩{xi`+1, xn} = {xi`+1, . . . , xn}\{xi`+1 , . . . , xik } is a hyperedge
of H . If d ≤ `we assume that xi` = xn in the first equality. Note that all the hyperedges defined in this
way are in the hypergraph and are distinct. So the hypergraph contains at least

∑d
i=0

(n
i

)
hyperedges.

And by Lemma 3.12, it contains exactly this number of hyperedges.

Problem 6. Can we characterize the set of hypergraphs which are Cd -extremal, or the set of hyper-
graphs which are Ud -extremal?

Problem 6 is a broadly open problem. Füredi and Quinn conjectured in [102] that all U`,d+1-
extremal hypergraphs have the same number of hyperedges of a given size. Several upper bounds
on ex(n, H) can be found in [13] for particular (small) hypergraphs H .
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x y

Figure 3.7: {x, y} is an ordered shattered set, so the set {x, y} is shattered.

3.2.2 Ordered shattered sets

In this section, we introduce and study ordered shattered sets. We will first see that ordered
shattered sets are shattered. We will then prove that ordered shattered sets are in bijection with
hyperedges.

Let H = (V ,E) be a hypergraph. Let ≺ be a total order on V . We denote by v1, . . . , vn the vertices
of the graph such that vi ≺ v j if i < j . Two hyperedges e and e ′ are k-coherent if e ∩ {v1, . . . , vk } =
e ′∩ {v1, . . . , vk }. In other words, we cannot distinguish e and e ′ if we just look at the k first vertices.
Let X = {vi1 , . . . vi`} be a subset of V . The set X is an ordered shattered set if there exists a set F of 2` ordered

shattered sethyperedges which can be refined in the following way: for every j ≤ `, there exists a partition F j of
F such that the partition F0 has exactly one set which is F and for every 0 ≤ j ≤ ` the partition F j

satisfies:
– All the hyperedges in a same set of the partition of F j are vi j+1−1-coherent.
– For every set of the partition F j , an half of the hyperedges contains vi j and the other does

not contain it. It naturally refines each set of F j into two sets in F j+1.
The set F is called a set associated to X . Let us illustrate the notion of ordered shattered set. Let

v1, v2, v3 be three vertices and e1 = 101 and e2 = 110 be two hyperedges (where the i -th digit equals
1 if and only if vi is in the hyperedge). The set {v3} is shattered since e1∩v3 = v3 and e2∩v3 =;. But
{v3} is not an ordered shattered set since e1 and e2 are not 2-coherent. Though {v2} is an ordered
shattered set since e1 and e2 are 1-coherent (they both contain v1) and v2 ∈ e2 and v2 ∉ e1. The
notion of refinement of the partition is illustrated on Figure 3.7.

Note that every set of the partition F j has size exactly 2`− j . Indeed the unique set of F0 has size
2` and at each step each set of the partition F j−1 is divided into exactly two equal subsets. Hence
after ` steps, all the sets have size exactly one.

Observation 3.14. Every ordered shattered set is shattered.

Proof. Let X = {vi1 , . . . , vi`} be an ordered shattered set and F be a set associated to X . Let F j be the
partition after j steps. Let X ′ be a subset of X . Let us prove by induction on j that exactly one set of
the partition F j satisfies F ∩ {vi1 , . . . , vi j } = X ′∩ {vi1 , . . . , vi j }. For j = 0, the result immediately holds.
Let j ≤ `−1. By induction hypothesis there exists F j ⊆F j satisfying the conditions. By assumption,
F j is divided into two equal parts in F j+1, one containing vi j+1 and not the other one. So depending
if X ′ contains or not the vertex vi j+1 , we choose one or the other subset of F j+1 which refines F j .
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Since all the sets of the partition F` have size one, the induction ensures that a hyperedge e satisfies
e ∩X = X ′. So the set X is shattered.

Before proving that there exists a bijection between ordered shattered set and hyperedges, let
us introduce a new notion. A hyperedge e collapses on vk if there exists a hyperedge e ′ such thatcollapse

e and e ′ are (k − 1)-coherent, and vk ∈ e and vk ∉ e ′. Roughly speaking, a hyperedge e collapses
on vk if there exists a hyperedge e ′ such that e and e ′ are distinct for the first time on vk . The col-
lapse index of e is the maximum k such that e collapses on vk . The collapsed hypergraph on vk ,collapse

index denoted by C (vk ) is the hypergraph on vertex set {v1, . . . , vk−1} whose hyperedges are restrictions
on {v1, . . . , vk−1} of the hyperedges collapsing on vk . The collapsed hypergraph on vi1 , . . . , vi` (where
vi1 ≺ . . . ≺ vi`) denoted by C (vi1 , . . . , vi`) is the collapsed hypergraph on vi1 of the collapsed hyper-
graph on vi2 , . . . , vi` .
Let i < j . If a hyperedge e collapses in vi and v j , then e does not necessarily collapse on vi in the
collapse hypergraph on v j . Indeed consider the three hyperedges e1 = 11, e2 = 10 and e3 = 01. One
can note that e1 collapses with e3 on v1 and with e2 on v2. Nevertheless, the collapse hypergraph
on v2 only contains the hyperedge e1 (since e3 does not collapse on v2). So e1 does not collapse on
the collapse hypergraph on v2.

Let e be a hyperedge. Let us define inductively the collapse sequence of e. If e never collapses,
the collapse sequence is the empty sequence. Otherwise denote by k the collapse index. The col-
lapse sequence of e is the collapse sequence of e in C (vk ) concatenated with the collapse index k.
Informally, the collapse sequence contains the collapse index and then we repeat the operation by
induction on the collapse hypergraph on vk . Note that by construction all the vertices of the col-
lapse sequence of e are in the hyperedge e. Let us first prove that distinct hyperedges have distinct
collapse sequences.

Lemma 3.15. Two distinct hyperedges have distinct collapse sequences.

Proof. Assume by contradiction that two distinct hyperedges e and e ′ have the same collapse se-
quence vi1 , . . . , vi` . Let us denote by vk the first vertex in the order ≺ such that e and e ′ are distinct
(so (k−1) is the maximum integer such that e and e ′ are (k−1)-coherent). Free to exchange e and e ′,
we may assume that vk ∈ e and vk ∉ e ′. Let j be the integer such that i j−1 ≤ k ≤ i j where i0 denotes
0 and i`+1 denotes +∞.
Note that both e and e ′ are in the collapse hypergraph C (vi j , . . . , vi`) since e and e ′ have collapse se-
quence vi1 , . . . , vi` . Since vi j−1 is in the collapse sequence of both e and e ′, the vertex vi j−1 is in both
e and e ′. So k is strictly larger than i j−1. Since e and e ′ are (k −1)-coherent and are distinct on vk ,
the hyperedge e collapses on vk on C (vi j , . . . , vi`), a contradiction with the maximality of i j−1.

Since a collapse sequence is associated to a hyperedge, Lemma 3.15 ensures that there exists a
bijection between collapse sequences and hyperedges. Let us finally prove that there is a bijection
between collapse sequences and ordered shattered sets.

Lemma 3.16. Every collapse sequence is an ordered shattered set.

Proof. Assume that a hyperedge e has collapse sequence vi1 , . . . , vik . Let us prove that X =
{vi1 , . . . , vik } is an ordered shattered set. More precisely let us prove by induction that for ev-
ery j , there are 2 j hyperedges F j which are associated to {vi1 , . . . , vi j } on the collapse hypergraph
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C (vi j+1 , . . . , vik ). For j = 0, any hyperedge e in C (vi1 , . . . , vik ) works since e ∩;=;. Such a hyperedge
exists since there exists a hyperedge e with collapse sequence vi1 , . . . , vik (and then C (vi1 , . . . , vik ) is
not empty). So we put F0 = {e}.
Let j ≤ k −1. Denote by F j the set of hyperedges associated to {vi1 , . . . , vi j } on the collapse hyper-

graph C (vi j+1 , . . . , vik ). And denote by F
j
`

its refinement partition for ` ≤ j . Let F j+1 be a set of
hyperedges such that each hyperedge e of F j is extended into two hyperedges in C (vi j+2 , . . . , vik ),

one containing vi j+1 and not the other one. The set F j+1 has size 2 j+1. For every set F ∈ F
j
`

with

`≤ j , we create the set F ′ ∈F
j+1
`

such that F ′ contains both extensions of all the hyperedges e of F .

Thus, by induction, any set of F
j+1
`

has size 2 j+1−` and the hyperedges are still vi`−1-coherent. And

the partition F
j+1
j+1 is the partition with exactly one hyperedge of F j+1 in each set. After k steps, the

set Fk of hyperedges is a set associated to vi1 , . . . , vik on the whole hypergraph, and then vi1 , . . . , vik

is an ordered shattered set.

Let us now prove the converse of Lemma 3.16.

Lemma 3.17. Every ordered shattered set is a collapse sequence.

Sketch of the proof. Let us prove by induction on decreasing j that if X = {vi1 , . . . , vik } is an ordered
shattered set then vi1 , . . . , vi j is an ordered shattered set on C (vi j+1 , . . . , vik ). Let X be an ordered
shattered set. If j = k then the conclusion holds.

Let F be a set of hyperedges associated to vi1 , . . . , vi j+1 on C (vi j+2 , . . . , vik ). Our proof is based on
the switching algorithm in order to find the good set F associated to vi1 , . . . , vi j . Let e be a hyperedge
of F containing vik . Let us prove that we can assume that the collapse index of e is i j and then
that e is in the collapse hypergraph on vi j . Choose e in such a way the first collapse of e after vi j

is maximized (we assume that it is infinite if such a collapse does not exist). If it is infinite, the
conclusion holds. Indeed i j is the collapse index of e and then e is in the collapse hypergraph on
vi j .
Assume by contradiction that e collapse on v`. So there exists a hyperedge e ′ on C (vi j+2 , . . . , vik ) such
that e and e ′ are (`−1)-coherent and e ′ does not contain v`. Since e does not collapse between vi j

and v`−1 the same holds for e ′ and e ′ does not collapse on v` since v` ∉ e ′. Finally the first collapse
of e ′ after vi j is strictly after the first collapse of e, a contradiction with the maximality of e. So, free
to exchange hyperedges of F , we can assume that hyperedges of F do not collapse after vi j and then
all the hyperedges of F containing vi j are on the collapse hypergraph on vi j . So vi1 , . . . , vi j−1 is an
ordered shattered set in C (vi j ).

Let us finally prove that every ordered shattered set is a collapse sequence. If the sequence is
empty the conclusions holds. Otherwise, let X = {vi1 , . . . , vik }. We have just seen that X \ vik is an
ordered shattered set on C (vik ). So by induction it is a collapse sequence on C (vik ). Extend e on the
whole vertex set in such a way e contains vik (which is possible by using the same argument as in
the first part of the proof). Then the collapse sequence of e is X .

Combining Lemmas 3.15, 3.16 and 3.17, we obtain the following theorem which strengthens
Lemma 3.12.

Corollary 3.18 (Anstee et al. [14]). Let H be a hypergraph. There exists a bijection between the hy-
peredges of H and the ordered shattered sets of H.
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Figure 3.8: The three vertices at the top form an identifying code of the whole graph on 7 vertices.

In addition, the collapse sequence of a hyperedge can be found in polynomial time. So this
bijection can be found in polynomial time.

Up to my knowledge, no proof using VC-dimension is based on this natural bijection between
the set of hyperedges and ordered shattered sets. This bijection could be interesting in particular
when a natural order is inherited from the vertex set of the input structure. In Section 3.2.3, we give
an application of Lemma 3.12 which is a weaker version of Corollary 3.18

3.2.3 Application to identifying codes

Let us now provide a short application of Lemma 3.12 to identifying codes. Let G be a graph. A
subset X of vertices is an identifying code if for every pair of vertices v, v ′ ∈ V , we have N [v]∩ X 6=identifying

code N [v ′]∩ X and in addition the set X is a dominating set. Recall that N [v] denotes the closed neigh-
borhood of v . Two vertices x, y are true twins if N [x] = N [y]. A graph containing true twins does
not admit any identifying code. Conversely, if G does not contain true twins, one can easily verify
that the whole vertex set is an identifying code. Given a set X of vertices, u and v are identified by X
if N [u]∩ X 6= N [v]∩ X . In other words, all the hyperedges of the closed neighborhood hypergraph
have a distinct trace on the identifying code. In Figure 3.8, the above set is an identifying code of
size 3. Note that the size of the identifying code is optimal since an identifying code has size at least
dlogn−1e. Indeed every vertex must have a distinct neighborhood on the identifying code and there
are 2|X | possible neighborhoods on a set of size X (and the minus one came from the fact that the
empty neighborhood is not authorized). Note also that vertices in the identifying code also have to
be identified by the identifying code.

Introduced in 1998 in [126], identifying codes received since an accurate attention (see [17, 47,
95] for instance). Most of the known results hold for particular classes of graphs. The following
result due to Aurélie Lagoutte, Zhentao Li, Aline Parreau and Stéphan Thomassé and myself en-
sures that classes of graphs closed by induced subgraphs satisfy a dichotomy-like theorem: either
arbitrarily large graphs admit logarithmic identifying codes or all the graphs of the class admit po-
lynomial (i.e. of size nε for some ε> 0) identifying codes.

Theorem 3.19 (B., Lagoutte, Li, Parreau, Thomassé). Every class of graph C closed by induced sub-
graphs satisfies:

1. Either for every k, there exists a graph Gk ∈C with more than 2k −1 vertices with an identifying
code of size 2k.

2. Or there exists ε> 0 such that for every twin-free graph G of C , the minimum size of an identi-
fying code is at least |V |ε.



3.3. VC-DIMENSION AND INTEGRALITY GAP 79

Figure 3.9: The big vertex is a 1/2-net (with the uniform measure) but not a hitting set

Proof. Let C be a class of graphs closed by induced subgraphs. Assume first that for any k ∈N, there
is a graph of C with VC-dimension at least k (C has infinite VC-dimension). Then we show that C

satifies case 1.
Indeed, let k ∈N. Let H be a graph of C with VC-dimension k. Let X be a shattered set of size

k. Let Y be a set of 2k − 1 vertices of H that shatters all the non-empty subsets of X . Choose Y
in such a way that |X ∩Y | is maximized. Then pairs of vertices between X and Y \ X have distinct
neighborhoods on X (otherwise a vertex of Y \ X can be replaced by a vertex of X and then |Y \ X |
decreases). Let Gk = H [X ∪Y ]. Note that Gk ∈C since C is closed by induced subgraphs. The graph
Gk has at least 2k −1 vertices since the set Y contains at least 2k −1 vertices. We have seen that any
pair of vertices in X and Y \ X are identified by X . In addition any pair y, y ′ in Y is identified by
X since by definition of Y , we have NGk [y]∩ X 6= NGk [y ′]∩ X if y 6= y ′. Let u be a vertex of X and
let yu ∈ Y such that N [yu]∩ X = {u} (such a vertex exists by definition). Let Z be the union of the
vertices yv for every v ∈ X . Let u, v be two distinct vertices of X . The vertices u and v are identified
by Z since for every u ∈ X , we have N [u]∩Z = {yu}. So the set Z ∪X is an identifying code of Gk of
size at most 2k.

Assume now that every graph in C has VC-dimension at most d . Let G be a twin-free graph
of C on n vertices. Let C be an identifying code of G . All the traces of vertices of G on C must be
different. Hence, Lemma 3.12 ensures that n ≤∑d

k=0

(|C |
k

)≤ |C |d+1. Therefore, |C | ≥ n1/(d+1), proving
that C satisfies the second claim.

3.3 VC-dimension and integrality gap

In Chapter 2.2, we have seen that the gap between the transversality τ and the fractional
transversalily τ∗ can be arbitrarily large. For instance, the complete hypergraph Un+1,2n satisfies
τ = n and τ∗ ≤ 2 by Lemma 2.18. This hypergraph has VC-dimension n −1 by Observation 3.5. In
this part, we will see that it is not surprising in the following sense: if the integrality gap between τ

and τ∗ is arbitrarily large, then the VC-dimension must be large.
In Section 3.3.1, we state the main result of VC-dimension which ensures that the size of ε-nets

is bounded as long as the VC-dimension is bounded. We prove that it implies that the integrality
gap is bounded. Section 3.3.2 is devoted to the first applications and remarks. Another application
will be provided in Chapter 5.
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3.3.1 Upper bounds on the size of ε-nets

A measure of a hypergraph is a weight (i.e. non negative) function on the vertex set such that
the sum of the weights equals one. Let H be a hypergraph and µ be a measure on the vertex set
of H . An ε-net is a subset of vertices X such that every hyperedge of weight at least ε intersects X .ε-net

The uniform measure is the measure where all the vertices are given the same weight (i.e. weightuniform
measure 1/|V |). In this case, an ε-net is a subset of vertices intersecting every hyperedge of size at least

εn. In Figure 3.9, the big vertex is an 1/2-net (for the uniform measure) since it intersects all the
hyperedges of size at least 1/2. Note that it is not a hitting set. On the contrary, a 2/5-net would be
a hitting set of the hypergraph. More generally, let c be the minimum size of a hyperedge, a c/n-net
is a hitting set (for the uniform measure). A key result of Haussler and Welzl [117] in VC-dimension
theory bounds above the minimum size of an ε-net in function of the VC-dimension and of ε.

Theorem 3.20. [Haussler, Welzl [117]] Every hypergraph of VC-dimension d has an ε-net of sizeHaussler
Welzl O ( d ln(d/ε)

ε ).

Sketch of the proof. The proof of Theorem 3.20 is tricky. In the following the main steps of the proof
are presented, but for simplicity, technical details and calculations are omitted. For simplicity, we
assume that the measure is uniform. The proof for non-uniform measures follows the same scheme
but is a slightly more technical. For a whole proof the reader is referred to [71, 117, 150] for instance.
We can assume without loss of generality that all the hyperedges have size at least εn. Indeed the
others do not have to intersect the ε-net so we omit them.

Draw a random vertex subset X of size s := C · (d/ε) ln(d/ε) where C is a positive constant not
detailed here. The proof is devoted to showing that X is an ε-net with positive probability. For every
hyperedge e and every vertex x ∈ X , we have P(x ∈ e) ≥ ε since e contains at least εn vertices and X
is drawn randomly. Since vertices of X are picked independently, the average number of vertices of
X in e is at least s ·ε. So, for every e ∈ E , Tchebychev inequality ensures that P(|e ∩X | ≥ sε/2) ≥ 1/2.
A hyperedge e heavily intersects X if |e ∩X | ≥ sε/2.

Let us call E0 the event “there exists a hyperedge which is not intersected by X ”. Note that E0

is the complement event of our objective. Since we want to show that the complement of E0 has a
strictly positive probability, let us prove that P(E0) < 1. Draw randomly a second vertex subset Y of
size s. Call E1 the event “there exists a hyperedge which is not intersected by X and which heavily in-
tersects Y ”. We have P(E1) ≤P(E0) since E1 requires E0. And we also have P(E0) ≤ 1/2P(E1). Indeed,
informally, if X is not an ε-net, then a hyperedge e is not intersected by X and e has probability at
least 1/2 to be heavily intersected by Y (since X and Y are drawn independently).

The rest part of the proof consists in proving that P(E1) < 1/2, which implies that P(E0) < 1. It
finally ensures that there is a positive probability that X is an ε-net, i.e. at least one set of size s is an
ε-net.
Let k = sε/2. Let A be a set of size 2s. Keep in mind that the first half of A corresponds to X and the
second half corresponds to B . Let us now draw a subset Z of size k in A. We want to compute the
probability P that no vertex of Z appears in the first part of A (i.e. the probability that a hyperedge
does not intersect X but heavily intersects Y ). It is equivalent to force a set Z of size k to be in the
second part of an equal bipartition of A. There are

(2s−k
s

)
bipartitions in which Z is in the second
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part. And the total number of bipartitions equals
(2s

s

)
. So:

P =
(2s−k

s

)(2s
s

) ≤ (1/ε)−C d/4.

The last inequality is not immediate but can be obtained by a non trivial sequence of calcula-
tions (no deep argument is used at this point). Note that, until now, no argument based on VC-
dimension has been used. Let us now link the events E0 and E1. Without the VC-dimension, the
unique thing we can claim is that, since there are m hyperedges, P(E0) ≤ (1/ε)−C d/4m. But since the
VC-dimension is at most d , Lemma 3.12 ensures that the number of traces on A is at most |A|d+1. In
other words, we haveP(E0) ≤ (1/ε)−C d/4 ·(2s)d+1. A last sequence of non-trivial calculations ensures
that P(E1) < 1/2. So P(E0) < 1, which achieves the proof.

The proof ensures that when we pick randomly vertices, then the probability of finding an ε-net
is positive. Hence it provides an randomized approximation algorithm for finding transversal in
a hypergraph of bounded VC-dimension. Deterministic proofs (and algorithms) of Theorem 3.20
also exist (a derandomized proof is proposed in [149]).

Note that the size of an ε-net can be at least 1/ε. Indeed, the size of an ε-net of a hypergraph
containing 1/ε disjoint hyperedges of size εn is at least 1/ε (an ε-net must intersect each of the 1/ε
disjoint hyperedges). In [117], Haussler and Welzl asked whether the logarithmic factor can be re-
moved from Theorem 3.20. Pach and Woeginger proved in [162] that this factor can be eliminated
for hypergraphs of VC-dimension one. In the other cases, Komlós et al. [128] and Pach and Agar-
wal [160] closed the gap between lower and upper bounds. More precisely we have the following:

Theorem 3.21. Let d ≥ 2. Denote by s(d ,n) the maximum size of a minimum ε-net over the set of
hypergraphs of VC-dimension d on n vertices. We have:

(d −2+ 1
d+2 +o(1)) ln(1/ε)

ε
≤ s(d ,n) ≤ (d +o(1)) ln(1/ε)

ε
.

where o(1) is a function which tends to zero when n tends to infinity.

Theorem 3.20 can be rephrased in order to obtain a bounded gap between τ and τ∗. Recall that
τ denotes the minimum size of a hitting set and τ∗ its fractional relaxation (see Section 2.2). In the
following we will exclusively use this formulation instead of the (altough stronger) formulation with
ε-nets.

Corollary 3.22. Every hypergraph of VC-dimension d satisfies:

τ≤O (dτ∗ ln(dτ∗)).

Proof. Let w be a weight function on the vertex set corresponding to an optimal solution of the
transversal linear program, i.e.

∑
x∈V w(x) = τ∗ and for every hyperedge e,

∑
v∈e w(e) ≥ 1. Let µ be

the weight function such that each vertex x satisfies µ(x) = w(x)/τ∗. Note that
∑

x∈V µ(x) = 1, i.e.
µ is a measure. Every hyperedge has weight at least 1/τ∗ for µ since every hyperedge has weight at
least one for w . So a (1/τ∗)-net is a subset of vertices which intersects every hyperedge, i.e. a hitting
set. Theorem 3.20 ensures that there is a hitting set of size O (dτ∗ ln(dτ∗)).
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Corollary 3.22 ensures that the integrality gap between τ and τ∗ is bounded if the VC-dimension
is bounded. Previous statements do not explicit constants. The following theorem, whose proof can
be found in [71], explicit them.

Theorem 3.23. Every hypergraph H with |E(H)| ≥ 2 of VC-dimension d satisfies

τ≤ 2dτ∗ log(11τ∗).

Erdős-Pósa property. Since the integrality gap between τ and τ∗ is bounded, Theorem 3.23 raises
the following question: does the same hold for ν and ν∗? Recall that ν denotes the packing number
and ν∗ its fractional relaxation. It would imply immediately the Erdős-Pósa property since τ∗ = ν∗
by Theorem 2.16. Unfortunately, the following example ensures that the integrality gap for ν is not
bounded, even for hypergraphs of VC-dimension 2.

Lemma 3.24. There exist hypergraphs of VC-dimension 2 such that ν= 1 and ν∗ =O (
p

n).

Proof. The counter-example is the same as in Lemma 2.19 which provides an arbitrarily large gap
between ν and ν∗. Let Kn be a clique on n vertices. Construct a hypergraph Hn such that vertices
of Hn correspond to edges of Kn . Hyperedges of Hn correspond to the subsets of edges adjacent to
a same vertex. We have seen in Lemma 2.19 that ν(Hn) = 1 and ν∗(Hn) = O (n). In addition, every
vertex of Hn is contained in exactly two hyperedges, so no set of size 3 is shattered. Indeed, given a
set X of size k, exactly 2k−1 subsets of X contain a fixed element x. So if a set of size 3 is shattered,
at least 4 hyperedges contain each of the shattered vertices, a contradiction.

3.3.2 Applications

In this Section, we give applications of Theorem 3.21 for problems on graphs. When the proofs
are not too complicated we also give the proofs, or at least a sketch of the proofs of these results.

Geometrical hypergraphs. Theorem 3.21 ensures that there exist ε-nets of size O (1/ε log(1/ε)).
Nevertheless, in geometrical cases, the upper bound on the minimum size of ε-nets can often be
improved. For instance, linear upper bounds (i.e. bounds of size O (1/ε)) are known for intersection
of halspaces in dimension two and three, intersection of disks or pseudo-disks (see [61, 152, 167]
for instance).

The existence of a better upper bound in the case of intersections of axis-parallel rectangles was
a challenging problem for years. Aronov, Ezra and Sharir [15] recently proved that the upper bound
can be improved into a O (1/ε log(log(1/ε))) upper bound (and the same holds for 3-dimensional
rectangles). Their proof is based on [49] and on [61]. Pach and Tardos proved that such a bound is
sharp [161].

On the contrary, the existence of geometrical examples for which the Ω(1/ε log(1/ε)) is reached
was open for years. Pach and Tardos in [161] also provide such a geometrical example (of VC-
dimension 2).
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V1

V2

Figure 3.10: A tournament which is union of 3 partial orders with an arbitrarily large VC-dimension.
The first order is a union of two total orders on V1 and V2. The second is a random oriented bipartite
graph from V1 to V2. The last one is the remaining arcs from V2 to V1

k-majority tournaments. In this part, we study dominating sets on k-majority tournaments.
Dominating sets for graphs were defined in Chapter 1, let us define it for digraphs. A dominat-
ing set X is a subset of vertices such that for any vertex y ∈ V , there exists a vertex x ∈ X such that
y ∈ N+[x]. In other words, y is either in X or is a neighbor of a vertex of X . General tournaments can
have dominating sets of arbitrarily large size, as first proved by Erdős in [86]. Kierstead and Trotter
conjectured that every k-majority tournament has a dominating set of size f (k). Alon and al. [6]
answer positively to this question using Theorem 3.23.

Theorem 3.25 (Alon et al. [6]). Every k-majority tournament has a minimum dominating set of size
O (k logk).

Proof. The proof is based on several results we already mentioned. Let T be a k-majority tourna-
ment. Consider the closed in-neighborhood hypergraph of T . First note that a dominating set of T
is a hitting set of H . Indeed consider a hitting set X of H . For every vertex y not in X , there exists
a vertex x ∈ X such that x is in the out-neighborhood of y , i.e. x y is an arc. Indeed y is in the in-
neighborhood of x so x is in the out-neighborhood of y . So X is a dominating set of T . As H is the
closed in-neighborhood of a k-majority tournament, Lemma 3.10 ensures that vc(H) ≤ O (k logk).
And Lemma 2.23 ensures that τ∗ ≤ 2. Indeed the weight function of Lemma 2.23 has total weight 2
and satisfies N+[x] ≥ 1 for every vertex (i.e. the constraints are satisfied). An application of Theo-
rem 3.23 finally provides the conclusion of Theorem 3.25.

Lots of classes of tournaments are defined via orders. Two partial orders are disjoint if every
pair x, y is comparable (i.e. x ≺ y or y ≺ x) in at most one order. A tournament T is a disjoint union
of k partial orders if there exist k disjoint partial orders ≺1, . . . ,≺k such that, for every arc x y , exactly
one order satisfies y ≺ x. In other words, a tournament is a disjoint union of k partial orders if there
exists a k-coloring of the tournament such that each color is an acyclic arc-transitive digraph (i.e. if
x y and y z are arcs then xz is an arc).

Conjecture 4 (Gyárfás). Every tournament which is a disjoint union of k partial orders has domi-
nating set of size f (k).

This conjecture was studied in [163] by Pálvölgyi and Gyárfás. They proved that Conjecture 4
implies a generalization of the result of Bárány and Lehel on covering sets by boxes. In addition,
Conjecture 4 is linked with the following conjecture.
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Figure 3.11: A cube

Conjecture 5 (Erdős, Sands, Sauer, Woodrow). There exists a function f such that any k-arc-coloring
of any tournament admits f (k) vertices X such that every vertex can be reached with an edge-
monochromatic path starting on X .

Note that Conjecture 4 is a particular case of Conjecture 5. Indeed consider tournament which
can be colored with k colors such that each color is a transitive digraph. Let X be a set of vertices
such that every vertex can be reached with a monochromatic path starting on X . Then X is a domi-
nating set of the tournament. Indeed let y be a vertex of the graph. There is an arc-monochromatic
path from a vertex x of X to y . But since each color induces a transitive directed graph, there is
an arc an from x to y . Conjecture 5 received lots of attention (see [153, 177] for instance). Conjec-
ture 4 holds for k = 1,2 since such tournaments are transitive tournaments (and then τ = 1). The
conjecture is still open for k ≥ 3.

As underlined in [163], the scheme of the proof of Theorem 3.25 cannot hold for proving Con-
jecture 4 since the VC-dimension of such hypergraphs can be arbitrarily large as long as k ≥ 3. Con-
sider the example of Figure 3.10. First partition the vertex set into two equal parts, V1 and V2. The
first order ≺1 is a total order on V1 union a total order on V2. The order V2 is a random (oriented)
bipartite graph from V1 to V2. There is no problem of transitivity since there is no path of length 2.
Arcs of V2 are represented by edges in Figure 3.10. Non comparable vertices in ≺1 and ≺2 are pairs
v2, v1 where v2 ∈ V2 and v1 ∈ V1. So we put ≺3 as the “complement” bipartite graph of V2 with arcs
from V2 to V1 (arcs of ≺3 are represented by non edges in Figure 3.10). Since there is no constraints
on the bipartite graph from V1 to V2, the VC-dimension of the in-neighborhood hypergraph can be
arbitrarily large as underlined in Lemma 3.9.

Chromatic number of triangle-free graphs. In this part, we deal with a problem raised by Erdős
and Simonovits concerning triangle-free graphs of large minimum degree. Erdős and Simonovits
conjectured in [84] that every triangle-free graph of minimum degree at least n/3 has a bounded
chromatic number. In addition, they showed that there exist graphs with minimum degree at least
( 1

3 − ε)n with arbitrarily large chromatic number. Thomassen proved in [184] that every graph
with minimum degree at least ( 1

3 + ε)n have a bounded chromatic number. Finally Brandt and
Thomassé [42] proved that all such graphs have chromatic number at most 4. Using VC-dimension,
Luczak and Thomassé [140] finally broke the n

3 barrier (with an additive constant). The key lemma
of their proof is the following. A cube is the graph represented in Figure 3.11.cube

Lemma 3.26 (Luczak, Thomassé [140]). Every triangle-free graph G with minimum degree cn and
no induced cube satisfies:

χ(G) ≤ 24 · log(11/c)

c
.
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Proof. Consider a maximum cut (X ,Y ) of the vertex set, i.e. a bipartition of the vertex set such that
the number of edges between X and Y is maximized. Note that any vertex x of X has at least as
many neighbors in Y as in X . Otherwise, we can put x in Y instead of X and (strictly) increase the
size of the cut, a contradiction with the maximality of the cut. So every vertex of X has at least cn/2
neighbors in Y (since the minimum degree is at least cn). Consider the hypergraph H on vertex
set Y where hyperedges are traces of neighborhoods of vertices of X in Y . In other words, Y ′ is a
hyperedge if there exists a vertex x of X such that N (x)∩Y = Y ′.

Observation 3.27. We have χ(G[X ]) ≤ τ(H).

Proof. Consider a hitting set Z of H . So, by definition of H , for every vertex x ∈ X , there exists z ∈ Z
such that z ∈ N (x). It means that every vertex of X is in the neighborhood of a vertex of Z . So X can
be covered by the neighborhoods of the vertices of Z . Since G is triangle-free each neighborhood is
a stable set (otherwise there would be a triangle). Hence χ(G[X ]) ≤ |Z |.

Let us finally prove that τ(H) is bounded. First note that by Observation 2.17 τ∗ is at most 2/c as
every hyperedge has size cn/2. Let us now show that the VC-dimension of H is at most 3. Assume
by contradiction that the VC-dimension is at least 4. Denote by Y ′ = {y1, y2, y3, y4} a shattered set of
size four. In particular, there exist four vertices x1, x2, x3, x4 in X such that N (xi )∩Y ′ = Y ′\{yi }. As G
does not contain any triangle, the subgraph induced by these eight vertices is a cube, a contraction.

Since τ∗(H) ≤ 2/c and vc(H) ≤ 3, Theorem 3.23 ensures that H has a hitting set of size
12log(1/c)/c. Let Z be such a hitting set. Observation 3.27 implies that χ(G[X ]) ≤ 12log(1/c)/c.
By symmetry the same holds for Y . And one can easily verify that if V1,V2 is a partition of the ver-
tex set V then χ(G[V ]) ≤ χ(G[V1])+χ(G[V2]) (we just have to use distinct colors for coloring each
subset), which achieves the proof.

Using Lemma 3.26, Luczak and Thomassé finally broke the n/3 threshold using this result
(see [140] for a complete proof).

Theorem 3.28 (Luczak, Thomassé [140]). Every triangle-free graph G with n vertices and minimum
degree at least n/3−b has chromatic number at most max(105,12(b +1)).

Generalization: the paired VC-dimension. A class of graphs has chromatic threshold 0 if the chro-
matic number is bounded as long as the minimum degree is at least cn for every positive c. In [140],
Luczak and Thomassé studied more precisely other thresholds. They introduced a generalization of
VC-dimension, called paired VC-dimension to achieve this goal. A paired hypergraph P is a couple paired

hypergraph(H ,G) where H is a hypergraph and G a graph where vertices are hyperedges of H . So edges of G are
pairs of hyperedges of H . The dual paired VC-dimension is the maximum d such that there exists d dual

paired VC-
dimension

edges (Ei ,Fi ) of G such that for every I ⊆ {1, . . . ,d}, there exists a vertex x such that x ∈ Ei if i ∈ I and
x ∈ Fi if i ∉ I .

Why did they introduce such an object? The first reason comes from hypergraph theory. One
can note that the VC-dimension is not modified when we consider the complement hypergraph, as
underlined in Observation 3.3. So much more than the hyperedge e itself, it is the bipartition (e,e)
which gives information for shattering. The paired VC-dimension is a tool which can break this
symmetry. In some sense we can restrict the complement of a hyperedge to a subset of vertices.
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Figure 3.12: A 2-complete Venn diagram of size 3.

The second motivation comes from graph theory. We have already seen that there are many
ways to represent graphs as hypergraphs (such as neighborhood hypergraphs). Though in such
hypergraphs, we completely forget the original structure of the graph. For instance, in triangle-
free graphs, neighborhoods can arbitrarily intersect but neighborhoods of two adjacent vertex are
disjoint. So transforming the graph into a hypergraph without keeping in mind the structure of
our graph is a loss of information. Transforming it into a paired hypergraph permits to keep some
information (in some sense we can still have in mind the edge structure of the original graph).

Theorem 3.29 (Luczak, Thomassé [140]). There exists a function f such that every paired hyper-
graph (H ,G) of dual paired VC-dimension d satisfies

χ(G) ≤ f (τ∗(H),d).

The quite technical proof is based on an “increasing density argument”. Using Theorem 3.29,
Luczak and Thomassé characterized the graphs H such that H-homomorphism-free graphs have
chromatic threshold 0. They also provided a sufficient condition in order to have threshold 0 for
some H-free graphs generalizing the result of Thomassen on C2k+1-subgraph-free graphs [185].
The reader is referred to [140] for the whole definitions and the proofs.

Clique - Stable set separation problem. Another application of Theorem 3.23 will be provided in
Chapter 5 for the so-called clique-stable set separation problem.

3.4 Erdős-Pósa property

In Section 3.3, we stated Theorem 3.22 which ensures that the integrality gap between τ and
τ∗ is bounded as long as the VC-dimension is bounded. Though, a bounded VC-dimension is
not enough to ensure that a class of hypergraphs has the Erdős-Pósa property as underlined in
Lemma 3.24. It raises a natural question: can we enforce the definition of VC-dimension in order
to bound the gap between τ and ν in the general case. Ding, Seymour and Winkler answered posi-
tively to this question by introducing the 2VC-dimension. We will also see in Section 3.4.3 another
way to obtain the Erdős-Pósa property using (p, q)-property due to Matoušek.

3.4.1 2VC-dimension

A subset of vertices X of a hypergraph is 2-shattered, if for every subset X ′ ⊆ X of size 2, there2-shattered
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exists a hyperedge e such that e ∩X = X ′. The 2VC-dimension is the maximum size of a 2-shattered2VC-
dimension set. The dual 2VC-dimension is the maximum size of a 2-shattered set in the dual hypergraph. Note

that dual 2VC-dimension is equivalent to the existence of a 2-complete Venn diagram, where 2-
complete means that a vertex is contained in all the possible intersections of size 2. In other words
a set e1, . . . ,ed forms a 2-complete Venn diagram if for every i , j there exists xi , j which is in ei ∩ e j

and which is in no other ek with k 6= i , j . Figure 3.12 represents a 2-complete Venn diagram of size 3.
First note that the VC-dimension is not larger than the 2VC-dimension. Indeed, a shattered

set is in particular a 2-shattered set. As a consequence, Lemma 3.12 ensures that the maximum
number of hyperedges of a hypergraph of 2VC-dimension d is at most

∑d
i=0

(n
i

)
. And Lemma 3.13

ensures that this bound is tight for some hypergraphs. One can naturally ask for the existence of a
function linking VC-dimension and 2VC-dimension. The following observation states that such a
function does not exist.

Observation 3.30. For every n ≥ 4, U2,n has VC-dimension 2 and 2VC-dimension n.

Proof. Lemma 3.5, which characterizes the VC-dimension of complete uniform hypergraphs, en-
sures that the VC-dimension of U2,n equals 2 (as max(2,n − 2) = 2 since n ≥ 4). And the 2VC-
dimension of U2,n is n since for every pair of vertices, there exists a hyperedge containing both
of them and containing no other vertices of the graph.

Even more disturbing, an arbitrarily large gap between the 2VC-dimension and the dual 2VC-
dimension is possible. The 2VC-dimension is not as stable as the VC-dimension under the dual
hypergraph operation. Indeed, Lemma 3.7 ensures that there is a bounded (even if potentially ex-
ponential) gap between the VC-dimension and the dual VC-dimension.

Observation 3.31. For every n ≥ 4, U2,n has dual 2VC-dimension 3 and 2VC-dimension n.

Proof. Observation 3.30 ensures that U2,n has 2VC-dimension n. Let us show that its dual 2VC-
dimension is at most 3. Assume by contradiction that four hyperedges e1,e2,e3,e4 form a 2-
complete Venn diagram. So there are three vertices x1, x2, x3 such that x1 ∈ e1 ∩ e2 ∩ e3 ∩ e4, x2 is
in e1 ∩e3 ∩e2 ∩e4 and x3 ∈ e1 ∩e4 ∩e2 ∩e3. Hence |e1| ≥ 3, a contradiction with the fact that hyper-
edges of U2,n have size 2. So the dual VC-dimension of U2,n is at most 3.

The following theorem, due to Ding, Seymour and Winkler is the main result of this Section.
Ding
Seymour
Winkler

Theorem 3.32 (Ding, Seymour, Winkler [71]). Every hypergraph H of dual 2VC-dimension d satis-
fies:

τ≤ 11d 2(d +ν+3)

(
ν+d

ν

)2

Hint of proof. We will not provide the whole proof of this statement but in the next few lines, we
will explain their method. For more details the reader is referred to [71]. Theorem 2.16 ensures that
τ≥ τ∗ = ν∗ ≥ ν. The proof roughly consists in proving that both integrality gaps are bounded which
is classical method in order to prove the Erdős-Pósa property. Let us detail each step of the proof.

Step 1: Using Theorem 3.23, we have τ ≤ f (τ∗,d). Indeed since the dual 2VC-dimension is
bounded, the dual VC-dimension is bounded. So Lemma 3.7 ensures that VC-dimension is
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Figure 3.13: A 1-subdivided K4. Below stand the “vertices” of the K4. Above the are “edges” of the
K4.

bounded. Finally Theorem 3.23 provides the desired inequality. Their proof is slightly more com-
plicated since such a sequence of inequality does not provide a polynomial gap.

Step 2 The hypergraph duality ensures that τ∗(H) = c∗(H d ). Recall that c denotes the covering of
a hypergraph and c∗ its fractional relaxation and α denotes the independent set of a hypergraph.
Observation 2.20 ensures c∗(H d ) =α∗(H d ) = τ∗(H).

Step 3: In the last part, they prove that α∗ ≤ f (α,d) for every hypergraph. Recall that Ramsey’s
Theorem (Theorem 1.3) ensures that every graph contains either a large stable set of a large clique.
They prove a generalization of Ramsey’s theorem for hypergraphs which ensures that the hyper-
graph contains either a 2-shattered subset of vertices or a subset of vertices such that no hyperedge
contains more than one vertex in it. Note that in the case of graphs, it provides a clique or a stable
set (since no hyperedge has size at least 3). They finally prove thatα∗ can be bounded by a function
of the size of such a set.

A proof of Theorem 3.32 follows since τ≤ f (τ∗,d) ≤ g (α(H d ),d) = g (ν,d).

Actually, Ding Seymour and Winkler proved a slightly stronger result than Theorem 3.32. For the
sake of completeness, let us state it even if we will not use it in the remaining. A subset of vertices
X of a hypergraph is `-shattered, if for every subset X ′ ⊆ X of size `, there exists a hyperedge e such
that e ∩ X = X ′. The `VC-dimension is the maximum size of an `-shattered set. The dual `VC-
dimension is the maximum size of a `-shattered set in the dual hypergraph. In other words, we
have a vertex in all the possible `-intersections of the set of hyperedges. A generalized `-packing
is a set of hyperedges such that no vertex is contained in at least `+1 hyperedges. In other words,
`+1 hyperedges do not intersect on the same vertex. Note that a packing is a generalized 1-packing.
Ding, Seymour and Winkler bound the size of a minimum hitting set by a function of the dual `VC-
dimension and of the maximum size of a generalized (`−1)-packing.

Theorem 3.32 provides a polynomial gap between τ and ν as long as the dual 2VC-dimension is
bounded. Nevertheless, nothing was done, up to my knowledge, in order to determine if this bound
is optimal or not.

Problem 7. What is the best function f such that τ≤ f (ν,d) where d denotes the 2VC-dimension?

3.4.2 Application: Scott’s Conjecture for maximal triangle-free graphs

The following result is joint work with Stéphan Thomassé and was published in [41]. Recall that
χ and ω respectively denote the chromatic number and the size of a maximum clique.
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An induced subdivision of a graph G is the graph G where each edge is replaced by a path of
an arbitrarily length. An induced 1-subdivision of a graph G is the graph where every edge of G is
subdivided once, i.e. is replaced by a path of length 2. In other words, it is an induced bipartite
graph G ′ = (X ,Y ) such that X has size n and Y has size m and for every edge xx ′ in G , there exists a
vertex y in Y such that N (y) = {x, x ′}. Figure 3.13 represents an induced 1-subdivision of K4.

Let F be a graph and Forb∗(F ) be the class of graphs with no induced subdivision of F . A class
G of graphs is χ-bounded if there is a function f such that every graph G of G satisfies χ(G) ≤ χ-bounded

f (ω(G)). Gyárfás proved in [113] that for every (induced) path Pk , Forb∗(Pk ) is χ-bounded. He
also conjectured that Forb∗(F ) is χ-bounded if F is a cycle and if F is a tree [113]. Scott proved
in [181] that Gyárfás’ conjecture holds for trees. And Scott strengthened Gyárfás’ conjecture by
conjecturing that for every graph F , Forb∗(F ) is χ-bounded. Scott’s conjecture also implies a well-
known conjecture of Erdős, first cited in [113], stating that every triangle-free intersection graphs
of segments in the plane have a bounded chromatic number. Indeed, by planarity, they cannot
contain an induced subdivision of a K5 with all the edges subdivided once. The Erdős’ conjecture
has recently been disproved by Pawlik et al. in [165]. Nevertheless, the counter-example raises two
interesting questions.

1. For which graphs F does Scott’s conjecture hold? We have already mentioned that it holds
for paths and trees. In addition, it holds for every graph on 4 vertices and for bulls (see [57,
141, 186]). In addition, Chalopin et al. [45] determined several graphs F for which Scott’s
conjecture does not hold using the construction of [165].

2. On which graph classes does Scott’s conjecture hold (for every forbidden graph F )? Kuhn and
Osthus proved in [131] that Scott’s conjecture holds as long as complete bipartite graphs are
forbidden. We proved with Stéphan Thomassé that it also holds for maximal triangle-free
graphs [41].

Recall that a maximal triangle-free graph is a graph G such that for any non edge x y , if x y is added
in E , then the graph contains a triangle. More formally, we proved the following:

Theorem 3.33 (B., Thomassé [41]). There is a constant c such that every maximal triangle-free graph
G with χ(G) ≥ ec·`4

contains an induced subdivision of every graph F on ` vertices.

Proof. The proof consists in showing that if the chromatic number is large enough, then the graph
contains a 1-subdivision of K`. Note that it implies Theorem 3.33 since, given a 1-subdivision of
K`, one can extract a 1-subdivision of any graph of size `. Indeed every edge of K` is replaced by a
path of length 2 in a 1-subdivision. Therefore, by deleting the vertex in the middle of the path, we
can eliminate one edge. In other words deleting a vertex of the upper side on Figure 3.13 deletes
an edge of the subdivided graph. Let us denote by H the neighborhood hypergraph of G , i.e. the
hypergraph with vertex set V and with hyperedges the closed neighborhoods of the vertices of G .

Observation 3.34. Every triangle-free graph G with neighborhood hypergraph H satisfies:

χ(G) ≤ 2τ(H).

Proof. The proof looks like the proof of Observation 3.27. Let X be a transversal of the hypergraph
H . Every vertex u satisfies N [u]∩X 6= ;, i.e. there exists a vertex x ∈ X such that u ∈ N [x]. So all the
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(a) (b) (c)

Figure 3.14: Illustration of the proof of Theorem 3.33.

vertices of the graph are covered by the closed neighborhoods of vertices of X . Since G is triangle-
free, N [x] is an induced star (a vertex adjacent to a stable set). Hence N [x] can be colored using
only 2 colors, i.e. χ(G) ≤ 2τ(H).

Observation 3.35. Every maximal triangle-free graph satisfies ν(H) = 1.

Proof. A packing of the neighborhood hypergraph is a subset of vertices such that their closed
neighborhoods pairwise do not intersect. If two vertices x and y satisfies N [x]∩ N [y] = ; then
adding the edge x y in the graph does not create any triangle, contradicting the assumption that G
is a maximal triangle-free graph. So we have ν(H) = 1.

Let G be a maximal triangle-free graph of chromatic number at least ec·`4
. Since χ(G) ≥ ec·`4

,
Observation 3.34 ensures that τ ≥ 1/2 · ec·`4

. By Observation 3.35, we have ν(H) = 1. So Theo-
rem 3.32 ensures that the dual 2VC-dimension of H is at least ec2·`4

(for some constant c2 which
depends on c). In other words, there exists a collection of hyperedges e1, . . . ,ed with d ≥ ec2·`4

which
forms a 2-complete Venn diagram. Yet differently, for every pair ei ,e j there exists a vertex yi , j in
ei ∩e j which is in no other ek with k 6= i , j . Let us denote by Y the set {yi , j ,1 ≤ i < j ≤ d}.
Recall that each ei corresponds to the closed neighborhood of some vertex xi of G . Let X =
{x1, . . . , xd } be the subset of vertices corresponding to e1, . . . ,ed . Since G is triangle-free, Theorem 1.6
ensures that X contains a stable set S of size at least

p
d logd (which has size at least ec3·`4

). Replac-
ing X by S, we can assume that X is a stable set. By abuse of notation, we still denote it by {x1, . . . , xd }.

For every i , j , the vertex yi , j is connected to both xi and x j and with no other vertex of X . Note
that it in particular implies that no yi , j belongs to X since otherwise some yi , j ∈ X would be a
neighbor of another vertex of X , a contradiction since X is a stable set. Consider the subgraph of G
induced by the set X ∪Y . Figure 3.14(a) illustrates the graph G[X ∪Y ].
At this point of the proof we have a (non induced) bipartite graph X ,Y where X is a stable set and Y
contains d(d −1)/2 vertices, each connected to exactly two vertices of X . Note that, if Y is a stable
set, G[X ∪Y ] is a 1-subdivision of Kd . Indeed, all the xi yi , j x j are paths of length 2 between every
pair of vertices of X . Nevertheless, Y is not necessarily a stable set and then such a subdivision is
not necessarily induced. In the rest of the proof, we show that we can extract from Y a stable set
large enough in order to ensure that G[X ∪Y ] contains a subdivision of a large clique.

Since the restriction of G to Y is triangle-free (since the whole graph is triangle-free) and since
|Y | = (d

2

)
, Theorem 1.6 ensures that Y contains a stable set Y ′ of size Θ(d

√
logd). Consider the

restriction of G to X ∪Y ′ (see Figure 3.14(b) for an illustration). Construct the graph G ′ on vertex
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Figure 3.15: The bold segments are 2-shattered in the neighborhood hypergraph. Indeed small
segments near the intersection points 2-shatter the four segments.

set X with an edge xi x j if and only if yi , j ∈ Y ′. The graph G ′ corresponding to Figure 3.14(b) is
represented on Figure 3.14(c). Note that if F is a subgraph of G ′ (on vertex set X ′), then G contains an
induced 1-subdivision of F . Indeed, the graph induced by G on X ′∪Y ′′, where yi , j ∈ Y ′′ whenever
xi x j is an edge of F , is such a subdivision. Note that since Y ′ has size Θ(d

√
logd), the average

degree of G ′ is Θ(
√

logd). So we just have to show that G ′ contains a subdivision of K` (and then of
F ) as a subgraph.

A theorem due to Mader [142] and improved by Bollobás and Thomason [27] ensures that every
graph with average degree 512 ·`2 contains a subdivision of K`. Since d ≥ ec3·`4

, there is a constant
c4 such that

√
logd ≥ c4`

2, hence G ′ contains a subdivision of K`, and therefore G has an induced
subdivision of K` (and thus of F ).

Note that Theorem 3.32 also bounds τ(H) in terms of ν(H). Hence the chromatic number of a
triangle-free graph G is also bounded when the maximum packing of neighborhoods is bounded.
This is the case for instance if the minimum degree is c ·n for some fixed constant c > 0.

Domination at large distance. We will see in Chapter 4 another applications of Theorem 3.32 for
dominating sets at large distance in several classes of graphs, including planar graphs, and more
generally Kn-minor-free graphs but also graphs of bounded rankwidth.

3.4.3 VC-dimension and (p,q)-property

There exists another way to obtain the Erdős-Pósa property which is based on the (p, q)-
property and VC-dimension. Recall that a hypergraph admits the (p, q)-property if for every set
of p hyperedges, at least q of them intersect on the same vertex. Theorem 3.32 provides the Erdős-
Pósa property as long as the 2VC-dimension is bounded. Nevertheless, in some cases, the 2VC-
dimension can be arbitrarily large and the VC-dimension can be bounded. Such a situation can
occur in lots of geometrical objects. Consider for instance the neighborhood hypergraph of graphs
of intersection of segments in the plane. Then 2VC-dimension of such hypergraphs is arbitrarily
large. Indeed, let X be a set of pairwise disjoint intersecting segments. For every intersection point
between two segments of X , add a new segment intersecting only the two segments which inter-
sect (see Figure 3.15 for an illustration). The set X is 2-shattered in the neighborhood hypergraph.
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On the contrary, one can prove that the neighborhood hypergraph of such graphs have a bounded
VC-dimension (the proof is not immediate). The following theorem due to Matoušek gives other
conditions on the hypergraph which ensure that the Erdős-Pósa property holds.

Theorem 3.36 (Matoušek [151]). Let H be a hypergraph of dual VC-dimension d. There exists a
function c such that if H has the (p,d −1)-property then τ≤ c(p,d).

Hint of the proof. The proof follows the scheme of the proof of Alon et Kleitman of the Hadwiger-
Debrunner conjecture [8]. Let us informally state the main steps of the proof.

Step 1: Proving that τ≤ f (τ∗,d) using Theorem 3.23.

Step 2: τ∗ = ν∗ by Theorem 2.16.

Step 3: Proving that ν∗ ≤ f (ν) using (p,d)-property. As in the Alon-Kleitman proof, the proof is
based on a fractional Helly theorem. First prove that every hypergraph of dual VC-dimension at
most d has fractional Helly number d . Then, using the Alon-Kleitman proof, we can prove that
ν∗ ≤ f (ν,d).

Theorem 3.36 have been used by Chepoi, Estellon and Vaxès in order to find dominating sets in
planar graphs [54]. In Chapter 4, we present joint work with Stéphan Thomassé which generalizes
their result.

3.5 Algorithmic aspects of VC-dimension

In this short section, we consider algorithmic aspects of VC-dimension. All along this chapter,
we have seen several applications of VC-dimension to obtain some upper bounds on invariants
of hypergraphs and in particular to obtain upper bounds on τ. Theorem 3.21 ensures that τ is
bounded by a function of τ∗ and of the VC-dimension. We have seen that the fractional transver-
sality τ∗ can be computed in polynomial time using classical algorithms of linear programing such
as the ellipsoid method (Theorem 2.11). So if the VC-dimension can be computed in polynomial
time, we can find an algorithm which gives an upper bound on τ in polynomial time. Moreover,
we have seen that the proof of Theorem 3.21 provides a (randomized) approximation algorithm.
So if the VC-dimension can be easily computed, we would provide immediately an approximation
algorithm for finding hitting sets (when the VC-dimension is bounded). Let us now give a formal
definition of the decision problem and study its complexity.

VC-DIMENSION

Input: A hypergraph H , an integer k.
Parameter: k
Output: TRUE if the VC-dimension of H is at least k, otherwise FALSE.

Note that the instance if positive if the VC-dimension is at least k and not at most k (as it is usu-
ally the case). We do that since the VC-DIMENSION problem is in N P while deciding if a hypergraph
has VC-dimension at most k is not clearly in N P . Indeed given a set of size k we can check in poly-
nomial time if it is shattered or not, while determining if a graph has VC-dimension at most k has
no (immediate) certificate. Let us first make an observation on the complexity of VC-dimension:

Observation 3.37. The VC-DIMENSION problem can be solved in O∗(nlogn).
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Proof. The proof of this statement is quite simple. Recall that the VC-dimension of a hypergraph
H = (V ,E) is at most bln |E |c. Indeed, for every shattered set X , all the possible traces exist on X .
Since a set X has 2|X | traces, if X is shattered we have 2|X | ≤ |E |.
Hence if k is at least bln |E |c + 1, then we return false. So we can assume that k ≤ logn. Consider
the naive algorithm trying all the sets of size k. The total number of sets of size k is

(n
k

)≤ nk . While
k ≤ logn, the complexity of the naive algorithm is O∗(nlogn).

A problem which can be decided in O∗(nO (logn)) is not NP-complete under ETH-conjecture
(stating that there is no algorithm for deciding SAT in time 2o(n)). Indeed assume that an NP-
complete problem Π admits a O∗(nO (logn)) running time algorithm. Since Π is an NP-complete
problem, there exists a polynomial time reduction from SAT to Π. So any instance of SAT of size n
is transformed into an instance of Π of size nc (where c is a fixed constant) which is positive if and
only if the original instance is positive. IfΠ can be decided in O∗(nO (logn)), then the initial instance
of SAT can be decided in 2o(n). A contradiction with the ETH-conjecture.

So, Observation 3.37 ensures that under ETH, the VC-DIMENSION problem is not NP-complete.
But on the other side, Downey, Evans and Fellows proved that the VC-DIMENSION problem is W [1]-
hard. So if it can be solved in polynomial time (and even on FPT time) then the W -hierarchy col-
lapses. More precisely we have the following:

Theorem 3.38 (Downey, Evans, Fellows [72, 73]). The VC-DIMENSION problem is W [1]-complete
parameterized by k.

Sketch of the proof. In this proof we do not prove that the VC-DIMENSION problem is in W [1]. We
refer the reader to [73] for the proof of this part.
Let us prove that the VC-DIMENSION problem is W [1]-hard, a result due to Downey, Evans and
Fellows in [72]. The reduction is a reduction from the CLIQUE problem. Recall that for proving that
a problem is W [1]-hard we can make reductions in FPT time (i.e. non necessarily polynomial in k
but polynomial in the rest part of this instance).

Let G = (V ,E) be a graph and let k be an integer. In the following we assume that k ≥ 4. Let us
construct hypergraph H = (X ,F ) which has VC-dimension at least k if and only if G admits a clique
of size at least k. The vertex set X of H is composed of all the pairs (v, i ) where v ∈ V and i ≤ k.
Given a vertex (v, i ), the integer i is called the witness of the vertex and v is called the representative
of the vertex. The hyperedge set F is divided into four parts:

– The set F0 contains only the hyperedge {;}.
– The set F1 contains all the singletons of H , i.e. it contains the hyperedges {(v, i )} for every

v ∈V and i ≤ k.
– The set F2 contains all the pairs {(u, i ), (v, j )} where uv is an edge of G and i , j ≤ k.
– The set F3 contains all the sets {(v, i ), where v ∈V , i ∈ S} for every subset S ⊆ {1, . . . ,k} of size at

least 3. The set S is called the witness set of the hyperedge.
Note that this reduction works in FPT time. Indeed F0,F1 and F2 can be constructed in polynomial
time. And the construction of F3 can be done in O∗(2k ) since we just have to compute all the subsets
(of size at least 3) of a set of size k.

Let us show that the VC-dimension of H is least k if and only if G contains a clique of size k. First
assume that G contains a clique K of size k. Denote by v1, . . . , vk the vertices of K . Let us prove that
the set of vertices Y = {(vi , i ), i ≤ k} is shattered. The set F0 ensures that there exists a hyperedge
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containing no vertex of Y . The set F1 contains all the hyperedges of size one. Since K induces a
clique, the edge vi v j exists in G , and then the hyperedge {(vi , i ), (v j , j )} exists in F2. So we just have
to prove that for every Y ′ ⊆ Y of size at least 3, there exists a hyperedge e of F3 such that e ∩Y = Y ′.
Let Y ′ be a subset of Y . Let S′ be the subset of {1, . . . ,k} such that i ∈ S′ if and only if vi ∈ Y ′. By
construction, the hyperedge e of F3 with witness set S′ satisfies Y ∩e = Y ′. So if G contains a clique
of size k then the VC-dimension of H is at least k.

Conversely assume that a set Y of size at least k is shattered. Let us first prove that all the
vertices of Y have pairwise distinct witnesses. Assume by contradiction that (u, i ) and (v, i ) are in
Y . Let (w, j ) and (x,`) be two other vertices of Y . Such vertices exist since we assumed k ≥ 4. Let
e be a hyperedge containing (u, i ), (w, j ) and (x,`). Since |e| ≥ 3, the hyperedge e is in F3. Since
(u, i ) ∈ e, the witness set S of e contains i . Hence by construction we have (v, i ) ∈ e. Thus Y cannot
be shattered, a contradiction.
Hence there is a 1 to 1 function between witnesses of vertices of Y and {1, . . . ,k}. Let us now prove
that vertices of Y have pairwise distinct representative. Assume by contradiction that (u, i ) and
(u, j ) are in Y . Let e be a hyperedge containing (u, i ) and (u, j ). Clearly e is not in F0,F1 and F2, so
e ∈ F3. Denote by S′ the witness set of e. Let ` be in S′ such that ` 6= i , j . Such a ` exists since S′ has
size at least 3. Since there is a bijection between {1, . . . ,k} and witnesses, there exists a vertex y of Y
which has witness `. So e ∩Y also contains y , i.e. the set Y cannot be shattered, a contradiction.
Finally a shattered set is a set (vi , i ) for every i ≤ k where the vertices vi are pairwise distinct. In
order to shattered sets of size 2, we have to use hyperedges of F2 and then for every i 6= j , we have
vi v j ∈ E . So the set of representative of Y induces a clique in G .

Note that the reduction of Theorem 3.38 is not polynomial. And it is quite comforting since
otherwise it would in particular prove that the VC-DIMENSION problem is N P-complete which
would contradicts the ETH because of Observation 3.37.

Finally the VC-DIMENSION problem seems to not be polynomial time solvable because of Theo-
rem 3.38 and seems to not be NP-complete because of Observation 3.37. So we can naturally think
that the VC-DIMENSION problem is a problem which is in a class between P and N P . Papadim-
itriou and Yannakakis introduced in [164] a new class of complexity which is between P and N P
and they proved that the VC-DIMENSION problem is complete for this class.
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4
Domination at large distance

In [54], Chepoi, Estellon and Vaxès proved that every planar graph of diameter 2` can be cov-
ered by c balls of radius ` (where c is independent from the graph and from `). In other words, the
class of hypergraphs of balls of radius ` of planar graphs of diameter 2` has the Erdős-Pósa property.
Their proof is based on Theorem 3.36 and on topological properties of planar graphs. Our initial
motivation when we look at this problem was to determined if we can avoid the part using topolog-
ical property and just obtain a combinatorial proof. This chapter is derived from a paper of Stéphan
Thomassé and myself in which:

– We first define notions of VC-dimension and 2VC-dimension on graphs and prove that clique-
minor free graphs and bounded rankwidth graphs have bounded 2VC-dimension.

– We then give a short proof of the result of Chepoi, Estellon and Vaxès based on Theorem 3.32.
– We finally show that the hypergraph of balls of radius ` of any graph of bounded VC-dimension

satisfies the Erdős-Pósa property (where the function does not depend on ` but only on ν and
the VC-dimension) using Theorem 3.36

4.1 Introduction

We have seen in Chapter 2 and 3 that there are several ways to represent a graph as a hypergraph.
In most of the applications of Chapter 3, we consider the neighborhood hypergraph. Nevertheless
this hypergraph cannot catch the whole complexity of a graph. For instance bounded degree graphs
have “simple” neighborhood hypergraphs (since the sizes of the hyperedges are bounded) but they
can have a random behavior at large distance (think about random cubic graphs).

Recall that the B-hypergraph of a graph G has vertex set V and that a subset Y ⊆V is a hyperedge
if there are a vertex x ∈ V and an integer k such that Y = B(x,k). For a given integer `, the B`-
hypergraph of G has vertex set V and Y ⊆ V is a hyperedge if there is an x such that Y = B(x,`)
(where B(x,`) is the set of vertices at distance at most ` from x).

The VC-dimension of a graph. The VC-dimension of a graph G could be defined as the VC-
dimension of the B-hypergraph of the graph G . Though, in order to ensure some stability, we close

95



96 CHAPTER 4. DOMINATION AT LARGE DISTANCE

this notion by induced subgraphs. So the VC-dimension of a graph G is the maximum by all induced
subgraphs of the VC-dimension of the B-hypergraph. Let us first make the following observation.

Observation 4.1. The VC-dimension of a non connected graph is the maximum of the VC-dimension
of its connected components.

Since the VC-dimension “measures” the randomness of hypergraphs, it is natural to think that
classes with lots of structure can have a bounded VC-dimension. Note that since we consider iter-
ated neighborhoods and not only neighborhoods (at distance one), we can catch the “randomness
at large distance”. For instance, with our definition, random cubic graphs have an unbounded VC-
dimension while their neighborhood hypergraphs have VC-dimension at most 3.

In Section 4.2, we prove that two famous graph classes have bounded VC-dimension. First
we show that the class of Kn-minor free graphs has VC-dimension at most n − 1. The proof is
almost the proof of Chepoi, Estellon and Vaxès that the B`-hypergraph of planar graphs has VC-
dimension at most 4. Then we show that the class of bounded rankwidth graphs have bounded
VC-dimension. Actually, we prove a slightly stronger statement for these two classes: their 2VC-
dimension is bounded. We finally provide some graphs of bounded VC-dimension and with an
arbitrarily large 2VC-dimension.

Erdős-Pósa property. In Section 4.3, we look for the Erdős-Pósa property of the B`-hypergraphs
for graphs of bounded VC-dimension. Chepoi, Estellon and Vaxès [54] proved that every planar
graph of diameter 2` can be covered by c balls of radius ` (where c does not depend on `). It
answers a conjecture of Gavoille, Peleg, Raspaud and Sopena [105]. Their proof is based on both
combinatorial arguments (based on VC-dimension) and topological arguments (based on planar
graphs). Recall that this result can be seen as an Erdős-Pósa property since every pair of balls of
radius ` intersects in a graph of diameter 2`. We will see a little bit further that combinatorial
assumptions are enough for obtaining equivalent results. We say that a set X is a dominating set at
distance ` if the set of balls of radius ` centered in X covers all the vertices of the graph. We denote
by ν` and τ`, respectively, the packing number and the transversality of the B`-hypergraph of G .
Let us first make a simple observation.

Observation 4.2. The B`-hypergraph is isomorphic its dual.

Proof. For every pair x, y of vertices, we have x ∈ B(y,`) if and only if y ∈ B(x,`). So x is in the
hyperedge corresponding to y if and only if y is in the hyperedge corresponding to x. It ensures
that the dual hypergraph is exactly the primal one.

Observation 2.9 ensures the dual of a hitting set is a covering. A covering is a subset of hyper-
edges such that every vertex is in at least one hyperedge. So, in the B`-hypergraph, a covering is
a subset of vertices X such that the balls centered in X of radius ` cover the vertices of the graph.
Finally Lemma 2.9 and Observation 4.2 ensures the following.

Corollary 4.3. Let G be a graph. A hitting set of the B`-hypergraph of G is a dominating set at distance
` of G.
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So finding a dominating set at distance ` corresponds to finding a hitting set of the B`-
hypergraph. In the following, we will only consider this problem from a hitting set point of view.

First we simplify (and generalize) the proof of Chepoi, Estellon and Vaxès using Theorem 3.32.
More precisely we prove that the B` hypergraph of any graph G has transversality at most O (ν2d+1

`
)

where d denotes the 2VC-dimension of G . Note that the function does not depend on ` but only
on ν`. Since planar graphs have VC-dimension at most 4, it ensures that the B` hypergraph of any
planar graph of diameter 2` satisfies τ` ≤ 88000.

Since some graphs of bounded VC-dimension have an arbitrarily large 2VC-dimension, it raises
a natural question: is it possible to extend the result which holds for graphs of bounded 2VC-
dimension to graphs of bounded VC-dimension. The main part of this chapter consists in proving
that the answer to this question is positive. More formally, we prove that there exists a function f
such that the B` hypergraph of a graph of VC-dimension d has a hitting set of size at most f (ν`,d).
Our proof is based on Theorem 3.36. The original proof of Chepoi, Estellon and Vaxès uses the same
argument but they conclude using topological properties of planar graphs. Since we only deal with
combinatorial structure, our proof is more technically involved.
In our proof of the Erdős-Pósa property, we do not make any attempt to improve the gap function.
We need an exponential gap function at many steps, for instance we make several Ramsey’s extrac-
tions and we use Theorem 3.36 whose bound is not polynomial also. Finding a polynomial gap
function instead of an exponential one is an interesting, but also probably really complicated prob-
lem. We can also restrict this questions for several classes of graphs. For instance, Chepoi, Estellon
and Vaxès conjectured that the gap function linking ν` and τ` for planar graphs is a linear function.
More formally they conjectured the following.

Conjecture 6. (Chepoi, Estellon, Vaxès [54]) There exists a constant c such that τ`(G) ≤ c ·ν`(G) for
every ` and every planar graph G.

Note also that Dvorak proved in [77] that there exists a polynomial function P such that τ` ≤
Pol y(`,ν`) for bounded expansion classes. Note that this proof is not based on VC-dimension.
Nevertheless, this polynomial function depends on ` while it is not the case in our case nor in the
proof of Chepoi, Estellon and Vaxès.

4.2 Graphs of bounded VC-dimension

In this section prove that some graph classes have bounded VC-dimension. More precisely,
minor-free graphs and bounded rank-width graphs have bounded 2VC-dimension. In addition we
provide a class of graphs with arbitrarily large 2VC-dimension with VC-dimension at most 18.

4.2.1 Kd -minor-free graphs have bounded VC-dimension

A graph H is a minor of G if H can be obtained from G by contracting edges, deleting edges, and
deleting vertices. Theorem 4.5 is roughly Proposition 1 of [54]. Since our definitions and statements
are slightly different, we prove it for the sake of completeness. We first prove an easy lemma before
stating the main theorem of this section.

Lemma 4.4. If z is on a minimum x y-path, B(z,d(x, z)) ⊆ B(y,d(x, y)).
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Proof. Since z is on a minimum x y-path, d(x, y) = d(x, z)+d(z, y). Hence B(y,d(y, z)) contains z
and then B(y,d(y, z)+d(z, x)) contains B(z,d(x, z)).

Theorem 4.5. A Kd -minor-free graph has 2VC-dimension at most d −1.

Proof. Let G be a graph with 2VC-dimension d . Let X = {x1, x2, . . . , xd } be a set of vertices of G which
is 2-shattered by the hyperedges of the B-hypergraph of G . Hence, for every pair (i , j ), there exists
a vertex ci , j and an integer ri , j such that B(ci , j ,ri , j )∩ X = {xi , x j }, we assume moreover that ri , j is
minimum for all choices of (ci , j ,ri , j ). A central path Pi , j is the concatenation of a minimum path
from xi to ci , j and a minimum path from ci , j to x j .

Claim 4.6. A central path is indeed a path.

Proof. Assume by contradiction that x appears more than once in a central path Pi , j . Since Pi , j

is a concatenation of a xi ci , j -path and a ci , j x j -path, x appears once between xi and ci , j and once
between ci , j and x j . Let us call Q1 the subpath of Pi , j from x to ci , j and Q2 the subpath of Pi , j from
ci , j to x. Note that Q1 and Q2 are both minimum paths connecting ci , j and x, hence replacing Q2

by the mirror of Q1 gives another central path P ′
i , j . The two neighbors of ci , j in P ′

i , j are the same
vertex v , contradicting the minimality of ri , j since B(v,ri , j −1)∩X = {xi , x j }.

Claim 4.7. If x belongs to two distinct central paths, then these paths are Pi , j and Pi ,l , and we both
have d(x, xi ) < d(x, x j ) and d(x, xi ) < d(x, xl ).

Proof. Assume that x appears in Pi , j and Pk,l , where d(x, xi ) ≤ d(x, x j ) and d(x, xk ) ≤ d(x, xl ). Free
to exchange the roles of Pi , j and Pk,l , we can also assume that d(x, xk ) ≤ d(x, xi ). By Lemma 4.4,
xk ∈ B(ci , j ,ri , j ), hence we have xk = xi or xk = x j . Since d(x, xk ) ≤ d(x, xi ) ≤ d(x, x j ) and xk is
either xi or x j , we have d(x, xk ) = d(x, xi ). Hence d(x, xi ) ≤ d(x, xk ), and by the same argument, we
have xi = xk or xi = xl . Since the central paths are distinct, we necessarily have xi = xk . Observe
that d(x, xi ) = d(x, x j ), hence d(x, x j ) ≤ d(x, xi ), would give by the same argument x j = xk , hence
a contradiction since we would have xi = x j . Therefore d(x, xi ) < d(x, x j ), and for the same reason
d(x, xi ) < d(x, xl ).

Let us now construct some connected subsets Xi for all 1 ≤ i ≤ d . For every path Pi , j , the
vertices of Pi , j closer to xi than to x j are added to Xi , the vertices of Pi , j closer to x j than to xi

are added to X j , and the midvertex (if any) is arbitrarily added to Xi or to X j .
The crucial fact is that the sets Xi are pairwise disjoint. Indeed, by Claim 4.6 and Claim 4.7, if a

vertex x appears in two distinct central paths, these are Pi , j and Pi ,l , where d(x, xi ) < d(x, x j ) and
d(x, xi ) < d(x, xl ). In particular x is added in both cases to Xi .

By construction, the sets Xi are connected and there is always an edge between Xi and X j since
their union contains Pi , j . Therefore if the 2VC-dimension is at least d , the graph contains Kd as a
minor.

4.2.2 Bounded rankwidth graphs have bounded VC-dimension

Let us first recall the definition of rankwidth, introduced by Oum and Seymour in [159]. Let
G = (V ,E) be a graph and (V1,V2) be a partition of V . Let MV1,V2 be the matrix of size |V1|× |V2| such
that the entry (x1, x2) ∈V1×V2 equals 1 if x1x2 ∈ E and 0 otherwise. The cutrank cr (V1,V2) of (V1,V2)
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is the rank of the matrix MV1,V2 over the field F2. A ternary tree is a tree with nodes of degree 3 or 1.
The nodes of degree 3 are the internal nodes, the other nodes being the leaves. A tree-representation
of G is a pair (T, f ) where T is a ternary tree with |V | leaves and f is a bijection from V to the set of
leaves. Every edge e of T defines a partition of the leaves of T . Therefore it defines a partition of the
vertex set V into (V e

1 ,V e
2 ). The rankwidth r w of a graph G is defined by:

r w(G) = min
(T, f )

max
e∈E(T )

cr (V e
1 ,V e

2 )

Before stating the main result, let us first recall two well-known statements concerning
rankwidth and ternary trees.

Lemma 4.8. Let G = (V ,E) be a graph of rankwidth k and X ,Y be the partition of V induced by
an edge of a tree-representation of G of cutrank k. There exist partitions of X and Y into 2k sets
X1, . . . , X2k and Y1, . . . ,Y2k such that for all i , j , (Xi ×Y j )∩E =∅ or (Xi ×Y j )∩E = Xi ×Y j .

Proof. Let T be a tree representation of G of cutrank at most k. Let e be an edge of the tree rep-
resentation of G and (X ,Y ) be the partition of V induced by e. Since the cutrank is at most k, the
matrix MX ,Y has rank at most k. Hence k rows R1, . . . ,Rk form a base of the rows of the matrix MX ,Y .
By definition, every row corresponds to the neighborhood of a vertex of X into Y . Let us denote by
xi the vertex corresponding to Ri . We denote by B the set {x1, . . . , xk }.
For every B′ ⊆ B, X (B′) denotes the subset of X which contains x if N (x)∩Y =F2

∑
xi∈B′ N (xi ).

It induces a partition of X since N (x1), . . . , N (xk ) is a base of the neighborhoods of X in Y . Note
that by definition all the vertices of X (B′) have the same neighborhood in Y . Observe that a vertex
x ∈ X (B′) is connected to a vertex y if and only if an odd number of vertices of B′ are connected to
y .
For every B′ ⊆ B, Y (B′) is the subset of Y containing y if N (y)∩B = B′. It induces a partition of
Y into 2k sets with the same neighborhood in B.

Let us finally prove that the partitions of X (B′)B′⊆B and Y (B′)B′⊆B satisfy the required prop-
erties. Let x, y be in X (B′)×Y (B′′) such that x y is an edge. Since x y is an edge, an odd number of
vertices of B′ are connected to y . Since all the vertices of Y (B′′) have the same neighborhood in
B, all the vertices of Y (B′′) have an odd number of neighbors on B′. Thus x is connected to all the
vertices of Y (B′′). Since all the vertices of X (B′) have the same neighborhood in Y , (X (B′),Y (B′′))
forms a complete bipartite graph.

Lemma 4.9. Every ternary tree T with α > 2 labeled leaves has an edge e such that the partition
induced by e has at least α/3 labeled leaves in both of its two connected components.

Proof. Orient every edge of T from the component with less labeled leaves to the other one (when
equality holds, orient arbitrarily). Observe that leaves are sources of this oriented tree. Let v be
an internal node of T which is a sink. Consider a component C of T \ v with at least α/3 labeled
leaves. Call e = v w the edge of T inducing the partition (T \C ,C ). Since e is oriented from w to v ,
the component T \C has at least α/2 labeled leaves, thus e is the edge we are looking for.

Theorem 4.10. The 2VC-dimension of a graph with rankwidth k is at most 3 ·2k+1 +2.
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Figure 4.1: The graph Gn,` of Theorem 4.12 with n = 4 and `= 2.

Proof. Assume by contradiction that the B-hypergraph of a graph G of rankwidth k admits a 2-
shattered set S of size 3(2k+1 +1). Let (T, f ) be a tree decomposition of G achieving rankwidth k. By
Lemma 4.9, there is an edge e of T such that the partition induced by e has at least 2k+1 +1 vertices
of S in both connected components. Let V1,V2 (resp. X ,Y ) be the partition of V (resp. S) induced
by e. Let x1, . . . , x2k+1+1 and y1, . . . , y2k+1+1 be distinct vertices of X and Y respectively.

Since S is 2-shattered, for each (xi , y j ) ∈ X ×Y , there is a ball B(i , j ) such that B(i , j )∩S = {xi , y j }
where B(i , j ) is chosen with minimum radius.

Claim 4.11. One of the following holds:
– There is an i such that at least 2k +1 balls B(i , j ) have their centers in V1.
– There is a j such that at least 2k +1 balls B(i , j ) have their centers in V2.

Proof. Orient the edges of the complete bipartite graph with vertex set X ∪Y such that xi → y j if
B(i , j ) has its center in V1 and xi ← y j otherwise. The average outdegree of the vertices of X ∪Y
is 2k +1/2, thus there is a vertex with out-degree at least 2k +1, i.e. a vertex satisfying one of the
conditions of Claim 4.11.

By Claim 4.11, we can assume without loss of generality that B(1,1),B(1,2), . . . ,B(1,2k +1) have
their centers in V1. We denote by ci and ri respectively the center and the radius of B(1, i ) and by
Pi a minimum ci yi -path. By the pigeonhole principle, two Pi ’s leave V1 by the same set of vertices
given by the partition of Lemma 4.8. Without loss of generality, we assume that these paths are
P1 and P2 and we denote by z1 and z2 respectively their last vertices in V1. We finally assume that
d(z1, y1) ≤ d(z2, y2). By Lemma 4.4, B(z2,d(z2, y2)) ⊆ B(c2,r2) since z2 is on a minimum path from
c2 to y2. Let z1z ′

1 be the first edge of P1 between z1 and y1 (hence z ′
1 belongs to Y ). By Lemma 4.8, z ′

1
is also a neighbor of z2 since z1 and z2 have the same neighborhood in Y . Thus y1 ∈ B(z2,d(z2, y2)).
Thus y1 ∈ B(z2,d(z2, y2)) which contradicts the hypothesis.

Since the rankwidth is equivalent, up to an exponential function, to the cliquewidth, Theo-
rem 4.10 implies that the class of bounded clique-width graphs has bounded 2VC-dimension.

4.2.3 Unbounded 2VC-dimension but bounded VC-dimension

Theorem 4.12. Let n,` be two integers. There exists a graph Gn,` of VC-dimension at most 18 such
that the 2VC-dimension of the B`-hypergraph of Gn,` is at least n.
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Proof. The following construction is illustrated on Figure 4.1. The graph Gn,` has vertex set X ∪Y .
The set X contains n vertices denoted by (xi )1≤i≤n and Y is a set of (2`− 1)

(n
2

)
vertices denoted

by y i , j
k where 1 ≤ k ≤ 2`− 1 and 1 ≤ i < j ≤ n. The graph restricted to X is a clique. The graph

restricted to Y is a disjoint union of
(n

2

)
induced paths on 2`−1 vertices (whose endpoints will be

connected to vertices of X ). More formally, for every 1 ≤ i < j ≤ n and k ≤ 2`−1, the neighbors of

the vertex y i , j
k are the vertices y i , j

k−1 and y i , j
k+1 where y i , j

0 is xi and y i , j
2` is x j . For every i < j , the path

xi , y i , j
1 , y i , j

2 , . . . , y i , j
2`−1, x j is called the long path between xi and x j .

The 2VC-dimension of the B`-hypergraph of Gn,` is at least n. Indeed the vertices of X are 2-

shattered since for every xi , x j ∈ X , we have B(y i , j
l ,`)∩X = {xi , x j }.

The rest of the proof consists in proving that the VC-dimension of Gn,` is at most 18. Consider an
induced subgraph of Gn,`. All the remaining vertices of X are in the same connected component
since X is a clique. Connected components which do not contain vertices of X form an induced
path and then have VC-dimension at most two by Theorem 4.5. So Observation 4.1 ensures that
Theorem 4.12 holds if it holds for the connected component of X .

Claim 4.13. A shattered set of size at least four cannot contain 3 vertices on the same long path.

Proof. Let z1, z2, z3 be three vertices on the same long path P and z4 be a vertex which is not be-
tween z1 and z3 on P . By construction, every path between z2 and z4 intersects either z1 or z3. So
no pair z, p ∈V ×N satisfy B(z, p)∩X = {z2, z4}, i.e. {z1, z2, z3, z4} is not shattered.

Let Z ′ be a shattered set of size at least 19. By Claim 4.13, we can extract from Z ′ a set Z of
size 10 such that vertices of Z are in pairwise distinct long paths. For every vertex zi ∈ Z , a nearest
neighbor on X is a vertex x of X such that d(x, zi ) is minimum. Note that each vertex has at most
two nearest neighbors which are the endpoints of the long path containing zi .

First assume z1, z2, z3 in Z have a common nearest neighbor x, i.e. they are on long paths
containing x as endpoint. Without loss of generality d(z3, X ) is minimum. Let z, p be such that
{z1, z2} ⊆ B(z, p). Free to exchange z1 and z2, a minimum zz2-path passes through a vertex y of
X since z1 and z2 are not in the same long path. If y = x, then B(z, p) contains B(x,d(x, z2)) by
Lemma 4.4, and then contains z3 since d(x, z2) ≥ d(x, z3). Otherwise up to symmetry y is not an
endpoint of the long path of z2. Indeed the second endpoints of the long path containing z1 and
of the long path containing z2 are distinct (otherwise they would be in the same long path). Hence
d(y, z2) ≥ d(y, z3). So z3 is in B(z, p) and {z1, z2, z3} cannot be shattered.

So each vertex of Z has at most two nearest neighbors in X and each vertex of X is the nearest
neighbor of at most two vertices of Z . Thus every z ∈ Z share a common nearest neighbor with at
most two vertices of Z . Since |Z | ≥ 10, at least four vertices z1, z2, z3, z4 of Z have distinct nearest
neighbors. Assume w.l.o.g. that d(z4, X ) is minimum.

Let z, p ∈ V ×N be such that B(z, p) contains z1, z2, z3. Free to permute z1, z2, z3, the nearest
neighbors of z are not nearest neighbors of z3 (since z has at most 2 nearest neighbors and nearest
neighbors of z1, z2, z3 are pairwise distinct). So a minimum path from z to z3 passes through a vertex
x ∈ X such that d(x, z3) ≥ d(x, z4). By Lemma 4.4, B(z, p) also contains z4, i.e. Z is not shattered.

Note that we did not make any attempt in order to exactly evaluate the VC-dimension of the
graph Gn,`.
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4.3 Erdős-Pósa property

Recall that ν` and τ` respectively denote the packing number and the transversality of the B`-
hypergraph of G . Chepoi, Estellon and Vaxès proved in [54] that there is a constant c such that
for all `, every planar graph G of diameter 2` can be covered by c balls of radius `. It means that
planar graphs of diameter 2` satisfy τ` ≤ f (ν`): indeed two balls of radius ` necessarily intersect.
They raised the following question. Does there exist a function f such that τ` ≤ f (ν`) for every
` and every planar graph (with no constraint on the diameter)? Theorem 3.32 permits to answer
positively to this question for graphs of bounded 2VC-dimension.

Corollary 4.14. Let d be an integer. For every graph G ∈G and every integer `, if the 2VC-dimension
of G is at most d, then

τ` ≤ 11 ·d 2 · (d +ν`+3) ·
(

d +ν`
d

)2

Proof. Let G be a graph. Observation 4.2 ensures that the B`-hypergraph of G is isomorphic its dual
hypergraph. And the B`-hypergraph of G is a sub-hypergraph (in sense of hyperedges) of the B-
hypergraph of G . Hence the dual 2VC-dimension of the B`-hypergraph of G is at most d and then
Theorem 3.32 can be applied.

Theorems 4.5 and 4.10 and Corollary 4.14 ensure that B`-hypergraphs of Kn-minor free graphs
and of bounded rankwidth graphs have the Erdős-Pósa property. Note that the gap between ν`
and τ` is a polynomial function when the VC-dimension is fixed. Since Theorem 4.12 ensures
that there are some graphs with bounded VC-dimension and unbounded 2VC-dimension, Corol-
lary 4.14 raises a natural question. Does the same hold for graphs of bounded VC-dimension? The
rest of this Section is devoted to answering this question.

Theorem 4.15. There exists a function f such that, for every `, every graph of VC-dimension d can
be covered by f (ν`,d) balls of radius `, i.e. τ` ≤ f (ν`,d).

Our proof follows the scheme of the proof of Chepoi et al. [54]: both are based on a result of
Matoušek linking (p, q)-property and Erdős-Pósa property [151]. Nevertheless our proof is more
technical since we cannot use topological properties as for planar graphs in [54].

A hypergraph has the (p, q)-property if for every set of p hyperedges, q of them have a non-
empty intersection, i.e. there is a vertex v in at least q of the p hyperedges. The following result, due
to Matoušek [151], generalizes a result of Alon and Kleitman [8].

Theorem 4.16. (Matoušek [151]) There exists a function f such that every hypergraph H of dual
VC-dimension d satisfying the (p,d −1)-property satisfies

τ(H) ≤ f (p,d)

Let d be an integer. Let G be a graph of VC-dimension d . By Observation 4.2, the dual VC-
dimension of the B`-hypergraph is at most d . Hence if there exists a function p such that, for every `
and every graph G of VC-dimension d , the B`-hypergraph of G satisfies the (p(ν`,d),d−1)-property,
then Theorem 4.16 will ensures that Theorem 4.15 holds.
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In the following, we prove that the size of a set of balls of radius ` which does not contain d −1
balls intersecting on a same vertex is bounded by a function of ν` and d . The proof is structured as
follows: first we prove a general theorem giving lower bounds on VC-dimension of graphs and we
give a first application of it. We also provide an important lemma on the structure of the edges be-
tween minimum paths. We then try to define a notion of independence between minimum paths.
Our goal is to prove that the VC-dimension is a function of the number of “independent” paths.

4.3.1 A lower bound for the VC-dimension of a graph

Let A and B be two disjoint sets. An interference matrix M = (A,B) is a matrix with |A| rows
and |B | columns such that for every (a,b) ∈ A ×B , the entry m(a,b) is a subset of (A ∪B)\{a,b}.
The size of an entry is its number of elements. A k-interference matrix M is an interference matrix
which entries have size at most k. If A′ ⊆ A and B ′ ⊆ B , the submatrix M ′ of M induced by A′×B ′

is the matrix restricted to the set of rows A′ and the set of columns B ′ which entries are m′(a′,b′) =
m(a′,b′)∩ (A′∪B ′). A 0-interference matrix is called a proper matrix. A matrix is square if |A| = |B |.
The size of a square matrix is its number of rows.

Lemma 4.17. Let k > 0. A k-interference square matrix with no proper submatrix of size n has size
at most kn3.

Proof. Let us show that if M = (A,B) is a k-interference matrix with size m = kn3+1, then it contains
a proper submatrix of size n. A triple (i , j , l ) ∈ A×B ×(A∪B) is a bad triple if l ∈ m(i , j ) and l 6= i and
l 6= j . Let X ⊆ A and Y ⊆ B be two subsets of size n chosen uniformly at random. Let us denote by
1i , j ,l the random variable which is equal to 1 if {i , j , l } ⊆ X ∪Y and 0 otherwise. The expected value
of 1i , j ,l is given by:

E(1i , j ,l ) = n/m ·n/m · (n −1)/(m −1)

The third term of the product follows from the fact that l is neither i or j . Since the number of bad
triples is at most k for each entry, there are at most km2 bad triples. Hence the expected number of
bad triples is at most kn2(n−1)/(m−1) = 1−1/n which is less than one. Hence there is a pair (X ,Y )
for which none of the bad events happen. The restriction of M to (X ,Y ) gives a proper submatrix of
size n.

Given a path P from x to y and a path Q from y to z, the concatenation of P and Q denoted by
PQ is the walk consisting on the edges of P followed by the edges of Q. The length of a path P is
denoted by |P |. Let G = (V ,E) be a graph and ≺l be a total order on E . We extend ≺l on paths, for
any paths P1 and P2 as follows :

– If P1 has no edges, then P1 ≺l P2.
– If P1 = P ′

1.e1 and P2 = P ′
2.e1, where e1 is the last edge of P1 and P2, then P1 ≺l P2 if and only if

P ′
1 ≺l P ′

2.
– If P1 = P ′

1.e1 and P2 = P ′
2.e2, where e1 6= e2, then P1 ≺l P2 if and only if e1 ≺l e2.

The order ≺l is called the lexicographic order (note nevertheless that paths are compared from
their end to their beginning). The minimum path from x to z, denoted by the xz-path, is the path of
minimum length with minimum lexicographic order from x to z. Observe that two minimum paths
going to the same vertex z and passing through the same vertex u coincide between u and z. We
note u Exz v if u appears before v on the xz-path. Given a path from a to b passing through c, the
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Figure 4.2: Lemma 4.18 ensures that, up to symmetry, only (c) and (d) are authorized. The thick
chords are edges of the graph. Thin chords represent paths. Distances are denoted by d or d −1. In
the case of Figure 4.2(d), the path Qv2 is v2v1Qv1 .

suffix path on c (resp. prefix path on c) is the cb-subpath (resp. ac-subpath) of the ab-path. Note
that every suffix of a minimum path is a minimum path. Given two sets X and Z , the X Z -paths are
the xz-paths for all x, z ∈ X ×Z .

Let x1, x2 and z be three vertices. Two distinct edges v1u2 and u1v2 form a cross between the
x1z path and the x2z-path if for i ∈ {1,2}, ui Exi z vi (see Figure 4.2).

Lemma 4.18. Let x1, x2, z be three vertices. If the edges u1v2 and v1u2 form a cross between the x1z-
path and the x2z-path, then up to symmetry, either u1 = v1 and u2v2 is an edge. Or u1 = v1 and the
v2z-path is the edge v2v1 concatenated with the v1z-path.

In other words, only cases (c) and (d) of Figure 4.2 can occur.

Proof. For i ∈ {1,2}, we denote by Qui (resp. Qvi ) the suffix of the xi z-path on ui (resp. vi ). Since
suffixes of minimum paths are minimum paths, these four paths are minimum paths. We prove that
if a cross does not satisfy the condition of Lemma 4.18, then one of these paths is not minimum.

A real cross is a cross for which u1 6= v1 and u2 6= v2. A degenerated cross is a cross for which, up
to symmetry, u2 = v2 and Qv2 6= v2v1Qv1 .
A real cross satisfies |Qv1 | = |Qv2 |. Indeed if |Qv1 | < |Qv2 | then u2v1Qv1 has length at most |Qv2 |.
This path is strictly shorter than Qu2 (since Qu2 strictly contains Qv2 while the cross is a real cross),
contradicting the minimality of Qu1 .
Consider a degenerated cross for which u1v1 ∉ E . We have |Qv2 | ≤ |Qv1 | otherwise u1v2Qv2 would
be strictly shorter than Qu1 , a contradiction. In addition, |Qv2 | and |Qv1 | differ by at most one since
v1v2 is an edge. Hence a cross is necessarily of the type Figure 4.2(a), (b), (c) or (d). Remark that (d)
is a particular case of (b).

If the cross is of type Figure 4.2(a), then free to exchange x1 and x2, we have Qv1 ≺l Qv2 . So
u2v1Qv1 ≺l Qu2 (recall that we first compare the last edge) and |u2v1Qv1 | ≤ |Qu2 . Therefore Qu2 is
not minimum, a contradiction. So case (a) is cannot occur.
If the cross is of type Figure 4.2(b) and not (d), then we have Qu2 ≺l Qv1 . Otherwise we would have
v2v1Qv1 ≺l Qv2 , and |u2v1Qv1 | = |Qv2 |, and these two paths are distinct since we assume that we
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are not in the case of Figure 4.2(d). Hence u1v2Qv2 ≺l Qu1 . Finally the type of a cross is necessarily
Fig 4.2(c) or (d).

Let ` be an integer and A,B be two disjoint subsets of vertices. To every pair (a,b) ∈ A ×B ,
we associate a set of vertices Sa,b which is disjoint from A ∪B . We say that the family of subsets
S = {(Sa,b)(a,b)∈A×B } is `-disconnecting if for every collection C of S and every pair (a,b), we have
d(a,b) > ` in G \

⋃
C if and only if Sa,b ∈C . If such a family of sets exists, then A,B are said to be `-

disconnectable. Another way of defining `-disconnecting families would be to say that d(a,b) > ` in
G \Sa,b and d(a,b) ≤ ` in G \

⋃
(S \Sa,b), or roughly speaking that Sa,b is the only set whose deletion

can increase d(a,b) above `.

Theorem 4.19. Let G = (V ,E) be a graph and ` be an integer. If there exist two subsets A,B of V with
|B | = 2|A| which are `-disconnectable, then the VC-dimension of G is at least |A|.
Proof. Let us prove that the set A can be shattered in the B`-hypergraph of an induced subgraph
of G . Associate in a one to one way every vertex b of B to a subset Ab of A. Since A,B are `-
disconnectable, there exists a family S of subsets which is `-disconnecting for A,B . Let C be the
collection of S consisting of all the sets Sa,b such that a ∈ Ab . Since S is `-disconnecting, B(b,`)∩
A = Ab in G \C , for all b ∈ B . Hence the set A is shattered by balls of radius ` in G \C . Therefore the
VC-dimension of G is at least |A|.

4.3.2 Sparse sets

Let G be a graph of VC-dimension d and q,` be two integers. Most of the following definitions
depends on `. Nevertheless, in order to avoid too heavy notations, this dependence will be implicit
on the terminology. A set of balls of radius ` is q-sparse if no vertex of the graph is in at least q
balls of the set. Note that a subset of a q-sparse set is still q-sparse. By abuse of notation, a set X of
vertices is called q-sparse if the set of balls of radius ` centered in X is q-sparse.

Assume that a graph G does not satisfy the (p,d − 1)-property for the B`-hypergraph. Then
there exist p balls of radius ` such that no vertex is in at least d − 1 of these p balls, i.e. there is
a (d − 1)-sparse set of size p. In other words, a (d − 1)-sparse set of size p is a certificate that the
(p,d −1)-property does not hold. In order to prove Theorem 4.15, we just have to show that p can
be bounded by a function of d and νl . In the following, our goal is to prove that the size of a (d −1)-
sparse set is at most f (d ,νl ).

A set X of vertices is d-localized if the vertices of X are pairwise at distance at least `+1 and at
most 2`−2d+2−3. A pair A,B of disjoint sets of vertices is q-sparse if A∪B is. A disjoint pair A,B of
vertices is d-localized if the vertices of A ∪B are pairwise at distance at least `+1, and if for every
a,b ∈ A ×B , d(a,b) ≤ 2`−2d+2 −3. A subpair of a d-localized pair is d-localized. The size of a pair
A,B is min(|A|, |B |).

Let us recall Ramsey’s theorem.

Theorem 4.20. (Ramsey) There exists a function rk such that every complete edge-colored graph G
with k colors with no monochromatic clique of size n has at most rk (n) vertices.

Lemma 4.21. Let G be a graph of VC-dimension at most d. There exists a function f such that:

(a) Either G contains a d-localized set of size p which is (d −1)-sparse,
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(b) Or the ( f (ν`,d , p),d −1)-property holds.

Proof. Assume that the ( f (ν`,d , p),d −1)-property does not hold. Then, there is a (d −1)-sparse set
X of size f (ν`,d , p). Let D = 2d+2 +2. Consider the complete (D +4)-edge-colored graph G ′ with
vertex set X such that, for every x, y ∈ X , x y has color:

– 0 ≤ c ≤ D if d(x, y) = 2`− c,
– D +1 if d(x, y) ≤ `,
– D +2 if d(x, y) > 2`,
– D +3 otherwise.

Note that a d-localized set is a monochromatic clique of size D +3 (and such a set is (d −1)-sparse
since any subset of X is (d − 1)-sparse). Let N = max(p,νl + 1,23d+3+log(4d−2)). If f (ν`,d , p) ≥
rD+4(N ) + 1, then Theorem 4.20 ensures that there is a monochromatic clique K of size N . Let
K ′ be a clique of color D +1 and x ∈ K ′. Then K ′ ⊆ B(x,`)∩ X . Thus the size of K ′ is at most d −2
since X is (d −1)-sparse. At most ν` balls of radius ` centered in X are vertex disjoint by definition
of the packing number. Thus the size of a clique of color D + 2 is at most ν` < N . The following
Claim will ensure that the color c of K does not satisfy 0 ≤ c ≤ D .

Claim 4.22. Let G be a graph and X be a subset of vertices pairwise at distance exactly r . Assume also
that no vertex of G belongs to q balls of radius dr /2e with centers in X . Then the VC-dimension of G
is at least (log |X |− log2q)/3.

Proof. Let r ′ be equal to dr /2e. Free to remove one vertex from X , we can assume that X is even, and
we consider a partition A,B of X with |A| = |B |. For every pair (a,b) ∈ A×B , we denote the minimum
ab-path by Pab . By abuse of notation, we still denote by G the restriction of G to the vertices of
the union of the paths Pab for all a ∈ A and b ∈ B . Observe that we preserve the hypothesis of
Claim 4.22 apart from the fact that the distance between vertices inside A (resp. inside B) may
have increased above r . Let y be a vertex of X distinct from a and b. If x belongs to B(y,r ′)∩Pab ,
then d(a, x) ≥ br /2c since d(a, y) ≥ r and d(y, x) ≤ dr /2e. By symmetry, we also have d(b, x) ≥ br /2c.
Hence x is a midvertex of Pab , i.e. a vertex of Pab at distance br /2c or dr /2e from a (and thus also
from b). Recall that a midvertex x of Pab belongs to at most q−1 balls of radius r ′ (including B(a,r ′)
and B(b,r ′)).

Consider the interference matrix M = (A,B) where m(a,b) = {y ∈ (A ∪B)\{a,b}|B(y,r ′)∩Pab 6=
∅}. Since Pab has at most two midvertices and each of these belongs to at most q −3 balls B(y,r ′)
with y different from a and b, the matrix M is a (2q − 6)-interference matrix. To avoid tedious
calculations and free to increase the interference value, we only assume that M is a 2q-interference
matrix (with 2q ≥ 1). By Lemma 4.17, there is a proper submatrix M ′ of size N = (|X |/2q)1/3. Let us
denote by A′ the set of rows and B ′ the set of columns of the extracted matrix. Let us still denote by
G the restriction of the graph to the vertices of the paths (Pab)(a,b)∈A′×B ′ .

Let a, a′ ∈ A′ and b′ ∈ B ′. The key-observation is that if B(a,r ′) intersects Pa′b′ , then a = a′.
Indeed assume for contradiction that x ∈ B(a,r ′)∩Pa′b′ . Since d(a, a′) ≥ r , d(a,b′) = r and d(a, x) ≤
dr /2e, the distance from x to both a′ and b′ is at least br /2c, and hence x is a midvertex of Pa′b′ . Thus
a ∈ m(a′,b′), contradicting the fact that M ′ is a proper submatrix.

Let Mab be the set of midvertices of Pab , where a,b ∈ A′×B ′. We claim that Mab is disjoint from
Pa′b′ , whenever Pa′b′ 6= Pab . Indeed if x ∈ Mab ∩Pa′b′ , we have in particular both d(a, x) ≤ r ′ and
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Figure 4.3: Minimum paths with root sections (dashed parts), critical vertices and precritical ver-
tices.

d(b, x) ≤ r ′, and thus by the key-observation a = a′ and b = b′. In other words, deleting Mab never
affects Pa′b′ , whenever Pa′b′ 6= Pab .

Another crucial remark is that every path P of length r from a to b intersects Mab . Indeed, let x
be a vertex of P with both d(a, x) ≤ r ′ and d(b, x) ≤ r ′. Since x is in G , it belongs to some path Pa′b′ .
By the key-observation, we both have a′ = a and b′ = b, hence x ∈ Mab .

To conclude, observe that deleting Mab increases the distance d(a,b) over r whereas deleting
the union of all Ma′b′ different from Mab does not affect d(a,b) which stays equal to r . Conse-
quently, the sets (Mab)(a,b)∈A′×B ′ are r -disconnecting for A′,B ′. Hence, by Theorem 4.19, the VC-
dimension of G is at least log(N ) = (log |X |− log2q)/3.

Since X is (d−1)-sparse, K also is. Then, for every 0 ≤ c ≤ D , no vertex of G belongs to (d−1) balls
of radius d(2`− c)/2e ≤ ` centered in X . Therefore the color of K cannot be in 0 ≤ r ≤ D . Otherwise
Claim 4.22 would ensure that the VC-dimension of G is at least log(N )/3− log(4d −2)/3 ≥ d +1. So
the clique K of size N ≥ p has color D +3.

In d-localized set, the vertices have to be pairwise at distance at least d + 1 and at most 2`−
2d+2 −3. The edge colored graph of Lemma 4.21 was constructed in order to ensure this property.
A set is (α,β)-localized if the vertices are pairwise at distance at least `+α and at most 2`−β. A
slight modification of the previous proof ensures that the same holds for (α,β)-localized sets. Note
nevertheless that the function f will depend on ν`,α,β and p.

4.3.3 Localized and independent pairs

In this section we introduce a notion of independence for every pair of vertices. We first give
some properties of independent pairs and we will finally show that any large enough (d −1)-sparse
and localized pair contains an independent subpair large enough.

Let A,B be a d-localized pair. In the following we consider ab-paths with a ∈ A and b ∈ B . Recall
that the ab-path is the minimum path with minimum lexicographic order from a to b. Note that
a ∈ A is not a vertex of the a′b′-path if a′ 6= a. Indeed the a′b′-path has length at most 2`−7 since
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A,B is d-localized. And d(a, a′) > ` and d(a,b′) > `, so a a′b′-path passing through a would have
length at least 2`+2.

For every pair a,b ∈ A×B , the critical vertex cab (resp. cba) is the vertex of the ab-path at distance
`−3 from a (resp. b) and the precritical vertex wab is the vertex of the ab-path at distance `−4 from
a (see Figure 4.3). Such vertices exist since d(a,b) > l (and is unique by minimality of the ab-path).
Note that cab and wab are adjacent. The root section of a ∈ A (resp. b ∈ B), denoted by RS(a) (resp.
RS(b)), is the set of vertices of the acab-subpaths (resp. cbab-subpaths) of the ab-paths for all b ∈ B
(resp. a ∈ A). Note that these notions are asymmetrical since we only consider minimum AB-paths
and not minimum B A-paths. We denote by RS(A) the set

⋃
a∈A RS(a).

Observation 4.23. Let A,B be a d-localized pair. For every a,b in A ×B, the critical vertex cab and
the precritical vertex wab are in RS(b).

Proof. Since the ab-path is minimum, d(b,cab) = d(a,b) − d(a,cab). Since A,B is d-localized,
d(a,b) ≤ 2`− 7. So d(b,cab) ≤ 2`− 7− (`− 3) ≤ `− 4. And d(b, wab) ≤ `− 3 since wabcab is an
edge. Thus both cab and wab are in RS(b).

All the vertices of the AB-paths are in a root section. Indeed the vertices of the prefix path on
cab of the ab-path are in RS(a) by definition. The others are in RS(b) since cab is in RS(b).

A d-localized pair A,B is independent, if for every a,b ∈ A ×B , B(cab ,`)∩ (A ∪B) = {a,b} and
B(cba ,`)∩ (A ∪B) = {a,b}. A subpair of an independent pair is still independent. In addition, A,B
is still independent in the graph restricted to the AB-paths. Before proving that a d-localized pair
contains large independent subpairs (Lemma 4.26), let us state general properties on independent
pairs.

Lemma 4.24. Let A,B be an independent pair.

(a) Two endpoints disjoint AB-paths are at distance at least 4.

(b) For every pair a, a′ in A (resp. b,b′ in B), d(RS(a),RS(a′)) ≥ 4 (resp. d(RS(b),RS(b′) ≥ 4).

Proof. Let us first prove (b). We prove it for vertices of A, the case of vertices of B is handle symmet-
rically. Let a 6= a′ with u ∈ RS(a) and v ∈ RS(a′). There exists b and b′ in B such that u is in the prefix
path on cab of the ab-path and v is in the prefix path on ca′b′ of the a′b′-path. Free to exchange a
and a′, d(a,u) ≤ d(a′, v). Since d(a′,ca′b′) = `−3, we have d(a,u)+d(v,ca′b′) ≤ d(a′, v)+d(v,ca′b′) =
`−3. Since A,B is independent, d(a,ca′b′) > ` thus `< d(a,u)+d(u, v)+d(v,ca′b′) ≤ `−3+d(u, v),
i.e. d(u, v) ≥ 4. So (b) holds.

Let u be a vertex of the ab-path, and v be a vertex of the a′b′-path such that a 6= a′ and b 6= b′.
Lemma 4.24(b) ensures that, up to symmetry, u ∈ RS(a) and v ∈ RS(b′). In addition, we can assume
that d(a,u) ≤ d(b′, v). So d(a,u)+d(v,cb′a′) ≤ d(b′, v)+d(v,cb′a′) = `−3. So `< d(a,ca′b′) ≤ d(a,u)+
d(u, v)+d(v,cb′a′) ≤ `−3+d(u, v). Hence d(u, v) ≥ 4.

An edge leaves a set S if one of its endpoints is in S and not the other one.

Observation 4.25. Let A,B be an independent pair and a ∈ A. For all b 6= b′, we have wab 6= wab′

(and then cab 6= cab′). Furthermore the edges of the aB-paths leaving RS(a) form an induced match-
ing.
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Figure 4.4: Examples of escapes. The right one is an edge of the a′b-path.

Proof. Observation 4.23 ensures that wab ∈ RS(b) and wab′ ∈ RS(b′). So Lemma 4.24(b) ensures
that wab 6= wab′ . When two minimum paths from the same vertex separate, they do not meet again.
Hence the edges of aB-paths leaving RS(a) are vertex disjoint, i.e. they form a (non necessarily
induced) matching. By Observation 4.23, the edge of the ab-path leaving RS(a) is an edge with
both endpoints in RS(b). Thus Lemma 4.24(b) ensures that the matching is induced.

Lemma 4.26. Let G be a graph. The size of a (d−1)-sparse and d-localized pair with no independent
subpair of size p is at most (2d −4)p3.

Proof. Let A,B be a (d −1)-sparse and d-localized pair of size (2d −4)p3+1. For every vertex u, I (u)
denotes B(u,`)∩ (A ∪B). Since A ∩B =∅ and since both cab and cba exist, the matrix M = (A,B),
where m(a,b) = (I (cab)∪I (cba))\{a,b}, is a well-defined interference matrix. The pair A,B is (d−1)-
sparse, then |I (u)| ≤ d −2. Thus M is a (2d −4)-interference matrix.

By Lemma 4.17, M has a proper submatrix (A′,B ′) of size p. Thus for every a′,b′ ∈ A′ × B ′,
B(ca′b′ ,`)∩ (A′∪B ′) = {a′,b′} and the same holds for cb′a′ , i.e. A′,B ′ is independent.

4.3.4 Escape property

Let A,B be an independent pair. An edge uv between two AB-paths is an escape from a if uv
leaves RS(a) and uv is not an edge of the ab-path for some b ∈ B (see Figure 4.4). By convention,
when uv is an escape from a, v still denotes the vertex which is not in RS(a). Remark that an escape
can be an edge of a minimum path (see Figure 4.4).
Let uv be an escape from a. The vertex v is on some a′b′-path. Lemma 4.24(b) ensures that a = a′

or b = b′. If a = a′ then d(a,u) = `−3. Indeed otherwise v is in some ab′-path and v ∉ RS(a′), i.e.
d(a, v) ≥ `−2. The minimality of the ab′-path ensures that d(u, a) = `−3, i.e. u is the vertex cab .
Though Observation 4.25 ensures that there is no edge between cab and v . So a 6= a′, i.e. b = b′.
Thus uv is called an escape from a to a′ for b. On Figure 4.4, both edges uv are escapes from a to a′

for b.
If a vertex x has a neighbor in RS(a), a is called an origin section on x. Lemma 4.24(b) ensures

that every vertex has at most one origin section. Note that if uv is a escapes from a, then a is the
origin section of v .
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A deep escape is an escape such that u is neither a critical vertex nor a precritical vertex. The
(deep) escape graph of b is a directed graph with vertex set A and with an arc aa′ if there is a (deep)
escape from a to a′ for b.

Lemma 4.27. Let A,B be an independent pair. For every b ∈ B, the escape graph of b has no circuit.

Proof. Assume that there is a circuit a0, a1, . . . , ak , a0. In the following indices have to be under-
stood modulo k + 1. For every i , let ui vi be an escape from ai to ai+1 for b. Since ui ∈ RS(ai )
and ui+1 ∈ RS(ai+1), Lemma 4.24(b) ensures that d(ui ,ui+1) ≥ 4, then d(vi ,ui+1) ≥ 3. Hence
d(b,ui ) ≤ d(b, vi )+1 < d(b, vi )+d(vi ,ui+1) = d(b,ui+1). A propagation of these inequalities along
the arcs of the circuit leads to d(b,u0) < d(b,u0).

The deep escape graph of b is a subgraph, in sense of arcs, of the escape graph of b. Thus
Lemma 4.27 ensures that the deep escape graph of b is also acyclic. For every b, an order inherited
from b is a partial order on A such that if there is an escape from a to a′ for b then a < a′. When the
escape graph of b is a transitive tournament, such an order is unique. An independent pair A,B has
the escape property if for every b ∈ B , the deep escape graph of b is a transitive tournament.

Let ua′b va′b be a first-in escape to a′ for b, i.e. an escape to a′ for b satisfying va′b Ea′b v for every
escape uv to a′ for b. In other words it is the first edge of the a′b-path which is in-escape to a′. The
vertex va′b is called the incoming vertex of the a′b-path. Note that several first-in escapes to a′ can
exist, but the incoming vertex is unique. The free section of the a′b-path, denoted by F S(a′,b), is
the ca′b va′b-subpath of the a′b-path where ca′b is not included but va′b is included. Lemma 4.24(b)
ensures the free section exists.

Lemma 4.28. Let A,B be a pair satisfying the escape property. Then there is no edge between two free
sections of AB-paths.

Proof. Let us prove that such an edge would provide a forbidden cross. Consider an edge x y such
that x ∈ F S(a′,b′) and y ∈ F S(a,b). Recall that x ∈ RS(b′) and y ∈ RS(b). So Lemma 4.24(a) ensures
that b = b′ and y is on the a′b-path for a′ 6= a. Assume w.l.o.g. that a is less than a′ in the total order
on A given by the escape property. So there is a deep escape uv from a to a′ for b. Since y .ab cab

and u is distinct from cab , wab (by definition of deep escape), we have d(u, y) ≥ 3 by Lemma 4.24(b).
And x Ea′b v . So edges x y and uv contradicts Lemma 4.18.

Note that we need a deep escape in order to have a forbidden cross. Indeed, if the escape is not
deep, then the resulting cross could not be forbidden. It is the unique reason we need deep escapes.
In the following, we do not use anymore that there exist deep escapes.

Lemma 4.29. Let G be a graph of VC-dimension at most d. The size of an independent pair with no
subpair of size 2d+1 satisfying the escape property is at most r

22d+2 (2d+1).

Proof. Let (A,B) be a pair of size r
22d+2 (2d+1)+1.

Claim 4.30. A,B has a subpair X , Z of size 2d+1 such that:

(1) either X , Z does not contain a deep escape,

(2) or X , Z satisfies the escape property.
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Proof. Let B ′ = {b1, . . . ,b2d+2 } be a subset of B of size 2d+2. Consider the complete edge-colored
graph G ′ on vertex set A. The colors are binary integers of 2d+2 digits. The i -th digit of the color of
aa′ is 1 if there is a deep escape from a to a′ (or from a′ to a) for bi and 0 otherwise. Theorem 4.20
ensures that G ′ contains a monochromatic clique X of size 2d+1. Let us denote by c the color of the
edges of G ′[X ]. A subset I of 2d+1 digits of c are equal. Let Z = {bi , i ∈I }. If c(i ) = 0 for every i ∈I

then (1) holds for the pair X , Z , otherwise (2) holds.

Let us prove that Claim 4.30(1) cannot hold. Let X , Z be an independent pair with no deep
escape. Consider the restriction of the graph to the vertices of the xz-paths for x, z ∈ X × Z . For
every x, z, we denote by C S(x, z) the set of vertices exclusively on the xz-path.

Claim 4.31. C S(x, z) separates x from cxz and from wxz in the graph induced by RS(x).

Proof. Let us first prove it for cxz . We can assume that cxz ∉ C S(x, z). Thus there exist x ′, z ′ such
that the x ′z ′-path passes through cxz . By Lemma 4.24(a), x = x ′ or z = z ′. If x = x ′ then cxz = cxz ′ ,
contradicting Observation 4.25. Hence z = z ′. Let P be a path from x to cxz and let u be the last
vertex of P which is not on some minimum x ′′z-path for x ′′ 6= x. The vertex u exists since cxz is on
the x ′z-path and x is not on such a path as underlined in Section 4.3.3. The vertex u is in C S(x, z).
Indeed, otherwise the xz ′-path passes through u for some z 6= z ′. And by definition of u, u has a
neighbor in some x ′z-path which contradicts Lemma 4.24(a).

Let P be a path from x to wxz which does not pass through C S(x, z). Since wxz ∉C S(x, z), some
x ′z ′-path passes through wxz . By Lemma 4.24(a), x = x ′ or z = z ′. By Observation 4.25, we have
z = z ′. Then some x ′z-path passes through wxz and then through cxz since two minimum path to
z which intersect on u coincide between u and z. So cxz ∉C S(x, z). Hence P plus the edge wxz cxz

is a path from x to cxz which does not pass through C S(x, z).

Claim 4.32. The VC-dimension of a graph with an independent pair of size d is at least logd.

Proof. Let X , Z be an independent pair of size d . To prove it, we prove that X , Z is (2`− 5)-
disconnectable with the sets C S(x, z). Let x ∈ X . Since there is no deep escapes, an edge leav-
ing RS(x) intersect a critical or a precritical vertex. Since X , Z is independent, if z 6= z ′ then
d(cxz ′ , z) ≥ `+ 1, so d(wxz ′ , z) ≥ `. By definition d(x,cxz ′) = `− 3 and d(x, wxz ′) = `− 4. Thus,
for every z ′ 6= z, the length a path from x to z passing through cxz ′ or wxz ′ is at least 2`−4. Hence
every path of length at most 2`−5 from x to z passes through cxz or wxz .

Thus, by Claim 4.31, there is no path of length at most 2`−5 from x to z in G(V \C S(x, z)). By
definition, the sets C S(x, z) are disjoint and do not intersect the x ′z ′-path if x 6= x ′ or if z 6= z ′. Finally,
since X , Z is d-localized, d(x, z) ≤ 2`−5. Hence the sets C S(x, z) are (2`−5)-disconnecting for X , Z .
By Theorem 4.19, the VC-dimension is at least logd .

A subpair of an independent pair is independent. Hence Claim 4.32 ensures that Claim 4.30(1)
cannot hold. Otherwise the VC-dimension would be at least d +1. So Claim 4.30(2) holds.

Almost all statements of Section 4.3.3 and 4.3.4 asked for a d-localized pair. Nevertheless the
proofs are still correct with a weaker definition of d-localized pair. A pair is weakly localized if
vertices are pairwise at distance at most 2`− 7 instead of 2`− 2d+2 − 3. Note that since d ≥ 0, a
d-localized pair is weakly localized. The stronger condition of d-localized sets on the lengths of the
paths will be used in Section 4.3.5.
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Figure 4.5: The minimum path (at the left) is transformed into the jump path (at the right).

4.3.5 Escape property implies large VC-dimension

The outline of the proof of Lemma 4.29 consists in finding a (2`− 5)-disconnecting pair. The
approach will be the same when the escape property holds even if the proof will be a little bit more
technical since we first need to re-root some paths.

Theorem 4.33. Let G be a graph of VC-dimension d. The size of a pair with the escape property is at
most 2d+1 −1.

Proof. Assume by contradiction that a pair A,B of size 2d+1 satisfies the escape property. Let b ∈ B .
Order the vertices of A along the order inherited from b. We denote by ui vi the first-in escape to ai

for b. Recall that by convention, vi denotes the incoming vertex of the ai b-path.
By definition of order inherited from b, there exists j < i such that ui ∈ RS(a j ). So ui is on

prefix path on ci j (and then on a j since ca j b .a j b a j ) of the a j b-path. Therefore the following new
collection of Ab-paths, called jump paths (for b), are well-defined. This collection is constructed by
induction. The jump path of a1b is the a1b-path. The jump path of ai b is the prefix path on vi of
the ai b-path, the edge vi ui of origin section a j and the suffix path on ui of the jump path of a j b
(see Figure 4.5). Jump paths can be equal to minimum paths (see the right of Figure 4.4).

Note that the jump paths follow the edges of minimum AB-paths except on incoming vertices.
An edge which is in the jump path of ab but not on some minimum a′b-path is called a reroot.
Every jump path is rerooted at most |A| = 2d+1 times since a jump path is re-rooted on a jump path
for the same b of strictly smaller index. In addition each re-root increases the length of the path by
at most two since |d(ui ,b)−d(vi ,b)| ≤ 1 (ui vi is an edge). Since A,B is d-localized, the length of
the jump path of ab is at most (2`−2d+2 −3)+2d+1 ·2 = 2`−3.

Claim 4.34. Jump paths only contain vertices of RS(A) and of free sections. In addition jump paths
for b only contain vertices of ab-paths for a ∈ A.

Proof. By induction on the order inherited from b. It holds for the jump path of a1b. The jump path
of ai b coincides with the ai b-path from a to the incoming vertex, i.e. on RS(ai ) and on F S(ai ,b).
And by induction, it holds for the remaining vertices.

Consider the restriction of the graph to the vertices of the jump paths for every a,b ∈ A×B .

Claim 4.35. An edge leaving F S(ai ,b) has an endpoint in RS(a j )∪ cai b , where a j denotes the origin
section of the incoming vertex vi .
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Proof. Claim 4.34 ensures that every vertex is either in RS(A) or in F S(a,b) for some a,b. By
Lemma 4.28, there is no edge between two free sections. So an edge leaving F S(ai ,b) has an end-
point in RS(x). Observation 4.25 ensures that an edge with an endpoint in F S(ai ,b) and the other in
RS(ai ) has endpoint cai b (the edges of minimum paths from a leaving RS(a) induces a matching).
Since there is no escape to ai before the incoming vertex, there are only edges to the root section of
the origin vertex.

Claim 4.36. The vertex cab is in every path from a to b of length at most 2`−3.

Proof. Let us first prove the following remark. Let P be a path to b passing through RS(a) such that:
– P cannot leave definitively RS(a) through cab′ for any b′ ∈ B nor through F S(a,b).
– P cannot pass through ca′b′ if both a′,b′ are distinct from a,b.

Then P passes through F S(a′,b) and then RS(a′). Since P cannot leave RS(a) through a critical
vertex, it must leave it through an escape. The other endpoint of the escape must be in a free section
by Claim 4.34. The path P cannot leaves definitively RS(a) through an escape for b′ 6= b. Otherwise
by Claim 4.35, it will would leave F S(a′,b′) through ca′b′ for some b′ 6= b, a contradiction. So it leaves
it though a shortcut from a, i.e. it passes through F S(a′,b). Finally Claim 4.35 ensures that it passes
through F S(a′,b) and enter in RS(a′).

Consider a path P from a to b of length at most 2`−3. The path P cannot contain a vertex ca′b′

for b′ 6= b. Otherwise P would have length at least 2`−2 since d(ca′b′ , a) ≥ `−3 and d(b,ca′b′) ≥ `+1.
Assume in addition that P does not contain cab . Since the unique neighbor of F S(a,b) in RS(a)
is cab , P cannot definitively leave RS(a) through F S(a,b). Therefore, the remark ensures that P
passes through RS(a′,b) and RS(a′) for some a′ 6= a. Since the vertices of F S(a′,b) already are in P ,
P cannot definitively leave RS(a′) through F S(a′,b). So, by induction, P cannot leave definitively
RS(A). Indeed every time P leaves definitively RS(a′), the remark ensures that P enters in some
RS(a′′) for some a′′ ∈ A. So cab is in P .

Let C S(a,b) be the set of vertices which are only on the jump path of ab.

Claim 4.37. All the paths of length at most 2`−3 from a to b pass through C S(a,b).

Proof. By Claim 4.36, every path from a to b passes through cab . If cab ∈ C S(a,b), then Claim 4.37
holds. So the jump path of a′b′ passes through cab . Jump paths coincide with minimum paths until
their incoming vertices. So a 6= a′ since cab 6= cab′ . In addition b = b′ otherwise Lemma 4.24(b)
would ensures that d(a′,cab) > ` and d(b′,cab) > l , a contradiction since the length of the jump
path of a′b′ is at most 2`−3. So cab is on the jump path of a′b.

Let P be a path from a to cab which does not pass through C S(a,b). Let u be the last vertex
which is not in a jump path of a′b for some a′ 6= a, and let v be its neighbor. The vertex u exists
since cab is in a jump path of a′b and not a. Let us prove by contradiction that u ∈C S(a,b). Assume
that the jump path of a′b′ passes through u for some b′ 6= b. Assume that a′ 6= a. Then d(a′,u) > l
since u ∈ RS(a). And d(b′,u) > l since v ∈ RS(b). So we can assume that a′ = a.

There exists a′ 6= a in A and b in B such that v is on the ca′b′b-subpath of the jump path of a′b.
But since u ∈ RS(a), we have v ∉ RS(a′) then u is on the acab′-subpath of the jump path of ab′. The
two following inequalities, illustrated on Figure 4.6, provide a contradiction.
First d(v,ca′b) < d(u,cab′)+1 since d(b,ca′b) ≤ ` and d(b,cab′) > ` and uv is an edge. Indeed the
first inequality provide from the fact that the jump path have length at most 2`−3 and the second
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Figure 4.6: Illustration of Claim 4.37. The dotted and dashed paths represents the two inequalities.

from the independence of A,B .
Second d(u,cab′)+3 < d(v,ca′b)+1 since d(a,cab′) ≤ `−3 and d(a,ca′b) > `. Indeed the first inequal-
ity provides from the fact that jump path are not modified before critical vertices and the second
from the independence.
So d(v,ca′b)−1 < d(u,cab′) < d(v,ca′b)−2 which is impossible.

To conclude we apply Theorem 4.19 with the sets C S(x, z) for paths of length 2`−3. Indeed, by
definition the sets C S(x, z) are pairwise disjoint and are only on the jump path of xz. Claims 4.36
and 4.37 ensure that the sets C S(x, z) are (2`− 3)-disconnecting for X , Z . Therefore the graph G
must have VC-dimension at least d +1 which is impossible.

4.4 Conclusion

We prove that several classes of graphs have a bounded VC-dimension, i.e. are simple for the
iterated neighborhood point of view. It could be interesting to understand which classes of graphs
are simple. Indeed, a bounded VC-dimension ensures some structure on the graph. In particular it
means that the neighborhoods cannot intersect in every way and that the graph is well-structured.

Let us finally end this chapter with several open problems. In graph coloring, we also need some
structure in order to ensure that there is some bounds on the chromatic number. Dvǒrák and Král
proved in [78] that graphs of bounded rankwidth are χ-bounded. Actually they prove it for classes
of graphs with cuts of small rank, i.e. for graphs which have some structure of the cuts. The same
might be extended for graphs of bounded VC-dimension.

Conjecture 7. If a class of graphs has its VC-dimension bounded by a function of its maximal clique
then the class is χ-bounded.

A weaker version of this conjecture consists in proving it for graphs of bounded 2VC-dimension.
Note that the reverse of this conjecture does not hold. Indeed, perfect graphs do not have a bounded
VC-dimension. Indeed consider a clique Kn on n vertices. For every subset of Kn , create a new
vertex connected exclusively to this subset. One can easily verify that Kn is shattered in the B1-
hypergraph. In addition, one can easily check that this graph contains neither an odd hole nor an
odd antihole.
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Note that the complexity of the previous construction is hidden by the clique. Hence, it could
be interesting to study triangle-free classes from the VC-dimension point of view. We conjecture
that the following classes, known to be χ-bounded, have a bounded VC-dimension.

Conjecture 8. The class of graphs with no induced P` has a VC-dimension bounded by ` and the size
of a maximum clique.

The circle graphs with a bounded maximum clique has a bounded VC-dimension.





CHAPTER

5
Separate cliques and stable sets

This Chapter is the presentation of two joint works with Aurélie Lagoutte and Stéphan Thomassé
(see [37, 38]).
The main part of this chapter consists in studying a Yannakakis’ conjecture on the number of separa-
tors needed for separating cliques and stable sets in graphs. We prove that this conjecture is equivalent
with another conjecture of Alon, Saks and Seymour (one implication was already known). We also
link these two conjectures with conjectures on constraint satisfaction problems. Finally we prove that
the Yannakakis’ conjecture holds for random graphs, split-free graphs. The proof for split-free graphs
is based on a VC-dimensional argument (Section 5.2.2). Recall that a F -free graph is a graph which
does not contain any induced copy of F .
In the second one, we prove that the Erdős-Hajnal conjecture holds for (Pk ,Pk )-free graphs (the proof
is presented in Section 5.2.3). This result implies that the Yannakakis’ conjecture holds for (Pk ,Pk )-
induced free graphs.

All along this chapter we will use the term “cut” instead of separator. We have seen that a sepa-
rator is a bipartition of the vertex set in which there is an asymmetry: indeed we favor a vertex called
the root which is always on the separator. In the following we do not want to favor vertices or to find
separators of minimum borders as we did in Chapter 1 and 2. So, in order to avoid confusions, a
bipartition of the vertex set will be called a cut in this chapter. cut

5.1 Introduction

The goal of this Chapter is twofold. First, we focus on the Clique-Stable Set separation problem
and provide classes of graphs for which polynomial separators exist. Then we show that this classi-
cal problem from communication complexity is equivalent to one in graph theory and one in CSP.
Let us make a brief overview of each domain focusing on the problem.

Communication complexity and the Clique-Stable Set separation. Yannakakis introduced in
[191] the following communication complexity problem, called Clique versus Independent Set (CL-
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IS for brevity): given a publicly known graph Γ on n vertices, Alice and Bob agree on a protocol,CL-IS

then Alice is given a clique and Bob is given a stable set. They do not know which clique or which
stable set was given to the other one, and their goal is to decide whether the clique and the sta-
ble set intersect or not, by minimizing the worst-case number of exchanged bits. Recall that the
intersection of a clique and a stable set is at most one vertex. In the deterministic version, Alice
and Bob alternatively send messages to each other, and the minimization is on the number of bits
exchanged between them. It is a long standing open problem to prove a O (log2 n) lower bound for
the deterministic communication complexity. In the non-deterministic version, a prover knowing
the clique and the stable set sends a certificate in order to convince both Alice and Bob of the right
answer. Then, Alice and Bob exchange one final bit, saying whether they agree or disagree with the
certificate. The aim is to minimize the size of the certificate.

In this particular setting, a certificate proving that the clique and the stable set intersect is just
the name of the vertex in the intersection. Such a certificate clearly has logarithmic size. Convincing
Alice and Bob that the clique and the stable set do not intersect is much more complicated. A
certificate can be a bipartition of the vertices such that the whole clique is included in the first part,
and the whole stable set is included in the other part. Such a partition is a cut that separates the
clique and the stable set. A family F of m cuts such that for every disjoint clique and stable set, there
is a cut in F that separates the clique and the stable set is called a CS-separator of size m. Observe
that Alice and Bob can agree on a CS-separator at the beginning, and then the prover just gives the
name of a cut that separates the clique and the stable set: the certificate has size log2 m. Hence if
there is a CS-separator of polynomial size in n, one can ensure a non-deterministic certificate of
size O (log2 n).

Yannakakis proved that there is a c log2 n certificate for the C L−I S problem if and only if there is
a CS-separator of size nc . The existence of such a CS-separator is called in the following the Clique-
Stable Set separation problem. The best upper bound so far, due to Hajnal (cited in [138]), is the
existence for every graph G of a CS-separator of size n(logn)/2. The C L − I S problem arises from an
optimization question which was studied both by Yannakakis [191] and by Lovász [139]. The ques-
tion is to determine if the stable set polytope of a graph is the projection of a polytope in higher
dimension, with a polynomial number or facets (called extended formulation). The existence of
such a polytope in higher dimension implies the existence of a polynomial CS-separator for the
graph. Moreover, Yannakakis proved that the answer is positive for several subclasses of perfect
graphs, such as comparability graphs and their complements, chordal graphs and their comple-
ments, and Lovász proved it for a generalization of series-parallel graphs called t-perfect graphs.
The existence of an extended formulation for general graphs has recently been disproved by Fiorini
et al. [91], and is still open on perfect graphs.

Graph coloring and the Alon-Saks-Seymour conjecture. Given a graph G , the bipartite packing,
denoted by bp, is the minimum number of edge-disjoint complete bipartite graphs needed to parti-
tion the edges of G . The Alon-Saks-Seymour conjecture (cited in [122]) states that if a graph has bi-
partite packing k, then its chromatic numberχ is at most k+1. It is inspired from the Graham-Pollak
theorem [107] which states that bp(Kn) = n−1. Huang and Sudakov proposed in [120] a counterex-
ample to the Alon-Saks-Seymour conjecture (then generalized in [60]), twenty-five years after its
statement. Actually they proved that there is an infinite family of graphs for whichχ≥ bp6/5. Amano
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
0 ∗ 0 ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ 1


Figure 5.1: Matrix M for the stubborn problem.

improved this result in [12] by proving that some graphs have chromatic number at least bp3/2. The
Alon-Saks-Seymour conjecture can now be restated as the polynomial Alon-Saks-Seymour con-
jecture: is the chromatic number polynomially upper bounded in terms of bp? Moreover, Alon
and Haviv [7] observed that a gap χ ≥ bpc for some graphs would imply a nc lower bound for the
Clique-Stable Set separation problem. Consequently, Huang and Sudakov’s result gives a n6/5 lower
bound. This in turns implies a 6/5log2(n)−O (1) lower bound on the non-deterministic communi-
cation complexity of C L− I S when the clique and the stable set do not intersect.

A generalization of the bipartite packing of a graph is the t-biclique number, denoted by bpt .
It is the minimum number of complete bipartite graphs needed to cover the edges of the graph
such that each edge is covered at least once and at most t times. It was introduced by Alon [5] to
model neighborly families of boxes, and the most studied question so far is finding tight bounds for
bpt (Kn).

Constraint satisfaction problem and the stubborn problem. The complexity of the so-called list-
M partition problem has been widely studied in the last decades (see [179] for an overview). M
stands for a fixed k ×k symmetric matrix filled with 0,1 and ∗. The input is a graph G = (V ,E) to-
gether with a list assignment L : V →P ({A1, . . . , Ak }) and the question is to determine whether the
vertices of G can be partitioned into k sets A1, . . . , Ak respecting two types of requirements. The first
one is given by the list assignments, that is to say v can be put in Ai only if Ai ∈ L (v). The second
one is described in M , namely: if Mi ,i = 0 (resp. Mi ,i = 1), then Ai is a stable set (resp. a clique), and
if Mi , j = 0 (resp. Mi , j = 1), then Ai and A j are completely non-adjacent (resp. completely adjacent).
If Mi ,i =∗ (resp. Mi , j =∗), then Ai can be any set (resp. Ai and A j can have any kind of adjacency).

Feder et al. [88, 89] proved a quasi-dichotomy theorem. The list-M partition problems are clas-
sified between NP-complete and quasi-polynomial time solvable (i.e. time O (nc logn) where c is a
constant). Moreover, many investigations have been made about small matrices M (k ≤ 4) to get a
dichotomy theorem, meaning a classification of the list-M partition problems between polynomial
time solvable and NP-complete. Cameron et al. [44] reached such a dichotomy for k ≤ 4, except for
one special case (and its complement) then called the stubborn problem (the corresponding sym-
metric matrix has size 4; M1,1 = M2,2 = M1,3 = M3,1 = 0, M4,4 = 1; the other entries are ∗), which
remained only quasi-polynomial time solvable. Cygan et al. [65] closed the question by finding a
polynomial time algorithm solving the stubborn problem. More precisely, they found a polynomial
time algorithm for 3-COMPATIBLE COLORING, which was introduced in [87] and said to be no eas-
ier than the stubborn problem. 3-COMPATIBLE COLORING has also been introduced and studied
in [129] under the name ADAPTED LIST COLORING, and was proved to be a model for some strong
scheduling problems. It is defined in the following way:
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3-COMPATIBLE COLORING PROBLEM (3-CCP)
Input: An edge coloring fE of the complete graph on n vertices with 3 colors {A,B ,C }.
Question: Is there a coloring of the vertices with {A,B ,C }, such that no edge has the
same color as both its endpoints?

Contribution of this Chapter. All along this Chapter, the Clique-Stable Set separation problem
will be considered as our reference problem. More precisely, we start in Section 5.2 by proving
that there is a polynomial CS-separator for three classes of graphs: random graphs, induced split-
free graphs and graphs with no induced path of length k nor its complement. The proof for random
graphs is based on random cuts. In the second case, it is based on Vapnik-Chervonenkis dimension.
In the last one, it it will be a consequence of the proof of the Erdős-Hajnal conjecture for graphs with
no induced path of length k nor its complement.

In Section 5.3, we extend Alon and Haviv’s observation and prove the equivalence between the
polynomial Alon-Saks-Seymour conjecture and the Clique-Stable separation. It follows from an
intermediate result, also interesting by itself: for every integer t , the chromatic number χ can be
bounded polynomially in terms of bp if and only if it can be polynomially bounded in terms of bpt .
We also introduce the notion of oriented bipartite packing, in which the Clique-Stable Set separa-
tion exactly translates. For instance, we show that the maximum fooling set of C L− I S corresponds
exactly to an oriented bipartite packing of the complete graph. Amano introduced an equivalent
notion in [12].

In Section 5.4, we highlight links between the Clique-Stable Set separation problem and both
the stubborn problem and 3-CCP. The quasi-dichotomy theorem for list-M partitions proceeds by
covering all the solutions by O (nlogn) particular instances of 2-SAT, called 2-list assignments. A
natural extension would be a covering of all the solutions with a polynomial number of 2-list as-
signments. We prove that the existence of a polynomial covering of all the maximal solutions (to be
defined later) for the stubborn problem is equivalent to the existence of such a covering for all the
solutions of 3-CCP, which in turn is equivalent to the C L− I S problem.

5.2 Clique-Stable Set separation conjecture

The communication complexity problem C L − I S can be formalized by a function f : X ×Y →
{0,1}, where X is the set of cliques and Y the set of stable sets of a fixed graph G and f (x, y) = 1 if
and only if x and y intersect. It can also be represented by a |X |× |Y | matrix M with Mx,y = f (x, y).
In the non-deterministic version, Alice is given a clique x, Bob is given a stable set y and a prover
gives to both Alice and Bob a certificate of size N b( f ), where b ∈ {0,1}, in order to convince them
that f (x, y) = b. Then, Alice and Bob exchange one final bit, saying whether they agree or disagree
with the certificate.

The aim is to minimize N b( f ) in the worst case. When x and y intersect on some vertex v ,
the prover can just provide v as a certificate, hence N 1( f ) = O (logn). The best upper bound so
far on N 0( f ) is O (log2(n)) [191], which actually is not better than the bound on the deterministic
communication complexity.

A combinatorial rectangle X ′×Y ′ ⊆ X ×Y is a subset of (possibly non-adjacent) rows X ′ and
columns Y ′ of M . It is b-monochromatic if for all (x, y) ∈ X ′×Y ′, f (x, y) = b. The minimum number
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of b-monochromatic combinatorial rectangles needed to cover the b-inputs of M is denoted by
C b( f ) and verifies N b( f ) = ⌈

log2 C b( f )
⌉

[132]. A fooling set is a set F of b-inputs of M such that fooling set

for all (x, y), (x ′, y ′) ∈ F , either f (x ′, y) 6= b or f (x, y ′) 6= b. In other words, a fooling set is a set of b-
inputs of M that cannot be pairwise contained into the same b-monochromatic rectangle. Hence,
it provides a lower bound on C b( f ). Given a 0-monochromatic rectangle X ′×Y ′, one can construct
a partition (A,B) by putting in A every vertex appearing in a clique of X ′, and putting in B every
vertex appearing in a stable set of Y ′. There is no conflict doing this since no clique in X ′ intersects
any stable set in Y ′. We then extend (A,B) into a partition of the vertices by arbitrarily putting the
other vertices into A. Observe that (A,B) separates every clique in X ′ from every stable set in Y ′.
Conversely, a partition that separates some cliques from some stable sets can be interpreted as a 0-
monochromatic rectangle. Thus finding C 0( f ) (or, equivalently N 0( f )) is equivalent to finding the
minimum number of cuts which separate all the cliques and the stable sets. In particular, there is a
O (logn) certificate for the C L− I S problem if and only if there is a polynomial number of partitions
separating all the cliques and the stable sets.

A cut is a pair (A,B) such that A ∪B = V and A ∩B =∅. It separates a clique K and a stable set
S if K ⊆ A and S ⊆ B . Note that a clique and a stable set can be separated if and only if they do not
intersect. Let KG be the set of cliques of G and SG be the set of stable sets of G . We say that a family
F of cuts is a CS-separator if for all (K ,S) ∈KG ×SG which do not intersect, there exists a cut in F CS-

separatorthat separates K and S. While it is generally believed that the following question is false, we state it
in a positive way:

Conjecture 9 (Clique-Stable Set separation Conjecture). There is a polynomial Q, such that for every
graph G on n vertices, there is a CS-separator of size at most Q(n).

Note that in ??, Yannakakis conjectured that Conjecture 9 is not correct. On the opposite, Lovasz
conjectured that it is correct for perfect graphs. Since we only give partial positive results and give
equivalence between conjectures, we state it in the positive form. A first very easy result is that we
can only focus on maximal cliques and stable sets.

Proposition 5.1. Conjecture 9 holds if and only if a polynomial family F of cuts separates all the
maximal (in the sense of inclusion) cliques from the maximal stable sets that do not intersect.

Proof. First note that one direction is direct. Let us prove the other one. Assume F is a polynomial
family that separates all the maximal cliques from the maximal stable sets that do not intersect.
Let Cut1,x be the cut (N [x], NC [x]) and Cut2,x be the cut (N (x), NC (x)). Let us prove that F ′ =
F ∪ {Cut1,x |x ∈V }∪ {Cut2,x |x ∈V } is a CS-separator.

Let (K ,S) be a pair of clique and stable set. Extend K and S by adding vertices to get a maximal
clique K ′ and a maximal stable set S′. Either K ′ and S′ do not intersect, and there is a cut in F that
separates K ′ from S′ (thus K from S). Or K ′ and S′ intersect in x (recall that a clique and a stable set
intersect on at most one vertex): if x ∈ K , then Cut1,x separates K from S, otherwise Cut2,x does.

Some classes of graphs have a polynomial CS-separator, this is for instance the case when C is
a class of graphs with a polynomial number of maximal cliques (we just cut every maximal clique
from the rest of the graph). For example, chordal graphs have a linear number of maximal cliques
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corresponding to nodes of the so-called clique-tree decomposition. A generalization due to Alek-
seev [3] asserts that the graphs without induced cycle of length four have a quadratic number of
maximal cliques.

In this part, we first prove that random graphs have a polynomial CS-separator. Then we focus
on classes on graph with a specific forbidden graph: more precisely, split-free graphs and graphs
with no long paths nor antipaths. Conjecture 9 is unlikely to be true in the general case, however
we believe it may be true on perfect graphs and more generally in the following setting:

Conjecture 10. Let H be a fixed graph. Then the Clique-Stable Set separation conjecture is true on
H-free graphs.

5.2.1 Random graphs

Recall that the random graph G(n, p) is a probability space over the set of graphs on the vertex
set {1, . . . ,n} determined by Pr[i j ∈ E ] = p, with these events mutually independent. We say that
G(n, p) has clique number ω if ω satisfies E(number of cliques of size ω) = 1.

A family F of cuts on a graph G with n vertices is a complete (a,b)-separator if for every pair
(A,B) of disjoint subsets of vertices with |A| ≤ a, |B | ≤ b, there exists a cut (U ,V \U ) ∈F separating
A and B , namely A ⊆U and B ⊆V \U . We say that G(n, p) has a polynomial complete (a,b)-separator
if there exists a polynomial P such that for all p ∈ [0,1], there exists a complete (a,b)-separator of
size P (n) in G(n, p) with high probability.

Theorem 5.2. G(n, p) has an O (n7) complete (ω,α)-separator where ω and α are respectively the
clique number and the independence number of G(n, p).

Sketch of proof. Let b = 1/p and b′ = 1/(1− p). The independence number and clique number of
G(n, p) are given by the following formulas, depending on p (see [25]):

ω= 2logb(n)−2logb(logb n)+2logb(e/2)+1+o(1)
α= 2logb′(n)−2logb′(logb′ n)+2logb′(e/2)+1+o(1)

Draw a random partition (V1,V2) where each vertex is put in V1 independently from the others
with probability p, and put in V2 otherwise. Let (K ,S) be a pair of a clique and a stable set of the
graph which do not intersect. There are at most 4n such pairs. The probability that K ⊆ V1 and
S ⊆ V2 is at least pω(1− p)α. Assume for a while that pω(1− p)α ≥ 1/n6. Then (K ,S) is separated
by at least 1/n6 of all the partitions. By double counting, there exists a partition that separates at
least 1/n6 of all the pairs. We delete these separated pairs, and there remain at most (1−1/n6) ·4n

pairs. The same probability for a pair (K ,S) to be cut by a random partition still holds, hence we can
iterate the process k times until (1−1/n6)k ·4n ≤ 1. This is satisfied for k = 2n7 which is a polynomial
in n. Thus there is a complete (ω,α)-separator of size polynomial in n.

The proof that pω(1−p)α ≥ 1/n6 is just calculus starting from the formulas given at the begin-
ning of the proof for α and ω, and can be found in details in [37]. For example, if p = 1/2 then
ω= 2log(n)+o(logn) and α= 2log(n)+o(logn). Thus pω(1−p)α = 1/24logn+o(logn) = n4+o(1).

Note here that no optimization was made on the constant of the polynomial. Some refinements
in the proof can lead to a complete (ω,α)-separator of size O (n6+ε). Moreover, an interesting ques-
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tion would be a lower bound on the constant of the polynomial needed to separate the cliques and
the stable sets in random graphs, in particular for the special case p = 1/2.

5.2.2 The case of split-free graphs.

Recall that graph Γ is split if its vertex set can be partitioned into a clique and a stable set and
that a graph G = (V ,E) has an induced Γ if there exists X ⊆ V such that the induced graph G[X ]
is isomorphic to Γ. We denote by CΓ the class of graphs with no induced Γ. For instance, if Γ is
a triangle with three pending edges, (see Figure 3.9), then CΓ contains the class of comparability
graphs, for which Lovász showed [139] the existence of a CS-separator of size O (n2). Our goal in
this part is to prove that CΓ has a polynomial CS-separator when Γ is a split graph. The proof of the
following result is based on a VC-dimensional argument.

Theorem 5.3. Let Γ be a fixed split graph. Then the Clique-Stable Set conjecture is satisfied on CΓ.

Proof. The vertices of Γ are partitioned into (V1,V2) where V1 is a clique and V2 is a stable set. Let
ϕ= max(|V1|, |V2|) and t = 64ϕ(log(ϕ)+2). Let G = (V ,E) ∈CΓ and F be the following family of cuts.
For every clique {x1, . . . , xr } with r ≤ t , we note U =∩1≤i≤r N [xi ] and put (U ,V \U ) in F . Similarly,
for every stable set {x1, . . . , xr } with r ≤ t , we note U = ∪1≤i≤r N (xi ) and put (U ,V \U ) in F . Since
each member of F is defined with a set of at most t vertices, the size of F is at most O (nt ). Let
us now prove that F is a CS-separator. Let (K ,S) be a pair of maximal clique and stable set. We
build H a hypergraph with vertex set K . For all x ∈ S, build the hyperedge K \ NG (x) (see Figure 5.4).
Symmetrically, build H ′ a hypergraph with vertex set S. For all x ∈ K , build the hyperedge S∩NG (x).
The goal is to prove thanks to Theorem 3.23 that H or H ′ has bounded transversality τ. This will
enable us to prove that (C ,S) is separated by F .

To begin with, let us introduce an auxiliary oriented graph B with vertex set K ∪S. For all x ∈ K
and y ∈ S, put the arc x y if x y ∈ E , and put the arc y x otherwise (see Figure 5.3). Given a set X of
vertices and a weight function 1 f , we have f (X ) =∑

x∈X f (x).

Lemma 5.4. In B, there exists:

(i) either a weight function w : K →R+ such that w(K ) = 2 and ∀x ∈ S, w(N+(x)) ≥ 1.

(ii) or a weight function w : S →R+ such that w(S) = 2 and ∀x ∈ K , w(N+(x)) ≥ 1.

Proof. The proof is derived from an application of Lemma 2.22 presented in Chapter 2. Lemma 2.22
ensures that any directed graphs admits a weight function w of total weight one such that any vertex
x satisfies w(N+(x)) ≥ w(N−(x)). If x = (x1, . . . , xn) ∈ Rn , we note x 6= 0 if there exists i such that
xi 6= 0 and we note x ≥ 0 if for every i , xi ≥ 0.
Apply Lemma 2.22 to B to obtain a weight function w ′ : V → [0,1]. Then w ′(V ) = 1, so either w ′(K ) >
0 or w ′(S) > 0. Assume w ′(K ) > 0 (the other case is handled symmetrically). Consider the new
weight function w defined by w(x) = 2w ′(x)/w ′(K ) if x ∈ K , and 0 otherwise. Then for all x ∈ S,
on one hand w(N+(x)) ≥ w(N−(x)) by extension of the property of w ′, and on the other hand,
N+(x)∪N−(x) = K by construction of B . Thus w(N+(x)) ≥ w(K )/2 = 1 since w(K ) = 2.

1. Recall that a weight function is a non negative function.
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K
S

Figure 5.2: A clique K and a stable S in G .

K
S

Figure 5.3: Graph B built from K and S.
Edges of G are replaced by forward arcs, and
non-edges are replaced by backward arcs.

K
S

Figure 5.4: Hypergraph H where hyperedges
are built from the non-neighborhood of ver-
tices from S.

In the following, let assume we are in case (i) and let us prove that H has bounded transversality.
Case (ii) is handled symmetrically by switching H and H ′.

Lemma 5.5. The hypergraph H has fractional transversality τ∗ ≤ 2.

Proof. Let us prove that the weight function w given by Lemma 5.4 provides a solution to the frac-
tional transversality linear program. Let e be a hyperedge built from the non-neighborhood of x ∈ S.
Recall that this non-neighborhood is precisely N+(x) in B , then we have:∑

y∈e
w(y) = w(N+(x)) ≥ 1.

Thus w satisfies the constraints of the fractional transversality, and w(K ) ≤ 2, i.e. we have τ∗ ≤ 2.

Lemma 5.6. H has VC-dimension bounded by 2ϕ−1.

Proof. The proof is inspired from the proof of Lemma 3.9. Since it is slightly distinct, we neverthe-
less reprove it for the sake of completeness. Assume there is a set A = {u1, . . . ,uϕ, v1, . . . , vϕ} of 2ϕ
vertices of H such that for every B ⊆ A there is an edge e ∈ E so that e ∩ A = B . The aim is to exploit
the shattering to find an induced Γ, which builds a contradiction. Recall that the forbidden split
graph Γ is the union of a clique V1 = {x1, . . . , xr } and a stable set V2 = {y1, . . . , yr ′} (with r,r ′ ≤ϕ). Let
xi ∈V1, let {yi1 , . . . , yik } = NΓ(xi )∩V2 be the set of its neighbors in V2.

Consider Ui = {ui1 , . . . ,uik }∪ {vi } (possible because |V1|, |V2| ≤ ϕ). By assumption on A, there
exists e ∈ E such that e ∩ A = A \Ui . Let si ∈ S be the vertex whose non-neighborhood corresponds
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to the edge e, then the neighborhood of si in A is exactly Ui . Let U = {u1, . . . ,uϕ}. Now, forget about
the existence of v1, . . . , vϕ, and observe that NG (si )∩U = {ui1 , . . . ,uik }. Then G[{s1, . . . , sr }∪U ] is an
induced Γ, which is a contradiction.

As for Lemma 3.9, one can remark that a better analysis provides a ϕ+ logϕ upper bound.

Applying Theorem 3.23, and Lemma 5.5 and 5.6 to H , we obtain

τ(H) ≤ 16dτ∗(H) log(dτ∗(H)) ≤ 64ϕ(log(ϕ)+2) = t .

Hence τ is bounded by t which only depends on H . There must be x1, . . . , xτ ∈ K such that
each hyperedge of H contains at least one xi . Consequently, S ⊆ ∪1≤i≤t NC

G [xi ]. Moreover, K ⊆
(∩1≤i≤t NG [xi ]) =U since x1, . . . , xτ are in the same clique K . This means that the cut (U ,V \U ) ∈F

built from the clique x1, . . . , xτ separates K and S.
When case (ii) of Claim 5.4 occurs, H ′ has bounded transversality, so there are τ vertices

x1, . . . , xτ ∈ S such that for all y ∈ K , there exists xi ∈ N (y). Thus K ⊆ (∪1≤i≤t NG (xi )) = U and
S ⊆∩1≤i≤t NC

G (xi ). The cut (U ,V \U ) ∈F built from the stable set x1, . . . , xτ separates K and S.

5.2.3 The case of Pk ,Pk -free graphs

In this Section we prove that Conjecture 9 also holds for (Pk ,Pk )-free graphs. In order to prove
it, we prove a more difficult result since we prove that the Erdős-Hajnal conjecture holds for Pk ,Pk -
free graphs. This proof will implies that Conjecture 9 holds for (Pk ,Pk )-free graphs. Before entering
into the details, let us give some definitions on the Erdős-Hajnal conjecture and make a brief state
of the art on this conjecture

A class C of graphs (i.e. closed under induced subgraphs) is said to satisfy the Erdős-Hajnal
property if there exists some c > 0 such that every graph on n vertices of C contains a clique or Erdős-

Hajnala stable set of size nc . The Erdős-Hajnal conjecture [80] asserts that every strict class of graphs
satisfies the Erdős-Hajnal property, see [56] for a survey. This question is even open for graphs
not inducing a C5. When excluding a single graph H , Alon, Pach and Solymosi showed in [10] that
the conjecture holds if and only if it holds for every prime graph H (i.e. graph without nontrivial
modules). A natural approach is then to study classes of graphs with intermediate difficulty, hoping
to get a proof scheme which could be extended. A natural prime candidate to forbid is certainly the
path. Chudnovsky and Zwols studied the class Ck of graphs not inducing the path Pk on k vertices
nor Pk . They proved the Erdős-Hajnal property for P5 and P6-free graphs [59]. This was extended
for P5 and P7-free graphs by Chudnovsky and Seymour [58]. We show that for every fixed k, the class
Ck satisfies the Erdős-Hajnal property and we extend it for obtaining Conjecture 9 for the class Ck .
A graph on n vertices is an ε-stable set if it has at most ε · (n

2

)
edges. The complement of an ε-stable

set is an ε-clique. A stronger version of the following result was proved by Rödl [174]:

Theorem 5.7. For every positive integer k and every ε> 0, there exists δ> 0 such that every graph on
n vertices G satisfies one of the following:

– G induces all graphs on k vertices.
– G contains an ε-stable set of size at least δn.
– G contains an ε-clique of size at least δn.
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Sketch of the proof. Note that by choosing δ small enough, we can assume that G is arbitrarily
large, since a single vertex is certainly an ε-stable set. Let k ′ and k ′′ be two integers such that
max(k,2/ε) ¿ k ′ ¿ k ′′. Select now some ε′ > 0 such that ε′ ¿ min((1/k ′′)2, (ε/2)k ). Applying Sze-
merédi’s lemma, there exists M for which every large enough graph has an ε′-regular partition with
at least k ′′ parts and at most M parts. We consider such an ε′-regular partition P of G . Since ε′ is
small enough, there are k ′′ classes of P forming pairwise ε′-regular pairs. Since k ′′ À k ′ (precisely,
providing that k ′′ is at least Ramsey(k ′,k ′,k ′)), we can find k ′ of them with all pairwise densities,
either less than ε/2, or between ε/2 and 1− ε/2, or more than 1− ε/2. The first case gives an ε-
stable set of size δn, where δ is k ′/M . The last case gives an ε-clique of size δn. Since k ≤ k ′, the
intermediate case provides k parts such that all pairs are ε′-regular with densities between ε/2 and
1−ε/2. Thus one can induce all possible graphs by choosing one vertex in each of the parts since
ε′ ¿ (ε/2)k .

Note that another proof of Theorem 5.7 was then provided by Fox and Sudakov [97], with no use
of the regularity lemma, consequently giving a better constant δ= 2−15k(log(1/ε))2

.
In a graph G , a complete `-bipartite graph is a pair of disjoint subsets X ,Y of vertices of G , both

of size ` and inducing all edges between X and Y . We define similarly empty `-bipartite graph when
there is no edge between X and Y . Observe that we do not require any condition inside X or inside
Y . Erdős, Hajnal and Pach proved in [81] that for every strict class C , there exists some c > 0 such
that every graph on n vertices in C contains an empty or complete nc -bipartite graph. This "half"
version of the conjecture was improved to a "three quarter" version by Fox and Sudakov [98], where
they show the existence of a polynomial clique or empty bipartite graph. It was proved that getting
linear complete or empty bipartite graphs is enough to prove the full version:

Theorem 5.8 ([9, 96]). If C is a class of graphs for which there exists c > 0 such that every graph G of
C has an empty or complete c.n-bipartite graph, then C satisfies the Erdős-Hajnal property.

Sketch of the proof. Let c ′ > 0 such that cc ′ ≥ 1/2. We prove by induction that every graph G of C

induces a P4-free graph of size nc ′
. By our hypothesis on C , up to symmetry there exists a complete

c ·n-bipartite graph X ,Y in G . Applying the induction hypothesis inside both X and Y , we form a
P4-free graph on 2(c ·n)c ′ ≥ nc ′

vertices. The Erdős-Hajnal property of C follows from the fact that
every P4-free graph on nc ′

vertices has a clique or a stable set of size at least nc ′/2.

Before going to the main result of this section, we state an intermediate result. If d(x) is the
degree of the vertex x, its closed degree d(x) is d(x)+1, corresponding to the size of its closed neigh-
borhood N [x], that is to say {x}∪ {y |x y ∈ E }.

Theorem 5.9. Let n ≥ 2 be an integer, c,ε ∈ [0,1] and G be a connected graph on n vertices. Assume
that G contains no empty c.n-bipartite subgraph and that every vertex x has closed degree d(x) ≤ ε.n.
Then for every vertex x, there exists a path Pk starting in x with k ≥ 1

2(ε+c) .

Proof. We follow the lines of Gyárfás’ proof of the χ-boundedness of Pk -free graphs, see [113]. First
assume that 3c+ε≥ 1. In particular, 1

2(ε+c) ≤ 3
2 . To conclude, observe that every vertex is incident to

a P2 (an edge) in a connected graph of size at least 2. From now on, assume that 3c +ε< 1. Let x be
a vertex, U be the set V \ N [x], and C1 be the largest connected component of G[U ]. We distinguish
three cases:
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– if |C1| ≥ (1− ε− c) ·n: let y ∈ N [x] having a neighbor in C1, and G ′ = G[{y}∪C1]. Apply the
induction hypothesis to G ′ containing no empty c ′ ·n′-bipartite subgraph with n′ = |G ′| ≥
(1−ε−c)·n and c ′ = c/(1−ε−c). Moreover, every vertex x of G ′ has closed degree d(x) ≤ ε′ ·n′

with ε′ = ε/(1−ε−c). Then, by induction, there exists a path Pk ′ starting in y with k ′ ≥ 1
2(ε′+c ′) =

1
2(ε+c) − 1

2 . Augmenting the path by x gives a path of length k ′+1 ≥ 1
2(ε+c) .

– if c.n ≤ |C1| ≤ (1−ε− c) ·n: then (C1,U \C1) is an empty c.n-bipartite graph, a contradiction.
– otherwise |C1| ≤ c ·n: then U is divided into small connected components that we can split

into two parts, each of size at least c ·n (this is possible because the total size of U is at least
3c.n, due to 3c +ε< 1). This forms an empty c.n-bipartite graph, a contradiction.

We now have all the tools for proving the two main results of this Section:

Theorem 5.10. For every k, there is a ck > 0, such that every graph in Ck contains an empty or
complete bipartite graph on ck · n. Thus, by Theorem 5.8, the class Ck satisfies the Erdős-Hajnal
property.

Proof. Let ε> 0 be some small value. By Theorem 5.7, there exists δ> 0 such that every graph G not
inducing Pk or Pk does contain an ε-stable set or an ε-clique of size at least δn. Free to consider the
complement of G , we can assume that G contains an ε-stable set S of size δn. We start by deleting
in S all the vertices with degree in S more than 2εs where s is the size of S. Since the average degree
in S is at most εs, we do not delete more than half of the vertices. We still call S the remaining
subgraph which is a 2ε-stable set of size s ≥ δn/2 with maximum degree at most 2εs. Let c ∈ [0,1]
be a small constant. If S contains no empty c.s-bipartite subgraph, we apply Theorem 5.9 and get a
path Pk ′ with k ′ ≥ 1

2(2ε+c) . Choosing ε and c small enough leads to a contradiction to G not inducing
a Pk . Thus G contains an empty cδ/2.n-bipartite graph.

Theorem 5.10 implies the clique-stable set separation for the class Ck .

Theorem 5.11. Let k > 0. The Clique-Stable set conjecture is satisfied on Ck .

Proof. The goal is to prove that every graph in Ck admits a CS-separator of size nc where c =
(−1/log2(1− ck )). We proceed by contradiction and assume that G is a minimal counter-example.
Free to exchange G and its complement, by Theorem 5.10, there exists two subsets V1,V2 com-
pletely non adjacent, and |V1|, |V2| ≥ ck ·n for some constant 0 < ck < 1. Call V3 = V \ (V1 ∪V2). By
minimality of G , G[V1 ∪V3] admits a CS-separator F1 of size (|V1| + |V3|)c , and G[V2 ∪V3] admits a
CS-separator F2 of size (|V2|+ |V3|)c . Let us build F aiming at being a CS-separator for G . For every
cut (U ,W ) in F1, build the cut (U ,W ∪V2), and similarly for every cut (U ,W ) in F2, build the cut
(U ,W ∪V1). We show that F is indeed a CS-separator: let (K ,S) be a pair of clique and stable set
of G that do not intersect, then either K ⊆ V1 ∪V3, or K ⊆ V2 ∪V3 since there is no edge between
V1 and V2. By symmetry, suppose K ⊆ V1 ∪V3, then there exists a cut (U ,W ) in F1 that separates
(K ,S ∩ (V1 ∪V3)) and the corresponding cut (U ,W ∪V2) in F separates (K ,S). Finally, F has size at
most 2 · ((1− ck )n)c ≤ nc .
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5.2.4 Other classes of graphs

Lagoutte and Trunck recently proved in [135] that Conjecture 9 holds on perfect graphs with
no balanced skew partition. It gives some evidence on the Lovasz’s conjecture which states that
Conjecture 9 holds for perfect graphs. Though, one can note that the main complexity of lots of
proofs on perfect graphs is due to skew partitions. So there might be a complexity gap between
their proof and the proof of the whole conjecture.

5.3 Bipartite packing and graph coloring

The goal of this section is to prove that the polynomial Alon-Saks-Seymour conjecture is equiv-
alent to the Clique-Stable Set separation conjecture. We need for this an intermediate step using a
new version of the Alon-Saks-Seymour conjecture, called the Oriented Alon-Saks-Seymour conjec-
ture.

5.3.1 Oriented Alon-Saks-Seymour conjecture

The bipartite packing bp(G) of a graph G is the minimum number of edge-disjoint completebp(G)

bipartite graphs needed to partition the edges of G . Alon, Saks and Seymour conjectured that if
bp(G) ≤ k, then χ(G) ≤ k + 1. The conjecture holds for complete graphs. Indeed, Graham and
Pollak [107] proved that n −1 edge-disjoint complete bipartite graphs are needed to partition the
edges of Kn . A beautiful algebraic proof of this theorem is due to Tverberg [188]. The conjecture
was disproved by Huang and Sudakov in [120] who proved that χ ≥ k6/5 for some graphs using a
construction based on Razborov’s graphs [170]. It was improved into χ ≥ k3/2 by Amano in [12]
Nevertheless the existence of a polynomial bound is still open.

Conjecture 11 (Polynomial Alon-Saks-Seymour Conjecture). There exists a polynomial P such that
for every G, χ(G) ≤ P (bp(G)).

Note that Huang and Sudakov conjectured the converse of Conjecture 11. We nevertheless de-
cided to state all the conjectures on their positive version. We introduce a variant of the bipar-
tite packing which may lead to a new superlinear lower bound on the Clique-Stable separation.
The oriented bipartite packing bpor(G) of a non-oriented graph G is the minimum number of ori-
ented complete bipartite graphs such that each edge is covered by an arc in at least one direc-
tion (it can be in both directions), but it cannot be covered twice in the same direction (see Fig-
ure 5.5 for an example). Note that Amano recently introduced an equivalent version of this object
in [12]. He called these partitions ordered biclique partitions. A packing certificate of size k is a set
{(A1,B1), . . . , (Ak ,Bk )} of k oriented bipartite subgraphs of G that fulfill the above conditions restated
as follows: for each edge x y of G , free to exchange x and y , there exists i such that x ∈ Ai , y ∈ Bi , but
there do not exist distinct i and j such that x ∈ Ai ∩ A j and y ∈ Bi ∩B j .

Conjecture 12 (Oriented Alon-Saks-Seymour Conjecture). There exists a polynomial P such that for
every G, χ(G) ≤ P (bpor(G)).

First of all, we prove that studying bpor (Km) is deeply linked with the existence of a fooling
set for C L − I S. Recall the definitions of Section 5.2: in the communication matrix M for C L − I S,
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x1

x2

x3

y1

y2

y3

Figure 5.5: A graph G such that bpor(G) = 2 (and bp(G) = 3). Two different kinds of arrows show a
packing certificate of size 2:({x1, x2}, {y1, y2}) and ({y2, y3}, {x2, x3}). The edge x2 y2 is covered once in
each direction, while the other edges are covered in exactly one direction.

each row corresponds to a clique K , each column corresponds to a stable set S, and MK ,S = 1 if
K and S intersect, 0 otherwise. A fooling set C is a set of pairs (K ,S) such that K and S do not
intersect, and for all (K ,S), (K ′,S′) ∈C , K intersects S′ or K ′ intersects S (consequently MK ,S′ = 1 or
MK ′,S = 1). Thus C is a set of 0-entries of the matrix that pairwise can not be put together into the
same combinatorial 0-rectangle. The maximum size of a fooling set consequently is a lower bound
on the non-deterministic communication complexity for C L − I S, and consequently on the size of
a CS-separator.

Theorem 5.12. Let n,m ∈ N∗. There exists a fooling set C of size m on some graph on n vertices if
and only if bpor(Km) ≤ n.

Lemma 5.13, 5.14, 5.17 and 5.18 follow the scheme of proofs of Alon and Haviv which can be
found in [120].

Lemma 5.13. Let n,m ∈ N∗. If there exists a fooling set C of size m on some graph G on n vertices
then bpor(Km) ≤ n.

Proof. Consider all pairs (K ,S) of cliques and stable set in the fooling set C , and construct an auxil-
iary graph H in the same way as in the proof of Lemma 5.17: the vertices of H are the m pairs (K ,S)
of the fooling set and there is an edge between (K ,S) and (K ′,S′) if and only if there is a vertex in
S ∩K ′ or in S′∩K . By definition of a fooling set, H is a complete graph. For x ∈ V (G), let (Ax ,Bx )
be the oriented bipartite subgraph of H where Ax is the set of pairs (K ,S) for which x ∈ K , and Bx is
the set of pairs (K ,S) for which x ∈ S. This defines a packing certificate of size n on H : first of all, by
definition of the edges, (Ax ,Bx ) is complete. Moreover, every edge is covered by such a bipartite: if
(K ,S)(K ′,S′) ∈ E(H) then there exists x ∈ S∩K ′ or x ∈ S′∩K thus the corresponding arc is in (Ax ,Bx ).
Finally, an arc (K ,S)(K ′,S′) can not appear in both (Ax ,Bx ) and (Ay ,By ) otherwise the stable set S
and the clique K ′ intersect on two vertices x and y , which is impossible. Hence bpor(H) ≤ n. H
being a complete graph on m elements proves the lemma.

Lemma 5.14. Let n,m ∈N∗. If bpor(Km) ≤ n then there exists a fooling set of size m on some graph G
on n vertices.

Proof. Construct an auxiliary graph H : the vertices are the elements of a packing certificate of size
n, and there is an edge between (A1,B1) and (A2,B2) if and only if there is a vertex x ∈ A1 ∩ A2.
Then for all x ∈ V (Km), the set of all bipartite graphs (A,B) with x ∈ A form a clique called Kx , and
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the set of all bipartite graphs (A,B) with x ∈ B form a stable set called Sx . Sx is indeed a stable set,
otherwise there are (A1,B1) and (A2,B2) in Sx (implying x ∈ B1∩B2) linked by an edge resulting from
a vertex y ∈ A1∩A2, then the arc y x is covered twice. Consider all pairs (Kx ,Sx ) for x ∈V (Km): this is
a fooling set of size m. Indeed, on one hand Kx ∩Sx =;. On the other hand, for all x, y ∈V (Km), the
edge x y is covered by a complete bipartite graph (A,B) with x ∈ A and y ∈ B (or conversely). Then
Kx and Sy (or Ky and Sx ) intersects in (A,B).

Proof of Theorem 5.12. Lemmas 5.13 and 5.14 conclude the proof.

One can search for an algebraic lower bound for bpor(Km). Let (A1,B1), . . . , (Ak ,Bk ) be a packing
certificate of Km . For every i construct the m ×m matrix M i such that M i

u,v = 1 if u ∈ Ai , v ∈ Bi

and 0 otherwise, then M i has rank 1. Let M = ∑k
i=1 M i , then by construction M has rank at most

k, and has the three following particularities: it contains only 0 and 1, its diagonal entries are all 0,
and for every distinct i , j , Mi , j = 1 or M j ,i = 1 (or both). This is due to the definition of a packing
certificate. A natural question arising is to find a lower bound on the minimum rank of a m ×m
matrix respecting these three particularities. This will imply a lower bound on bpor(Km), and thus
an upper bound on the size of a fooling set.

Theorem 5.12 implies that if bpor (Kn) = O (n1/k ), then there exists a fooling set of size Ω(nk )
on some graphs G on n vertices, thus Ω(nk ) is a lower bound on the Clique-Stable Set separation.

Yeo [192] proved that bpor (Kn) ≤O (n/2
p

logn), but this bound was improved by Amano in [12] who
proved bpor (Kn) ≤O (n2/3). The best lower bound is the following:

Observation 5.15. Let G be a graph. Then there exists a fooling set F on G of size |V (G)|+1.

Proof. Let us do the proof by induction on |V (G)|. If V = {v}, consider the clique {v} together with
the empty stable set, and the stable set {v} together with the empty clique. This is a fooling set of
size 2. If |V | = n +1, let v ∈ V , n1 = |N (v)|, n2 = |NC [v]|, with n = n1 +n2 +1. Then the induction
hypothesis gives a fooling set F1 of size n1+1 on N (v), and a fooling set F2 of size n2+1 on NC [v].
Extend each clique of F1 with v , which still forms a clique; and extend each stable set of F2 with v ,
which still forms a stable set. This gives a fooling set F of size n1 +1+n2 +1 = n +1. It is indeed a
fooling set: if (K ,S), (K ′,S′) ∈F , either they come both from F1 or both from F2, so the property is
satisfied by F1 and F2 being fooling sets; either (K ,S) initially comes from F1 and (K ′,S′) from F2,
and then K ∩S′ = {v}.

In fact the oriented Alon-Saks-Seymour conjecture is equivalent to the Clique-Stable Set sepa-
ration conjecture.

Theorem 5.16. The oriented Alon-Saks-Seymour conjecture is satisfied if and only if the Clique-
Stable Set separation conjecture is satisfied.

The proof is very similar to the one of Theorem 5.12.

Lemma 5.17. If the oriented Alon-Saks-Seymour conjecture is satisfied, then the Clique-Stable Set
separation conjecture is satisfied.
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Proof. Let G be a graph on n vertices. We want to separate all the pairs of cliques and stable sets
which do not intersect. Consider all the pairs (K ,S) such that the clique K does not intersect the
stable set S. Construct an auxiliary graph H as follows. The vertices of H are the pairs (K ,S) and
there is an edge between a pair (K ,S) and a pair (K ′,S′) if and only if there is a vertex x ∈ S ∩K ′

or x ∈ S′∩K . For every vertex x of G , let (Ax ,Bx ) be the oriented bipartite subgraph of H where
Ax is the set of pairs (K ,S) for which x ∈ K , and Bx is the set of pairs (K ,S) for which x ∈ S. By
definition of the edges, (Ax ,Bx ) is complete. Moreover, every edge is covered by such a bipartite:
if (K ,S)(K ′,S′) ∈ E(H) then there exists x ∈ S ∩K ′ or x ∈ S′ ∩K thus the corresponding arc is in
(Ax ,Bx ). Finally, an arc (K ,S)(K ′,S′) can not appear in both (Ax ,Bx ) and (Ay ,By ) otherwise the
stable set S and the clique K ′ intersect on two vertices x and y , which is impossible. Hence the
oriented bipartite packing of this graph is at most n.
If the oriented Alon-Saks-Seymour conjecture is satisfied, then χ(H) ≤ P (n). Consider a color of this
polynomial coloring. Let A be the set of vertices of this color, so A is a stable set. Then the union of
all the second components (corresponding to stable sets of G) of the vertices of A do not intersect
the union of all the first components (corresponding to cliques of G) of A. Otherwise, there are
two vertices (K ,S) and (K ′,S′) of A such that K intersects S′, thus (K ,S)(K ′,S′) is an edge. This is
impossible since A is a stable set.

The union of the cliques of A and the union of the stable sets of A do not intersect, hence it
defines a cut which separates all the pairs of A. The same can be done for every color. Then we can
separate all the pairs (K ,S) by χ(H) ≤ P (n) cuts, which achieves the proof.

Lemma 5.18. If the Clique-Stable Set separation conjecture is satisfied, then the oriented Alon-Saks-
Seymour conjecture is satisfied.

Proof. Let G = (V ,E) be a graph with bpor(G) = k. Construct an auxiliary graph H as follows. The
vertices are the elements of a packing certificate of size k. There is an edge between two elements
(A1,B1) and (A2,B2) if and only if there is a vertex x ∈ A1 ∩ A2. Hence the set of all (Ai ,Bi ) such that
x ∈ Ai is a clique of H (say the clique Kx associated to x). The set of all (Ai ,Bi ) such that y ∈ Bi is
a stable set in H (say the stable set Sy associated to y). Indeed, if y ∈ B1 ∩B2 and there is an edge
resulting from x ∈ A1 ∩ A2, then the arc x y is covered twice which is impossible. Note that a clique
or a stable set associated to a vertex can be empty, but this does not trigger any problem. Since the
Clique-Stable set separation conjecture is satisfied, there are P (k) (with P a polynomial) cuts which
separate all the pairs (K ,S), in particular which separate all the pairs (Kx ,Sx ) for x ∈V .

Associate to each cut a color, and let us now color the vertices of G with them. We color each
vertex x by the color of the cut separating (Kx ,Sx ). Let us finally prove that this coloring is proper.
Assume there is an edge x y such that x and y are given the same color. Then there exists a bipartite
graph (A,B) that covers the edge x y , hence (A,B) is in both Kx and Sy . Since x and y are given
the same color, then the corresponding cut separates both Kx from Sx and Ky from Sy . This is
impossible because Kx and Sy intersects in (A,B). Then we have a coloring with at most P (k) colors.

Proof of Theorem 5.16. This is straightforward using Lemmas 5.17 and 5.18.
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5.3.2 Generalization: t-biclique covering numbers

We introduce here a natural generalization of the Alon-Saks-Seymour conjecture, studied by
Huang and Sudakov in [120]. While the Alon-Saks-Seymour conjecture deals with partitioning the
edges, we relax here to a covering of the edges by complete bipartite graphs, meaning that an edge
can be covered several times. Formally, a t-biclique covering of an undirected graph G is a collection
of complete bipartite graphs that covers every edge of G at least once and at most t times. The
minimum size of such a covering is called the t-biclique covering number, and is denoted by bpt (G).
In particular, bp1(G) is the usual bipartite packing bp(G).

In addition to being an interesting parameter to study in its own right, the t-biclique covering
number of complete graphs is also closely related to a question in combinatorial geometry about
neighborly families of boxes. It was studied by Zaks [193] and then by Alon [5], who proved that Rd

has a t-neighborly family of k standard boxes if and only if the complete graph Kk has a t-biclique
covering of size d (see [120] for definitions and further details). Better bounds were given by Huang
and Sudakov in [120] Alon also gives asymptotic bounds for bpt (Kk ):

(1+o(1))(t !/2t )1/t k1/t ≤ bpt (Kk ) ≤ (1+o(1))tk1/t .

Our results are concerned not only with Kk but for every graph G . It is natural to ask the same
question for bpt (G) as for bp(G), namely:

Conjecture 13 (Generalized Alon-Saks-Seymour conjecture of order t ). There exists a polynomial
Pt such that for all graphs G, χ(G) ≤ Pt (bpt (G)).

A t-biclique covering is a fortiori a t ′-biclique covering for all t ′ ≥ t . Moreover, a packing cer-
tificate of size bpor(G), which covers each edge at most once in each direction can be seen as a
non-oriented biclique covering which covers each edge at most twice. Hence, we have the follow-
ing inequalities:

Observation 5.19. For every graph G:

. . . ≤ bpt+1(G) ≤ bpt (G) ≤ bpt−1(G) ≤ . . .bp2(G) ≤ bpor(G) ≤ bp1(G) .

Observation 5.19 and bounds on bp2(Kn) [5] give bpor (Kn) ≥ bp2(Kn) ≥Ω(
p

n). Then Theorem
5.12 ensures that the maximal size of a fooling set on a graph on n vertices is O (n2).

Theorem 5.20. Let t ∈ N∗. The generalized Alon-Saks-Seymour conjecture of order t holds if and
only if it holds for order 1.

Proof. Assume the generalized Alon-Saks-Seymour conjecture of order t holds. Then χ(G) is
bounded by a polynomial in bpt (G) and thus, according to Observation 5.19, by a polynomial in
bp1(G). Hence the generalized Alon-Saks-Seymour of order 1 holds.

Now we focus on the other direction, and assume that the generalized Alon-Saks-Seymour con-
jecture of order 1 holds. Let us prove the result by induction on t , initialization for t = 1 being
obvious. Let G = (V ,E) be a graph and let B = (B1, ...,Bk ) be a t-biclique covering. Then E can be
partitioned into Et the set of edges that are covered exactly t times in B, and E<t the set of edges
that are covered at most t −1 times in B. Construct an auxiliary graph H with the same vertex set
V as G and with edge set Et .
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Claim 5.21. bp1(H) ≤ (2k)t .

Since the Alon-Saks-Seymour of order 1 holds, then there exists a polynomial P such thatχ(H) ≤
P ((2k)t ). Consequently V can be partitioned into (S1, . . . ,SP ((2k)t )) where Si is a stable set in H . In
particular, the induced graph G[Si ] contains no edge of Et . Consequently (B1 ∩Si , . . . ,Bk ∩Si ) is a
(t −1) biclique covering of G[Si ], where B j ∩Si is the bipartite graph B j restricted to the vertices of
Si . Thus bpt−1(G[Si ]) ≤ k. By induction hypothesis, the generalized Alon-Saks-Seymour of order
(t −1) holds, so there exists a polynomial Pt−1 such that χ(G[Si ]) ≤ Pt−1(k). Let us now color the
vertices of G with at most P ((2k)t ) ·Pt−1(k) colors, which is a polynomial in k. Each vertex v ∈ Si is
given color (α,β), where α is the color of Si in H and β is the color of x in G[Si ]. This is a proper
coloring of G , thus the generalized Alon-Saks-Seymour conjecture of order t holds.

Proof of Claim 5.21. For each Bi , let (B−
i ,B+

i ) be its partition into a complete bipartite graph. We
number x1, . . . , xn the vertices of H . Let xi x j be an edge, with i < j , then xi x j is covered by exactly
t bipartite graphs Bi1 , . . . ,Bi t . We give to this edge the label ((Bi1 , . . . ,Bi t ), (ε1, . . . ,εt )), where εl =−1
if xi ∈ B−

il
(then x j ∈ B+

il
) and εl = +1 otherwise (then xi ∈ B+

il
and x j ∈ B−

il
). For each such label L

appearing in H , call EL the set of edges labeled by L and define a set of edges BL = E(Bi1 )∩EL .
Observe that BL forms a bipartite graph. The goal is to prove that the set of every BL is a 1-biclique
covering of H . Since there can be at most (2k)t different labels, this will conclude the proof.

Let us first observe that each edge appears in exactly one BL because each edge has ex-
actly one label. Let L be a label, and let us prove that BL is a complete bipartite graph. If
xi xi ′ ∈ BL and x j x j ′ ∈ BL , with i < i ′ and j < j ′ then these two edges have the same label
L = ((Bi1 , . . . ,Bi t ), (ε1, . . . ,εt )). If εl = −1 (the other case in handle symmetrically), then xi and x j

are in B−
il

and xi ′ and x j ′ are in B+
il

. As Bil is a complete bipartite graph, then the edges xi x j ′ and
x j xi ′ appear in E(Bil ). Thus these two edges have also the label L , so they are in BL : as conclusion,
BL is a complete bipartite graph.

5.4 3-CCP and the stubborn problem

The following definitions are illustrated on Figure 5.9 and deal with list coloring. Let G be a
graph and COL a set of k colors. A set of possible colors, called constraint, is associated to each
vertex. If the set of possible colors is COL then the constraint on this vertex is trivial. A vertex has
an l -constraint if its set of possible colors has size at most l . An l -list assignment is a function
L : V → P (COL) that gives each vertex an l-constraint. A solution S is a coloring of the vertices
S : V → COL that respects some requirements depending on the problem. We can equivalently
consider S as a partition (A1, . . . , Ak ) of the vertices of the graph with x ∈ Ai if and only if S (x) = Ai

(by abuse of notation Ai denotes both the color and the set of vertices having this color). An l-list
assignment L is compatible with a solution S if for each vertex x, S (x) ∈ L (x). A set of l-list
assignment covers a solution S if at least one of the l-list assignment is compatible with S .

We recall the definitions of 3-CCP and the stubborn problem:

3-COMPATIBLE COLORING PROBLEM (3-CCP)
Input: An edge coloring fE of Kn with 3 colors {A,B ,C }.
Question: Is there a coloring of the vertices with {A,B ,C }, such that no edge has the
same color as both its endpoints?
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Figure 5.6: An instance of 3-
CCP

{A,C}

{A,B}

{A,B}

Figure 5.7: A solution to the
instance (vertex coloring)
together with a compatible
2-list assignment: each ver-
tex has a 2-constraint

{A,B}

{A,C}

{C,B}

Figure 5.8: Another solu-
tion to the instance with
a compatible 2-list assign-
ment.

Figure 5.9: Illustration of definitions. Color correspondence: A=red ; B=blue ; C=green. Both 2-list
assignments together form a 2-list covering because any solution is compatible with at least one of
them.

A1

A2

A3

A4

Figure 5.10: Diagram representing the stubborn problem. Cliques are represented by hatched sets,
stable sets by dotted sets. Completely non-adjacent sets are linked by a dashed edge. Grey lines
represent edges that may or may not appear in the graph.

STUBBORN PROBLEM

Input: A graph G = (V ,E) together with a list assignments L : V →P ({A1, A2, A3, A4}).
Question: Can V be partitioned into four sets A1, . . . , A4 such that A4 is a clique, both
A1 and A2 are stable sets, A1 and A3 are completely non-adjacent, and the partition is
compatible with L ?

Given an edge-coloring fE on Kn , a set of 2-list assignment is a 2-list covering for 3-CCP on
(Kn , fE ) if it covers all the solutions of 3-CCP on this instance. Moreover, 3-CCP is said to have a
polynomial 2-list covering if there exists a polynomial P such that for every n and for every edge-
coloring fE , there is a 2-list covering on (Kn , fE ) whose cardinality is at most P (n).

Symmetrically, we want to define a 2-list covering for the stubborn problem. However, there is
no hope to cover all the solutions of the stubborn problem on each instance with a polynomial
number of 2-list assignments. Indeed if G is a stable set of size n and if every vertex has the triv-
ial 4-constraint, then for any partition of the vertices into 3 sets (A1, A2, A3), there is a solution
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(A1, A2, A3,;). Since there are 3n partitions into 3 sets, and since every 2-list assignment covers at
most 2n solutions, all solutions cannot be covered with a polynomial number of 2-list assignments.

Thus we need a notion of maximal solutions. This notion is extracted from the notion of domi-
nation (here A3 dominates A1) in the language of general list-M partition problem (see [89]). Intu-
itively, if L (v) contains both A1 and A3 and v belongs to A1 in some solution S , we can build a sim-
pler solution by putting v in A3 and leaving everything else unchanged. A solution (A1, A2, A3, A4)
of the stubborn problem on (G ,L ) is a maximal solution if no member of A1 satisfies A3 ∈ L (v).
We may note that if A3 is contained in every L (v) for v ∈ V , then every maximal solution of the
stubborn problem on (G ,L ) let A1 empty. Now, a set of 2-list assignments is a 2-list covering for the
stubborn problem on (G ,L ) if it covers all the maximal solutions on this instance. Moreover, it is
called a polynomial 2-list covering if its size is bounded by a polynomial in the number of vertices
in G .

For edge-colored graphs, an (α1, ...,αk )-clique is a clique for which every edge has a color in
{α1, ...,αk }. A split graph is the union of an α-clique and a β-clique. The α-edge-neighborhood of x
is the set of vertices y such that x y is an α-edge, i.e an edge colored with α. The majority color of
x ∈ V is the color α for which the α-edge-neighborhood of x is maximal in terms of cardinality (in
case of ties, we arbitrarily cut them).

In this section, we prove that the existence of a polynomial 2-list covering for the stubborn prob-
lem is equivalent to the existence of a polynomial one for 3-CCP, which in turn is equivalent to the
existence of a polynomial CS-separator. We first justify the interest of 2-list coverings.

Observation 5.22. Given a 2-list assignment for 3-CCP, it is possible to decide in polynomial time if
there exists a solution covered by it.

Proof. Any 2-list assignment can be translated into an instance of 2-SAT. Each vertex has a 2-
constraint {α,β} from which we construct two variables xα and xβ and a clause xα∨ xβ. Turn xα
to true will mean that x is given the color α. Then we need also the clause ¬xα∨¬xβ saying that
only one color can be given to x. Finally for all edge x y colored withα, we add the clause ¬xα∨¬yα
if both variables exists, and no clause otherwise.

Therefore, given a polynomial 2-list covering, it is possible to decide in polynomial time if the
instance of 3-CCP has a solution. Observe nevertheless that the existence of a polynomial 2-list
covering does not imply the existence of a polynomial algorithm. Indeed, such a 2-list covering
may not be computable in polynomial time.

Theorem 5.23 (Feder, Hell [87]). There exists an algorithm giving a 2-list covering of size O (nlogn)
for 3-CCP. By Observation 5.22, this gives an algorithm in time O (nlogn) which solves 3-CCP.

Proof. Let us build a tree of maximum degree n+1 and height O (logn) whose leaves will exactly be
the 2-list assignments needed to cover all the solutions. By a counting argument, such a tree will
have at most O(nlogn) leaves, on which we can apply Observation 5.22 to have an algorithm in time
O(nlogn) which solves 3-CCP.

Let x be a vertex, up to symmetry we can assume that x has majority color A. The solutions
are partitioned between those where x is given its majority color A, and those where x is given
color B or C . From this simple remark, we can build a tree with an unlabeled root, n children each
labeled by a different vertex, and an extra leave corresponding to the solutions where no vertex
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is colored by its majority color. The latter forms a 2-list assignment since we forbid one color for
each vertex. Each labeled child of the root, say its label is x, will consider only solutions where x
is given its majority color A, thus x has constraint {A}. Then in every such solution, each vertex
linked to x by an A-edge will be given the color B or C . Thus we associate the 2-constraint {B ,C } to
the whole A-edge-neighborhood of x. Since the graph is complete and A is the majority color, this
A-edge-neighborhood represents at least 1/3 of all the vertices. We iterate the process on the graph
restricted to unconstrained vertices, and build a subtree rooted at node x. We do so for the other
labeled children of the root. The tree is ensured to have height O (logn) because we erase at least
1/3 of the vertices at each level.

Theorem 5.24. The following are equivalent:

1. For every graph G and every list assignment L : V →P ({A1, A2, A3, A4}), there is a polynomial
2-list covering for the stubborn problem on (G ,L ).

2. For every n and every edge-coloring f : E(Kn) → {A,B ,C }, there is a polynomial 2-list covering
for 3-CCP on (Kn , f ).

3. For every graph G, there is a polynomial CS-separator.

We decompose the proof into three lemmas, each of which describing one implication.

Lemma 5.25 ( 1 ⇒ 2). Suppose for every graph G and every list assignment L : V →P ({A1, . . . , A4}),
there is a polynomial 2-list covering for the stubborn problem on (G ,L ). Then for every graph n and
every edge-coloring f : E(Kn) → {A,B ,C }, there is a polynomial 2-list covering for 3-CCP on (Kn , f ).

Proof. Let n ∈ N, (Kn , f ) be an instance of 3-CCP, and x a vertex of Kn . Let us build a polynomial
number of 2-list assignments that cover all the solutions where x is given color A. Since the col-
ors are symmetric, we just have to multiply the number of 2-list assignments by 3 to cover all the
solutions. Let (A,B ,C ) be a solution of 3-CCP where x ∈ A.

Claim 5.26. Let x be a vertex and α,β,γ be the three different colors. Let U be the α-edge-
neighborhood of x. If there is a βγ-clique Z of U which is not split, then there is no solution where x
is colored with α.

Proof. Consider a solution in which x is colored with α. All the vertices of Z are of color β or γ
because they are in theα-edge-neighborhood of x. The vertices of Z colored withβ form a γ-clique,
those colored by γ form a β-clique. Hence Z is split.

A vertex x is really 3-colorable if for each color α, every βγ-clique of the α-edge-neighborhood
of x is a split graph. If a vertex is not really 3-colorable then, in a solution, it can be colored by at
most 2 different colors. Hence if Kn[V \x] has a polynomial 2-list covering, the same holds for Kn by
assigning the only two possible colors to x in each 2-list assignment.

Thus we can assume that x is really 3-colorable, otherwise there is a natural 2-constraint on it.
Since we assume that the color of x is A, we can consider that in all the following 2-list assignments,
the constraint {B ,C } is given to the A-edge-neighborhood of x. Let us abuse notation and still de-
note by (A,B ,C ) the partition of the C -edge-neighborhood of x, induced by the solution (A,B ,C ).
Since there exists a solution where x is colored by C , and C is a AB-clique, then Claim 5.26 ensures
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f (v) f ′(v) f ′′(v)
A2 or A1, A2 ∗ C
A3 or A1, A3 ∗ B ,C
A4 or A1, A4 ∗ A

A2, A4 ∗ A,C
A2, A3 ∗ B ,C
A3, A4 A′

2 or A′
1, A′

2 B
A3, A4 A′

3 or A′
1, A′

3 A,C
A3, A4 A′

4 or A′
1, A′

4 C
A3, A4 A′

2, A′
4 B ,C

A3, A4 A′
2, A′

3 A,B
A3, A4 A′

3, A′
4 A,C

Figure 5.11: This table describes the rules used in proof of lemma 5.25 to built a 2-list assignment f ′′

for 3-CCP from a pair ( f , f ′) of 2-list assignment for two instances of the stubborn problem. Symbol
∗ stands for any constraint. For simplicity, we write X ,Y (resp. X ) instead of {X ,Y } (resp. {X }).

that C is a split graph C ′]C ′′ with C ′ a B-clique and C ′′ a A-clique. The situation is described in
Figure 5.12. Let H be the non-colored graph with vertex set the C -edge-neighborhood of x and with
edge set the union of B-edges and C -edges (see Figure 5.13). Moreover, let H ′ be the non-colored
graph with vertex set the C -edge-neighborhood of x and with edge set the B-edges (see Figure 5.14).
We consider (H ,L0) and (H ′,L0) as two instances of the stubborn problem, where L0 is the trivial
list assignment that gives each vertex the constraint {A1, A2, A3, A4}.

By assumption, there exists F (resp. F ′) a polynomial 2-list covering for the stubborn problem
on (H ,L0) (resp. (H ′,L0)). We construct F ′′ the set of 2-list assignment f ′′ built from all the pairs
( f , f ′) ∈ F ×F ′ according to the rules described in Figure 5.11 (intuition for such rules is given
in the next paragraph). F ′′ aims at being a polynomial 2-list covering for 3-CCP on the C -edge-
neighborhood of x.

The following is illustrated on Figure 5.13 and 5.14. Let S be the partition defined by A1 = ;,
A2 =C ′′, A3 = B ∪C ′ and A4 = A. We can check that A2 is a stable set and A4 is a clique (the others
restrictions are trivially satisfied by A1 being empty and L0 being trivial). In parallel, let S ′ be the
partition defined by A′

1 =;, A′
2 = B , A′

3 = A ∪C ′′ and A4 =C ′. We can also check that A′
2 is a stable

set and A′
4 is a clique. Thus S (resp. S ′) is a maximal solution for the stubborn problem on (H ,L0)

(resp. (H ′,L0)) inherited from the solution (A,B ,C =C ′]C ′′) for 3-CCP.
Let f ∈ F (resp. f ′ ∈ F ′) be a 2-list assignment compatible with S (resp. S ′). Then f ′′ ∈ F ′′

built from ( f , f ′) is a 2-list assignment compatible with (A,B ,C ).
Doing so for the B-edge-neighborhood of x and pulling everything back together gives a poly-

nomial 2-list covering for 3-CCP on (Kn , f ).

Lemma 5.27 ( 2 ⇒ 3). Suppose for every n and every edge-coloring f : E(Kn) → {A,B ,C }, there is a
polynomial 2-list covering for 3-CCP on (Kn , f ). Then for every graph G, there is a polynomial CS-
separator.
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Constraint {B,C}
A-edge-neighborhood

B-edge-neighborhood C-colored vertices

A-colored vertices

B-colored vertices

C ′
C ′′

AB

x

Figure 5.12: Vertex x, its A-edge-neighborhood subject to the constraint {B ,C }, and its C -edge-
neighborhood separated in different parts.

A2

A4

A3

Solution to (H,L0)

C ′
C ′′

AB

H

Figure 5.13: On the left the graph H obtained
from the C -edge-neighborhood by keeping
only B-edges and C -edges. On the right the
solution of the stubborn problem.

A2

A4

A3

Solution to (H ′,L0)

C ′
C ′′

AB

H ′

Figure 5.14: On the left, the graph H ′ ob-
tained from the C -edge-neighborhood by
keeping only B-edges. On the right, the so-
lution of the stubborn problem.

Figure 5.15: Illustration of the proof of lemma 5.25. Color correspondence: A=red ; B=blue ;
C=green. As before, cliques are represented by hatched sets, stable sets by dotted sets.

Proof. Let G = (V ,E) be a graph on n vertices. Let f be the coloring on Kn defined by f (e) = A if
e ∈ E and f (e) = B otherwise. In the following (Kn , f ) is considered as a particular instance of 3-CCP
with no C -edge. By hypothesis, there is a polynomial 2-list covering F for 3-CCP on (Kn , f ). Let us
prove that we can derive from F a polynomial CS-separator C .

Let L ∈F be a 2-list assignment. Denote by X (resp. Y , Z ) the set of vertices with the constraint
{A,B} (resp. {B ,C }, {A,C }). Since no edge has color C , X is split. Indeed, the vertices of color A form
a B-clique and conversely. Given a graph, there is a linear number of decompositions into a split
graph [89]. Thus there are a linear number of decomposition (Uk ,Vk )k≤cn of X into a split graph
where Uk is a B-clique. For every k, the cut (Uk∪Y ,Vk∪Z ) is added in C . For each 2-list assignment
we add a linear number of cuts, so the size of C is polynomial.

Let K be a clique and S a stable set of G which do not intersect. The edges of K are colored
by A, and those of S are colored by B . Then the coloring S (x) = B if x ∈ K , S (x) = A if x ∈ S and
S (x) = C otherwise is a solution of (Kn , f ). Left-hand side of Figure 5.16 illustrates the situation.
There is a 2-list assignment L in F which is compatible with this solution. As before, let X (resp.
Y , Z ) be the set of vertices which have the constraint {A,B} (resp. {B ,C }, {A,C }). Since the vertices
of K are colored B , we have K ⊆ X ∪Y (see right hand-side of Figure 5.16). Likewise, S ⊆ X ∪Z . Then
(K ∩X ,S∩X ) forms a split partition of X . So, by construction, there is a cut ((K ∩X )∪Y , (S∩X )∪Z ) ∈
C which ensures that (K ,S) is separated by C .
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K

SV \ (K ∪ S)
X

Z

Y

{A, B}
{A, C}

{B, C}
⇒

Figure 5.16: Illustration of the proof of Lemma 5.27. On the left hand-side, G is separated in 3 parts:
K , S, and the remaining vertices. Each possible configuration of edge- and vertex-coloring are rep-
resented. On the right-hand-side, (X ,Y , Z ) is a 2-list assignment compatible with the solution. X
(resp. Y , Z ) has constraint {A,B} (resp. {B ,C }, {A,C }). Color correspondence: A=red ; B=blue ;
C=green.

Lemma 5.28 ( 3 ⇒ 1). Suppose for every graph G, there is a polynomial CS-separator. Then for every
graph G and every list assignment L : V → P ({A1, A2, A3, A4}), there is a polynomial 2-list covering
for the stubborn problem on (G ,L ).

Proof. Let (G ,L ) be an instance of the stubborn problem. By assumption, there is a polynomial
CS-separator for G .

Claim 5.29. If there are p cuts that separate all the cliques from the stable sets, then there are p2 cuts
that separate all the cliques from the unions S ∪S′ of two stable sets.

Proof. Indeed, if (V1,V2) separates K from S and (V ′
1,V ′

2) separates K from S′, then the new cut
(V1 ∩V ′

1,V2 ∪V ′
2) satisfies K ⊆V1 ∩V ′

1 and S ∪S′ ⊆V2 ∪V ′
2.

Let F2 be a polynomial family of cuts that separate all the cliques from unions of two stable sets,
which exists by Claim 5.29 and hypothesis. Then for all (U ,W ) ∈ F2, we build the following 2-list
assignment L ′:

1. If v ∈U , let L ′(v) = {A3, A4}.

2. If v ∈W and A3 ∈L (v), then let L ′(v) = {A2, A3}.

3. Otherwise, v ∈W and A3 ∉L (v), let L ′(v) = {A1, A2}.

Now the set F ′ of such 2-list assignment L ′ is a 2-list covering for the stubborn problem on
(G ,L ): let S = (A1, A2, A3, A4) be a maximal solution of the stubborn problem on this instance.
Then A4 is a clique and A1, A2 are stable sets, so there is a separator (U ,W ) ∈ F2 such that A4 ⊆U
and A1 ∪ A2 ⊆ W (see Figure 5.17), and there is a corresponding 2-list assignment L ′ ∈ F ′. Con-
sequently, the 2-constraint L ′(v) built from rules 1 and 3 are compatible with S . Finally, as S is
maximal, there is no v ∈ A1 such that A3 ∈ L (v): the 2-constraints built from rule 2 are also com-
patible with S .

Proof of theorem 5.24. Lemmas 5.25, 5.27 and 5.28 conclude the proof of Theorem 5.24.
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A1

A2

A3

A4

G

constraint {A3, A4}

constr.{A2, A3} if A3 ∈ L(v)

A3 /∈ L(v)

constr.{A1, A2} otherwise

Figure 5.17: Illustration of the proof of Lemma 5.28. A solution to the stubborn problem together
with the cut that separates A4 from A1 ∪ A2. The 2-list assignment built from this cut is indicated
on each side.



CHAPTER

6
Multicut is FPT

In this chapter we prove that the MULTICUT problem is FPT parameterized by the solution size. It
is joint work with Jean Daligault and Stéphan Thomassé. The proof, and in particular its first part,
is based on the important separators technique introduced in Chapter 2. The status of this problem
was one of the main open problems in parameterized complexity.
Marx and Razgon independently found a proof that MULTICUT is FPT, with a rather different ap-
proach, see [147]. Section 6.5.2 provides a brief comparison between our work and theirs.

Before starting, let us first recall the formal definition of the MULTICUT problem.

MULTICUT:
Input: A graph G , a set of requests R, an integer k.
Parameter: k.
Output: TRUE if there is an (edge)-multicut of size at most k, otherwise FALSE.

6.1 Detailed outline of the proof

Some parts of the proof are technically very involved. This section provides a detailed outline
of the proof, underlying the structure of the main results and the reasons behind the main defini-
tions. For formal definitions and statements, and for complete proofs, the reader is referred to the
following sections.

A Vertex-Multicut. First of all, we can assume by iterative compression that a vertex-multicut
Y of size k + 1 is given, and that a solution must split Y . In other words, the solution has to be a
MULTIWAY CUT of Y . This is expressed in Lemma 6.9. This vertex-multicut Y gives a first layer of
structure to an instance: we can focus on the Y -components, i.e. the connected components of
the graph where vertices of Y have been removed.

Setting the number of edges of the solution per component. The number of Y -components
is bounded in k, considering that all connected components of G \ Y which are adjacent to a single
given vertex y ∈ Y form a single Y -component. So, we can branch to decide how many edges of the
solution lie in each Y -component.

141
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Half-requests. No request is contained inside a Y -component with two or more attachment
vertices, so we can simulate a request (u, v) with several half-requests (u, y, v), where y ∈ Y is an
attachment vertex of both the component C (u) of u and of the component C (v) of v . Cutting a
half-request (u, y, v) means cutting all paths between u and v which go through y .

The goal: 2-SAT. Half-requests give a simpler structure to the multicut problem: cutting a half-
request (u, y, v) is equivalent to either separating u from y in C (u), or separating v from y in C (v).
We will express this "or" through 2-SAT clauses once we manage to express in a simple way whether
the solution separates u from y . The rest of the proof is devoted to simplifying the structure of the
instance until we can express with 2-SAT variables whether the solution separates u from y .

Focus on 2-components. We first reduce Y -components with three or more attachment ver-
tices in Lemma 6.12. Now, Y -components have either two attachment vertices (2-components) or
one attachment vertex (cherries). The complexity of the problem mostly lies in the existence of
2-components.

In order to give a better structure to 2-components we compute in Lemma 6.14 a particular path
between its two attachment vertices: the backbone, which has the following property. The multi-
cut must contain exactly one edge in the backbone. The set of multicuts is thus linearly partially
ordered, according to the edge of the backbone they use. The goal is now to simplify the structure
of the instance so that the multicuts that separate a vertex u from an attachment vertex y of C (u)
form an initial (or final) section of this linear order. Indeed, the fact that the solution belongs to an
initial or final section of a linear order can be easily expressed with a 2-SAT variable.

BACKBONE MULTICUT. The instance as reduced up to this point fits the first intermediate variant,
COMPONENT MULTICUT, defined in Section 6.2. We introduce in Section 6.3 the second intermediate
problem BACKBONE MULTICUT. We need this more general problem than COMPONENT MULTICUT, so
that we can enrich instances. Considering half-requests is of major importance in our proof, but
the presence of 2-SAT clauses is necessary only for Lemma 6.20, and could possibly be avoided with
a slightly different proof.

Lemonizing 2-components. Through Lemma 6.20 in Subsection 6.3.5 we reduce 2-
components so that each vertex of the backbone becomes a cut-vertex of the 2-components. An
example is drawn in Figure 6.4. This is the first highly technical part of the proof. The components
now consist in a sequence of lemons with cherries attached to the backbone.

Linearly ordering the set of multicuts. In Subsection 6.3.6 we perform a complete linearisation
of the set of multicuts. This can be seen as the core of our approach. We define a meaningful partial
order ¹ on multicuts, such that the set of multicuts can be partitioned into a number bounded in k
of parts totally ordered by ¹ by Dilworth’s Theorem. This is Lemma 6.22.

Reducing 2-components to a backbone. The linear order ¹ on the set of all multicuts allows
us to move terminals of cherries to the backbone in Lemma 6.23. In a component with no cherries
left, we manage to reduce the sequence of lemons to just the backbone in Theorem 6.25. This is the
second highly technical part of the proof.

Reduction to 2-SAT. At this point, the 2-components are just paths. Only cherries attached to
vertices of Y remain, and they have a bounded number of meaningful separators, thanks to the
important separators technique. With an instance consisting of a subdivision of a graph with at
most k edges, we easily express with 2-SAT variables in Theorem 6.27 whether a given vertex is
separated from a given vertex of Y . We end up (after a heavy dose of branching throughout the
proof) with a 2-SAT instance, which is polynomially solvable.
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Complexity and Programmability. The overall algorithm is single exponential. It should be
quite difficult to effectively implement the algorithm though, the whole proof being very involved.
Finding a simpler proof leading to a simpler algorithm would be very interesting.

6.1.1 Reductions, branchings and invariants

Let us now turn to the proof of the fixed-parameter tractability of the general MULTICUT prob-
lem. In this chapter, we study MULTICUT variants with additional constraints on the deleted edges.
In the original MULTICUT problem, we can delete a set of k edges without restrictions, but in some
more constrained versions we must delete a prescribed number of edges on some particular paths.
The total number of deleted edges is called deletion allowance of the multicut problem. We will deletion

allowancemake extensive use of the term bounded which always implicitly means bounded in terms of the
deletion allowance. Also, when speaking of FPT time, we always mean O ( f (d)nc ) where c is a fixed
constant and d is the deletion allowance. In the algorithm we will perform reductions and branch-
ings, and we use invariants to bound the total running time.

Reductions. These are computations where the output is a reduced instance which is equivalent
to the original instance with respect to the existence of a solution. One of the most natural reduc-
tions concerns irrelevant requests, i.e. a request x y such that every k-multicut of R \ x y actually
cuts x from y , where R is the set of requests. If one can certify that a request x y is irrelevant, the
reduction consists in replacing R by R \ x y . Another reduction is obtained if we can certify that,
if there exists a k-multicut, then there exists a k-multicut which does not separate two given ver-
tices u and v . In this case, we simply contract u and v . Reductions are easy to control, and we can
perform reductions liberally provided that some invariant polynomial in n decreases. For example,
request deletions can be performed at most n2 times, and vertex contractions at most n times.

Branchings. In our algorithm, we often have to decide if the multicut we are looking for is of
a particular type, where the number of types is bounded. We will then say that we branch over
all the possible cases. This means that, to compute the result of the current instance, we run our
algorithm on each case, in which we force the solution to be of each given type. The instance is
positive if at least one of the cases is positive. To illustrate this, in the case of a graph G with two
connected components G1 and G2, both containing requests, we would branch over k−1 instances,
depending of the number of edges (between 1 and k − 1) that we remove from G1. This simple
branching explains why we can focus on connected graphs.

Invariants. To prove that the total number of branches is bounded, we show that some invariant
is modified at each branching step, and that the number of times that this invariant can be modified
is bounded. We usually have several invariants ordered lexicographically. In other words, we have
different invariants which we want to increase or decrease and each invariant can take a bounded
number of values. These invariants are ordered, there is a primary invariant, a secondary invariant,
etc. Each branching must improve the invariant, i.e. the first invariant (with respect to priority
order) which is changed by the branching must be modified according to the preference, increase or
decrease, that we specified for it. For instance, the primary invariant could be the number of edges
in the multicut, which we want to decrease, and the secondary invariant could be the connectivity
of G , which we want to increase. In this case, if we can decrease the number of edges in the solution
we do so even if the connectivity of the graph decreases. Also, if a branching increases connectivity
and leaves the number of multicut edges unchanged, we improve the invariant.
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6.1.2 Irrelevant requests

Using the important separator technique introduced in Chapter 2, let us show that we can
assume that every vertex of the graph appears in a bounded number of requests. Section 6.1.2
and 6.1.3 are quite involved and is heavily linked with notions defined in Section 2.3.2. Let G = (V ,E)
be a graph and x be a vertex call the root. Recall that an important separator S is a subset of vertices
containing x such that for every S′ ( S, we have δ(S) < δ(S′). Recall that important separators are
closed under union. In addition there are at most 4k indivisible important x y-separators of size at
most k for every vertex v .

We denote by C y
k , C y

<k and C y
≤k the set of indivisible important x y-separators of size respectively

exactly k, less than k and at most k. We denote by Ck , C<k and C≤k respectively the union over all
vertices y of G of C y

k , C y
<k and C y

≤k respectively.
A collection of sets is called a ∆-system if every two distinct sets have the same intersection.∆-system

Erdős and Rado [83] proved that there exists a function er such that a collection of er (k,r ) sets of
size at most k contains a∆-system consisting of r sets. The bound proved in following result will be
immediately improved to a single-exponential bound with Theorem 6.2, whose proof is conceptu-
ally more complicated.

Theorem 6.1. Every set K of at least er (4k ,k ′) vertices contains a subset K ′ of size k ′ such that every
important separator S with δ(S) ≤ k satisfies either S ∩K ′ = ; or |K ′ \ S| ≤ k. In other words, every
important separator with border at most k isolates either all the elements of K ′, or at most k elements
of K ′. The set K ′ can be computed in FPT time in k and k ′.

Proof. Let us consider the collection C of sets C y
≤k , for all y ∈ K . By Theorem 2.32, the collection C

has size bounded in terms of k and k ′ and can be computed in FPT time.
The sets C y

≤k have size at most 4k and the set K has size er (4k ,k ′), so there exists a ∆-system of

size k ′, i.e. a subset K ′ of k ′ vertices of K such that for all y, y ′ ∈ K ′, the set C y ′

≤k∩C y
≤k is equal to some

fixed set C of C≤k . This set K ′ is computable in FPT time. Every indivisible important separator S in
C satisfies S ∩K ′ =;, i.e. the separators in C isolate K ′. Moreover, if a separator S in C≤k does not
belong to C , then S belongs to at most one C y

≤k for y ∈ K ′. Indeed otherwise y, y ′ would be in the
same connected component, and then S would be both an indivisible important x y-separator and
an indivisible important x y ′-separator, so by definition of ∆-system it would be a separator for the
whose set K ′. So finally S isolates at most one vertex of K ′.

We have proved so far that the conclusion of Theorem 6.1 holds if S is an indivisible important
separator with border or size at most k, with the stronger conclusion that S isolates at most one ver-
tex of K ′ when it does not completely separates K ′. To conclude, let us observe that if S is divisible
and Z is a component of G \S, then by Lemma 2.28 the separator Z belongs to C≤k . Hence either Z
isolates K ′, or Z isolates at most one vertex of K ′. The number of components of G \ S is at most k,
which concludes the proof of Theorem 6.1.

The same result holds with a better (single-exponential) bound, as expressed in the following
result. We have kept the simpler Theorem 6.1 along with its proof for readers more concerned with
the simplicity of the argument than by the efficiency of the algorithm.
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Theorem 6.2. Every set K of at least α(k,k ′) = k ′(k+2
2 )−1 vertices contains a subset K ′ of size k ′ such

that every important separator S with δ(S) ≤ k satisfies either S∩K ′ =; or |K ′ \S| ≤ k. The set K ′ can
be computed in FPT (single exponential) time.

Proof. Observe that the result trivially holds when k ′ ≤ k. So we can assume that k ′ > k. We prove
the result by induction on k.

For k = 1, α(1,k ′) = k ′2. The complements of an important separator with a border of size 1
form a collection of disjoint sets of vertices, which induces a partition of K . There is either a class
K ′ of this partition containing at least

p|K | ≥ k ′ elements, or a set K ′ of size at least
p|K | ≥ k ′ whose

elements are chosen in different classes. In both cases K ′ satisfies the induction hypothesis.
Assume now that k > 1. We distinguish two cases. Assume that there exists an indivisible im-

portant separator S with δ(S) ≤ k and |K \ S| ≥ k ′(k+1
2 )−1. By induction, we extract from K \ S a subset

K ′ of size k ′ such that every important separator T with δ(T ) ≤ k − 1 satisfies either T ∩K ′ = ;
or |K ′ \ T | ≤ k − 1. Consider an important separator S′ with δ(S′) = k. If S′ = S, then S′ isolates
K ′ by definition of K ′, hence we assume that S′ is distinct from S. Observe that K ′ \ S′ is equal to
K ′ \(S∪S′). As S∪S′ is an important separator with border at most k−1 (by submodularity we have
δ(S∪S′) ≤ δ(S)+δ(S′)−δ(S∩S′)), the set K ′\S′ is either K ′ or has size at most k−1. So the conclusion
of Theorem 6.2 holds.

Conversely, assume that all indivisible important separators S with δ(S) ≤ k satisfy |K \ S| <
k ′(k+1

2 )−1. Consider an auxiliary graph H with vertex set K and where v v ′ is an edge when there
exists an indivisible important separator S with δ(S) ≤ k such that {v, v ′}∩ S = ;. The degree in

H of a vertex v is less than d := k ′(k+1
2 )−1 · 4k . Indeed, there are at most 4k indivisible important

xv-separators with a border of size at most k, and we have assumed that all indivisible important

separators S with δ(S) ≤ k satisfy |K \ S| < k ′(k+1
2 )−1. Note that d is less than k ′(k+1

2 )−1 ·4k ′
as k ′ ≥ k.

There is a stable set K ′ in H of size at least |K |
d , and |K |

d ≥ k ′ since
(k+2

2

)− (k+1
2

)− k = 1 (note that
we evaluate 4k as kk for simplicity but a better function would work). Every indivisible important
separator S with δ(S) ≤ k isolates at most one vertex of K ′ as K ′ is stable in H . Thus, every important
separator S with δ(S) ≤ k isolates at most k vertices of K ′. The induction hypothesis holds in both
cases, which concludes the proof of Theorem 6.2.

Theorem 6.3. Every set K with at least h(`) := `.24` + 1 vertices of G contains a vertex y such that
every separator S with δ(S)+|S ∩K | ≤ ` is such that y ∉ S. Moreover, y can be found in FPT time.

In other words, the vertex y verifies the following: whenever the deletion of a set of a edges
isolates x from all but b elements of K , with a +b ≤ `, then the vertex y is also isolated from x.

Proof. Let G ′ be the graph obtained from G by adding a new vertex z with neighborhood K . In
G ′, the set C of indivisible important xz-separators with border at most ` has size at most 4` by
Theorem 2.32. The size of K is at least ` ·24` +1, so there exists a subset T of K of size at least `+1
such that for every separator S in C , we have either T ⊆ S or T ∩S =;. Indeed, originally set T = K ,
and for every separator S in C , do T := T ∩S if |T ∩S| ≥ |T ∩S|, and T := T ∩S otherwise.

We pick a vertex y in T . Let us prove that y satisfies the conclusion of Theorem 6.3.
In the graph G , consider a set A of a edges which isolates x from all the elements of K apart from

a subset B of size b with a +b ≤ `. Let F be the set of edges A ∪ {zb : b ∈ B} of G ′. Note that F is a
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zx-edge separator. We denote by X the component of x in G ′\F . Since V (G ′)\X is an indivisible zx-
separator with border at most `, it contains by Corollary 2.29 an indivisible important zx-separator
U with border at most `. In other words, U belongs to C .

Let us first observe that the set T cannot be disjoint from U . Indeed T has size `+1 and each
vertex of T is adjacent to z, thus the border of U would exceed `. Hence T is included in U , and the
set of edges A isolates T from x in G , and in particular separates y from x. This concludes the proof
of Theorem 6.3.

This connectivity result allows us to bound the request degree of a vertex v , i.e. the number of
requests with v as an endpoint.

Corollary 6.4. In a MULTICUT instance with deletion allowance k, the maximum request degree can
be reduced to at most h(k +1) =O (24k

) in FPT time.

Proof. Consider a vertex x, and denote by K the set of vertices forming a request with x. Assume
that |K | ≥ h(k+1). In this proof we consider separators rooted in x. By Theorem 6.3, there is a vertex
y of K such that every subset S containing x and verifying δ(S)+|S∩K | ≤ k+1 is such that y ∉ S. We
simply remove the request x y from the set of requests. Indeed, let F be a multicut of size at most k
of this reduced instance. Let S be the component of x in G \F . As F is a multicut, no element of K \ y
belongs to S (so K ∩S| ≤ 1). Moreover δ(S) ≤ k since at most k edges are deleted. Thus δ(S)+|S∩K |
is at most k+1, which implies that y ∉ S. In other words, even if we do not require to cut x from y , a
multicut of the reduced instance must cut the request x y . Therefore removing the request x y from
R is correct. When such a reduction can no longer be performed, each vertex has request degree
smaller than h(k +1).

6.1.3 Cherry reduction

An x-cherry, or simply cherry is a connected induced subgraph C of G with a particular vertexcherry

x called attachment vertex of C such that there is no edge from C \ x to G \C and no request has its
two terminals in C \ x. In other words, the requests inside an x-cherry must have x as an endpoint.
Note that we can always assume that the restriction of a multicut to an x-cherry C is the border of
an important separator of C , where x is the root. Indeed it can only be better to put less vertices in
the connected component of x. Indeed all the paths between two vertices of a same request must
pass through x since no request has both endpoints in the cherry. If u ∈ C \ x, a request uv ∈ R is
irrelevant if for every multicut F of at most k edges of R \ uv and such that F ∩C is the border of anirrelevant

important separator in C , F actually separates u from v .

Theorem 6.5. Let C be an x-cherry of an instance with deletion allowance k. We can find in FPT
time a set K (C ) of at most b(k) := h(k +1)α(k,h(2k +1)) = kO (k3) terminals in C \ x, such that if F is a
set of at most k edges which separates all requests with one endpoint in K (C ) and such that F ∩C is
the border of an important separator, then F actually cuts all requests with an endpoint in C \ x.

Proof. By Corollary 6.4, we can assume that all terminals have request degree at most h(k +1). Let
L be the set of terminals in C \ x. We assume that |L| > b(k). Our goal is to show that there exists
an irrelevant request with one endpoint in L. Let us consider the bipartite request graph B formed
by the set of requests with one endpoint in L. The graph B is bipartite since C \ x has no internal
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requests. Recall that if a bipartite graph with vertex bipartition (X ,Y ) has maximum degree d and
minimum degree one, there exists a matching with at least |X |/d edges. Indeed, in this case the
edges can be partitioned into d matchings and the graph contains at least |X | edges.

The request graph B thus contains a matching M of size at least α(k,h(2k +1)) such that each
request in M has one endpoint in L and the other endpoint outside C \ x. Let K :=V (M)∩V (C \ x).
We first only consider the cherry C where x is the root. Since the size of K is at least α(k,h(2k +1)),
the set K contains by Theorem 6.1 a subset K ′ of size h(2k +1) such that every important separator
S with border at most k verifies S ∩K ′ =; or |K ′ \ S| ≤ k. Let M ′ be the set of edges of M having an
endpoint in K ′. We denote by L′ the set of vertices M ′ \ K ′, i.e. the endpoints of edges in M ′ which
do not belong to C \ x. Now let us consider the graph G ′ := G \ (C \ x) with root x. The set L′ has
size at least h(2k +1), thus by Theorem 6.3 there is a vertex y in L′ such that, whenever we delete k
edges in G ′ such that at most k vertices of L′ belong to the component of x, then y does not belong
to the component of x. The vertex y being an element of L′, we consider the request z y ∈ M ′, where
z belongs to V (C \ x).

We claim that the request z y is irrelevant. Indeed, let F be a multicut of R \ z y with at most k
edges such that FC = F ∩C is the border of an important separator. Let S be the component of x
in C \ FC . The set S is an important separator and has a border of size at most k, hence, either S
completely isolates x from K ′ or S isolates at most k vertices of K ′ from x. If K ′ is isolated from x,
then in particular x is disconnected from y , hence the request z y is separator by F . So we assume
that a subset K ′′ containing all but at most k vertices of K ′ is included in S. Hence, denoting by L′′

the other endpoints of the edges of M ′ intersecting K ′′, this means that F must disconnect x from
L′′. Therefore, the set F of at most k edges disconnects x from at most k +1 elements of L′ (the k
elements of L′′ and possibly y), so by definition of y , the set F disconnects x from y . In particular
z y is separator by F . Thus the request z y is indeed irrelevant. All the computations so far are FPT.

We repeat this process, removing irrelevant requests until the size of L does not exceed b(k). We
then set K (C ) := L, and the conclusion of Theorem 6.5 holds.

Let C be a cherry of a graph G with deletion allowance k. A subset L of the edges of C is active active

when we can assume that a multicut uses only edges of L in C , or more formally: if a multicut F
of size at most k exists, then there exists a multicut F ′ of size at most |F | such that F ′ \ C = F \ C
and F ′∩C ⊆ L . When the set L is clear from the context, we say by extension that edges of L

themselves are active.

Lemma 6.6. Let C be an x-cherry of a graph G with deletion allowance k, and let K be the set of all
terminals of C \ x. Let L (C ) be the union of all borders of separators of C y

≤k , where y ∈ K . Then L (C )

is active, and has size at most 4k+1 · |K |.
Proof. Assume that F is a multicut of size at most k. Let S be the component of x in C \ F . Let T
be an important separator with T ⊆ S and δ(T ) ≤ δ(S). If a component U of T does not intersect K ,
then F \∆(U ) is still a multicut. Hence, we can assume that all components U of T intersect K , in
which case ∆(U ) ∈C y

≤k for some y in K , hence ∆(T ) is included in L (C ). The set F ′ = (F \C )∪∆(T )

is a multicut, and the size bound for L (C ) follows from Theorem 2.32: C y
≤k contains at most 4k

indivisible important separators of size at most k, and L (C ) is a union of |K | such sets.
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Theorem 6.7. Let H1, H2, . . . , Hp be x-cherries of a graph G with deletion allowance k such that H1 \
x, H2 \ x, . . . , Hp \ x are pairwise disjoint. Assume that for every i , Ui := H1 ∪·· ·∪Hi is a cherry. Then
every set Ui has a bounded active set Li such that L j ∩Ui ⊆Li whenever i ≤ j .

Proof. By Theorem 6.5, we can reduce the set of terminals in U1 to a bounded set K1. The set
L1 = L (U1) is bounded and active by Lemma 6.6. The requests of C1 \ K1 are irrelevant in U2

since they are irrelevant in U1, hence we can assume that Theorem 6.5 applied to U2 yields a set
of terminals K2 ⊆ K1 ∪C2. Let L2 be the active edges associated to K2. Note that if an edge e ∈ L2

is in U1, then the edge e must belong to a set C y
≤k for some y ∈ K2 ∩U1. Since K2 ⊆ K1 ∪C2, we have

y ∈ K1, and so e ∈ L1, which is the property we are looking for. We extract K3 from K2 ∪C3, and
iterate this process to form the sequence Li .

6.2 Reducing MULTICUT to COMPONENT MULTICUT

Let G = (V ,E) be a connected graph, and R be a set of requests. A vertex-multicut Y is a subset
of V such that every x y-path of G where x y ∈ R contains a vertex of Y . Let A be a connected
component of G \Y . We call Y -component, or component, the union of A and its set of neighbors in
Y . Let C be a Y -component, the vertices of C ∩Y are the attachment vertices of C .

6.2.1 COMPONENT MULTICUT

Our first intermediate problem is formally expressed below. Informally, the Y -components
have at most two attachment vertices. Each Y -component with two attachment vertices has a dis-
tinguished path called backbone, and the multicut restricted to a component must consist of exactlybackbone

one edge of the backbone plus a fixed number of other edges. Finally, the vertex-multicut Y must
be split by the solution.

COMPONENT MULTICUT:
Input: A connected graph G = (V ,E), a vertex-multicut Y , a set of requests, and q inte-
gers integers f1, . . . , fq such that:

1. There are q Y -components G1, . . . ,Gq with two attachment vertices xi and yi . The
other Y -components have only one attachment vertex.

2. Every Gi has an xi yi -path denoted Pi called the backbone of Gi , such that the
deletion of an edge of Pi decreases the edge connectivity in Gi between xi and yi .

3. The integers f1, . . . , fq are such that f1 +·· ·+ fq ≤ k −q .

Parameter: k.
Output: TRUE if there exists a multicut F such that:

1. every path Pi contains exactly one edge of F ,

2. every component Gi contains exactly 1+ fi edges of F ,

3. the solution F splits Y , i.e. each connected component of G \ F contains at most
one vertex of Y .

Otherwise, the output is FALSE.
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The edges of G which do not belong to the backbones are called free edges. The backbone Pi ,free edges

in which only one edge is deleted, is the crucial structure of Gi . Indeed, the whole proof consists
of modifying each Y -component Gi step by step to finally completely reduce it to the backbone Pi .
Here, fi is the number of free edges that we can delete in Gi . Observe that k −q − f1 −·· ·− fq edges
can be deleted in Y -components with one attachment vertex. Our first reduction is the following:

Theorem 6.8. MULTICUT can be reduced to COMPONENT MULTICUT in FPT time.

The rest of Section 6.2 is devoted to the proof of Theorem 6.8. We first construct a vertex-
multicut Y through iterative compression. Then, we prove that we can reduce to Y -components
with one or two attachment vertices. Finally, we show that we can assume that every component
with two attachment vertices has a path in which exactly one edge is chosen in the solution. This is
our backbone.

6.2.2 The Vertex-Multicut Y

This subsection is devoted to proving by iterative compression that MULTICUT is equivalent to
the following problem, as was first noted in [146]:

RESTRICTED MULTICUT:
Input: A graph G , a set of requests R, an integer k, a vertex multicut Y of size at most
k +1.
Parameter: k.
Output: TRUE if there is a multicut of size at most k which splits Y , otherwise FALSE.

Lemma 6.9. MULTICUT is FPT-equivalent to RESTRICTED MULTICUT.

Lemma 6.9 follows from the following two Lemmas:

Lemma 6.10. MULTICUT can be solved in time O ( f (k)nc ) if the MULTICUT variant where a vertex
multicut of size at most k +1 is additionally given in the input can be solved in time O ( f (k)nc−1).

Proof. By induction on n, we solve MULTICUT in time f (k)(n −1)c on G − v , where v ∈ V (G). If the
output is FALSE, we return FALSE, otherwise the output is a multicut F of size at most k. Let X be a
vertex cover of F of size at most k (i.e. X contains one endpoint of each edge in F ). The set X ∪ {v}
is a vertex-multicut of the original instance, so we solve MULTICUT in time f (k)nc−1 + f (k)(n −1)c

which is at most f (k)nc .

So we can assume that the input of MULTICUT contains a vertex-multicut Y of size at most k+1.

Lemma 6.11. We can assume that the solution F splits Y .

Proof. To a solution F is associated the partition of G \F into connected components. In particular,
this induces a partition of Y . We branch over all possible partitions of Y . In a given branch, we
simply contract the elements of Y belonging to a same part of the partition.

This concludes the proof of Lemma 6.9.
During the following reduction proof, the size of the set Y will never decrease. Since one needs

k +1 edges to separate k +2 vertices, the size of Y cannot exceed k +1, otherwise we return FALSE.
Hence the primary invariant is the size of Y , and we immediately conclude if we can increase |Y |.
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6.2.3 Reducing attachment vertices

Our second invariant, which we intend to maximize, is the number of Y -components with at
least two attachment vertices. This number cannot exceed k, since a solution must split Y . Our
third invariant is the sum of the edge connectivity between all pairs of vertices of Y , which we want
to increase. This invariant is bounded by k

(|Y |
2

)
since the connectivity between two elements of Y is

at most k. Note that this third invariant never decreases when we contract vertices.

Lemma 6.12. If C is a Y -component with at least three attachment vertices, we improve the invari-
ant.

Proof. Let x, y, z be attachment vertices of C . Let λ be the edge-connectivity between x and y in C .
Let P1, . . . ,Pλ be a set of edge-disjoint x y-paths. A critical edge is an edge which belongs to somecritical edge

x y-edge separator of size λ. Note that every critical edge belongs to some path Pi . A slice of C is aslice

connected component of C minus the critical edges. Given a vertex v of C , the slice of v , denoted by
SL(v), is the slice of C containing v . Let B(z) be the border of SL(z), i.e. the set of vertices of SL(z)
which are incident to a critical edge. Note that B(z) intersects every path Pi on at most two vertices,
namely the leftmost vertex of Pi belonging to SL(z) and the rightmost vertex of Pi belonging to
SL(z). In particular, B(z) has b vertices, where b ≤ 2λ.

We branch over b +1 choices to decide whether one of the b vertices of B(z) belongs to a com-
ponent of G \F (where F is the solution) which does not contain a vertex of Y . When this is the case,
the vertex is added to Y , which increases the primary invariant. In the last branch, all the vertices of
B(z) are connected to a vertex of Y in G \ F . We branch again over all mappings f from B(z) into Y .
In each branch, the vertex v ∈ B(z) is connected to f (v) ∈ Y in G \ F . Hence we can contract every
vertex v ∈ B(z) with the vertex f (v) ∈ Y . This gives a new graph G ′. We denote by S′ the subgraph
SL(z) in G ′. Observe that S′ is a Y -component of G ′.

If x and y belong to S′, then the edge connectivity between x and y has increased. Indeed, there
is now a path P between x and y inside S′, in particular P has no critical edge. Thus the connectivity
between x and y has increased, so the invariant has improved. We assume without loss of generality
that x does not belong to S′.

If S′ contains an element of Y distinct from z, then S′ is a Y -component with at least two at-
tachment vertices. Moreover, there exists a path P in C \ S′ from x to B(z). Hence we have created
an extra Y -component with at least two attachment vertices in G ′, which improves the second in-
variant.

In the last case, z is the only vertex of Y which belongs to S′. Therefore, B(z) is entirely con-
tracted to z. In particular z is now incident to a critical edge e. So there exists an x y-separator A
with δ(A) =λ and e ∈∆(A). Without loss of generality, we assume that z ∉ A (otherwise we consider
the y x-separator A). We denote by B the vertices of A with a neighbor in A. In particular, B contains
z, has size at most λ, and every x y-path in C contains a vertex of B . Let us denote by L the set A∪B
and by R the set A. Note that L ∩R = B . We now branch to decide in which components of G \ F
the elements of B are partitioned. If an element of B is not connected to Y in G \ F , we improve the
invariant. If each element of B is contracted to a vertex of Y , both L and R in the contracted graph
are Y -components with at least two attachment vertices (respectively {x, z} and {y, z}). We again
improve the invariant.
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6.2.4 Backbones

We now assume that every component has at most two attachment vertices. Let G1, . . . ,Gq be
the components of G with two attachment vertices. We denote by λi the edge connectivity of Gi

between its two attachment vertices xi and yi . Recall that the third invariant is the sum of the λi for
i = 1, . . . , q .

Lemma 6.13. We can assume that xi and yi have degree λi in Gi .

Proof. Let A be the unique important xi yi -separator with δ(A) = λi in the graph Gi rooted in xi .
Let B be the set of vertices of A with a neighbor in A. We now branch to decide how the components
of G \ F partition B . If a vertex of B is not connected to a vertex of Y in G \ F , we can add it to Y
and improve the invariant. If a vertex of B is contracted to a vertex yi , we increase λi . Hence all
elements of B are contracted to xi . Therefore A becomes an xi -cherry, hence A \xi is removed from
Gi . The degree of xi inside Gi is now exactly λi . We apply the same argument to reduce the degree
of yi to λi .

We now branch over all partitions of k into k0+k1+·· ·+kq = k, where ki is the number of edges
of the solution chosen in Gi when i > 0, and k0 is the total number of edges chosen in the y-cherries
for y ∈ Y .

Lemma 6.14. Every component Gi can be deleted or has a backbone.

Proof. If ki ≥ 2λi , then the whole component Gi can be disconnected from the rest of the graph
by removing the edges in Gi incident to xi and yi . This reduces the second invariant, the number
of components with at least two attachment vertices. So we can assume that ki ≤ 2λi − 1. Let
P1,P2, . . . ,Pλi be edge-disjoint xi yi -paths.

Our algorithm now branches 2λi times, where the branches are called B j and B ′
j for j = 1, . . . ,λi .

In the branch B j , we assume that there is only one edge of the solution selected in P j , and that this
edge is critical, i.e. belongs to an xi yi -separator of size λi . In the branch B ′

j , we assume that all
the edges of the solution selected in P j are not critical. Let us show that every solution F belongs
to one of these branches. If F does not belong to any branch B ′

j , this means that F uses at least one
critical edge in each P j . But since ki ≤ 2λi −1, some path P j only intersects F on one edge, which
is therefore critical. Hence F is a solution in the branch B j . Thus this branching process is valid. In
the branch B j , we contract all non critical edges of P j , therefore P j is the backbone we are looking
for. In the branch B ′

j , we contract all critical edges of P j , hence the connectivity λi increases. We
thus improve the invariant.

This concludes the proof of Theorem 6.8. To sum up, the invariants in this reduction from
MULTICUT to COMPONENT MULTICUT are (in decreasing order of importance):

– |Y |, to maximize, bounded by k +1.
– The number of components with at least two attachment vertices, to maximize, bounded by

k.
– The sum of the connectivity of all pairs of vertices of Y , to maximize, bounded by k3.
The tree which represents the branchings made by the algorithm has depth O (k5) (the product

of the bounds on the invariants). The degree of its nodes is bounded by O∗(kO (k)). Indeed, when
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reducing the components with three or more attachment vertices in Lemma 6.12, or when ensur-
ing that the degree of attachment vertices in a given component is exactly their connectivity in
Lemma 6.13, we improve the invariant at a cost of O∗(kO (k)), and these are the bottlenecks. Finally,
the amount of work performed at each node vanishes in front of the number of branches, which
gives:

Observation 6.15. The reduction from MULTICUT to COMPONENT MULTICUT is executed in time
O∗(kO (k6)).

Reductions which are only performed once do not impact the overall running time: reducing
MULTICUT to RESTRICTED MULTICUT is achieved in time O∗(kO (k)) in Lemma 6.9; also, there are O (k2)
components with at most 2 attachment vertices (all y-cherries are considered as a single compo-
nent for y ∈ Y ), hence branching to decide how many edges of the multicut per component costs
kO (k2). These terms vanish in front of the O∗(kO (k6)) term.

6.3 BACKBONE MULTICUT is FPT

6.3.1 BACKBONE MULTICUT

We introduce here the problem BACKBONE MULTICUT, which is a generalization of COMPONENT

MULTICUT. Our goal is to show that BACKBONE MULTICUT is solvable in FPT time, which implies that
COMPONENT MULTICUT is FPT, which in turns implies that MULTICUT is FPT thanks to Theorem 6.8.

BACKBONE MULTICUT, formally defined below, differs from COMPONENT MULTICUT in two ways.
BACKBONE MULTICUT contains half-requests of the type (u, y, v), where u, v ∈ V and y ∈ Y . Cutting
the half-request (u, y, v) means cutting all paths from u to v going through y . Also, an instance
of BACKBONE MULTICUT can express simple properties on the edge of a backbone selected in the
multicut, which allows us to enrich instances.

BACKBONE MULTICUT:
Input: A connected graph G = (V ,E), a set R of half-requests, a set Y of at most k +1
vertices, a set B of q variables, a set C of clauses, and q non negative integers f1, . . . , fq

such that:

1. G has q Y -components called Gi with two attachment vertices xi , yi ∈ Y , where
i = 1, . . . , q . Moreover, Gi has a backbone Qi (a prescribed xi yi -path) and the xi yi -
connectivity in Gi is λi .

2. The set R contains half-requests, i.e. sets of triples (u, y, v), informally meaninghalf-
requests that vertex u sends a request to vertex v via y , where y ∈ Y . Also, Y is a u, v-

separator for every half-request (u, y, v) ∈ R.

3. The set B contains q integer-valued variables c1, . . . ,cq . Each variable ci corre-
sponds to the deletion of one edge in the backbone Qi . Formally, if the edges of
Qi are e1, . . . ,e`i , ordered from xi to yi , the variable ci can take all possible values
from 1 to `i , and ci = r means that we delete the edge er in Qi .

4. The clauses in C have four possible types: (ci ≤ a ⇒ c j ≤ b), or (ci ≤ a ⇒ c j ≥ b),
or (ci ≥ a ⇒ c j ≥ b), or (ci ≥ a ⇒ c j ≤ b).
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Figure 6.1: Fat vertices w, x, y, z belong to Y . The request ab can be simulated by two half-requests:
(a, x,b) and (a, y,b). The request cd can be simulated by the single half-request (c, w,d), as paths
between c and d which do not go through w have to go through x and y , and hence will be auto-
matically cut when Y is split. By the same argument, the request ce is irrelevant and can be deleted.

5. The integers f1, . . . , fq sum to a value at most k. Each integer fi corresponds to the
number of free edges (i.e. edges of G which are not in a backbone) of the solution
which are chosen in Gi .

Parameter: k.
Output: TRUE if:

1. There exists an assignment of the variables of B which satisfies C . 1

2. There exists a subset F of at most k free edges of G , which contains fi free edges
in Gi for i = 1, . . . , q .

3. The union F ′ of the set F together with the backbone edges corresponding to the
variables of B splits Y and intersects every half-request of R, i.e. for every half-
request (u, y, v) ∈ R every path between u and v containing y intersects F ′.

Otherwise, the output is FALSE.

Note that the deletion allowance of BACKBONE MULTICUT is k + q . COMPONENT MULTICUT di-
rectly translates into BACKBONE MULTICUT with an empty set of clauses, and where each request is
simulated by one or two half-requests (see Figure 6.1).

This section is devoted to the proof of the following result, which will conclude the proof of the
fixed-parameter tractability of MULTICUT:

Theorem 6.16. BACKBONE MULTICUT can be solved in FPT time.

6.3.2 Invariants

Our primary invariant is the sum of the numbers of free edges fi for i = 1, . . . , q , which starts with
value at most k and is non-negative. A branch in which we can decrease this primary invariant will
be considered solved. The secondary invariant is the sum of the λi −1, called the free connectivity, free connec-

tivity
1. Formally, if ci is assigned value r , then variables ci ≤ a for a ≥ r and variables ci ≥ a for a ≤ r are true and variables

ci ≥ a for a ≥ r +1 and variables ci ≤ a for a ≤ r −1 are false.
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Figure 6.2: A component in a BACKBONE MULTICUT instance with two attachment vertices x, y ∈ Y .
The bottom x y-path is the backbone P1, and the other "horizontal" x y-paths are the prescribed
paths P2, . . . ,P6, from bottom to top. Each edge of the backbone does indeed belong to aλ-separator
(i.e. an x y-separator consisting of six edges). In other words, there exists no path between two
distinct vertices of the backbone which consists only of diagonal edges, i.e. edges which do not
belong to the paths P1, . . . ,P6. Thus the slices of two distinct backbone vertices are disjoint. The tag
of vertex u, as defined in Subsection 6.3.4, is {1,4,5} and the tag of vertex v is {1,3,4,5,6}. The slice
connectivity of u is sc(u) = 6−3 = 3, and sc(v) = 6−5 = 1. The slice connectivity of this component
is 5, as there exists a vertex of the backbone P1 with no neighbor outside P1.

which we try to increase. Observe that this invariant is bounded above by k. For the last invariant,
recall that the slice SL(v) of a vertex v in a component Gi is the connected component containing
v of Gi minus the critical edges of Gi , i.e. edges of λi -separators. Observe that since all edges of a
backbone are critical, the slices of distinct vertices in a backbone do not intersect. See Figure 6.2.

The slice connectivity of a vertex v in Qi is the xi yi -edge-connectivity of Gi \SL(v) (where SL(v)
is considered as a vertex set). We denote it by sc(v). For example, if the set of neighbors of v in-
tersects every xi yi -path in Gi \Qi , then we have sc(v) = 0. Conversely, if v ∈Qi has only neighbors
in Qi , then sc(v) = λi −1. The slice connectivity sci of Gi is the maximum of sc(v), where v ∈ Qi .
The third invariant is the sum sc of the sci , for i = 1, . . . , q , and we try to minimize this invariant.
Observe that sc is always at most k.

Our goal is to show that we can always improve the invariant, or conclude that λi = 1 for all i .
In the following, we consider a component Gi with λi > 1, say G1.
To avoid cumbersome indices, we assume that the attachment vertices of G1 are x and y , and

that their edge-connectivity is denoted by λ instead of λ1. Moreover, we denote by P1 the backbone
of G1, and we assume that P1,P2, . . . ,Pλ is a set of edge-disjoint x y-paths in G1. We visualize x to
the left and y to the right (see Figure 6.2). Hence when we say that a vertex u ∈ Pi is to the left of
some vertex v ∈ Pi , we mean that u is between x and v on Pi .

6.3.3 Contracting edges

In our proof, we contract edges of the backbone and also free edges which are not critical. We
always preserve the fact that the edges of the backbone are critical.

When contracting an edge of the backbone P1, we need to modify several parameters. Assume
that the edges of P1 are e1, . . . ,e`. The variable c1 represents the edge of P1 which belongs to the
multicut. Now assume that the edge ei = vi vi+1 is contracted. All the indices of the edges which
are at least i +1 are decreased by one. All the constraints associated to the other backbones are not
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a c
x y

vu
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Figure 6.3: This component has two attachment vertices x and y . Its backbone is P1 = xuv y , and
we have P2 = xabc y and P3 = xd y . Both u and v have tag t (u) = t (v) = {1,2}, since all edges of
P2 are edges of λ-separator. After contracting u and v , edges ab and bc are no longer edges of λ-
separator, and the slice of the resulting vertex u = v becomes {u = v, a,b,c,d}, and its tag becomes
{1,2,3}, which strictly contains t (u)∪ t (v).

affected by the transformation. However, each time a clause contains a literal c1 ≥ j , where j > i ,
this literal must be replaced by c1 ≥ j − 1. Similarly, each occurrence of c1 ≤ j ′ for j ′ ≥ i must be
replaced by c1 ≤ j ′−1. If a set of edges is contracted, we perform the contractions one by one.

The collection of paths P2, . . . ,Pλ can be affected during our contractions since it can happen
that a path Pi with i ≥ 2 contains both endpoints of a contracted edge uv . In such a case, we
remove from Pi the loop formed by the contraction, i.e. the subpath of Pi between u and v . We
thus preserve our path collection.

6.3.4 Choosing a stable edge

Let v be a vertex of P1. The tag of v is the subset t (v) := {i | Pi ∩ SL(v) 6= ;}, i.e. the set of tag

indices of the paths intersecting the slice of v . Note that t (v) contains 1. Observe also that the slice
connectivity of G1 is the maximum of λ−|t (v)|, where v belongs to P1. See Figure 6.2.

By extension, the tag of an edge vi vi+1 of the backbone P1 is the ordered pair (t (vi ), t (vi+1)).
When speaking of an X Y -edge, we implicitly mean that its tag is (X ,Y ). In particular, the edge of
P1 which is selected in the solution has a given tag. We branch over the possible choices for the tag
X Y of the deleted edge of P1. Let us assume that the chosen edge has tag X Y .

Lemma 6.17. If X 6= Y , we improve the invariant.

Proof. Since only one edge is cut in the backbone, we can contract all the edges of P1 with tags
different from X Y . Observe that when contracting some UV -edge of P1, the tag of the resulting
vertex contains U ∪V since the slice of the resulting vertex contains the union of both slices (it can
actually be larger, see Figure 6.3). After contraction, all the edges of P1 between two consecutive
occurrences of X Y -edges are contracted, hence the tag of every vertex of P1 now contains X ∪Y . In
particular, the slice connectivity of G1 decreases while the free connectivity is unchanged. Thus the
invariant has improved.

Therefore we may assume that we choose an X X -edge in the solution. Let us contract all the
edges of P1 which are not X X -edges. By doing so, the tag of every vertex of P1 contains X . After
this contraction, the instance is modified, hence we have to branch again over the choice of the tag
of the edge chosen in the solution. Any choice different from X X increases the slice connectivity.
Hence we can still assume that the tag of the chosen edge is X X .
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Figure 6.4: All backbone vertices of this component are full, where X = {1,2,3,4}, with the backbone
P1 at the bottom.

The slice connectivity of G1 is λ− |X |. An X X -edge uv of the backbone is unstable if, when
contracting uv , the tag of the vertex u = v increases (i.e. strictly contains X ). Otherwise uv is
stable. We branch on the fact that the chosen X X -edge is stable or unstable.

Lemma 6.18. If the chosen X X -edge is unstable, we improve the invariant.

Proof. We enumerate the set of all unstable edges from left to right along P1, and partition them
according to their index into the odd indices and the even indices. We branch according to the
index of the chosen unstable edge. Assume for instance that the chosen unstable edge has odd
index. We contract all the edges of P1 except from the odd unstable edges. We claim that the tag of
every vertex now strictly contains X . Indeed, all edges of P1 between two consecutive odd unstable
edges are contracted, in particular some even unstable edge. Thus, since this even edge is unstable,
the tag now strictly contains X . Hence the slice connectivity decreases.

6.3.5 Contracting slices

In this part, we assume that the chosen edge of P1 is a stable X X -edge. A vertex v of P1 is full
if v belongs to every Pi , where i ∈ X (see Figure 6.4). Our goal in this subsection is to show that we
can reduce to the case where X = {1, . . . ,λ}. By the previous section, a branching which increases
the tag of the chosen edge would improve the invariant. So we assume that in all our branchings,
the chosen edge is still a stable X X -edge.

Lemma 6.19. We can assume that all backbone vertices are full.

Proof. We can first assume that there are at most k vertices with tag X between two full vertices.
Indeed, let us enumerate w1, w2, . . . the vertices with tag X from left to right along the backbone P1.
A solution F contains at most k free edges and the slices of the vertices of the backbone are disjoint,
so at most k slices of vertices wi contain an edge of F . Hence, if we partition the set of all slices
SL(wi ) into k +1 classes according to their index i modulo k +1, the solution F will not intersect
one of these classes. We branch on these k+1 choices. Assume for instance that F does not contain
an edge in all SL(wi ) where i divides k + 1. Therefore, we can safely contract each of such slices
SL(wi ) onto wi . This makes wi a full vertex.
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Let us now enumerate the full vertices z1, z2, . . . from left to right. Let uv be a stable X X -edge.
There exists a full vertex zi to the left of u (with possibly zi = u) and a full vertex zi+1 to the right of v .
Since the number of vertices with tag X between zi and zi+1 is at most k, the number of X X -edges
between zi and zi+1 is at most k +1. The rank of uv is the index of uv in the enumeration of the
edges between zi and zi+1 from left to right. Every edge of P1 has some rank between 1 and k +1.
In particular, we can branch over the rank of the selected stable X X -edge. Assume for instance that
the rank of the chosen edge is 1. We then contract all edges which are not stable X X -edges with
rank 1. This leaves only full vertices on P1 since by construction there is a full vertex between two
edges of the same rank.

Note that after performing the reduction of Lemma 6.19, if vi vi+1 is a stable X X -edge, then for
every vertex w ∈ P j with j ∈ X which lies between vi and vi+1 in P j , every wY -path contains vi or
vi+1. In particular, if X = {1, . . . ,λ} then vi is an x y-separator-vertex in G1, and vi+1 as well.

Lemma 6.20. We can assume that X = {1, . . . ,λ}. In other words, we can reduce to the case where
every vertex of P1 is a cut-vertex of G1.

Proof. Assume that X is not equal to {1, . . . ,λ}. We show that we can partition the component G1 into
two components G1

1 and G2
1. This partition leaves the free-connectivity unchanged, but decreases

the slice connectivity. A vertex vi of the backbone P1 is left clean if the edge vi−1vi of P1 is a stable left clean

X X -edge, but the edge vi vi+1 of P1 is not. The vertex vi is right clean if the edge vi vi+1 is a stable
X X -edge, but the edge vi−1vi is not. Finally, vi is clean if both vi−1vi and vi vi+1 are stable X X -
edges. When enumerating all left clean and right clean vertices from left to right, we obtain the
sequence of distinct vertices r1, l1,r2, l2, . . . ,rp , lp where the ri are the right clean vertices and the
li are the left clean vertices. Observe that x and y do not appear in the sequence since their tag is
{1, . . . ,λ}. Let us consider a pair ri , li . We say that a vertex v of G1 is between ri and li if every path
from v to x or y intersects {ri , li }. Let Bi be the set of vertices which are between ri and li . Let B be
the union of Bi for i = 1, . . . , p.

Let G1
1 be a copy of the subgraph induced by B on G1. Observe that G1

1 has p connected compo-
nents, since li 6= ri+1. We contract in G1

1 the vertices li and ri+1, for all i = 1, . . . , p −1, hence making
G1

1 connected. Finally, we contract the vertex r1 of G1
1 with x, and we contract the vertex lp of G1

1
with y , so that G1

1 is a Y -component which has x and y as attachment vertices. The backbone P 1
1 of

G1
1 simply consists of the edges of the original backbone.

To construct G2
1, we remove from G1 all the vertices of B which are not left clean or right clean

vertices. Hence no stable X X -edge is left in G2
1. We contract backbone edges of G2

1 as follows. All
the backbone vertices between x and r1 are contracted to a vertex w1 := x, more generally all the
vertices between li and ri+1 are contracted to a new vertex called wi+1, and finally all the vertices
between lp and y are contracted to wp+1 := y . We add in G2

1 the path w1, w2, . . . , wp+1 which is the
backbone P 2

1 of G2
1. We correlate the edges of the backbone of G1

1 and G2
1 by adding clauses implying

that the chosen edge of P 2
1 is wi wi+1 if and only if the chosen edge of P 1

1 is between ri and li . We
finally branch to split the number of free edges f1 chosen in G1 into f 1

1 + f 2
1 = f1, the respective

free edges deleted in G1
1 and G2

1. Let us call G ′ the graph G in which G1 is replaced by G1
1 and G2

1.
Note that the free edges of G1 are partitioned into the free edges of G1

1 and of G2
1. Observe that the

free-connectivity of G and G ′ are equal. However, the slice connectivity has decreased in G ′, since
its value is 0 in G1

1 and strictly less than λ−|X | in G2
1. Indeed, for i = 1, . . . , p−1, either the edge li li+1
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Figure 6.5: At the top, a component G1 before transformation in the proof of Lemma 6.20. The
new components G1

1 and G2
1 are depicted at the bottom and in the center respectively. The back-

bone edge in G2
1 between wi and wi+1 (dashed, mixed or dotted) is correlated to the subpath of

the backbone contained in Bi in G1
1 (similarly dashed, mixed or dotted). The vertices w1 and r1 are

identified with vertex x, and the vertices w4 and l3 are identified with y , so that the x y-component
G1 is replaced by two x y-components G1

1 and G2
1. 2

is unstable or the tag of li or li+1 strictly contains X . Hence, contracting all vertices between li and
ri+1 strictly increases the tag of the resulting vertex in G2

1. So the invariant improves. Figure 6.5
gives an example of this transformation.

Remains to prove that there exists a multicut in G ′ if and only if there exists a multicut in G which
uses a stable X X -edge. This comes from the following observation. Let e = v j v j+1 be a stable X X -
edge of P1 between ri and li . Let Ge be the graph obtained from G by deleting e, contracting x with
all the vertices of P1 to the left of v j , and contracting y with all the vertices of P1 to the right of v j+1.
Let G ′

e be the graph obtained from G ′ by deleting e in P 1
1 , deleting the edge wi wi+1 correlated to e

in P 2
1 , contracting x with all the vertices of P 1

1 to the left of v j and all the vertices of P 2
1 to the left of

wi , and contracting y with all the vertices of P 1
1 to the right of v j+1 and all the vertices of P 2

1 to the
right of wi+1. The key fact is that Ge is equal to G ′

e . Hence the multicuts in G and G ′ selecting the
edge e are in one to one correspondence.

The proof of Lemma 6.20 produces a new component, hence a new edge to be chosen in a back-
bone. This increases the deletion allowance by 1, but the number of free edges has not increased.
The slice connectivity decreases, so the invariant improves.

2. The names Mi are not used in the proof of Lemma 6.20, their purpose is just to identify what vertices which do not
belong to a set Bi become in G2

1 .
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Figure 6.6: The left subgraph Li of vi . The set Ci is the vi -cherry, and Mi is the lemon of the back-
bone edge vi vi+1.

6.3.6 Reducing the lemons

Thanks to the results of the previous section, we can assume that each vertex of the backbone P1

of G1 intersects all paths Pi for i = 1, . . . ,λ. Let vi vi+1 be an edge of the backbone P1. The vi -cherry
Ci is the set of all vertices u of G1 such that every uY -path contains vi .

The lemon Mi of vi vi+1 is the set consisting of vi , vi+1 and of all vertices u of G1 which do not lemon

belong to a cherry and such that every ux-path in G1 contains vi and every uy-path in G1 contains
vi+1. Observe that when contracting vi vi+1, the lemon Mi becomes part of the vi -cherry, where vi

denotes the resulting vertex. We denote by Li the union of all C j with j ≤ i and all M j with j < i . We
call Li the left subgraph of vi . Similarly, the right subgraph Ri of vi is the union of all C j with j ≥ i
and all M j with j > i . See Figure 6.6.

If a multicut F selects the edge vi vi+1 in the backbone, then the vertices x, v1, . . . , vi all lie in the
same connected component of G \F . When these vertices x, v1, . . . , vi are contracted to x, the set Li

becomes an x-cherry. Half-requests through y with an endpoint in Li are automatically cut since
F splits Y . Consider the terminals Ti of half-requests of Li which are routed via x. Note that these
half-requests are equivalent to usual requests, since Li is now an x-cherry. By Theorem 6.5 we can
reduce Ti to a bounded set of terminals Ki . This motivates the following key definition.

By Lemma 6.6, we define Li to be a bounded active set of edges in the x-cherry obtained from Li

by contracting vertices x, v1, . . . , vi . By Theorem 6.7, we can compute such sets Li so that L j ∩Li ⊆
Li when i ≤ j .

Let us say that a multicut F selecting vi vi+1 in P1 is proper if F ∩Li is included in Li .

Lemma 6.21. If there exists a multicut F of size at most k containing the backbone edge vi vi+1, then
there is a proper multicut F ′ of size at most k containing vi vi+1.

Proof. Consider a multicut F containing vi vi+1. As the set Li is active in the cherry obtained by
contracting the path x, v1, . . . , vi in Li , there exists a multicut F ′ of size k such that F ′\Li = F \Li and
F ′∩Li ⊆Li . Hence F ′ is proper and contains vi vi+1.

We denote by L the set of all subsets F of size at most k contained in some Li . We denote by c
the maximum size of a set Li . Note that c is bounded in terms of k.

Given two sets Fi ⊆Li and F j ⊆L j with j ≥ i , let us write Fi ¹ F j when F j ∩Li+1 ⊆ Fi . Observe
that ¹ is a partial order. A subset F of L is correlated if:

– elements of F have the same size, and
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– F is a chain for ¹, i.e. for every Fi and F j in F , with Fi ⊆ Li , F j ⊆ L j and j ≥ i , we have
F j ∩Li+1 ⊆ Fi .

Lemma 6.22. There exists a partition F1,F2, . . . ,Fk(2c)k of L into k(2c)k correlated sets.

Proof. Let us prove by induction on `= 0, . . . ,k that there exists no antichain for ¹ in L consisting
of (2c)`+1 sets of size at most l . This clearly holds for ` = 0. Assume that this holds for `−1. By
contradiction, let A = {F1,F2, . . . ,F(2c)`+1} be an antichain of sets of size at most `. Let ti be an integer
such that Fi ⊆ Lti for i = 1, . . . , (2c)`+1. We assume that the sets Fi are enumerated in such a way
that ti ≤ t j whenever i ≤ j . The set F1 is incomparable to all sets Fi with i > 1, hence Fi ∩Lt1+1* F1

for all i > 1. In particular Fi ∩Lt1+1 is non-empty, hence all sets Fi , for i = 1, . . . , (2c)`+1, have an
edge in Lt1+1. The sets Fi such that ti = t1 have an edge in Lt1 by definition. The sets Fi such that
ti > t1 have an edge in Lt1+1 as Lti ∩Lt1+1 ⊆ Lt1+1, by definition of the sets Li . Since the size of
Lt1 ∪Lt1+1 is at most 2c, there exists a subset B of A of size at least (2c)`−1 +1 of sets Fi sharing a
same edge e ∈Lt1 ∪Lt1+1. The set {F \ e|F ∈ B} has size |B | ≥ (2c)`−1 +1 and is an antichain of sets
of size at most `−1 by definition of ¹. This contradicts the induction hypothesis.

By Dilworth’s Theorem, there exists a partition of L into (2c)k sets totally ordered by ¹, which
can be be refined according to the cardinality to obtain a partition into k(2c)k correlated sets. Such
a partition can be found in FPT time.

Let us now consider such a partition F1,F2, . . . ,Fk(2c)k of L into correlated sets. Observe that
by Lemma 6.21 we can restrict our search to multicuts of the following type in G1:

– A backbone edge vi vi+1.
– Other edges in the lemon Mi , which separate vi from vi+1 in Mi .
– Edges in Li .
– Edges in Ri , which is defined analogously to Li , with the roles of vertices x and y reversed.

Lemma 6.23. We can assume that there are no cherries Ci . Moreover, if a multicut of size at most k
exists, there exists one which contains only edges in one lemon Mi .

Proof. By Lemma 6.21, if there exists a multicut F containing the backbone edge vt vt+1, then there
exists a proper multicut F ′ containing vt vt+1. By definition F ′∩Lt ⊆L .

We branch over the existence of a proper solution F ′ such that F ′∩Lt ∈F j for j = 1, . . . ,k(2c)k ,
where t is the integer such that vt vt+1 ∈ F ′. Let us assume that we are in the branch where F ′∩Lt ∈
F j . A backbone edge vi vi+1 is in the support of F j if there exists some Fi ∈ F j such that Fi ⊆ Li .
When vi vi+1 is in the support we say that lemon Mi is a support lemon. In this case, there actually
exists a unique set in F j , which we denote by Fi , such that Fi ⊆ Li , as F j is totally ordered under
¹. Let ` be the number of edges of the sets in F j .

Claim 6.24. For all Fa ∈F j , if Mi is a support lemon then Fa ∩Mi =;.

Proof. As L contains no backbone edge by definition, it is enough to show that u is not discon-
nected from vi in G1 \ Fa . As Mi is a support lemon, there exists a set Fi ∈F j such that Fi ⊆ Li .
Consider a set Fa ∈ F j with Fa ⊆ La . If a ≤ i , then Fa ⊆ La ⊆ Li , so Fa ∩ Mi = ;. If a ≥ i , then
Fa ∩Li+1 ⊆ Fi ⊆ Li as F j is correlated, hence Fa ∩Mi =; holds as well. This completes the proof of
Claim 6.24.
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Consider a vertex u such that either u belongs to some cherry Ci or u belongs to a lemon Mi

which is not a support lemon. An edge va va+1 in the support affects a half-request (u, x, v) if a < i
or if i ≤ a and the unique set Fa ∈ F j such that Fa ⊆ La separates u from x in G1. If va va+1 does
not affect (u, x, v), then neither does vb vb+1 when b ≥ a. Indeed when b ≥ a, Fb ⊆Lb and Fb ∈F j ,
we have that Fb ∩La ⊆ Fa .

Let us now modify the instance. If no edge of the support affects a half request (u, x, v), where
either u belongs to some cherry Ci or u belongs to a lemon Mi which is not a support lemon, we
remove (u, x, v) from R and add the half-request (x, x, v). Otherwise we let va va+1 be the support
edge with a maximal which affects (u, x, v). We replace (u, x, v) in R by (va+1, x, v). We call this
process projecting the half-request (u, x, v). After projecting all half-requests via x with an endpoint
in a cherry or in a lemon Mi which is not a support lemon, we decrease fi by ` and contract every
edge of P1 which is not in the support of F j . Note that, if vi vi+1 is not in the support, then there
remains no half-request via x with an endpoint in Mi .

Assume that F ′ is a solution of this reduced instance which uses an edge va va+1 in the support.
Let Fa be the element of F j such that Fa ⊆ La . Then F ′∪Fa is a solution in the original instance.
Indeed the half-requests with an endpoint in the support lemons are cut in F ′∪Fa if and only if they
are cut by F ′, as Fa does not intersect these lemons by Claim 6.24. Also, the half-requests with an
endpoint in the lemons which are not support lemons or with an endpoint in the cherries are cut in
the reduced instance if and only if they are cut by Fa in the initial instance by construction.

Conversely, assume that F is a proper solution in the original instance which uses the edge
va va+1 and such that F ∩La ∈ F j . In particular, Fa = F ∩La , so F \ Fa is a solution of the reduced
instance. Indeed, all half-requests (u, x, v) cut by Fa in the original instance are affected by va va+1,
hence they have been projected to (vi , x, v) with i ≥ a +1, and they are cut by F \ Fa in the reduced
instance.

The reduction, consisting in projecting all half-requests with an endpoint in a cherry or in a
lemon which is not a support lemon, improves the invariant unless ` = 0, i.e. unless the proper
solution of the original instance with backbone edge vi vi+1 does not use any edge in Li . In this
case, all the requests via x of cherry C j are projected to v j , for all j . By the same argument, we can
assume that no edge in a proper solution is selected to the right of Mi and that the half-requests
via y of C j are projected to v j . In this case, there remains no terminal in the cherries, so we simply
contract the cherries. We are only left with lemons, and we moreover know that if a solution exists,
then there exists a solution which uses only edges in a single lemon. This concludes the proof of
Lemma 6.23.

Theorem 6.25. We can assume that G1 only consists of the backbone P1.

Proof. We assume that λ > 1 and show that we can improve the invariant. Let us consider a back-
bone edge vi vi+1. We denote by W the multiset of vertices {w2, . . . , wλ} where w j is the vertex of
the slice Si of vi in Mi which belongs to the path P j and has a neighbor in Mi \ Si . In other words,
w j is the rightmost vertex of each path P j in the slice of vi . These vertices w j are not necessarily
distinct, for instance if vi has degree λ in Mi , the slice Si is exactly {vi } hence all w j are equal to vi

for j = 2, . . . ,λ. We also denote by Z = {z2, . . . , zλ} the multiset of vertices of the slice Ti of vi+1 in Mi

which belong respectively to the paths P2, . . . ,Pλ and have a neighbor in Mi \ Ti .
A multicut F induces a partition of W ∪ Z according to the components of G \ F . A vertex of

W ∪ Z has three possible types: it can be in the same component as x after the removal of F , in
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the same component as y , or in another component. Observe that, if two vertices a,b of W ∪ Z
belong to components distinct from the components of x and y in G \ F , then F is still a multicut
after contracting a and b. Hence F induces a partition of W into three parts, each of which can be
contracted, and F remains multicut. We now branch over all partitions of W ∪ Z into three parts
W Zx ,W Zy ,W Zu , where W Zx are vertices which are in the same component as x, W Zy are vertices
which are in the same component as y , and W Zu are vertices of the same type, possibly discon-
nected from x and y (but not necessarily so). We branch over all possible partitions of W into
W Zx ,W Zy ,W Zu , and contract in each branch W Zx to vi , W Zy to vi+1, and W Zu (if not empty) is
contracted to a single vertex called ui . In each branch, these contractions are performed simulta-
neously in all lemons Mi . We denote by G ′

1 the resulting component, by M ′
i the contracted lemon

Mi , and by S′
i the contracted Si .

If some vertex of W belongs to W Zy , or if some vertex of Z belongs to W Zx , or if W Zu intersects
both W and Z , then the x y edge-connectivity increases in G ′

1. Indeed, in all these cases, there
exists an x y-path in G ′

1 without edges of λ(x, y)-separator in G1. This improves the invariant, but
we cannot directly conclude since the edges of the backbone may not be critical any longer. Indeed,
the connectivity between vi and vi+1 in M ′

i could be smaller than the connectivity of another lemon
M ′

j , in which case the backbone edge v j v j+1 is not critical. To get a correct instance of BACKBONE

MULTICUT, we simply branch on the connectivity of the lemon M ′
i corresponding to the chosen

edge vi vi+1. In the branch corresponding to connectivity l , we contract the backbone edges vi vi+1

where M ′
i has connectivity distinct from l .

Hence we can assume without loss of generality that W is partitioned into W Zu and W Zx , and
that Z = W Zy . As we contract W Zy to vi+1, the vertex vi+1 has now degree λ in M ′

i , and Ti is a
vi+1-cherry. Let us assume that W Zu 6= ;. As we have contracted the vertices of W to vi and ui , the
set S′

i has exactly two vertices with a neighbor in M ′
i \ S′

i , namely vi and ui . Note that the degree of
vi in M ′

i \ S′
i is exactly the number of vertices w j chosen in W Zx (with multiplicity, since W Zx is a

multiset). We denote this degree of vi in M ′
i \ S′

i by d . Note that d does not depend on i since we
have chosen in every Mi the same subset W Zx inside {w2, . . . , wλ}.

Let λS be the vi ui edge-connectivity in S′
i . If λS > f1, then ui and vi cannot be separated, so we

contract ui and vi . We branch in order to assume that λS is some fixed value. In the branch corre-
sponding to connectivity λS , we contract backbone edges vi vi+1 where Si has connectivity distinct
from λS . Let P ′

1, . . . ,P ′
λS

be a collection of edge disjoint paths between ui and vi in S′
i . We denote

by S′ the slice of vi in S′
i , and once again we consider the rightmost vertices W ′ = {w ′

1, . . . , w ′
λS

} of

S′ in the paths P ′
j . We branch over all possible partitions of W ′ into W ′

x ,W ′
y ,W ′

u . Once again, if W ′
y

is not empty, we increase the connectivity between x and y . Observe that W ′
u can be contracted to

W Zu , hence to ui . In particular if W ′
u is not empty, we increase the connectivity between vi and ui

in S′
i . We iterate this process in S′

i until either W ′
u is empty in which case vi has degree λS in S′

i , or
λS exceeds f1 in which case we contract vi and ui .

We apply Lemma 6.23 to G ′
1. Therefore, we can assume that no cherries are left and that if a

solution exists, one multicut is contained in some M ′
i . Two cases can happen:

If f1 ≥ d +λS +λ−1, and the edge vi vi+1 is chosen in the backbone, then we can assume that
the restriction of the multicut to M ′

i simply consists of all the edges incident to vi and vi+1 in M ′
i .

Indeed vi is incident to d +λS free edges, and vi+1 is incident to λ−1 free edges. This is clearly the
best solution since it separates all vertices of M ′

i \ {vi , vi+1} from vi and vi+1. Therefore, we project
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every request (u, x, v) where u ∈ M ′
i to (vi+1, x, v) and project every request (u, y, v) where u ∈ M ′

i to
(vi , y, v). Finally we reduce f1 to 0 and we delete all vertices of G ′

1 which are not in P1.
Assume now that f1 < d +λS +λ−1. We branch over 2(λ−1) choices, where the branches are

named B j and B ′
j for all j = 2, . . . ,λ. In the branch B j , we assume that only one edge of the solution

is selected in P j , and that this edge is critical. In the branch B ′
j , we assume that all the edges of the

solution selected in P j are not critical. In the branch B ′
j , we contract non critical edges of P j and

improve the invariant. In the branch B j , we find a new backbone P j . In this last case, we delete the
edges of P1 and reduce the number of free edges to f1 −1. We also translate the clauses in terms
of edges of the new backbone P j . Indeed the number of edges in the backbone of G1 has changed.
Clauses of the form c1 ≤ i become c1 ≤ ε(i ) where ε(i ) denotes the index of the rightmost edge of P j

in the lemon M ′
i .

This branching process covers all the cases where vi = ui since in this case f1 < 2λ− 2 and
therefore one path P j contains only one edge of the multicut. In the case vi 6= ui , assume that a
multicut F is not of a type treated in one of the branches. In other words, F contains at least two
edges in each path P j for j = 2, . . . ,λ, and at least one of them is critical. Then F contains two edges
in each of the d paths P j not containing ui since F does not respect the branches B j for j = 2, . . . ,λ.
Also, F contains one edge outside S′

i in each path P j containing ui since edges in S′
i are not critical

and F is not treated in the branches B ′
j . Thus F contains at least 2d + (λ−d −1) free edges outside

S′
i . Hence less than λS edges of F lie in S′

i , thus vi and ui belong to the same component in G −F .
This case is covered in another branch in which vi and ui are contracted. Hence this branching
process is exhaustive, and this completes the proof of Theorem 6.25.

6.3.7 Reducing to 2-SAT

We are left with instances in which the Y -components with two attachment vertices only consist
of a backbone. We now reduce the last components.

Lemma 6.26. We can assume that there is no component with one attachment vertex.

Proof. Let Y = {y1, . . . , yp } and let k be the number of free edges in the multicut. A vertex yi ∈ Y
is safe if there is no request between two components attached only to yi . If yi is not safe then
there is a request (u, yi , v), with u and y in components attached to yi , hence yi must be either
disconnected from u or disconnected from v by the solution. We explore one branch where u is
added to Y , and one branch where v is added to Y . This creates a component with two attachment
vertices. This component has a backbone, and the number of free edges decreases.

Hence, we can assume that all the vertices of Y are safe. The yi -cherry is the union of all the
components attached to yi . We branch over all possible integer partitions of k into a sum k1 +k2 +
·· · +kp = k. In each branch, we require that ki edges are deleted in the yi -cherry for i = 1, . . . , p.
By Lemma 6.6, the yi -cherry has a bounded active set Li , hence in the yi -cherry we can consider
only a bounded number of separators of size ki : all subsets of Li of size ki . We branch over these
different choices. In a given branch, we delete a particular set of edges Fi in the yi -cherry. Thus,
we delete the vertices of the yi -cherry isolated from yi by Fi , and contract the other vertices of the
yi -cherry to yi . Finally, no Y -cherry remains.

Theorem 6.27. Multicut is FPT.
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Proof. By Lemma 6.26, to prove that BACKBONE MULTICUT is FPT, we only have to deal with an input
graph G which is a subdivision of a graph with at most k edges, and where a multicut must consist of
exactly one edge in each subdivided path. Let us consider a half-request (vi , x, v ′

j ). Assume without

loss of generality that vi ∈ G1, v ′
j ∈ G2, and x belongs to G1 and G2 (if x does not belong to G1 or

G2, then splitting Y automatically results in cutting the half-request (vi , x, v ′
j )). For simplicity, we

assume that the edges of both P1 and P2 are enumerated in increasing order from x. We add to C

the clauses x1 ≥ i ⇒ x2 ≤ j −1 and x2 ≥ j ⇒ x1 ≤ i −1. We transform all the half requests in this way.
We are only left with a set of clauses which we have to satisfy.

We finally add all the relations xi ≥ a ⇒ xi ≥ a −1 and xi ≤ a ⇒ xi ≤ a +1 and xi ≥ a ⇒¬(xi ≤
a −1) and xi ≤ a ⇒¬(xi ≥ a +1) to ensure the coherence of a satisfying assignment. We now have
a 2-SAT instance which is equivalent to the original multicut instance. As 2-SAT is solvable in poly-
nomial time, this shows that BACKBONE MULTICUT is FPT. Hence the simpler COMPONENT MULTICUT

problem is FPT. Together with Theorem 6.8 which reduces MULTICUT to COMPONENT MULTICUT, this
concludes the proof of Theorem 6.27.

To sum up, the invariants in the proof that BACKBONE MULTICUT is FPT are (in decreasing order
of importance):

– The total number of free edges in the multicut, to minimize, bounded by k.
– The sum of the free connectivity in each component, to maximize, bounded by k.
– The sum of the slice connectivity in each component, to minimize, bounded by k. 3

The algorithm starts by branching over the tag X Y of the backbone edge chosen in the mul-
ticut in a given component. When X 6= Y , the invariant improves by Lemma 6.17. The dominant
complexity term comes from the O (2k ) branches where X = Y . Tags may change, and another such
branching is done, and again the dominant term comes from the 22k cases where X = Y . If the
chosen edge is unstable, we improve the invariant with a factor two branching in Lemma 6.18. If
the edge is stable, we branch over k choices to decide which part of a partition modulo k +1 does
not intersect the solution F in Lemma 6.19, and branch again over k +1 choices for the rank of the
backbone edge chosen in the solution. This yields O (k222k ) cases where all vertices are full. If a
backbone vertex is not a cut-vertex, we increase the invariant by Lemma 6.20. Otherwise, we apply
Theorem 6.25, which branches over 3O (k) cases, in which either the component consists only in its
backbone, or the invariant has improved.

When the whole process described in the previous paragraph has been performed over all com-
ponents with two attachment vertices, yielding O∗(kO (k)) branches, we apply Lemma 6.26. If a
vertex in Y is not safe, the invariant improves. When all vertices are safe, the tree which represents
the branchings made by the algorithm thus far (where child nodes are instances with a better in-
variant) has depth at most k3 and the degree of its nodes is bounded by O∗(kO (k)). Hence the total
number of leaves in the branching process thus far is O∗(kO (k4)).

Lemma 6.26 proceeds by branching over O (kk ) cases to fix the number of edges chosen by the
solution in each component, and then applies Lemma 6.6, branching exhaustively over all subsets
with the adequate number of active edges in each component. This gives a branching factor of
O ((|K | · 4k )k ), where K is the set of terminals in a given cherry, which is bounded by O (kO (k3)) by

3. By "bounded" we mean bounded above, all the invariants described in this chapter being trivially non-negative.
In both cases, maximize or minimize, the upper bound corresponds to the maximum number of times an invariant can
be improved.
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Theorem 6.5. The total number of branches obtained thus far is O (kO (k4)). Finally, Theorem 6.27
directly translates to a 2-SAT instance. Thus:

Observation 6.28. The FPT algorithm for BACKBONE MULTICUT runs in time O∗(kO (k4)).

6.4 Hints for VERTEX MULTICUT

This section contains a sketch of a translation of our proof for edge-multicut in terms of vertex-
multicut. The proof has the same outline, and we just explain how the notions introduced for edge-
multicut can be transferred to the vertex-multicut setting. What follows is more intended as a hint
rather than a complete proof of the fact that the following version of Multicut is FPT:

VERTEX MULTICUT:
Input: A graph G , a set of requests R, a subset of vertices S, an integer k.
Parameter: k.
Output: TRUE if there is a vertex-multicut of size at most k which does not intersect S,
otherwise FALSE.

In the standard version of VERTEX MULTICUT, the set S is empty. We use this slightly more general
version for technical reasons. Let us now explain how we can translate the results of the previous
sections for VERTEX MULTICUT.

The results on important separators are based on the submodularity of edge separators. The
vertex separators being also submodular, we can transfer the results for vertices. Here an indivisible
x y-separator is a set of vertices K which deletion separates x from y and such that no strict subset of
K separates x from y . For the reduction from VERTEX MULTICUT to COMPONENT MULTICUT, the proof
is essentially the same. One particularity of VERTEX MULTICUT is the following. When we contract
vertices, we have to add the resulting vertex to S, the set of non-deletable vertices. Let Y be the
vertex-multicut of size k+1 given by iterative compression. We can branch to decide which vertices
of Y belong to the solution and then branch over the possible contractions of the set Y . Hence we
can assume that Y ⊆ S. We have to replace arguments of the type “we add a vertex to Y ” by “we
branch to know if the vertex is added to Y or if it belongs to the solution”. The connectivity between
x and y is the maximum number of paths between x and y whose intersections with the set of
deletable vertices are pairwise disjoint. The connectivity can be computed by flows with weight 1
for deletable vertices and ∞ for non-deletable vertices. A vertex of λ-separator is a deletable vertex
which deletion decreases the connectivity. In the vertex-multicut context, a backbone is a path in
which only one vertex will be selected in the multicut and where every odd vertex belongs to the set
S. Additionally, all the deletable vertices of the backbone must be vertices of λ-separator.

To prove the existence of a backbone, we have to generalize Lemma 6.13. The border of the slice
of xi has size at most k but the number of vertices which touch this border can be arbitrarily large.
We can branch to know if a vertex is deleted in the slice. If this is not the case then the slice can be
contracted to xi , hence xi has only λ neighbors. Otherwise, we can branch to know if each vertex
in the border is in the component of yi or a new component. In each of these case the invariant
improves. Hence, the only relevant case is when all the vertices of the border of xi will lie in the
same connected component as xi . In this case, we can contract xi with the border of its slice, which
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Figure 6.7: The transformation into lemons for VERTEX MULTICUT. The backbone is the path at the
bottom. All even vertices of the backbone are full, with X = {1,2,3,4}, and all odd vertices belong to
S.

yields a cherry in which we have to delete vertices. By Lemma 6.6, we can bound the number of
possible separators. We can branch these separators and decrease the deletion allowance.

Let us now turn to the BACKBONE MULTICUT problem for vertex-multicuts. A key definition of
Section 6.3 is the notion of full vertex. We have to modify this notion, as contracted vertices are
not deletable. Hence all the vertices of the backbone cannot be full as for edge-multicuts. Instead,
we transform the instance to make all non-deletable vertices of the backbone full (see Figure 6.7).
The slice S(v) of a non-deletable vertex v is the connected component of v in G minus the vertices
of λ-separator. We define the tag as for edge-multicut. A vertex v of the backbone is X -stable if
v is deletable, and the tag of each of its two neighbors in the backbone is X , and the tag after the
contraction of v with its two neighbors is still X . As for edge-multicuts, we can assume that we
delete an X -stable vertex in the backbone. We can similarly define classes for Lemma 6.19, and
remark that one class does not intersect the solution. All the vertices of each slice in this class can
be contracted. This ensures that all the vertices which are non-deletable are full. We can write as in
Lemma 6.20 that a non-deletable vertex is left (resp. right) clean if the vertex to its left (resp. right)
is X -stable and then we can assume that X = {1, ...,λ} as for edge-multicut.

In the reduction of the lemons for Vertex-Multicut, we cannot contract x with the border of its
slice since it does not ensure that the degree of x isλ. Hence we have to contract x with vertices of its
slice which touch the vertices of the border. The set of such vertices can be restricted to a bounded
size with Lemma 6.6. Hence the same inductive method used for edge-multicut also holds.

6.5 Conclusion

6.5.1 A single-exponential algorithm

Our proof was originally designed only to prove that MULTICUT is FPT, with no particular focus
on algorithmic efficiency. For the sake of completeness, we briefly analyzed the complexity after
each of the two major parts of the proof. MULTICUT is reduced to COMPONENT MULTICUT in time
O∗(kO (k6)) by Remark 6.15, and BACKBONE MULTICUT is solved in time O∗(kO (k4)) by Remark 6.28.
Hence the overall running time of the algorithm is O∗(kO (k6)). This algorithm and its complexity
analysis are definitely not fine tuned, and the running time could probably be vastly improved with
slight changes to the proof and to the analysis.
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6.5.2 Comparison with Marx and Razgon’s Proof in [147]

Marx and Razgon independently proved that MULTICUT is FPT in [147]. Both proofs start with
the Iterative Compression technique originally used in [146]. Reducing Y -components (our vertex-
multicut Y is denoted by W in [147]) with three or more attachment vertices as we do in Lemma 6.12
essentially corresponds to Lemma 5.3 in [147]. The basic connectivity tools, important separators
in [147] are identical. At this point, the two proofs drastically diverge. While we concentrate on
linearly structuring the (restriction inside a component of the) multicuts, Marx and Razgon focus
on non-isolating solutions, i.e. solutions where no vertex is disconnected from Y . They exhibit a
transformation from a positive instance to an instance which admits a non-isolating solution with
a large enough probability (2−O (k3)). This probabilistic transformation can be derandomized into
a single-exponential algorithm running in time O∗(2O (k3)) (Lemma 4.1). Finally, with an instance
admitting a non-isolating solution, they reduce to Almost 2-SAT, which was proved FPT in [171].

Roughly speaking, the two proofs are about as much technically intricate. On the plus side,
our proof is self-contained, while [147] uses Almost 2-SAT, which Fixed-Parameter Tractability had
remained an important open question until recently. Also, not going through randomization and
through Almost 2-SAT allows us to (arguably) get more insight on the structure of the problem.
On the minus side, Marx and Razgon’s algorithm is more efficient and "cleaner". Also, their proof
works directly with vertex-multicuts, while our proof has been originally written in terms of edge-
multicut. Finding a shorter proof retaining the best characteristics of each would be very interest-
ing.

6.5.3 Other leads

Considering finer concepts than the notion of request can also be envisioned. In the simpler
case of MULTICUT IN TREES, a request is simply a path. In general graphs, a request can be seen as the
set of paths between its endpoints. In our proof, we simulate requests by half-requests, partitioning
the set of paths naturally associated to a request according to an intermediate point. This could be
done thanks to the vertex-multicut Y . But we originally wanted to go much further, and consider
the more general problem of cutting a prescribed set of paths, not necessarily all paths between
given pairs of vertices. The obvious problem is that a request can be realized by exponentially many
paths (exponentially many in n), but we loosely conjectured that this difficulty can be avoided as
follows:

Problem 8. Given a graph G on n vertices, an integer k and two vertices u, v of G, does there always
exist a set S of at most f (k) ·Pol y(n) paths between u and v such that removing at most k edges of G
to disconnect all paths in S must actually disconnect u and v? In other words, can an FPT number of
paths simulate a request with respect to k-multicuts?

Consider for starters the multigraph G consisting of a path on n vertices with endpoints u = p1

and v = pn , where each edge has been duplicated (into a 2-cycle), as in Figure 6.8. We are looking
for a small set of uv-paths, such that every hitting set of these paths is a uv-edge-separator.

Given a (simple) uv-path P and an integer i ∈ {1, . . . ,n −1}, let us say that P takes i if P contains
the top edge in position i , i.e. between pi and pi+1. We can reformulate the constraint on the
solution set S as follows: for every set T of k positions and for every bipartition of T into T and T ,



168 CHAPTER 6. MULTICUT IS FPT

p4 p5 p6p2 p3

p7 = vu = p1

Figure 6.8: A double path on seven vertices.

p4 p5 p6p2 p3

p7 = vu = p1

Figure 6.9: Assuming k = 4, one constraint would be generated by T = {2,3,4,6} partitioned into
T = {2,6} (corresponding to the dashed edges) in and T= {3,4} (corresponding to the dotted edges).
A solution must contain a uv-path avoiding all dotted edges and dashed edges.

there must exist a path in S which takes all positions in T and takes no position in T . Indeed, if this
is not the case, then the bottom edges for positions in T and the top edges for positions in T form a
set of k edges which hits S but does not cut u from v . See Figure 6.9 for an example.

Hence every bipartitioned set of k positions gives a constraint. There are
(n

k

)
2k such constraints

and a given simple uv-path satisfies (in the above sense)
(n

k

)
such constraints. Hence a random

simple path satisfies a fraction 1
2k of the constraints. In particular, there exists one path P which

satisfies at least a fraction 1
2k of the constraints. We pick the path P in our solution S and repeat. This

process (not taking into account the computability of P ) finds a solution of size at most log2k (
(n

k

)
2k )

paths, which is actually even better than needed, with a logarithmic dependence on n rather than
a polynomial dependence.

Problem 9. If Conjecture 8 has a positive answer, can such an FPT set of paths emulating the request
uv be computed in FPT time?

In the simple example worked out above, the randomized process should easily be derandom-
izable into an FPT algorithm.

If Conjecture 8 and Conjecture 9 turn out to have positive answers, then MULTICUT can be re-
duced to the following problem, already raised in Chapter 2:

HITTING PATH:
Input: A graph G , a set R of paths in G , an integer k.
Parameter: k.
Output: TRUE if there is a set at most k edges of G which hits R, otherwise FALSE.

It is not clear a priori whether this problem should be easier or harder than MULTICUT. Directly
emulating a MULTICUT instance with HITTING PATH would require an exponential number of paths,
and conversely the structure of the objects to be hit can be more complicated in HITTING PATH than
in MULTICUT.

We did not pursue this insight further when the ideas exposed in this chapter proved to be fruit-
ful, but Problems 8, 9 and 2 remain very interesting nonetheless, on their own right as well as with
respect to MULTICUT.
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Conclusion

Combinatorial bounds on hitting sets using VC-dimension. All along Chapter 3, we gave several
upper bounds on the transversality of hypergraphs. They are functions of the fractional transversal-
ity, of the VC-dimension, of the (p, q)-property and of the dual 2VC-dimension. Let us summarize
all of them and focus on their tightness.

1. Theorem 3.22, due to Haussler and Welzl, ensures that τ=O (dτ∗ logτ∗) (where d denotes the
VC-dimension).

2. Theorem 3.32, due to Ding, Seymour and Winkler, ensures that τ=O (ν2d+1) (where d denotes
the dual 2VC-dimension).

3. Theorem 3.36, due to Matoušek, ensures that τ ≤ f (p,d) if the hypergraph has dual VC-
dimension d and the (p,d −1)-property holds.

We have seen that the bound of Theorem 3.22 is tight. Closing the gap between the upper and the
lower bounds for the two other theorems is a challenging open problem. For the last two theorems,
there is (up to my knowledge) no construction which provides non-trivial lower bounds. Finding
such a construction is an interesting problem.

Improving the upper bounds of the last two theorems is even more challenging. Indeed it would
also improve the bounds of every theorem with a proof based on these results. For instance, the
results of Section 3.4.2 and Chapter 4 are based on respectively Theorem 3.32 and Theorem 3.36.
Let us now detail for each of them the prospects of improvements.

– The proof of Theorem 3.32 consists in proving two distinct inequalities. More precisely they
first proved that τ ≤ f (τ∗) using the VC-dimension and then they showed that ν∗ ≤ g (ν)).
Even if both of them can be tight (which is not clear for the second inequality), it would
be really surprising that they are tight for the same hypergraphs. Hence the bound may be
improved and if we prove both inequalities “at the same time”. Note nevertheless that the
current proof is already tricky, so improving it would not be simple.

– For Theorem 3.36, the function f is not specified in the paper of Matoušek. The proof of
Matoušek is derived from the proof of the Hadwiger-Debrunner Conjecture, due to Alon and
Kleitman. There exist more recent proofs of this result. Maybe some of them can be adapted
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for the VC-dimension in order to improve (and explicit) the function f . An ambitious but
interesting question would be to determine if τ can be polynomially bounded by a function
of p and d .

Result presented in the manuscript. Let us recall in this paragraph the results obtained during
my PhD and are presented throughout this manuscript.

– In Chapter 3, we proved that the Scott’s conjecture holds for maximum triangle-free graphs
using Theorem 3.32. More precisely we proved that every maximal triangle-free graph with
no induced subdivision of a fixed graph H has chromatic number at most O (ec·`4

) where c
is a constant. The upper bound is probably not tight and it could be interesting to look for a
better upper bound, in particular a polynomial one.

– In Chapter 4 we generalized a result due to Chepoi, Estellon and Vaxès on planar graphs for
graphs of “bounded VC-dimension”. Recall that we defined the VC-dimension of a graph as
the maximum over all induced subgraphs of the VC-dimension of the B-hypergraph (hyper-
edges are balls of all possible centers with all possible radii). We first proved that clique-minor
free graphs as bounded rankwidth graphs have bounded 2VC-dimension. We finally extended
the result of Chepoi, Estellon and Vaxès to graphs of bounded 2VC-dimension (using Theo-
rem 3.32) or of bounded VC-dimension (using Theorem 3.36).

– In Chapter 5 we studied the Yannakakis’ CL-IS conjecture and the Alon-Saks-Seymour con-
jecture. We proved that these two conjectures are equivalent. An implication of this equiv-
alence was known before our results. We also proved that the Yannakakis conjecture holds
for several classes of graphs: random graphs, induced split-free graphs (the proof is based
on Theorem 3.22) but also (Pk ,Pk )-induced free graphs, whose proof is a consequence of an-
other result obtained during my PhD on the Erdős-Hajnal conjecture.

– Finally we studied MULTICUT from a parameterized point of view in Chapter 6. The proof is
based on the extensive use of the important separators technique introduced by Marx for the
study of graph separation problems.

Further applications of VC-dimension. Throughout this manuscript, we raised several open
problems. In the next few paragraphs we will focus on some of them which may be tackled with
tools presented in this manuscript. The following Gyarfás’ conjecture was raised in Section 3.3.2:
any tournament which is the disjoint union of k partial orders admits a dominating set of size at
most f (k) (see Section 3.3.2 for more details). This conjecture is open even for k = 3. The VC-
dimension seems to be a natural tool for studying this conjecture. Even though, the VC-dimension
of the neighborhood hypergraph of a tournament which is the disjoint union of 3 orders can be
arbitrarily, it does not mean that the method is useless. Indeed, a lot of structure is enforced in the
graph induced by a shattered set. So maybe one can hope to prove Gyarfás’ conjecture (at least for
k = 3) using the following method:

– Partition the graph into two parts. The first one contains all the vertices which appear in at
least one large shattered set. The other contains the remaining vertices.

– The second part of the partition has a bounded dominating set. Indeed the scheme of the
proof of Alon et al. for k-majority tournaments presented in Chapter 3 can be adapted.

– The first part contains vertices which are in large shattered sets. So the set has some structural
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properties: it may be enough for proving that the dominating set is bounded. In particular
one can prove that if there is only one large shattered set, then the dominating set equals
two. Though, note that this part is the complex part and it is not clear that these structural
properties are enough.

HITTING PATH and shadow removal. In Chapter 2, we have also raised the following question:
given a set of paths and an integer k, is it possible to decide if the set of paths has a hitting set of
size at most k in FPT time? This question naturally generalizes the MULTICUT problem. The shadow
removal technique, presented in Chapter 2, can help us to find some structure on the solution we
are looking for. Indeed after applying the main theorem of the shadow removal technique, we can
assume that the solution has no shadow. This information on the structure of the solution can be
interesting to design an FPT algorithm. Indeed in this case, we might find an edge which can be
contracted in polynomial time (or any other decreasing invariant).

Another challenging open problem on important separators (and then on shadow removal tech-
nique) is a generalization of these tools for separators satisfying particular properties such as con-
nexity or independence. More formally, can we bound the number of “important independent sep-
arators” (or connected as well)? Is it possible to find an equivalent of the so-called Pushing Lemma
for this set of separators (Lemma 2.37)?

Combinatorial vs. algebraic proofs. Let us end with probably one of the most complicated ques-
tions raised in this manuscript. Most of the proofs provided in this thesis are purely combinatorial
proofs. But in Chapter 5, we deal with problems which seem to be easier to consider from an alge-
braic point of view than from a combinatorial point of view. The original Alon-Saks-Seymour con-
jecture was an extension of the Graham-Pollack theorem. Recall that Graham and Pollack proved
that at least `−1 edge-disjoint complete bipartite graphs are needed to cover the edges of K`. There
exist lots of proof for this result, though all of them are purely algebraic proofs. Even worse, no com-
binatorial proof ensures that K` cannot be covered by a linear number of edge-disjoint complete
bipartite graphs.
Finding a combinatorial proof, even for this weaker result would be very interesting. Indeed, even
if algebraic proofs are very nice, a combinatorial proof is more “intuitive”: usually we understand
more precisely the structure of the problem with a combinatorial proof rather than with an alge-
braic proof. A combinatorial proof might help us understand the “true reason” why we cannot
do better. Finally, a combinatorial proof that a linear number of edge-disjoint complete bipartite
graphs is necessary for covering a clique would probably lead to a breakthrough in the understand-
ing of edge-covering problems in graphs from a combinatorial point of view.
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Abstract

In this manuscript we study hitting sets both from a combinatorial and from an algorithmic
point of view. A hitting set is a subset of vertices of a hypergraph which intersects all the hyperedges.
A packing is a subset of pairwise disjoint hyperedges. In the general case, there is no function link-
ing the minimum size of a hitting set and a maximum size of a packing.
The first part of this thesis is devoted to present upper bounds on the size of hitting sets, in particu-
lar this upper bounds are expressed in the size of the maximum packing. Most of them are satisfied
when the dimension of Vapnik-Chervonenkis of the hypergraph is bounded. The originality of this
thesis consists in using these hypergraph tools in order to obtain several results on graph problems.
First we prove that a conjecture of Scott holds for maximal triangle-free graphs. Then we generalize
a result of Chepoi, Estellon and Vaxès on dominating sets at large distance. We finally study a con-
jecture of Yannakakis and prove that it holds for several graph subclasses using VC-dimension.
The second part of this thesis explores algorithmic aspects of hitting sets. More precisely we fo-
cus on parameterized complexity of graph separation problems where we are looking for hitting
sets of a set of paths. Combining connectivity tools, important separator technique and Dilworth’s
theorem, we design an FPT algorithm for the MULTICUT problem parameterized by the size of the
solution.

Keywords: Hitting set, packing, Erdős-Pósa property, VC-dimension, parameterized complexity, FPT
algorithm, important separators, graph separation problems

Résumé

Dans cette thèse, nous étudions des problèmes de transversaux d’un point de vue tant algorith-
mique que combinatoire. Étant donné un hypergraphe, un transversal est un ensemble de som-
mets qui touche toutes les hyperarêtes. Un packing est un ensemble d’hyperarêtes deux à deux
disjointes. Alors que la taille minimale d’un transversal est au moins égale à la taille maximale d’un
packing on ne peut pas dans le cas général borner la taille minimale d’un transversal par une fonc-
tion du packing maximal.
Dans un premier temps, un état de l’art rappelle les différentes conditions qui assurent l’existence
de bornes supérieures sur la taille des transversaux, en particulier en fonction de la taille d’un pack-
ing. La plupart d’entre elles sont valables lorsque la VC-dimension de Vapnik-Chervonenkis de l’hy-
pergraphe, est bornée. L’originalité de la thèse consiste à utiliser ces outils d’hypergraphes pour
obtenir des résultats sur des problèmes de graphes. Nous prouvons notamment une conjecture de
coloration de Scott dans le cas des graphes sans-triangle maximaux; ensuite, nous généralisons un
résultat de Chepoi, Estellon et Vaxès traitant de domination à grande distance; enfin nous nous at-
taquons à une conjecture de Yannakakis sur la séparation des cliques et des stables d’un graphe.
Dans un second temps, nous étudions les transversaux d’un point de vue algorithmique. On se con-
centre plus particulièrement sur les problèmes de séparation de graphe où on cherche des transver-
saux à un ensemble de chemin. En combinant des outils de connexité, les séparateurs importants et
le théorème de Dilworth, nous obtenons un algorithme FPT pour le problème MULTICUT paramétré
par la taille de la solution.

Mots clefs : Transversal, packing, propriété d’Erdős-Pósa, VC-dimension, complexité paramétrée, al-
gorithme FPT, séparateurs importants, problèmes de séparation de graphe
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